Homework 8 solutions

1. Srednicki 28.1. Following the steps in Srednicki, 28.13 to 28.29 ,

$$
\begin{aligned}
0 & =\left.\lambda \mu \partial_{\mu}\right|_{\lambda_{0}, m_{0}} \ln \lambda_{0} \\
& =\left.\lambda \mu \partial_{\mu}\right|_{\lambda_{0}, m_{0}} \ln \left(Z_{\lambda} Z_{\phi}^{-2} \tilde{\mu}^{\epsilon} \lambda\right) \\
& =\epsilon \lambda+\left(\left.\mu \partial_{\mu}\right|_{\lambda_{0}, m_{0}} \lambda\right)\left(1+\lambda \partial_{\lambda} \ln \left(Z_{\lambda} Z_{\phi}^{-2}\right)\right.
\end{aligned}
$$

Now, $\left.\mu \partial_{\mu}\right|_{\lambda_{0}, m_{0}} \lambda=-\epsilon \lambda+\beta(\lambda), Z_{\phi}=1+O\left(\lambda^{2}\right)$, and $Z_{\lambda}=1+3 \lambda / 16 \pi^{2} \epsilon+O\left(\lambda^{2}\right)$ (previous problem set), so we get to one-loop order

$$
0=\epsilon \lambda+(-\epsilon \lambda+\beta(\lambda))\left(1+3 \lambda / 16 \pi^{2} \epsilon+\ldots\right) .
$$

The terms of order ϵ cancel, and those of order ϵ^{0} give

$$
\beta(\lambda)=\frac{3 \lambda^{2}}{16 \pi^{2}}
$$

Similarly,

$$
\gamma_{m}=\lambda \partial_{\lambda} M_{1}
$$

where

$$
\ln \left(Z_{m}^{1 / 2} Z_{\phi}^{-1 / 2}\right)=\frac{M_{1}(\lambda)}{\epsilon}+\ldots
$$

An easy one-loop calculation gives $Z_{m}=1+\lambda / 16 \pi^{2} \epsilon$, and so

$$
\gamma_{m}=\frac{\lambda}{32 \pi^{2}}
$$

2. a)

$$
\begin{align*}
& S[\phi]=-\int d^{4} x\left(\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\frac{\lambda}{24} \phi^{4}(x)\right) . \\
& S\left[\phi^{\prime}\right]=-\int d^{4} x\left(s^{2 a} \frac{1}{2} \partial_{\mu} \phi\left(x^{\prime}\right) \partial^{\mu} \phi\left(x^{\prime}\right)+s^{4 a} \frac{\lambda}{24} \phi^{4}\left(x^{\prime}\right)\right), \quad x^{\prime}=s x \\
&=-\int d^{4} x\left(s^{2 a+2} \frac{1}{2} \partial_{\mu}^{\prime} \phi\left(x^{\prime}\right) \partial^{\prime \mu} \phi\left(x^{\prime}\right)+s^{4 a} \frac{\lambda}{24} \phi^{4}\left(x^{\prime}\right)\right) \\
& \stackrel{\text { if } a=1}{=}-\int d^{4} x^{\prime}\left(\frac{1}{2} \partial_{\mu}^{\prime} \phi\left(x^{\prime}\right) \partial^{\prime \mu} \phi\left(x^{\prime}\right)+\frac{\lambda}{24} \phi^{4}\left(x^{\prime}\right)\right) \\
&= S[\phi] . \tag{1}
\end{align*}
$$

b) For $s=1+\epsilon, \delta \phi=\epsilon\left(\phi+x^{\mu} \partial_{\mu} \phi\right)$. One finds that $\delta \mathcal{L}=\epsilon \partial_{\mu}\left(x^{\mu} \mathcal{L}\right)$, so 22.27 becomes (Mark seems to leave out some ϵ 's)

$$
\begin{align*}
j^{\mu} & =-\left(\phi+x^{\nu} \partial_{\nu} \phi\right) \partial^{\mu} \phi-x^{\mu} \mathcal{L} \\
& =-\phi \partial^{\mu} \phi-x^{\nu} \partial_{\nu} \phi \partial^{\mu} \phi+x^{\mu}\left(\frac{1}{2} \partial_{\nu} \phi \partial^{\nu} \phi+\frac{\lambda}{24} \phi^{4}\right) . \tag{2}
\end{align*}
$$

c)

$$
\partial_{\mu}\left(T^{\mu \nu} x_{\nu}\right)=\left(\partial_{\mu} T^{\mu \nu}\right) x_{\nu}+T^{\mu \nu} g_{\mu \nu}=T_{\mu}^{\mu}
$$

d) 22.31 gives

$$
T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi-g^{\mu \nu}\left(\frac{1}{2} \partial_{\sigma} \phi \partial^{\sigma} \phi+\frac{\lambda}{24} \phi^{4}\right)
$$

