Homework 8 solutions

1. Srednicki 28.1. Following the steps in Srednicki, 28.13 to 28.29,

$$0 = \lambda \mu \partial_{\mu}|_{\lambda_{0},m_{0}} \ln \lambda_{0}$$

= $\lambda \mu \partial_{\mu}|_{\lambda_{0},m_{0}} \ln(Z_{\lambda} Z_{\phi}^{-2} \tilde{\mu}^{\epsilon} \lambda)$
= $\epsilon \lambda + (\mu \partial_{\mu}|_{\lambda_{0},m_{0}} \lambda) (1 + \lambda \partial_{\lambda} \ln(Z_{\lambda} Z_{\phi}^{-2}))$

Now, $\mu \partial_{\mu}|_{\lambda_0,m_0} \lambda = -\epsilon \lambda + \beta(\lambda)$, $Z_{\phi} = 1 + O(\lambda^2)$, and $Z_{\lambda} = 1 + 3\lambda/16\pi^2 \epsilon + O(\lambda^2)$ (previous problem set), so we get to one-loop order

$$0 = \epsilon \lambda + (-\epsilon \lambda + \beta(\lambda))(1 + 3\lambda/16\pi^2 \epsilon + \ldots).$$

The terms of order ϵ cancel, and those of order ϵ^0 give

$$\beta(\lambda) = \frac{3\lambda^2}{16\pi^2}$$

Similarly,

$$\gamma_m = \lambda \partial_\lambda M_1$$

where

$$\ln(Z_m^{1/2}Z_{\phi}^{-1/2}) = \frac{M_1(\lambda)}{\epsilon} + \dots$$

An easy one-loop calculation gives $Z_m = 1 + \lambda/16\pi^2 \epsilon$, and so

$$\gamma_m = \frac{\lambda}{32\pi^2} \,.$$

2. a)

$$S[\phi] = -\int d^4x \left(\frac{1}{2}\partial_\mu\phi(x)\partial^\mu\phi(x) + \frac{\lambda}{24}\phi^4(x)\right)$$

$$S[\phi'] = -\int d^4x \left(s^{2a} \frac{1}{2} \partial_\mu \phi(x') \partial^\mu \phi(x') + s^{4a} \frac{\lambda}{24} \phi^4(x') \right), \quad x' = sx$$

= $-\int d^4x \left(s^{2a+2} \frac{1}{2} \partial'_\mu \phi(x') \partial'^\mu \phi(x') + s^{4a} \frac{\lambda}{24} \phi^4(x') \right)$
 $\stackrel{\text{if } a=1}{=} -\int d^4x' \left(\frac{1}{2} \partial'_\mu \phi(x') \partial'^\mu \phi(x') + \frac{\lambda}{24} \phi^4(x') \right)$
= $S[\phi].$ (1)

b) For $s = 1 + \epsilon$, $\delta \phi = \epsilon (\phi + x^{\mu} \partial_{\mu} \phi)$. One finds that $\delta \mathcal{L} = \epsilon \partial_{\mu} (x^{\mu} \mathcal{L})$, so 22.27 becomes (Mark seems to leave out some ϵ 's)

$$j^{\mu} = -(\phi + x^{\nu}\partial_{\nu}\phi)\partial^{\mu}\phi - x^{\mu}\mathcal{L}$$

= $-\phi\partial^{\mu}\phi - x^{\nu}\partial_{\nu}\phi\partial^{\mu}\phi + x^{\mu}\left(\frac{1}{2}\partial_{\nu}\phi\partial^{\nu}\phi + \frac{\lambda}{24}\phi^{4}\right).$ (2)

c)

$$\partial_{\mu}(T^{\mu\nu}x_{\nu}) = (\partial_{\mu}T^{\mu\nu})x_{\nu} + T^{\mu\nu}g_{\mu\nu} = T^{\mu}_{\ \mu}$$

d) 22.31 gives

$$T^{\mu\nu} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu}\left(\frac{1}{2}\partial_{\sigma}\phi\partial^{\sigma}\phi + \frac{\lambda}{24}\phi^{4}\right)$$

Then

$$T^{\mu}_{\ \mu} = -\partial_{\sigma}\phi\partial^{\sigma}\phi - \frac{\lambda}{6}\phi^4 \neq 0 \,.$$

e) Straightforward.

