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We use density matrix renormalization group (DMRG) algorithm to study the phase diagram of the spin-1/2
Heisenberg model on honeycomb lattice with first (J1) and second (J2) neighbor antiferromagnetic interactions,
where a Z2 spin liquid region has been proposed. By implementing SU(2) symmetry in the DMRG code, we
are able to obtain accurate results for long cylinders with width slightly over 15 lattice spacings and torus up
to the size N = 2 × 6 × 6. With increasing J2, we find a Néel phase with vanishing spin gap and a plaquette
valence-bond (PVB) phase with non-zero spin gap. By extrapolating the square of the staggered magnetic
moment m2

s on finite-size cylinders to thermodynamic limit, we find the Néel order vanishing at J2/J1 ' 0.22.
For 0.25 < J2/J1 ≤ 0.35, we find a possible PVB order, which shows a fast growing PVB decay length with
increasing system width. For 0.22 < J2/J1 < 0.25, both spin and dimer orders are weak for all systems we
have studied, which is consistent with a possible spin liquid phase or a deconfined quantum critical point. We
present calculations of the topological entanglement entropy, compare the DMRG results with the variational
Monte Carlo, and discuss possible scenarios in the thermodynamic limit for this region.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

I. INTRODUCTION

The quantum spin liquid (SL) is an enigmatic state of mat-
ter where a spin system does not develop magnetic order or
break lattice symmetries even at zero temperature and in-
stead develops a topological order.1 Besides being important
in the context of the frustrated magnetic systems,2 spin liquid
physics may hold clues to theoretic understanding of the non-
Fermi liquid behavior of the doped Mott materials3 and the
high-Tc superconductivity of the strongly correlated systems.4

The simplest SL’s are gapped Z2 states and have been explic-
itly demonstrated to exist in many model systems including
quantum dimer models5–7 and the kagome spin model in the
easy axis limit.8,9 Such a SL is characterized by a Z2 topo-
logical order,10,11 a ground state degeneracy on topologically
non-trivial manifolds,11,12 as well as fractionalized spinon and
vison excitations.11,13,14 However, the explicit models for SL
phases tend to be fairly contrived and not realistic. It has been
a long journey searching for the spin liquids in realistic frus-
trated spin models, particularly with spin rotational symmetry,
that are relevant to real magnetic materials.16–25 Experimen-
tally, some frustrated antiferromagnetic materials indeed can
resist forming the magnetic order or breaking real space sym-
metry at very low temperature,21,22,24,25 while the nature of
such states remains to be settled.16–20,23

Interestingly, large scale DMRG simulations have revealed
possible SL phases on kagome26–28 and J1-J2 square lat-
tice Heisenberg models.29,30 A recent determinantal quan-
tum Monte-Carlo study has suggested the existence of a
spin liquid phase in the half filled Hubbard model on hon-
eycomb lattice;31 however, a later work appears to contra-
dict this conclusion.32–34 The related spin models on honey-
comb lattice have also attracted intensive attention.37–54 Slave-
particle approaches42–44 and variational Monte Carlo (VMC)
simulations45 have proposed a gapped SL in the spin- 12 J1-J2
Heisenberg model and have found relatively low variational
energy close to the exact energy obtained from small sys-
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FIG. 1: Phase diagram of the spin- 1
2
J1-J2 honeycomb Heisenberg

model for J2 ≤ 0.35 obtained by our SU(2) DMRG studies. With
increasing J2, the model has a Néel phase for J2 . 0.22 and a PVB
phase for 0.25 . J2 . 0.35. Between these two phases, there is
a small region that exhibits no order in our calculations. The main
panel shows Néel order parameter ms and spin gap ∆ET . The inset
is the sketch of the J1-J2 honeycomb lattice on a N = 2 × L1 ×
L2 torus (here with four unit cells, L1 = L2 = 4, along the two
primitive vector directions).

tem exact diagonalization (ED) calculations around J2/J1 =
0.2.39 The Hamiltonian of the model is

H = J1
∑
〈i,j〉

Si · Sj + J2
∑
〈〈i,j〉〉

Si · Sj , (1)

where the sums 〈i, j〉 and 〈〈i, j〉〉 run over all the nearest-
neighbor (NN) and the next nearest-neighbor (NNN) bonds,
respectively. It has been established that there is a Néel
state on the small J2 side (J2 . 0.2J1)38,39,44,49,50 and a
staggered valence-bond (SVB) phase on the large J2 side
(J2 & 0.4J1).37,38,40,44,45,47 In the intermediate J2 region, the
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plaquette valence-bond (PVB) state appears strongly in the
presence of an additional antiferromagnetic third NN coupling
J3.37,39 However, the fate of the quantum state for interme-
diate J2/J1 ' 0.2 without J3 coupling remains challenging,
where competing possibilities include a quantum SL, the PVB
state, or a quantum critical point between the Néel and PVB
states.

Very recently, DMRG approach has been applied to study
the J1-J2 honeycomb model.53,54 By extrapolating the finite-
size spin and dimer orders measured in the bulk of systems
with fully open boundaries, Ref. 53 finds the Néel order van-
ishing at J2/J1 ' 0.22, the PVB phase for 0.22 . J2/J1 .
0.35, and the SVB phase for J2/J1 & 0.35. Both the tran-
sitions are suggested to be continuous and thus indicate the
deconfined quantum criticality.59 On the other hand, Ref. 54
systematically measures bulk properties using cylinder sys-
tems with open ends, and the authors determine the Néel or-
der vanishing at J2/J1 ' 0.26. For 0.26 . J2/J1 . 0.36,
the PVB correlation length grows faster or close to linear with
cylinder width, and it is suggested that the system is either
quantum critical or has weak PVB order. For J2/J1 & 0.36,
Ref. 54 also finds the SVB phase. Both works 53 and 54 sug-
gest the PVB phase for 0.26 . J2/J1 . 0.35, but there is still
a discrepancy for 0.22 < J2/J1 < 0.26, where a gapped SL
had been proposed.42–45