Then

$$
T_{\mu}^{\mu}=-\partial_{\sigma} \phi \partial^{\sigma} \phi-\frac{\lambda}{6} \phi^{4} \neq 0
$$

e) Straightforward.
f)

$$
I_{\mu}^{\mu}=-3 \partial^{2}\left(\phi^{2}\right)=-6 \partial_{\sigma} \phi \partial^{\sigma} \phi-6 \phi \partial^{2} \phi=-6 \partial_{\sigma} \phi \partial^{\sigma} \phi-\lambda \phi^{4},
$$

where the last line uses the equation of motion. So $c=-1 / 6$ cancels the trace.

$$
\begin{align*}
T^{\prime \mu \nu} x_{\nu} & =x_{\nu} \partial^{\mu} \phi \partial^{\nu} \phi-x^{\mu}\left(\frac{1}{2} \partial_{\sigma} \phi \partial^{\sigma} \phi+\frac{\lambda}{24} \phi^{4}\right)-\frac{1}{6}\left(x_{\nu} \partial^{\mu} \partial^{\nu}-x^{\mu} \partial^{2}\right) \phi^{2} \\
& =\frac{2}{3} x_{\nu} \partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{3} x_{\nu} \phi \partial^{\mu} \partial^{\nu} \phi-\frac{1}{6} x^{\mu} \partial_{\sigma} \phi \partial^{\sigma} \phi-\frac{\lambda}{24} x^{\mu} \phi^{4}+\frac{1}{3} x^{\mu} \phi \partial^{2} \phi \\
& =\frac{2}{3} x_{\nu} \partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{3} x_{\nu} \phi \partial^{\mu} \partial^{\nu} \phi-\frac{1}{6} x^{\mu} \partial_{\sigma} \phi \partial^{\sigma} \phi+\frac{\lambda}{72} x^{\mu} \phi^{4} . \tag{3}
\end{align*}
$$

This is different from your answer to (b), I forgot that there was one more step. Consider

$$
\begin{align*}
I^{\mu} & =\partial_{\nu}\left(x^{\nu} \phi \partial^{\mu} \phi-x^{\mu} \phi \partial^{\nu} \phi\right)=3 \phi \partial^{\nu} \phi+x^{\nu} \partial_{\nu} \phi \partial^{\mu} \phi-x^{\mu} \partial_{\nu} \phi \partial^{\nu} \phi+x^{\nu} \phi \partial_{\nu} \partial^{\mu} \phi-\phi \partial^{2} \phi \\
& =3 \phi \partial^{\mu} \phi+x^{\nu} \partial_{\nu} \phi \partial^{\mu} \phi-x^{\mu} \partial_{\nu} \phi \partial^{\nu} \phi+x^{\nu} \phi \partial_{\nu} \partial^{\mu} \phi-\frac{\lambda}{6} \phi^{4} \tag{4}
\end{align*}
$$

Like $I^{\mu \nu}$ this is trivially conserved and can be used to redefine the Noether current. Then j^{μ} from part (b) plus $\frac{1}{3} I^{\mu}$ is equal to $-T^{\prime \mu \nu} x_{\nu}$. So there is also a sign flip - sorry about the difference of conventions. Whew!
g)

$$
I_{00}=-\partial_{i} \partial_{i}\left(\phi^{2}\right), \quad I_{0 i}=-\partial_{i} \partial_{0}\left(\phi^{2}\right)
$$

so both are total spatial derivatives.
h)

$$
\partial_{\mu}\left(T^{\mu \nu} v_{\nu}\right)=\left(\partial_{\mu} T^{\mu \nu}\right) v_{\nu}+T^{\mu \nu} \partial_{\mu} v_{\nu}
$$