f)

$$I^{\mu}_{\ \mu} = -3\partial^2(\phi^2) = -6\partial_{\sigma}\phi\partial^{\sigma}\phi - 6\phi\partial^2\phi = -6\partial_{\sigma}\phi\partial^{\sigma}\phi - \lambda\phi^4 \,,$$

where the last line uses the equation of motion. So c = -1/6 cancels the trace.

$$T^{\mu\nu}x_{\nu} = x_{\nu}\partial^{\mu}\phi\partial^{\nu}\phi - x^{\mu}\left(\frac{1}{2}\partial_{\sigma}\phi\partial^{\sigma}\phi + \frac{\lambda}{24}\phi^{4}\right) - \frac{1}{6}(x_{\nu}\partial^{\mu}\partial^{\nu} - x^{\mu}\partial^{2})\phi^{2}$$
$$= \frac{2}{3}x_{\nu}\partial^{\mu}\phi\partial^{\nu}\phi - \frac{1}{3}x_{\nu}\phi\partial^{\mu}\partial^{\nu}\phi - \frac{1}{6}x^{\mu}\partial_{\sigma}\phi\partial^{\sigma}\phi - \frac{\lambda}{24}x^{\mu}\phi^{4} + \frac{1}{3}x^{\mu}\phi\partial^{2}\phi$$
$$= \frac{2}{3}x_{\nu}\partial^{\mu}\phi\partial^{\nu}\phi - \frac{1}{3}x_{\nu}\phi\partial^{\mu}\partial^{\nu}\phi - \frac{1}{6}x^{\mu}\partial_{\sigma}\phi\partial^{\sigma}\phi + \frac{\lambda}{72}x^{\mu}\phi^{4}.$$
(3)

This is different from your answer to (b), I forgot that there was one more step. Consider

$$I^{\mu} = \partial_{\nu} (x^{\nu} \phi \partial^{\mu} \phi - x^{\mu} \phi \partial^{\nu} \phi) = 3\phi \partial^{\nu} \phi + x^{\nu} \partial_{\nu} \phi \partial^{\mu} \phi - x^{\mu} \partial_{\nu} \phi \partial^{\nu} \phi + x^{\nu} \phi \partial_{\nu} \partial^{\mu} \phi - \phi \partial^{2} \phi$$

$$= 3\phi \partial^{\mu} \phi + x^{\nu} \partial_{\nu} \phi \partial^{\mu} \phi - x^{\mu} \partial_{\nu} \phi \partial^{\nu} \phi + x^{\nu} \phi \partial_{\nu} \partial^{\mu} \phi - \frac{\lambda}{6} \phi^{4} .$$
(4)

Like $I^{\mu\nu}$ this is trivially conserved and can be used to redefine the Noether current. Then j^{μ} from part (b) plus $\frac{1}{3}I^{\mu}$ is equal to $-T'^{\mu\nu}x_{\nu}$. So there is also a sign flip - sorry about the difference of conventions. Whew!

g)

 $I_{00} = -\partial_i \partial_i (\phi^2) \,, \quad I_{0i} = -\partial_i \partial_0 (\phi^2) \,,$

so both are total spatial derivatives.

h)

$$\partial_{\mu}(T^{\mu\nu}v_{\nu}) = (\partial_{\mu}T^{\mu\nu})v_{\nu} + T^{\mu\nu}\partial_{\mu}v_{\nu} \,.$$

The first term vanishes by conservation of T. The second vanishes if

$$\partial_{\mu}v_{\nu} + \partial_{\nu}v_{\mu} \propto g_{\mu\nu}$$
.

The point is that the antisymmetric part of $\partial_{\mu}v_{\nu}$ drops out because T is symmetric, and then the second term in the conservation law vanishes because T is traceless. By taking the traces of both sides, one can make the more precise statement that

$$\partial_{\mu}v_{\nu} + \partial_{\nu}v_{\mu} = \frac{1}{2}g_{\mu\nu}\partial_{\sigma}v^{\sigma}$$

Extra: For small deviations $h_{\mu\nu}$ from a flat metric, the extra coupling is

$$\phi^2(\partial_\mu\partial_\nu - g_{\mu\nu}\partial^2)h^{\mu\nu}$$

This is the linearized form of $R\phi^2$ (up to normalization), where R is the curvature scalar. The point is that when we couple a flat spacetime field theory to gravity, besides replacing the flat metric in the action with the curved metric, there may also be such 'non-minimal' couplings to the curvature, which we don't see in the flat space theory.