In this article, we study the J1-J2 Heisenberg model on
the honeycomb lattice using the DMRG60 with spin rotational
SU(2) symmetry61 and the VMC simulations. We set J1 as
energy scale, and lattice spacing between nearest-neighbor
sites as length scale. By extrapolating the staggered magnetic
moment m2

s on cylinder systems with width slightly over 15
lattice spacings (while the largest sizes are 10 and 12 lattice
spacings in Refs. 53 and 54, respectively), we find the Néel
order vanishing at J2 ' 0.22. To determine the PVB order,
we study the width dependence of the PVB correlation length
on the cylinder systems, where open boundaries break trans-
lational symmetry. We find the PVB correlation length grows
strongly with increasing system width for 0.25 < J2 . 0.35.
In the widest cylinders with width larger than 15 lattice spac-
ings, we observe the long-range PVB order emerging with en-
ergy lower than the uniform state. The Néel and PVB phases
are consistent with the gapless and gapped spin excitations
extrapolated from the finite-size spin gaps on torus.

The spin and dimer orders are weak in our studied system
sizes for 0.22 < J2 ≤ 0.25. To check the possible topological
nature of the state, we obtain the topological entanglement
entropy (TEE) γ by extrapolating the entanglement entropy
(EE) of bi-partitioning the system.55–57 It is found that γ '
0.51 for 0.22 < J2 ≤ 0.25. For J2 = 0.3, γ ' 0.66 is close
to the TEE value of ln 2 of Z2 SL, even though the system
has PVB order; this indicates that the TEE is not a conclusive
measure on our system sizes.

We also compare the spin and dimer correlations at J2 =
0.25 on the N = 2× 6× 6 torus with VMC wave functions at
different parameters, and find a striking match from a Z2 SL
trial wave function. While our finite size results are consistent
with a SL phase, we are challenged by the fact that spin liquid
is not likely to have a continuous transition to Néel phase,63

(a) ZC4-12

(b) AC4-12

(c) tZC6-18

FIG. 2: Cylinders used in DMRG calculations. (a) ZC4-12 cylinder
with zigzag open edges. It has 4 unit cells along the zigzag direction
(Wy = 4

√
3) and 12 columns along the axis direction. (b) AC4-12

cylinder with armchair open edges. It has 4 vertical bonds along the
armchair direction (Wy = 6) and 12 armchair columns along the axis
direction. (c) Trimmed ZC cylinder tZC6-18 with trimmed zigzag
edges. It has 6 unit cells along the zigzag direction (Wy = 6

√
3) and

18 columns along the axis direction.

making it also possible that the system has a Néel-PVB decon-
fined quantum critical point with larger length scale beyond
our system length.

By employing SU(2) symmetry in DMRG, we can get ac-
cess to larger system sizes with high accuracy, which is essen-
tial for distinguishing a SL from competing weakly ordered
states. For cylinder systems with open edge, the U(1) DMRG
is usually limited to the system width of 12 lattice spacings by
keeping 6000 ∼ 8000 states.53,54 In our calculations, we study
the cylinder systems with width more than 15 lattice spacings
by keeping up to 24000 states to obtain the converged results.
With the SU(2)-symmetric implementation, we can also study
the torus system up to the size 2×6×6 by keeping more than
40000 states. The truncation error is controlled below 10−6 in
most cases, which gives well converged results.

We study the model on both torus and cylinder. The torus
geometry is denoted asN = 2×L1×L2, whereL1 andL2 are
the number of unit cells along the two primitive vector direc-
tions (the inset of Fig. 1 shows the N = 2× 4× 4 torus). For
cylinder geometry, we study the systems with three different
boundaries. The first cylinder [Fig. 2(a)] has the zigzag open
edges and is denoted as ZCm-n cylinder, wherem is the num-
ber of two-site unit cells along the column and n is the number
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FIG. 3: Circumference dependence of the ground-state energy per
site for J2 = 0.25 and 0.3 on torus, AC, tZC, and ZC cylinders. Each
data is obtained by keeping the optimal states to our computation
limit. The truncation errors are below 1×10−6 except for the largest
size at J2 = 0.25 (tZC9 cylinder with Wy ' 15.588), where the
error is about 5× 10−6. The dashed lines indicate the extrapolations
of the energies, which give −0.4378 and −0.4255 for J2 = 0.25
and 0.3, respectively.

of columns along the axis direction. The ZCm-n cylinder is
equivalent to the XC2m cylinder in Ref. 54. DMRG calcu-
lations in our studied region give the uniform states without
translational symmetry breaking in ZC cylinder. To induce
the PVB order, we can change the couplings of some edge
bonds to introduce pinning force. The second cylinder ACm-
n [Fig. 2(b)] has the armchair open edges, where m is num-
ber of unit cells in the column direction and must be even
to form the periodic boundary condition in column direction;
this system is equivalent to the YCm cylinder in Ref. 54. AC
cylinder accommodates both the PVB and SVB orders, and
its edges can also select among degenerate states within each
order. The third cylinder is obtained by trimming the three
neighbor sites per six sites along the edges on the ZC cylin-
der to make the lattice strongly select particular PVB state.
This system is denoted as tZCm-n cylinder, where m must
be multiple of 3 to form the periodic boundary condition in
column direction, and is shown in Fig. 2(c). In our DMRG
calculations, we use ZC cylinder to study m2

s to determine
the vanishing of Néel order, and we use all three cylinders to
study the PVB order. To demonstrate the results of AC and
tZC (ZC) cylinders together, we also use the circumference
Wy to denote the geometrical width of cylinders in units of
nearest-neighbor spacing. On ACm and tZCm (ZCm) cylin-
ders, the circumferences are Wy = 1.5 × m and

√
3 × m,

respectively.
To check the accuracy of our computations, we present the

circumference dependence of the ground-state energy per site
on torus, AC, tZC, and ZC cylinders for both J2 = 0.25 and
0.3 in Fig. 3. We obtained the data by keeping the optimal
states to our computation limit; the truncation errors are be-
low 1 × 10−6 except for the largest size (tZC9 cylinder with
Wy ' 15.588) at J2 = 0.25, where the truncation error is

about 5 × 10−6. To eliminate boundary effects, we calcu-
late the bulk energy on cylinder by subtracting the energies
of two samples with different lengths.58 By extrapolating the
energies in Fig. 3, we estimate −0.4378 and −0.4255 as the
thermodynamic limit ground-state energies for J2 = 0.25 and
0.3, respectively. The latter value is consistent with the result
in Ref. 54.

