Homework 6 solutions

1. #1) Let I_s , I_f be the number of internal scalar and fermion propagators, E_s , E_f be the number of external scalar and fermion propagators, and n_{si} , n_{fi} , n_{di} be the number of scalar fields, fermi fields, and derivatives in the *i*'th vertex. Then the total degree of divergence is

$$D = dL - 2I_s - I_{\psi} + \sum_i n_{di} \,,$$

counting the total number of momentum integrals, the momenta in the propagators, and the momenta in the vertices. Matching the number of propagator ends,

$$2I_s + E_s = \sum_i n_{si}, \quad 2I_{\psi} + E_{\psi} = \sum_i n_{\psi i}.$$

The total number of loop integrations is

$$L = I_s + I_{\psi} + 1 - \sum_{i} 1$$

(one momentum per internal propagator, constrained by one δ -function per vertex, except that one of δ -functions constrains the *external* momenta to sum to zero. We can solve for I_s, I_{ψ}, L to get

$$D = -\frac{d-2}{2}E_s - \frac{d-1}{2}E_{\psi} + d + \sum_i \left(\frac{d-2}{2}n_{si} + \frac{d-1}{2}n_{\psi i} + n_{di} - d\right).$$

#2) From [S] = 0, the kinetic terms give $[\phi] = \frac{d-2}{2}$ and $[\psi] = \frac{d-1}{2}$. So

$$[d^{d}x][\phi^{n_s}][\psi^{n_{\psi}}][\partial^{n_d}] = -d + \frac{d-2}{2}n_s + \frac{d-1}{2}n_{\psi} + n_d$$

and for the corresponding coupling

$$[g] = d - \frac{d-2}{2}n_s - \frac{d-1}{2}n_{\psi} - n_d.$$

So dimensional analysis gives

$$D = [g_E] - \sum_i [g_i],$$

and g must be ≥ 0 in a renormalizable theory.

In d=4, the condition for renormalizability is $n_s+\frac{3}{2}n_\psi+n_d\leq 4$, with solutions

 ϕ^{n_s} , $n_s \le 4$: scalar self-interactions terms,

 $\partial \phi \partial \phi$: scalar kinetic term,

 ψ^2 : fermion mass, $\phi\psi^2$: Yukawa coupling, $\psi\partial\psi$: fermion kinetic term.

I've omitted total derivatives and terms that aren't Lorentz invariant (one derivative or one fermion)

In d=3, the condition for renormalizability is $\frac{1}{2}n_s+n_\psi+n_d\leq 3$, with solutions

 ϕ^{n_s} , $n_s \leq 6$: scalar self-interactions terms,

 $\partial\phi\partial\phi$: scalar kinetic term, $\psi\partial\psi$: fermion kinetic term,

 ψ^2 : fermion mass, $-\phi\psi^2$: Yukawa coupling, $-\phi^2\psi^2$: higher Yukawa .

In d=2, the condition for renormalizability is $\frac{1}{2}n_{\psi}+n_{d}\leq 2$, with solutions

 ϕ^{n_s} , any n_s : scalar self-interactions terms,

 $\partial\phi\partial\phi: \text{ scalar kinetic term}, \quad \phi^{n_s-2}\partial\phi\partial\phi\,, \ n_s \geq 3: \text{ nonlinear scalar kinetic term},$

 $\psi \partial \psi$: fermion kinetic term, $\phi^{n_s} \psi \partial \psi$, $n_s \geq 3$: scalar-dependent fermion kinetic term,

 ψ^2 : fermion mass, $\phi\psi^2$: Yukawa coupling, $\phi^{n_s}\psi^2$: higher Yukawas,

 ψ^4 : fermion self-interaction, $\phi^{n_s}\psi^4$: higher interaction.

In d=2 there is an infinite number of allowed couplings, since we can add scalars for free, but these quantum field theories still make sense.

2. The suggested method: Evaluate

$$\int_{-\infty}^{\infty} d^d x \, e^{-x \cdot x}$$

in two ways. First, it's

$$\left(\int_{-\infty}^{\infty} dx \, e^{-x^2}\right)^d = \pi^{d/2} \,.$$

Second, it's

$$\Omega_d \int_0^\infty dr \, r^{d-1} e^{-r^2} \stackrel{r^2=y}{=} \frac{\Omega_d}{2} \int_0^\infty dy \, y^{(d/2)-1} e^{-y} = \frac{\Omega_d}{2} \Gamma(d/2) \, .$$

Thus $\Omega_d = 2\pi^{d/2}/\Gamma(d/2)$.

Direct route: let

$$x_1 = \cos \theta_1$$
, $x_2 = \sin \theta_1 \cos \theta_2$, $x_3 = \sin \theta_1 \sin \theta_2 \cos \theta_3$, $x_d = \sin \theta_1 \sin \theta_2 \dots \sin \theta_{d-1}$.

Each θ_i runs from 0 to π except θ_{d-1} which runs 0 to 2π (good to check the cases d=2,3 to see how this works). Then

$$(dx \cdot dx)_d = d\theta_1^2 + \sin^2 \theta_1 (d\theta_2^2 + \sin^2 \theta_2 (d\theta_3^2 + \dots + \sin^2 \theta_{d-2} d\theta_{d-1}^2))))$$

= $d\theta_1^2 + \sin^2 \theta_1 d\theta_2^2 + \sin^2 \theta_1 \sin^2 \theta_2 d\theta_3^2 + \dots + \sin^2 \theta_1 \dots \sin^2 \theta_{d-2} d\theta_{d-1}^2$. (1)

Then

$$\Omega_{d} = 2\pi \int_{0}^{\pi} d\theta_{1} \dots d\theta_{d-2} \sin \theta_{1}^{d-2} \sin \theta_{2}^{d-3} \dots \sin \theta_{d-2}
= 2\pi \prod_{n=1}^{d-2} \int_{0}^{\pi} \sin^{n} \theta
= 2\pi \int_{0}^{\pi} \prod_{n=1}^{d-2} \frac{\Gamma(\frac{1}{2}(n+1))\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}(n+2))}
= 2\pi \int_{0}^{\pi} \prod_{n=1}^{d-2} \frac{\Gamma(\frac{1}{2}(n+1))\Gamma(\frac{1}{2})}{\Gamma(\frac{1}{2}(n+2))}
= 2\pi \frac{\Gamma(1)}{\Gamma(\frac{d}{2})} \Gamma(\frac{1}{2})^{d-2}
= \frac{2\pi^{d/2}}{\Gamma(\frac{d}{2})} .$$