Homework 8 solutions

1. Srednicki 28.1. Following the steps in Srednicki, 28.13 to 28.29,
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Now, pu)rgmeA = —€X+ B(N), Zy = 1+ O(N\?), and Z, = 1+ 3\/167%€ + O(\?) (previous
problem set), so we get to one-loop order

0=eX+ (—eX+ BN)(1+3N/167% +...).

The terms of order € cancel, and those of order €° give
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An easy one-loop calculation gives Z,, = 1 + \/167%¢, and so
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b) For s =1+¢€, 6¢ = (¢ + 2#0,¢). One finds that 6L = €0, (z"L), so 22.27 becomes
(Mark seems to leave out some €’s)
= —(¢+2"0,0)0"¢ — 'L
= 0046 — 20,000+ a* (30,600 + 50" ) 2
c)
Ou(T"2,) = (0T )y + T gy = T,
d) 22.31 gives
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Th = —0,0076 — 564 0.
e) Straightforward.

f)
It, = —30%(¢?) = —60,00" ) — 600°p = —60,60" ¢ — Ag*,

where the last line uses the equation of motion. So ¢ = —1/6 cancels the trace.
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This is different from your answer to (b), I forgot that there was one more step. Consider

I* = 0, (x"pO*p — 290" §) = 390" ¢ + ¥ 0,p" ¢ — 20, $0" ¢ + 1" $0, 0" — $pI*¢
= 30" + 70, 00" ) — 18,00 + 1¥ 3, 0" — %& . (4)

Like I*” this is trivially conserved and can be used to redefine the Noether current. Then
j* from part (b) plus %I ks equal to —=T""x,. So there is also a sign flip - sorry about the
difference of conventions. Whew!
g)
Ioop = —0;0,(¢%),  loi = —0;00(¢°)

so both are total spatial derivatives.



h)
Ou(T"vy) = (0,T" v, + T* 0,v, .

The first term vanishes by conservation of 1. The second vanishes if
Ouvy + 0y, X Gy -

The point is that the antisymmetric part of d,v, drops out because T is symmetric, and
then the second term in the conservation law vanishes because T’ is traceless. By taking

the traces of both sides, one can make the more precise statement that
1 g
Ouvy, + 0v, = ng,agv )
Extra: For small deviations h,, from a flat metric, the extra coupling is
¢*(0,0, — g, 0% )

This is the linearized form of R¢? (up to normalization), where R is the curvature scalar.
The point is that when we couple a flat spacetime field theory to gravity, besides replacing
the flat metric in the action with the curved metric, there may also be such ‘non-minimal’
couplings to the curvature, which we don’t see in the flat space theory.

3. a)

(3p* —2p — 48).
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Or we can write this at

dp 1.5 3
—— _ 2 _ 4 _ = % ok
dng 3 (3p" = 2p—48) = = (p = pi)(p = p2)

where L1
3 + g\/ 145 ~ 4.35, —3.68.

This separates the flow into two one-dimensional equations, which give p(g) and g(p).
b) See above.
c,d,e,g) For p > p., p increases toward the UV and decreases toward the IR. A flow

ot

that starts here, e.g. at p = 5, will flow to strong coupling in the UV and to p%}. For
pL > p > p, the flow goes to p* in the UV and p% in the IR; the initial value p = 0 is in
this range. For p* > p, p flows toward p* in the UV and strong coupling in the IR. So p*
is a UV fixed point and p7 in an IR fixed point.
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f) Writing
dp 3 * .
dng =) —p2),
you can integrate the flow: solve for g first and then p. You find that

- 3 * * 2
v= (ol —pt) = SV145.

4. a) The flow of \; is given by the first set of graphs, where solid lines are ¢ and
dashed lines are y. The three on the left are just like A\¢* with one field (as in problem 1),

Figure 1: Renormalization of A\

and the three on the right are the same with A3 in place of A?. So

g, = BT+ A)
! 1672
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Figure 2: Renormalization of A,

The flow of Ay is given by the second set of graphs, Noting that the two on the second

line have symmetry factor 1 instead of 1/2, we get

5, = do+ 223
2T 82 '

In case that went by too fast, let me give a longer derivation.

0 = p0ulx, In Aig
= —€+ (10| A;)0; In(Zx, \i)
= —€+ BA@/)\l + ,éjaj In(Z,,)
~ —e+ Bi/Ni+ B;0;Cin e (5)
(I've used Zy = Z,, = 1.) The € terms come from the 3; piece of the second term and the
—eMN 9; piece of the second term, just as for A¢?. We find

3N+ \2) A+ 2)
1672\, 82
NOtiIlg that /\jﬁjC’il = Cila we get ﬂz = )\1011
A simple check is that if Ay starts out 0 we have two decoupled theories and it stays

Cy = Co

zero. A fancy check is that if \; = 3\ then there is an O(2) symmetry mixing ¢ and x.
We find then that 8; = 355, so this symmetry is preserved by the flow.
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Now plot the vector field

3AZ 4302 A Ay + 2X2
B 1672 ' 872 '

The minus sign is because the arrows go toward the IR.

b) Now plot ) ) )

<€>\1 - —3)\11(;;_3/\2 y 6)\2 - —/\1/\287—:2 2)\2> .

The condition Bg = 0 factors into Ay = 0 or \y = 472 — A1/2. Then solve Bl = 0.
There are four fixed points:

1. (0,0), free UV fixed point

2. (167%¢/3,0), decoupled Wilson-Fisher IR fixed points. In the 2-d flow this is a saddle
point, because a A\, perturbation will grow.

3. (24m%¢/5,87%/5), O(2) symmetric Wilson-Fisher IR fixed point

4. (872%¢/3,8m%¢/3), another saddle point. In fact this is again two decoupled WF
theories,

Vo (o+x)"+ (0 —x)*.

I couldn’t get a nice plot out of my old version of Mathematica, so the figure shows
the fixed points for nonzero ¢ and the flow near them, you can piece the rest together
by interpolating. (For ¢ = 0 the flow is basically just toward the origin.) Some people
continued the plot to negative couplings, but unless A\; > 0 and A\; +3Xs > 0 the potential is
unbounded below and there is no vacuum. A large region of parameter space (A\; > Ay > 0,
to be precise) ends up at the O(2) symmetric WF point. This means that there is an
emergent scale invariance and an emergent O(2) symmetry in the IR.
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Figure 3: Flow in (A1, A2) plane, arrows toward the IR! 1. Free fixed point. 2. Decoupled
WF saddle. 3. O(N) WF IR fixed point. 4. Decoupled WF saddle.