The remainder of the paper is organized as follows. In
Sec. II, we calculate the square of the staggered magnetic mo-
ment, m2

s, on ZC cylinder for various J2 and extrapolate the
finite-size data to thermodynamic limit to estimate the van-
ishing of Néel order. In Sec. III, we study the PVB order on
AC, ZC, and tZC cylinders from the Néel to the intermedi-
ate region. In Sec. IV, we obtain the spin gaps on finite-size
torus and extrapolate to thermodynamic limit. We study the
EE and TEE in Sec. V to check the possible topological na-
ture for the intermediate region. In Sec. VI, we compare the
DMRG results with the variational wave functions based on
slave-fermion approach, while in Sec. VII we discuss our re-
sults and summarize. In Appendix A, we also present varia-
tional results using Schwinger Boson construction.

II. MAGNETIC ORDER

The Néel order on honeycomb lattice is described by the
staggered magnetic moment m2

s = 〈(
∑
i(−1)iSi)

2〉/N2.39

We obtain the staggered magnetic moment by calculating the
spin-spin correlation functions on both torus and cylinder. In
Fig. 4(a), we plot DMRG data on torus together with smaller
size ED data39 for m2

s at various system sizes N and a few J2
closer to the possible transition point (around 0.2 identified by
ED39) as a function of 1/

√
N . The leading 1/

√
N correction

of the finite-size scaling is well satisfied in these clusters65

through the good straight line fitting to all data points with
J2 ≤ 0.17.

For J2 = 0.3 deep in the intermediate region, the spin cor-
relations decay exponentially in real space. We can also see
this by examining the structure factor of the spin correlations
between the sites in the same sublattice Saa(~q) (for sublattice
A)

Saa(~q) =
1

L1L2

∑
i∈A,j∈A

〈Si · Sj〉 ei~q·(~ri−~rj). (2)

In Figs. 4(b) and 4(c), we present Saa(~q) for J2 = 0.25 and
0.3 obtained on torus. For each system, we see a peak at mo-
mentum ~q = 0 corresponding to Néel-like spin correlation in
real space. For J2 = 0.25 the peak is still growing but more
slowly than a linearly in N , while for J2 = 0.3 the peak is
saturating already at the size N = 2 × 5 × 5, which are con-
sistent with the vanishing of ms in the thermodynamic limit.
The same behavior is also obtained for the structure factor of
the spin correlations between the A and B sublattices. Such
torus data on our sizes therefore suggest that the Néel order is
absent at least for J2 ≥ 0.25.

However, the torus boundary condition limits the system
size in DMRG calculations due to larger truncation error for
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FIG. 4: (a)m2
s plotted vs 1/

√
N for the torus clustersN = 2×4×4,

2× 5× 4, 2× 5× 5, 2× 6× 5, and 2× 6× 6. The ED data is from
Ref. 39. (b),(c) Size dependence of same-sublattice spin structure
factor obtained on torus for J2 = 0.25 and 0.3, respectively. The
system sizes areN = 2×4×4, 2×5×5, and 2×6×6. (d)m2

s plotted
vs 1/L for the ZCL-2L cylinder with L = 4, 5, 6, 7, 8, 9. Here m2

s

is obtained from N/2 spins in the middle part of the sample.

the same number of states kept.60 Therefore, we extend the
system size by studying cylinder system. We choose the ZCL-
2L cylinder with system size N = 2× 2L×L. The magnetic
moment ms is obtained from the spin-spin correlations of the
N/2 sites in the middle of sample, which effectively reduces
the boundary effect.29,64 We calculate m2

s for samples with
L = 4 to 9 and show the results in Fig. 4(d). The finite-size
m2
s at L = 4, 5, 6 are close to the results on torus and their ex-

trapolations are consistent with those in Fig. 4(a). However,
on larger sizes the results deviate from the straight line extrap-
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FIG. 5: Structure factor of dimer-dimer correlation functions on the
N = 2× 6× 6 torus for (a) J2 = 0.25 and (b) J2 = 0.3.

olations of the small-size data. We therefore fit the data using
the formula m2

s = m2
s,∞ + a/L + b/L2. From the best fits

we estimate that the Néel order vanishes at J2 ' 0.22. This
observation is consistent with the DMRG result in Ref. 53,
where the finite-size m2

s are obtained on two different system
samples with fully open boundaries up to the size L = 6. On
the other hand, in Ref. 54 the authors estimate the 2D mag-
netic order parameter by applying a staggered field at the open
ends of cylinder with optimal aspect ratio and measuring the
local 〈Sz〉 at the center of the sample. They determine that the
transition occurs at J2 ' 0.26. While both methods of extrap-
olating ms,∞ are standard, they are limited by the reachable
system size, and therefore the exact vanishing point of Néel
order might still be an open question.

III. PLAQUETTE VALENCE BOND ORDER

To detect or exclude the possible VBS order in the interme-
diate region, we can study the dimer-dimer correlation func-
tion

C(i,j),(k,l) = 4 [〈(Si · Sj)(Sk · Sl)〉 − 〈Si · Sj〉〈Sk · Sl〉]
(3)

in the system without lattice symmetry breaking, where (i, j)
and (k, l) are NN bonds. We can also examine the correspond-
ing structure factors defined as the Fourier transform of the
dimer correlations, and here we consider the dimers oriented
in the same direction:

Daa(~q) =
1

L1L2

∑
(i,j),(k,l)

C(i,j),(k,l)e
i~q·(~r(i,j)−~r(k,l)). (4)

On torus system, our DMRG calculations obtain the ground
states without lattice symmetry breaking. Therefore, we can
study the dimer-dimer correlations. To accommodate the PVB
order on torus, both L1 and L2 must be multiples of 3. In
Fig. 5, we present the dimer structure factor for J2 = 0.25
and 0.3 on the 2 × 6 × 6 torus (this size accommodates both
the PVB and SVB orders). For these J2 couplings, the dimer
structure factor has two weak peaks at q = (2π/3, 4π/3) and
(4π/3, 2π/3) that are consistent with the possible PVB pat-
tern. However, it is not clear if the long-range PVB order will
form in the large system limit. The absence of peak at q = 0
indicates the absence of SVB order.
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FIG. 6: The PVB bond texture Bi,j for J2 = 0.25 on an AC6-12
cylinder. The red bonds with negative values have lower NN bond
energies. Thus, the red hexagons with negative bonds could indicate
the “resonating plaquettes.”