3. a)

Or we can write this at

$$\frac{d\rho}{d\ln g} = \frac{1}{5}(3\rho^2 - 2\rho - 48) = \frac{3}{5}(\rho - \rho_+^*)(\rho - \rho_-^*)$$

where

$$\rho_{\pm}^* = \frac{1}{3} \pm \frac{1}{3}\sqrt{145} \approx 4.35, -3.68.$$

This separates the flow into two one-dimensional equations, which give $\rho(g)$ and $g(\mu)$.

b) See above.

c,d,e,g) For $\rho > \rho_+$, ρ increases toward the UV and decreases toward the IR. A flow that starts here, e.g. at $\rho = 5$, will flow to strong coupling in the UV and to ρ_+^* . For $\rho_+^* > \rho > \rho_-^*$, the flow goes to ρ_-^* in the UV and ρ_+^* in the IR; the initial value $\rho = 0$ is in this range. For $\rho_-^* > \rho$, ρ flows toward ρ_-^* in the UV and strong coupling in the IR. So ρ_-^* is a UV fixed point and ρ_+^* in an IR fixed point. f) Writing

$$\frac{d\rho}{d\ln g} = \frac{3}{5}(\rho - \rho_+^*)(\rho - \rho_-^*)\,,$$

you can integrate the flow: solve for g first and then ρ . You find that

$$\nu^{-1} = \frac{3}{5}(\rho_+^* - \rho_-^*) = \frac{2}{5}\sqrt{145}.$$

4. a) The flow of λ_1 is given by the first set of graphs, where solid lines are ϕ and dashed lines are χ . The three on the left are just like $\lambda \phi^4$ with one field (as in problem 1),

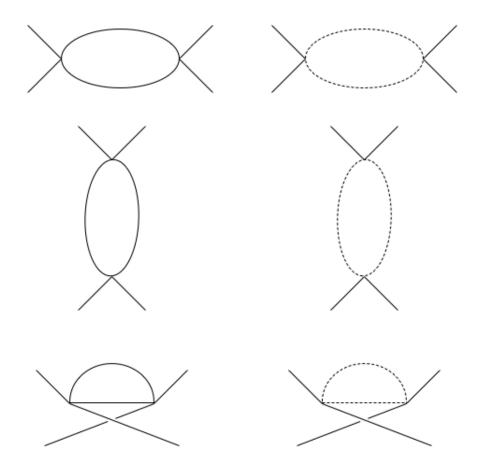


Figure 1: Renormalization of λ_1

and the three on the right are the same with λ_2^2 in place of λ_1^2 . So

$$\beta_1 = \frac{3(\lambda_1^2 + \lambda_2^2)}{16\pi^2} \,.$$

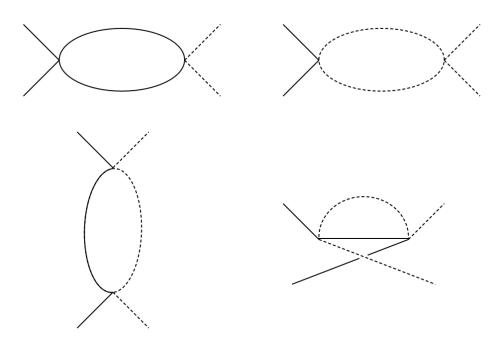


Figure 2: Renormalization of λ_2

The flow of λ_2 is given by the second set of graphs, Noting that the two on the second line have symmetry factor 1 instead of 1/2, we get

$$\beta_2 = \frac{\lambda_1 \lambda_2 + 2\lambda_2^2}{8\pi^2}$$

In case that went by too fast, let me give a longer derivation.

