
Homework 8 solutions

1. Srednicki 28.1. Following the steps in Srednicki, 28.13 to 28.29,

0 = λµ∂µ|λ0,m0 lnλ0

= λµ∂µ|λ0,m0 ln(ZλZ
−2
φ µ̃ελ)

= ελ+ (µ∂µ|λ0,m0λ)
(
1 + λ∂λ ln(ZλZ

−2
φ

)
Now, µ∂µ|λ0,m0λ = −ελ+ β(λ), Zφ = 1 +O(λ2), and Zλ = 1 + 3λ/16π2ε+O(λ2) (previous

problem set), so we get to one-loop order

0 = ελ+ (−ελ+ β(λ))(1 + 3λ/16π2ε+ . . .) .

The terms of order ε cancel, and those of order ε0 give

β(λ) =
3λ2

16π2

Similarly,

γm = λ∂λM1

where

ln(Z1/2
m Z

−1/2
φ ) =

M1(λ)

ε
+ . . . .

An easy one-loop calculation gives Zm = 1 + λ/16π2ε, and so

γm =
λ

32π2
.

2. a)

S[φ] = −
∫
d4x

(
1

2
∂µφ(x)∂µφ(x) +

λ

24
φ4(x)

)
.

S[φ′] = −
∫
d4x

(
s2a

1

2
∂µφ(x′)∂µφ(x′) + s4a

λ

24
φ4(x′)

)
, x′ = sx

= −
∫
d4x

(
s2a+21

2
∂′µφ(x′)∂′µφ(x′) + s4a

λ

24
φ4(x′)

)
if a=1

= −
∫
d4x′

(
1

2
∂′µφ(x′)∂′µφ(x′) +

λ

24
φ4(x′)

)
= S[φ] . (1)
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b) For s = 1 + ε, δφ = ε(φ+ xµ∂µφ). One finds that δL = ε∂µ(xµL), so 22.27 becomes

(Mark seems to leave out some ε’s)

jµ = −(φ+ xν∂νφ)∂µφ− xµL

= −φ∂µφ− xν∂νφ∂µφ+ xµ
(

1

2
∂νφ∂

νφ+
λ

24
φ4

)
. (2)

c)

∂µ(T µνxν) = (∂µT
µν)xν + T µνgµν = T µµ .

d) 22.31 gives

T µν = ∂µφ∂νφ− gµν
(

1

2
∂σφ∂

σφ+
λ

24
φ4

)
.

Then

T µµ = −∂σφ∂σφ−
λ

6
φ4 6= 0 .

e) Straightforward.

f)

Iµµ = −3∂2(φ2) = −6∂σφ∂
σφ− 6φ∂2φ = −6∂σφ∂

σφ− λφ4 ,

where the last line uses the equation of motion. So c = −1/6 cancels the trace.

T ′µνxν = xν∂
µφ∂νφ− xµ

(
1

2
∂σφ∂

σφ+
λ

24
φ4

)
− 1

6
(xν∂

µ∂ν − xµ∂2)φ2

=
2

3
xν∂

µφ∂νφ− 1

3
xνφ∂

µ∂νφ− 1

6
xµ∂σφ∂

σφ− λ

24
xµφ4 +

1

3
xµφ∂2φ

=
2

3
xν∂

µφ∂νφ− 1

3
xνφ∂

µ∂νφ− 1

6
xµ∂σφ∂

σφ+
λ

72
xµφ4 . (3)

This is different from your answer to (b), I forgot that there was one more step. Consider

Iµ = ∂ν(x
νφ∂µφ− xµφ∂νφ) = 3φ∂νφ+ xν∂νφ∂

µφ− xµ∂νφ∂νφ+ xνφ∂ν∂
µφ− φ∂2φ

= 3φ∂µφ+ xν∂νφ∂
µφ− xµ∂νφ∂νφ+ xνφ∂ν∂

µφ− λ

6
φ4 . (4)

Like Iµν this is trivially conserved and can be used to redefine the Noether current. Then

jµ from part (b) plus 1
3
Iµ is equal to −T ′µνxν . So there is also a sign flip - sorry about the

difference of conventions. Whew!

g)

I00 = −∂i∂i(φ2) , I0i = −∂i∂0(φ2) ,

so both are total spatial derivatives.
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h)

∂µ(T µνvν) = (∂µT
µν)vν + T µν∂µvν .

The first term vanishes by conservation of T . The second vanishes if

∂µvν + ∂νvµ ∝ gµν .

The point is that the antisymmetric part of ∂µvν drops out because T is symmetric, and

then the second term in the conservation law vanishes because T is traceless. By taking

the traces of both sides, one can make the more precise statement that

∂µvν + ∂νvµ =
1

2
gµν∂σv

σ .

Extra: For small deviations hµν from a flat metric, the extra coupling is

φ2(∂µ∂ν − gµν∂2)hµν .

This is the linearized form of Rφ2 (up to normalization), where R is the curvature scalar.