To study the PVB order on larger system sizes, we make
the DMRG calculations on cylinder systems. An effective
method to detect dimer order on cylinder system is proposed
in the quantum Monte Carlo study of the J-Q model on the
square lattice62 (this model has a transition from the Néel to
the columnar dimer phase with changing Q coupling) and the
DMRG study of the J1-J2 Heisenberg model on the square
lattice.29 The idea of the method is to study the width depen-
dence of the decay length of the dimer texture induced near a
boundary. For the system without dimer order in the 2D limit,
the dimer decay length might increase with growing width but
should saturate in the thermodynamic limit, while for the sys-
tem with dimer order, it will diverge. The DMRG calculations
on cylinder could obtain the ground state with lattice symme-
try breaking by making the lattice compatible with the possi-
ble dimer order. Thus, one could define the local dimer or-
der parameter and measure the decay of the dimer order from
boundary to bulk, from which we can estimate a decay length.
To determine the PVB order on honeycomb lattice, we study
the width dependence of the dimer decay length on the AC,
tZC, and ZC cylinders. On these systems, the local PVB or-
der parameter decays exponentially from boundary to bulk,
from which we can estimate the dimer decay length ξP and
investigate its dependence on the cylinder width. The details
are discussed below.

A. PVB order on AC cylinder

The AC cylinder with the armchair open boundaries accom-
modates the PVB order and can select a unique state where
the hexagons on the open edges could form “resonating pla-
quettes” (the red hexagons with negative numbers in Fig. 6).
The induced local orders can be identified by the distribution
of the subtracted NN bond energy, i.e. bond texture defined as

Bi,j = 〈Si · Sj〉 − eα , (5)

where eα (α = 1, 2, 3) is the average of the NN bond energies
in the given bond direction α evaluated in the middle half of
system. Figure 6 shows the bond textures Bi,j for J2 = 0.25
on an AC6-12 cylinder. The red bonds have lower NN bond
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FIG. 7: (a) Log-linear plot of εi,jBi,j vs distance from boundary to
bulk for J2 = 0.25 on AC4-12, AC6-18, and AC8-24 cylinders. The
decay length ξP is obtained by fitting the decay behavior of εi,jBi,j .
(b) Circumference dependence of the decay length ξP on AC4-12,
AC6-18, and AC8-24 cylinders for various J2 couplings.

energies, and the red hexagons could indicate the “resonating
plaquettes.” The bond textures decay from boundary to bulk.

To describe the decay of bond texture, we multiply the pos-
itive and negative Bi,j by εi,j = 1 and −2 respectively (ap-
propriate for the PVB order), and measure the decay of ver-
tical bond εi,jBi,j from open boundary to bulk. Figure 7(a)
is the log-linear plot for the vertical εi,jBi,j at J2 = 0.25
on the AC4-12, AC6-18, and AC8-24 cylinders and shows
that εi,jBi,j decays exponentially from edge to bulk. The de-
cay length ξP increases with increasing cylinder width. Fig-
ure 7(b) shows our study of the circumference dependence of
ξP for various J2 couplings from the Néel phase to the inter-
mediate region. For J2 = 0.15 and 0.2 in the Néel phase, ξP
is saturated on the AC6 cylinder. For 0.2 < J2 ≤ 0.25, ξP
grows continuously from AC4-12 to AC8-24, but apparently
more slowly than the linear increase, indicating that the dimer
decay lengths could be finite in the 2D limit. For J2 = 0.27
and 0.3, ξP grows strongly with increasing width, which im-
plies the diverging decay length in the 2D limit and PVB or-
der.
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FIG. 8: The PVB bond texture Bi,j for J2 = 0.25 on an AC10-30 cylinder. For clarity, only the left half of the lattice is shown. For this large
size, the truncation error is about 5 × 10−6 and the bond energies have some small uncertainty of ±0.001. At this accuracy, the PVB order
vanishes in the middle of the sample.

For J2 = 0.25 and 0.3, we also study the PVB order on
the AC10-30 cylinder with circumference Wy = 15. This is
the size limit for AC cylinder in our DMRG calculations, and
for such sizes we are no longer sure about the convergence of
our measurements of ξP . We keep more than 20000 states for
DMRG sweeps and obtain the results with the truncation error
5×10−6 for J2 = 0.25 and 1×10−5 for J2 = 0.3. As shown
in Fig. 8 for J2 = 0.25, the PVB bond textures are weak in
the bulk of system, and the fitted decay length is ξP ' 5.1.
A linear extrapolation of the ξP for the AC10 cylinder from
the ξP on the AC6 and AC8 cylinders in Fig. 7(b) would give
ξP = 4.8. Although our present data is slightly larger than the
linear extrapolation result, we expect that ξP will decrease sig-
nificantly for this system if we keep even more states, which
is beyond our present capability. For example, when we study
the AC8-24 cylinder at J2 = 0.3, our fitted ξP decreases from
8.3 to 5.7 when we increase the number of states kept from
6000 to 20000 U(1) equivalent states [the latter number is
shown in Fig. 7(b)]. From the present data, we tentatively
conclude that J2 = 0.25 does not have PVB order in the 2D
limit. On the other hand, from similar visualization of the
bond texture for J2 = 0.3 (not shown), we observe a long-
range PVB order that is consistent with the strong growth of
ξP in Fig. 7(b).

