Homework 7 solutions

1. Srednicki 14.3. For all three integrals, change variables $q^{\mu^{\prime}}=\Lambda_{\nu}^{\mu} q^{\nu}$. Using the lemma that the only invariants are products of metrics and the Levi-Civita tensor, we get that

$$
I^{\mu}=0, \quad I^{\mu \nu}=c g^{\mu \nu}, \quad I^{\mu \nu \rho \sigma}=c^{\prime}\left(g^{\mu \nu} g^{\sigma \rho}+g^{\mu \sigma} g^{\nu \rho}+g^{\mu \rho} g^{\sigma \nu}\right) .
$$

Then

$$
I^{\mu}{ }_{\mu}=c d, \quad I^{\mu \nu}{ }_{\mu \nu}=c^{\prime}\left(2 d+d^{2}\right) .
$$

The constants c and c^{\prime} are thus expressed in terms of integrals over functions of q^{2} only.
2. Graph similar to propagator in $g \phi^{3}$, but now $d=4-\epsilon$:

$$
\begin{aligned}
\frac{\mathbf{V}_{4}}{\lambda \tilde{\mu}^{\epsilon}} & =-Z_{\lambda}-i \frac{\lambda^{2} \tilde{\mu}^{\epsilon}}{2} \int \frac{d^{d} l}{(2 \pi)^{4}} \frac{1}{\left(l^{2}+m^{2}\right)\left(\left(l+k_{1}+k_{2}\right)^{2}+m^{2}\right)}+2 \text { perms. }+O\left(\lambda^{2}\right) \\
& =-\left(1+C_{1} \lambda\right)+\frac{\lambda \tilde{\mu}^{\epsilon}}{2} \int \frac{d^{d} \bar{q}}{(2 \pi)^{d}} \int_{0}^{1} d x \frac{1}{\left(\bar{q}^{2}+D_{12}\right)^{2}}+2 \text { perms. }+O\left(\lambda^{2}\right) \\
& =-\left(1+C_{1} \lambda\right)+\frac{\lambda}{2(4 \pi)^{2}} \tilde{\mu}^{\epsilon} \Gamma(\epsilon / 2)(4 \pi)^{\epsilon / 2} \int_{0}^{1} d x D_{12}^{-\epsilon / 2}+2 \text { perms. }+O\left(\lambda^{2}\right) \\
& \stackrel{\epsilon \rightarrow 0}{=}-\left(1+C_{1} \lambda\right)+\frac{\lambda}{2(4 \pi)^{2}}\left(\frac{2}{\epsilon}-\int_{0}^{1} d x \ln \left(D_{12} / \mu^{2}\right)\right)+2 \text { perms. }+O\left(\lambda^{3}\right) \\
& =-1-\frac{\lambda}{2(4 \pi)^{2}} \int_{0}^{1} d x \ln \left(D_{12} / \mu^{2}\right)+2 \text { perms. }+O\left(\lambda^{2}\right)
\end{aligned}
$$

Note that I divided through by $\tilde{\mu}^{\epsilon}$ to make both sides dimensionless. Here $D_{12}=x(1-$ $x)\left(k_{1}+k_{2}\right)^{2}+m^{2}$, and in the last line we canceled the pole in ϵ ($\overline{\mathrm{MS}}$ scheme),

$$
C_{1}=\frac{3}{16 \pi^{2} \epsilon}
$$

Finally, for $m^{2}=0$ we can do the integral, with the result

$$
\frac{\mathbf{V}_{4}}{\lambda}=-1+\frac{3 \lambda}{16 \pi^{2}}-\frac{\lambda}{32 \pi^{2}}\left(\ln \frac{\left(k_{1}+k_{2}\right)^{2}}{\mu^{2}}+\ln \frac{\left(k_{1}+k_{3}\right)^{2}}{\mu^{2}}+\ln \frac{\left(k_{1}+k_{4}\right)^{2}}{\mu^{2}}\right)+O\left(\lambda^{2}\right)
$$

Note again the appearance of logarithms, and that the magnitude grows at large k as expected from the RG for this theory.

Note that the $\lambda \phi^{4}$ vertex is $-i \lambda Z_{\lambda}$, the sign because the potential is defined to be positive for positive λ.
3. Each propagator now has an index denoting the field. The vertex $-i \lambda Z_{\lambda}$ is now multiplied by $\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}$, in terms of the indices of the attached propagators.

For the first graph below, the s-channel, the integral from problem 2, for external lines ($k_{1}, i ; k_{2}, j ; k_{3}, k ; k_{4}, l$) is now multiplied by

$$
\left(\delta_{i j} \delta_{m n}+\delta_{i m} \delta_{j n}+\delta_{i n} \delta_{j m}\right)\left(\delta_{k l} \delta_{m n}+\delta_{k m} \delta_{l n}+\delta_{k n} \delta_{l m}\right)=(N+4) \delta_{i j} \delta_{k l}+2 \delta_{i k} \delta_{j l}+2 \delta_{i l} \delta_{j k}
$$

The indices m, n on the internal lines have been summed.

Summing the other two channels then gives

$$
\begin{aligned}
\frac{\mathbf{V}_{i j k l}}{\lambda} \stackrel{\epsilon \rightarrow 0}{=} & -\left(1+C_{1} \lambda\right)\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right) \\
& +\frac{\lambda}{2(4 \pi)^{2}}\left((N+4) \delta_{i j} \delta_{k l}+2 \delta_{i k} \delta_{j l}+2 \delta_{i l} \delta_{j k}\right)\left(\frac{2}{\epsilon}-\int_{0}^{1} d x \ln \left(D_{12} / \mu^{2}\right)\right)+2 \text { perms. }+O\left(\lambda^{3}\right) \\
= & -\left(\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)-\frac{\lambda}{2(4 \pi)^{2}}\left\{\left((N+4) \delta_{i j} \delta_{k l}+2 \delta_{i k} \delta_{j l}+2 \delta_{i l} \delta_{j k}\right) \int_{0}^{1} d x \ln \left(D_{12} / \mu^{2}\right)\right. \\
& +\left((N+4) \delta_{i k} \delta_{j l}+2 \delta_{i j} \delta_{k l}+2 \delta_{i l} \delta_{j k}\right) \int_{0}^{1} d x \ln \left(D_{13} / \mu^{2}\right) \\
& \left.+\left((N+4) \delta_{i l} \delta_{k j}+2 \delta_{i k} \delta_{j l}+2 \delta_{i j} \delta_{l k}\right) \int_{0}^{1} d x \ln \left(D_{14} / \mu^{2}\right)\right\}
\end{aligned}
$$

where we have used $\overline{\mathrm{MS}}$ to set

$$
C_{1}=\frac{(N+8)}{16 \pi^{2} \epsilon}
$$

Note that the indices are permuted along with the momenta, e.g. $\left(k_{2}, j\right) \leftrightarrow\left(k_{4}, l\right)$ in the last line, and that the tensor structure doesn't just add up to a multiple of $\delta_{i j} \delta_{k l}+\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}$.

A check: for $N=1$ and $\lambda \rightarrow \lambda / 3$ it reduces to the previous problem.