The first term vanishes by conservation of T. The second vanishes if

$$
\partial_{\mu} v_{\nu}+\partial_{\nu} v_{\mu} \propto g_{\mu \nu}
$$

The point is that the antisymmetric part of $\partial_{\mu} v_{\nu}$ drops out because T is symmetric, and then the second term in the conservation law vanishes because T is traceless. By taking the traces of both sides, one can make the more precise statement that

$$
\partial_{\mu} v_{\nu}+\partial_{\nu} v_{\mu}=\frac{1}{2} g_{\mu \nu} \partial_{\sigma} v^{\sigma} .
$$

Extra: For small deviations $h_{\mu \nu}$ from a flat metric, the extra coupling is

$$
\phi^{2}\left(\partial_{\mu} \partial_{\nu}-g_{\mu \nu} \partial^{2}\right) h^{\mu \nu}
$$

This is the linearized form of $R \phi^{2}$ (up to normalization), where R is the curvature scalar. The point is that when we couple a flat spacetime field theory to gravity, besides replacing the flat metric in the action with the curved metric, there may also be such 'non-minimal' couplings to the curvature, which we don't see in the flat space theory.
3. a)

$$
\partial_{\ln \mu} \rho=\frac{\partial_{\ln \mu} \lambda}{g^{2}}-2 \frac{\lambda \partial_{\ln \mu} g}{g^{3}}=\frac{1}{16 \pi^{2}}\left(\frac{3 \lambda^{2}}{g^{2}}-2 \lambda-48 g^{2}\right)=\frac{g^{2}}{16 \pi^{2}}\left(3 \rho^{2}-2 \rho-48\right) .
$$

Or we can write this at

$$
\frac{d \rho}{d \ln g}=\frac{1}{5}\left(3 \rho^{2}-2 \rho-48\right)=\frac{3}{5}\left(\rho-\rho_{+}^{*}\right)\left(\rho-\rho_{-}^{*}\right)
$$

where

$$
\rho_{ \pm}^{*}=\frac{1}{3} \pm \frac{1}{3} \sqrt{145} \approx 4.35,-3.68 .
$$

This separates the flow into two one-dimensional equations, which give $\rho(g)$ and $g(\mu)$.
b) See above.
$\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{g})$ For $\rho>\rho_{+}, \rho$ increases toward the UV and decreases toward the IR. A flow that starts here, e.g. at $\rho=5$, will flow to strong coupling in the UV and to ρ_{+}^{*}. For $\rho_{+}^{*}>\rho>\rho_{-}^{*}$, the flow goes to ρ_{-}^{*} in the UV and ρ_{+}^{*} in the IR; the initial value $\rho=0$ is in this range. For $\rho_{-}^{*}>\rho, \rho$ flows toward ρ_{-}^{*} in the UV and strong coupling in the IR. So ρ_{-}^{*} is a UV fixed point and ρ_{+}^{*} in an IR fixed point.
f) Writing

$$
\frac{d \rho}{d \ln g}=\frac{3}{5}\left(\rho-\rho_{+}^{*}\right)\left(\rho-\rho_{-}^{*}\right),
$$

you can integrate the flow: solve for g first and then ρ. You find that

$$
\nu^{-1}=\frac{3}{5}\left(\rho_{+}^{*}-\rho_{-}^{*}\right)=\frac{2}{5} \sqrt{145} .
$$

4. a) The flow of λ_{1} is given by the first set of graphs, where solid lines are ϕ and dashed lines are χ. The three on the left are just like $\lambda \phi^{4}$ with one field (as in problem 1),

Figure 1: Renormalization of λ_{1}
and the three on the right are the same with λ_{2}^{2} in place of λ_{1}^{2}. So

$$
\beta_{1}=\frac{3\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)}{16 \pi^{2}} .
$$

Figure 2: Renormalization of λ_{2}
The flow of λ_{2} is given by the second set of graphs, Noting that the two on the second line have symmetry factor 1 instead of $1 / 2$, we get

$$
\beta_{2}=\frac{\lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}}{8 \pi^{2}} .
$$

In case that went by too fast, let me give a longer derivation.