B. PVB order on the trimmed ZC cylinder

On the tZC cylinder, the trimmed edges can select one of
the three degenerate PVB states on the ZC cylinder. Figure 9
shows the bond texture for J2 = 0.27 on a tZC6-18 lattice.
The red hexagons with negative textures at the boundaries
strongly pin the PVB state and induce the local PVB order.
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FIG. 9: The PVB bond texture Bi,j for J2 = 0.27 on a tZC6-18
lattice (left half of the lattice is shown). The summation of the bond
textures on a hexagon with 6 negative bond textures (red bonds) is
denoted as E6, while that on a hexagon with 3 red bonds is E3. We
define the PVB order parameter as the energy difference between two
neighboring such hexagons, P ≡ |E6 − E3|.

In the PVB state, the “resonating” hexagons have six nega-
tive bond textures Bi,j , while the other hexagons have three
negative ones. We define the summations of the bond textures
on these two kinds of hexagons as E6 and E3, respectively
(see Fig. 9). Therefore, we can define the local PVB order
parameter as the difference between two adjacent E6 and E3,
i.e. P ≡ |E6 − E3|. To measure the decay of the PVB order,
we study the order parameter P (d) along a row in the system
(like the row with E6 and E3 symbols in Fig. 9), where d is
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the distance of the hexagons from boundary. We estimate ξP
by measuring the decay of P (d) along x direction from edge
to bulk.
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FIG. 10: (a) Log-linear plot of P (d) on the tZC9-30 lattice for vari-
ous J2 couplings. (b) Circumference dependence of decay length ξP
on the tZC3-12, tZC6-18, and tZC9-30 cylinders for various J2 cou-
plings. (c) Real-space decay of P (d) for J2 = 0.3 on the tZC9-30
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The log-linear plot of P (d) on the tZC9-30 cylinder for var-
ious J2 is shown in Fig. 10(a). P (d) decays exponentially
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FIG. 11: The PVB bond texture Bi,j for J2 = 0.3 on the ZC6-24
cylinder with pinning appropriate for the PVB order. We show only
the left half part of the lattice. The blue dashed lines indicate the
bonds with pinning coupling Jpin = 0.5.

and we can estimate ξP . In Fig. 10(b), we present the cir-
cumference dependence of ξP on the tZC3-12, tZC6-18, and
tZC9-30 cylinders for various J2. For J2 < 0.25, ξP grows
slower than the linear behavior with increasing width, while
for J2 ≥ 0.25, ξP increases strongly. For J2 = 0.27 and 0.3,
we find the long-range PVB order emerging on the tZC9-30
cylinder; Fig. 10(c) illustrates the non-zero PVB order in the
bulk for J2 = 0.3. The system appears to have the PVB order
for J2 & 0.25 on the tZC cylinder, which is consistent with
our observations on the AC cylinder.

By comparing the PVB decay length ξP on the AC and tZC
cylinders, we notice that the PVB order on the tZC cylinder
grows faster than that on the AC cylinder on our studied fi-
nite sizes. The AC cylinder accommodates both the PVB and
competing SVB orders, which might suppress the PVB order.
On the other hand, the tZC cylinder frustrates the SVB order
and at the same time provides strong seed for the PVB order at
the edges, and this might enhance the PVB order throughout.
Thus, the PVB order might also be overestimated on the tZC
cylinder around J2 = 0.25.

C. PVB order on ZC cylinder

Finally, we summarize our data on cylinder with zigzag
edges. To lift the degeneracy of the PVB state on the ZC cylin-
der, we can modify the bonds near the open boundaries to pin
unique local PVB order. A simple way is to reduce the NN
coupling to Jpin < J1 for selected bonds–namely, each in ev-
ery three bonds–along the zigzag boundaries at both left and
right ends of ZC cylinder. Figure 11 shows the PVB bond tex-
ture for J2 = 0.3 on the ZC6-24 cylinder where we reduced
the NN coupling of the dashed blue bonds to Jpin = 0.5,
which induces the local PVB order and selects unique PVB
pattern in the system.

The PVB order parameter on ZC cylinder can be defined as
that on tZC cylinder. In Fig. 12, we present the log-linear plot
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FIG. 12: Log-linear plot of PVB order on the ZC cylinder with PVB-
pinning Jpin = 0.5 as in shown Fig. 11 for J2 = 0.25 and 0.3.

of the PVB order on the ZC6-24 and ZC9-30 cylinders with
Jpin = 0.5 for J2 = 0.25 and 0.3. We study different ZCm-n
cylinders with ratio n/m between 3 and 4 (the decay length is
almost the same for fixed m). For J2 = 0.25, we find the de-
cay lengths on the ZC6 (ξP ' 3.1) and ZC9 (ξP ' 5.9) cylin-
ders consistent with those on the tZC cylinders in Fig. 10(b).
For J2 = 0.3, ξP ' 6.0 for the ZC6-24 cylinder, close to
5.2 on the tZC6 cylinder. On the ZC9-30 cylinder, we find
that the obtained state is sensitive to the number of optimal
states and sweep steps. By keeping about 16000 states, we
obtain a uniform state in the bulk of the system with the de-
cay length a bit smaller than that of ZC6-24, but after keeping
more than 20000 states and increasing the number of sweeps,
the ground-state energy is reduced and a strong PVB pattern
emerges.

From the measurements of the width dependence of the
PVB decay length ξP on different cylinders with circumfer-
ence as large as Wy = 15, we find that the PVB order van-
ishes in the region 0.22 < J2 ≤ 0.25, but grows strongly for
J2 > 0.25. Our observations of the PVB order are more close
to the DMRG results in Ref. 54.

IV. SPIN GAP

In the Néel phase with broken SU(2) symmetry, we have
gapless Goldstone modes, and consequently the spin gap
should vanish, while in the PVB phase the spin gap appears
due to the broken translational symmetry. Spin gap has been
studied by U(1) DMRG in fully open system53 and cylinder
system,54 both of which find the non-zero spin gap in the in-
termediate coupling regime. Here we study the spin gap on
torus system, which is free from the edge excitations in the
open boundary.