$$0 = \mu \partial_{\mu}|_{\lambda_{0}} \ln \lambda_{i0}$$

= $-\epsilon + (\mu \partial_{\mu}|_{\lambda_{0}} \lambda_{j}) \partial_{j} \ln(Z_{\lambda_{i}} \lambda_{i})$
= $-\epsilon + \hat{\beta}_{i} / \lambda_{i} + \hat{\beta}_{j} \partial_{j} \ln(Z_{\lambda_{i}})$
 $\approx -\epsilon + \hat{\beta}_{i} / \lambda_{i} + \hat{\beta}_{j} \partial_{j} C_{i1} / \epsilon.$ (5)

(I've used $Z_{\phi} = Z_{\chi} = 1$.) The ϵ^0 terms come from the β_i piece of the second term and the $-\epsilon \lambda^j \partial_j$ piece of the second term, just as for $\lambda \phi^4$. We find

$$C_{11} = \frac{3(\lambda_1^2 + \lambda_2^2)}{16\pi^2\lambda_1}, \quad C_{21} = \frac{\lambda_1 + 2\lambda_2}{8\pi^2}.$$

Noting that $\lambda^j \partial_j C_{i1} = C_{i1}$, we get $\beta_i = \lambda_i C_{i1}$.

A simple check is that if λ_2 starts out 0 we have two decoupled theories and it stays zero. A fancy check is that if $\lambda_1 = 3\lambda_2$ then there is an O(2) symmetry mixing ϕ and χ . We find then that $\beta_1 = 3\beta_2$, so this symmetry is preserved by the flow. Now plot the vector field

$$-\left(\frac{3\lambda_1^2+3\lambda_2^2}{16\pi^2},\frac{\lambda_1\lambda_2+2\lambda_2^2}{8\pi^2}\right)\,.$$

The minus sign is because the arrows go toward the IR.

b) Now plot

$$\left(\epsilon\lambda_1 - \frac{3\lambda_1^2 + 3\lambda_2^2}{16\pi^2}, \epsilon\lambda_2 - \frac{\lambda_1\lambda_2 + 2\lambda_2^2}{8\pi^2}\right) \,.$$

The condition $\hat{\beta}_2 = 0$ factors into $\lambda_2 = 0$ or $\lambda_2 = 4\pi^2 \epsilon - \lambda_1/2$. Then solve $\hat{\beta}_1 = 0$. There are four fixed points:

1. (0,0), free UV fixed point

2. $(16\pi^2 \epsilon/3, 0)$, decoupled Wilson-Fisher IR fixed points. In the 2-d flow this is a saddle point, because a λ_2 perturbation will grow.

3. $(24\pi^2\epsilon/5, 8\pi^2\epsilon/5), O(2)$ symmetric Wilson-Fisher IR fixed point

4. $(8\pi^2\epsilon/3, 8\pi^2\epsilon/3)$, another saddle point. In fact this is again two decoupled WF theories,

$$V \propto (\phi + \chi)^4 + (\phi - \chi)^4.$$

I couldn't get a nice plot out of my old version of Mathematica, so the figure shows the fixed points for nonzero ϵ and the flow near them, you can piece the rest together by interpolating. (For $\epsilon = 0$ the flow is basically just toward the origin.) Some people continued the plot to negative couplings, but unless $\lambda_1 > 0$ and $\lambda_1 + 3\lambda_2 > 0$ the potential is unbounded below and there is no vacuum. A large region of parameter space ($\lambda_1 > \lambda_2 > 0$, to be precise) ends up at the O(2) symmetric WF point. This means that there is an emergent scale invariance and an emergent O(2) symmetry in the IR.

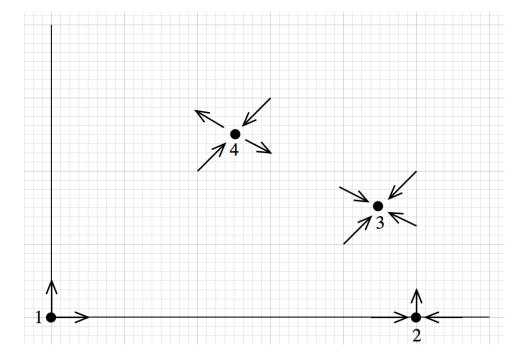


Figure 3: Flow in (λ_1, λ_2) plane, arrows toward the IR! 1. Free fixed point. 2. Decoupled WF saddle. 3. O(N) WF IR fixed point. 4. Decoupled WF saddle.