The point is that when we couple a flat spacetime field theory to gravity, besides replacing

the flat metric in the action with the curved metric, there may also be such ‘non-minimal’

couplings to the curvature, which we don’t see in the flat space theory.

3. a)

∂lnµρ =
∂lnµλ

g2
− 2

λ∂lnµg

g3
=

1

16π2

(
3λ2

g2
− 2λ− 48g2

)
=

g2

16π2
(3ρ2 − 2ρ− 48) .

Or we can write this at

dρ

d ln g
=

1

5
(3ρ2 − 2ρ− 48) =

3

5
(ρ− ρ∗+)(ρ− ρ∗−)

where

ρ∗± =
1

3
± 1

3

√
145 ≈ 4.35,−3.68 .

This separates the flow into two one-dimensional equations, which give ρ(g) and g(µ).

b) See above.

c,d,e,g) For ρ > ρ+, ρ increases toward the UV and decreases toward the IR. A flow

that starts here, e.g. at ρ = 5, will flow to strong coupling in the UV and to ρ∗+. For

ρ∗+ > ρ > ρ∗−, the flow goes to ρ∗− in the UV and ρ∗+ in the IR; the initial value ρ = 0 is in

this range. For ρ∗− > ρ, ρ flows toward ρ∗− in the UV and strong coupling in the IR. So ρ∗−
is a UV fixed point and ρ∗+ in an IR fixed point.
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f) Writing
dρ

d ln g
=

3

5
(ρ− ρ∗+)(ρ− ρ∗−) ,

you can integrate the flow: solve for g first and then ρ. You find that

ν−1 =
3

5
(ρ∗+ − ρ∗−) =

2

5

√
145 .

4. a) The flow of λ1 is given by the first set of graphs, where solid lines are φ and

dashed lines are χ. The three on the left are just like λφ4 with one field (as in problem 1),

Figure 1: Renormalization of λ1

and the three on the right are the same with λ22 in place of λ21. So

β1 =
3(λ21 + λ22)

16π2
.
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Figure 2: Renormalization of λ2

The flow of λ2 is given by the second set of graphs, Noting that the two on the second

line have symmetry factor 1 instead of 1/2, we get

β2 =
λ1λ2 + 2λ22

8π2
.

In case that went by too fast, let me give a longer derivation.

0 = µ∂µ|λ0 lnλi0

= −ε+ (µ∂µ|λ0λj)∂j ln(Zλiλi)

= −ε+ β̂i/λi + β̂j∂j ln(Zλi)

≈ −ε+ β̂i/λi + β̂j∂jCi1/ε . (5)

(I’ve used Zφ = Zχ = 1.) The ε0 terms come from the βi piece of the second term and the

−ελj∂j piece of the second term, just as for λφ4. We find

C11 =
3(λ21 + λ22)

16π2λ1
, C21 =

λ1 + 2λ2
8π2

.

Noting that λj∂jCi1 = Ci1, we get βi = λiCi1.

A simple check is that if λ2 starts out 0 we have two decoupled theories and it stays

zero. A fancy check is that if λ1 = 3λ2 then there is an O(2) symmetry mixing φ and χ.

We find then that β1 = 3β2, so this symmetry is preserved by the flow.
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Now plot the vector field

−
(

3λ21 + 3λ22
16π2

,
λ1λ2 + 2λ22

8π2

)
.

The minus sign is because the arrows go toward the IR.

b) Now plot (
ελ1 −

3λ21 + 3λ22
16π2

, ελ2 −
λ1λ2 + 2λ22

8π2

)
.

The condition β̂2 = 0 factors into λ2 = 0 or λ2 = 4π2ε − λ1/2. Then solve β̂1 = 0.

There are four fixed points:

1. (0, 0), free UV fixed point

2. (16π2ε/3, 0), decoupled Wilson-Fisher IR fixed points. In the 2-d flow this is a saddle

point, because a λ2 perturbation will grow.

3. (24π2ε/5, 8π2ε/5), O(2) symmetric Wilson-Fisher IR fixed point

4. (8π2ε/3, 8π2ε/3), another saddle point. In fact this is again two decoupled WF

theories,

V ∝ (φ+ χ)4 + (φ− χ)4 .

I couldn’t get a nice plot out of my old version of Mathematica, so the figure shows

the fixed points for nonzero ε and the flow near them, you can piece the rest together

by interpolating. (For ε = 0 the flow is basically just toward the origin.) Some people

continued the plot to negative couplings, but unless λ1 > 0 and λ1+3λ2 > 0 the potential is

unbounded below and there is no vacuum. A large region of parameter space (λ1 > λ2 > 0,

to be precise) ends up at the O(2) symmetric WF point. This means that there is an

emergent scale invariance and an emergent O(2) symmetry in the IR.
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Figure 3: Flow in (λ1, λ2) plane, arrows toward the IR! 1. Free fixed point. 2. Decoupled
WF saddle. 3. O(N) WF IR fixed point. 4. Decoupled WF saddle.
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