Figure 13(a) shows the finite-size spin gaps for J2 = 0.1
and 0.15 for different torus sizes from N = 2 × 3 × 3 to
2× 6× 5 with 2D-like clusters. The finite size scaling shows
that these data can be extrapolated to zero quite well using
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FIG. 13: Spin gap obtained from torus. (a) At J2 = 0.1 and 0.15,
the spin gaps are extrapolated to zero as ∆ET,N = α/N − β/N3/2

from the samples N = 2× 3× 3, 2× 4× 3, 2× 4× 4, 2× 5× 4,
2×5×5, and 2×6×5. (b) At J2 = 0.25 and 0.3, the spin gaps are
extrapolated to finite values as ∆ET,N = ∆ET,∞ + α/N + β/N2

from the larger samplesN = 2×4×4, 2×5×4, 2×5×5, 2×6×5,
and 2× 6× 6.

the first two terms in the 1/
√
N expansion ∆ET,N = α/N −

β/N3/2+O(1/N2),37,65 which is expected for the Néel phase.

For J2 = 0.25, the size dependence of the gap changes
substantially. The gaps at smaller N are near constant which
could be consistent with a lattice-symmetry-broken state;
however, at larger sizes (N = 32 to N = 72), they drop
with N but have a trend of saturating toward a finite value. In
Fig. 13(b), we fit the finite-size gaps from larger system sizes
by the formula ∆ET,N = ∆ET,∞ + α/N + β/N2, and find
non-zero spin gap in the thermodynamic limit for J2 = 0.25
and 0.3. The finite spin gap at J2 = 0.3 is consistent with the
PVB order. For 0.22 < J2 < 0.25, it is hard to identify the
size of the spin gap from the extrapolations of our finite-size
data, which suggests either a small or vanishing gap.

The above DMRG results show that the magnetic and PVB
orders are weak for 0.22 < J2 ≤ 0.25, which could be con-
sistent with the observation of a spin liquid. For a gapped
SL in this region, our DMRG measurements would suggest a
continuous transition from the Néel to gapped SL.53 Although
there are some new theories to propose such a transition,42,66

the conventional viewpoint is that the collinear Néel order
is not connected to SL through continuous transition in 2D
system.63 On the other hand, a very recent Quantum Monte
Carlo study67 of a honeycomb J-Q model found a continu-
ous transition from the Néel to the PVB phase and proposed
a “deconfined quantum criticality” scenario (although in gen-
eral such a transition could also be discontinuous). Therefore,
our proposal of spin liquid in this region can be challenged by
other possibilities like the deconfined quantum criticality with
long correlation length.
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FIG. 14: Circumference dependence of the entanglement entropy
in large L1 limit measured on both AC and tZC cylinders for (a)
J2 = 0.25, and (b) J2 = 0.3. The linear extrapolations of the entan-
glement entropy using data on both cylinders lead to the topological
entanglement entropy γ = 0.51 and 0.66, respectively.

V. ENTANGLEMENT ENTROPY

For a gapped quantum state with topological order, the
topological entanglement entropy γ is proposed to character-
ize the non-local feature of entanglement.55,56 The Renyi en-
tropies of a subsystem A with density matrix ρA are defined
as Sn = (1 − n)−1 ln(TrρnA), and the Von Neuman entropy
is defined as n → 1 limit of the Renyi entropy. For such
a state with topological order, the Renyi entropies have the
form Sn = αL − γ, where L is the boundary of the subsys-
tem and all other terms vanish in large L limit. Here α is a
non-universal constant, while a positive γ term is a correction
to the area law of entanglement and reaches a universal value
determined by the total quantum dimension D of the quasi-
particle excitations of the state.55,56

To establish the nature of the ground state as a possi-
ble topologically nontrivial SL state, positive evidences are

highly desired, particularly for such a non-Braivais lattice sys-
tem where a trivial insulator may exist without breaking any
symmetry.35,36 Recently, a number of topologically ordered
states have been identified from the TEE by extrapolating the
EE of the minimum entropy state (MES) on long cylinders
through DMRG calculations.57 It is suggested that this method
should be efficient when all the correlation lengths are short
compared with cylinder width, and the DMRG would favor
the MES on long cylinders in this situation.57

We obtain the EE on cylinders by making a cut for subsys-
tems in the middle of lattice along the vertical direction. We
scale the EE to large L1 limit for each circumference on both
AC and tZC cylinders to obtain the EE of the possible MES,
and plot the circumference dependence of the resulting Von
Neumann entropy to extrapolate the TEE.

For 0.22 < J2 . 0.25, the system appears to have no dimer
order, and the spin correlation lengths are short on the studied
sizes. By extrapolating the EE, we obtain γ = 0.51 in this
region. As presented in Fig. 14(a) for J2 = 0.25, the best lin-
ear fit of the EE using data on both the AC and tZC cylinders
gives γ = 0.51. If the 2D system is magnetically disordered in
this region, the non-zero γ could indicate nontrivial topologi-
cal feature. Somewhat surprisingly, for larger J2 in the PVB
phase, we obtain γ close to ln 2, which is the TEE value of Z2

SL. As shown in Fig. 14(b) for J2 = 0.3, the best linear fit
of the EE using data on both the AC and tZC cylinders gives
γ = 0.66. A possible explanation could be that on the system
sizes in Fig. 14(b), the long-range PVB order does not emerge.
Thus, the wavefunction in the bulk of the lattice might appear
like a gapped SL, which could lead to a TEE close to Z2 SL.
However, as the long-range PVB order sets in for larger sizes,
the scaling of the TEE may graduate change, which cannot
be directly checked due to our simulation limit: In DMRG
calculations, we need to keep more states to converge the EE
compared to ground-state energy,68 and for Wy > 12 our cal-
culations of the EE are likely not fully converged. While our
entropy data is well converged for Wy ≤ 12, comparable to
similar results presented for the square lattice J1-J2 model,29

our systems appear to have larger finite-size effect, which we
can see also from comparing the AC and tZC cylinders (e.g.,
if we used only the data on the tZC cylinders, the linear ex-
trapolations in Fig. 14 would give γ values close to zero).