$$
\begin{align*}
0 & =\left.\mu \partial_{\mu}\right|_{\lambda_{0}} \ln \lambda_{i 0} \\
& =-\epsilon+\left(\left.\mu \partial_{\mu}\right|_{\lambda_{0}} \lambda_{j}\right) \partial_{j} \ln \left(Z_{\lambda_{i}} \lambda_{i}\right) \\
& =-\epsilon+\hat{\beta}_{i} / \lambda_{i}+\hat{\beta}_{j} \partial_{j} \ln \left(Z_{\lambda_{i}}\right) \\
& \approx-\epsilon+\hat{\beta}_{i} / \lambda_{i}+\hat{\beta}_{j} \partial_{j} C_{i 1} / \epsilon \tag{5}
\end{align*}
$$

(I've used $Z_{\phi}=Z_{\chi}=1$.) The ϵ^{0} terms come from the β_{i} piece of the second term and the $-\epsilon \lambda^{j} \partial_{j}$ piece of the second term, just as for $\lambda \phi^{4}$. We find

$$
C_{11}=\frac{3\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)}{16 \pi^{2} \lambda_{1}}, \quad C_{21}=\frac{\lambda_{1}+2 \lambda_{2}}{8 \pi^{2}}
$$

Noting that $\lambda^{j} \partial_{j} C_{i 1}=C_{i 1}$, we get $\beta_{i}=\lambda_{i} C_{i 1}$.
A simple check is that if λ_{2} starts out 0 we have two decoupled theories and it stays zero. A fancy check is that if $\lambda_{1}=3 \lambda_{2}$ then there is an $O(2)$ symmetry mixing ϕ and χ. We find then that $\beta_{1}=3 \beta_{2}$, so this symmetry is preserved by the flow.

Now plot the vector field

$$
-\left(\frac{3 \lambda_{1}^{2}+3 \lambda_{2}^{2}}{16 \pi^{2}}, \frac{\lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}}{8 \pi^{2}}\right)
$$

The minus sign is because the arrows go toward the IR.
b) Now plot

$$
\left(\epsilon \lambda_{1}-\frac{3 \lambda_{1}^{2}+3 \lambda_{2}^{2}}{16 \pi^{2}}, \epsilon \lambda_{2}-\frac{\lambda_{1} \lambda_{2}+2 \lambda_{2}^{2}}{8 \pi^{2}}\right) .
$$

The condition $\hat{\beta}_{2}=0$ factors into $\lambda_{2}=0$ or $\lambda_{2}=4 \pi^{2} \epsilon-\lambda_{1} / 2$. Then solve $\hat{\beta}_{1}=0$. There are four fixed points:

1. $(0,0)$, free UV fixed point
2. $\left(16 \pi^{2} \epsilon / 3,0\right)$, decoupled Wilson-Fisher IR fixed points. In the $2-\mathrm{d}$ flow this is a saddle point, because a λ_{2} perturbation will grow.
3. $\left(24 \pi^{2} \epsilon / 5,8 \pi^{2} \epsilon / 5\right), O(2)$ symmetric Wilson-Fisher IR fixed point
4. $\left(8 \pi^{2} \epsilon / 3,8 \pi^{2} \epsilon / 3\right)$, another saddle point. In fact this is again two decoupled WF theories,

$$
V \propto(\phi+\chi)^{4}+(\phi-\chi)^{4} .
$$

I couldn't get a nice plot out of my old version of Mathematica, so the figure shows the fixed points for nonzero ϵ and the flow near them, you can piece the rest together by interpolating. (For $\epsilon=0$ the flow is basically just toward the origin.) Some people continued the plot to negative couplings, but unless $\lambda_{1}>0$ and $\lambda_{1}+3 \lambda_{2}>0$ the potential is unbounded below and there is no vacuum. A large region of parameter space ($\lambda_{1}>\lambda_{2}>0$, to be precise) ends up at the $O(2)$ symmetric WF point. This means that there is an emergent scale invariance and an emergent $O(2)$ symmetry in the IR.

Figure 3: Flow in $\left(\lambda_{1}, \lambda_{2}\right)$ plane, arrows toward the IR! 1. Free fixed point. 2. Decoupled WF saddle. 3. $O(N)$ WF IR fixed point. 4. Decoupled WF saddle.