VI. COMPARISONS WITH VARIATIONAL MONTE
CARLO

As a test of possible SL for 0.22 < J2 ≤ 0.25, we compare
the DMRG results against VMC calculations using so-called
Sublattice Pairing State (SPS)43,45 constructed as follows. We
use slave fermion representation of spins, Si = 1

2f
†
iασαβfiβ ,

with the constraint of precisely one spinon per site. We con-
sider spinon mean field with hopping and pairing69

Hmf = −
∑
ij,α

tijf
†
iαfjα +

∑
ij

(
∆ijf

†
i↑f
†
j↓ + H.c.

)
−
∑
i,α

µif
†
iαfiα, (6)
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FIG. 15: Comparisons of DMRG and VMC results on torus for (a)
spin and (b) dimer correlations at J2 = 0.25 and N = 2 × 6 × 6.
The VMC wave function is the SPS state of Ref. 43 with ∆ = 0.125
and θ = 0.6 and represents a Z2 spin liquid state (VMC results look
similar for a range of θ including θ = 0). Sites j and bonds (k, l)
are ordered in a typewriter fashion going first in the ~a2 direction in
Fig. 1.

with tji = t∗ij and ∆ji = ∆ij . The SPS state has
real-valued nearest-neighbor hopping t and complex-valued
second-neighbor pairing with a specific pattern of phases:
∆ij = |∆|eiθ for i, j from one sublattice of the honeycomb
lattice and ∆ij = |∆|e−iθ for i, j from the other sublat-
tice. There are two variational parameters, |∆|/t and θ. We
set µi = 0, which in the SPS state automatically gives one
spinon per site on average. We find the mean field ground
state and then perform Gutzwiller projection into the physical
spin Hilbert space and use this as our trial wave function. We
calculate the energies and various correlation functions using
standard VMC techniques.70,71

Our VMC energetics study finds that for J2 ≤ 0.2 the op-
timal state is essentially a “Dirac spin liquid” with |∆| ≈ 0.
For J2 ≥ 0.2 the optimal |∆| rises continuously, and our on-
set of non-zero ∆ is different from the result in Ref. 45. Our
optimal θ tends to remain near zero, although we find that the
energetics is not very sensitive to θ in a range of values. For
example, for J2 = 0.25 we find that the energy is minimized
at |∆| = 0.125, θ ≈ 0, but with a nearly flat dependence on
θ ∈ (0, 0.7).

In Figs. 15(a) and 15(b), we compare the spin and dimer

correlations in the DMRG ground state at J2 = 0.25 and in the
VMC state with |∆| = 0.125 and θ = 0.6 on theN = 2×6×6
torus sample. The spinon mean field has antiperiodic bound-
ary conditions in both directions, which gives the lowest trial
energy in this sample. Strictly speaking, this trial state breaks
lattice rotation symmetry because of the boundary conditions;
however, we found that the anisotropy in bond energies is
only few percent and essentially does not affect the compar-
isons with the DMRG. The agreement between the DMRG
and VMC is striking. Even though the wave function repre-
sents a gapped Z2 spin liquid with no magnetic or dimer order
on long distances, the spin correlations in the VMC are a bit
stronger than in the DMRG, and the same is true about the
dimer correlations.

The above results suggest that despite fairly strong such
correlations in our DMRG measurements, they are reasonable
for a gapped Z2 spin liquid on such finite samples. We have
chosen to present θ = 0.6 to emphasize this point, but results
for a range of θ including θ = 0 look very similar on this
size (we do not see significant difference between correlation
functions for θ = 0 and θ = 0.6 even up to size 2 × 15 × 15
that we studied in VMC). However, we expect a qualitative
difference between θ 6= 0 and θ = 0 SPS states on long
distances.43 Specifically, even though the spinon dispersion
has a gap for all θ, the gauge structure is Z2 only when θ 6= 0,
while the gauge structure is U(1) when θ = 0 (i.e., this case
is equivalent to a pure hopping ansatz). As we further dis-
cuss in Appendix A, we expect the U(1) ansatz to be unstable
beyond mean field and can view its appearance as suggesting
proximitity to a Valence Bond Solid. In Appendix A, we also
present VMC energetics using Schwinger Boson (SB) wave
functions; while the SB study is limited to only small sizes,
we find general agreement with the slave fermion VMC and
similar hints of proximity to a U(1) regime and VBS order. It
would be interesting to extend the present VMC work to in-
clude true VBS order directly in the wave functions and to try
to match with the DMRG results on open cylinders.

VII. SUMMARY AND DISCUSSION

In summary, we have studied the phase diagram of the spin-
1/2 J1-J2 Heisenberg model on honeycomb lattice by means
of DMRG with SU(2) symmetry and VMC. By implementing
SU(2) symmetry in DMRG, we can study cylinder geometry
with circumference slightly over Wy = 15 and torus with size
up to 2 × 6 × 6. We compute the square of the staggered
magnetic moment, m2

s, on both torus and ZC cylinder (from
ZC4-8 to ZC9-18). By extrapolating the finite-size m2

s to the
thermodynamic limit, we estimate that the Néel order vanishes
at J2 ' 0.22.

In order to investigate the PVB order in the intermediate
region, we first study the dimer-dimer correlation functions
and the dimer structure factor on torus up to the size 2 × 6 ×
6. We observe two weak peaks of the dimer structure factor
at q = (2π/3, 4π/3) and (4π/3, 2π/3), indicating the PVB
pattern of the dimer correlations. The absence of peak at q =
0 indicates the vanishing SVB order. We study cylinders to
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determine the PVB order on larger sizes. For a system with
even weak dimer order in the 2D limit, the PVB order decay
length from open edge to bulk in cylinder geometry is found to
grow faster than linear with increasing width, and will diverge
on large size.62 Therefore, we study the width dependence of
the PVB order decay length on the AC, tZC, and ZC cylinders
for various J2 couplings. We estimate the decay length of the
PVB order ξP by fitting the exponential decay of PVB order
parameter from boundary to bulk. We find that for J2 . 0.25,
ξP grows slowly and appears to saturate in the 2D limit. For
J2 > 0.25, ξP grows strongly with increasing width, implying
a possible PVB state in the 2D limit.

We also study the spin gap on torus in both the Néel and
the intermediate regions. For J2 = 0.1 and 0.15 in the Néel
phase, the finite-size spin gaps are extrapolated to zero as
∆ET,N = α/N − β/N3/2, which is the expected behavior
for the Néel state. For J2 & 0.25, the spin gaps extrapolate
to finite values, which are consistent with the observed PVB
order.

We expect that a gapped Z2 SL has a non-zero TEE. We
study the EE on both AC and tZC cylinders and extrapo-
late the EE in the large L1 limit to obtain the TEE of the
possible MES. We find the TEE value of γ = 0.51 for
0.22 . J2 . 0.25. For J2 = 0.3, the TEE extrapolation
gives γ = 0.66, which is close to the TEE value of Z2 SL,
ln 2. However, since for this J2 we observe the PVB order
on larger sizes, the obtained ln 2 value from our range of sys-
tem sizes may not represent a signature of topological order in
the thermodynamic limit; instead, it could still be due to the
finite-size effect.

As a test of a possible SL for 0.22 < J2 ≤ 0.25, we also
study this region by VMC simulations and directly compare
the spin and dimer correlation functions from DMRG and
VMC results on torus. For J2 = 0.25 on the 2× 6× 6 torus,
we find the striking match of the DMRG results with the VMC
wave function of a Z2 SL. The match of correlation functions
further indicates that the ground states on such finite-size sam-
ple for 0.22 < J2 ≤ 0.25 are consistent with a Z2 SL. How-
ever, the optimal VMC states are close to a gapped U(1) SL
point of the SPS ansatz, which may render it unstable towards
a Valence Bond Solid, and the VMC is not conclusive about
the ultimate state on long distances. From our DMRG data,
the possibility of spin liquid also competes with an alterna-
tive scenario of a quantum critical point between the Néel and
PVB phases, which we are unable to exclude with our finite-
size studies.

In our DMRG calculations, the honeycomb J1-J2 model
appears to have a weak PVB order around J2 = 0.3, which
is consistent with recent DMRG studies.53,54 However, in the
interesting region 0.22 ≤ J2 ≤ 0.26 where a gapped SL has
been proposed,42–45 there are still controversies. (1) Refer-
ence 53 indicates that the system has a transition from the
Néel to PVB phase at J2 ' 0.22, while in our results the
PVB decay length seems to saturate with increasing width for
J2 . 0.25, suggesting the absence of the dimer order in the
2D limit. (2) Reference 54 proposes that the Néel order van-
ishes at J2 ' 0.26, but in Ref. 53 and our results, the Néel
order vanishes at J2 ' 0.22. These controversies imply that

in the region 0.22 ≤ J2 ≤ 0.26, the system could be either a
SL or close to a deconfined quantum critical point. If the sys-
tem has the deconfined quantum criticality, our conclusions
seem closer to those of Ref. 54 because of the evidence of
vanishing dimer order for J2 ≤ 0.25. The exact state in this
region could still be an open question.

In our search for robust spin liquid regimes, we have also
performed studies of the honeycomb J1-J2-J3 model with fer-
romagnetic J3, complementary to the work in Ref. 39 which
studied antiferromagnetic J3. However, we find that the Stag-
gered Valence Bond solid becomes very prominent already
for small ferromagnetic J3, leaving only a very small possi-
ble SL regime. We quickly find a direct Néel to SVB transi-
tion, which moves to smaller J2 values upon increasing |J3|.
It would be interesting to look for other modifications of the
model that could provide definite spin liquid on the honey-
comb lattice.
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Appendix A: Summary of VMC energetics with Schwinger
boson wave functions

We have also considered projected Schwinger boson (SB)
wave functions using so-called Zero Flux (ZF) state of
Ref. 42. Here we use slave boson representation of spins,
Si = 1

2b
†
iασαβbiβ , with the constraint of one slave boson per

site. The Schwinger boson mean field Hamiltonian is

HSB,mf =
∑
ij

(
Aijb

†
i↑b
†
j↓ + H.c.

)
− µ

∑
i,α

b†iαbiα . (A1)

For simplicity, we only include SB “pairing” terms Aij ,
which are expected to be appropriate for the antiferromagnetic
spin interactions.42,72,73 We require Aji = −Aij to satisfy
SU(2) spin invariance. The ZF ansatz has nearest-neighbor
A<ij> = A1 for orientations i → j from one sublattice
of the honeycomb lattice to the other. It also has second-
neighbor A<<ij>> = A2 for orientations going clockwise
(counter-clockwise) around up (down) triangles formed by
the second-neighbor bonds inside each hexagon, see Fig. 3
in Ref. 42. We find the mean field ground state and then per-
form Gutzwiller projection into the physical Hilbert space as
described in Ref. 74. The result is a Resonating Valence Bond
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FIG. 16: Variational energies on the 2× 5× 5 torus comparing ZF
Schwinger boson and SPS slave fermion ansatze, together with the
exact DMRG ground state energy. The Dirac spin liquid is obtained
by setting ∆ = 0 in the SPS state. The U(1) RVB state is obtained
by setting A2 = 0 in the ZF state. The ZF state can also realize a
long-ranged RVB state and can thus provide a good approximation
to the Néel state for J2 < 0.2. In the putative spin liquid region for
larger J2, the optimal ZF state is a short-ranged RVB state whose
energetics is very similar to the optimal SPS case. Note that the
optimal parameters in both the ZF and SPS cases are close to U(1)
regime in the respective ansatze as explained in the text. The DMRG
on larger clusters is indispensible in determining the ultimate nature
of the ground state.

(RVB) wave function with specific singlet amplitudes deter-
mined from the SB ansatz. Using direct permanent calcula-
tions in the Sz basis,74 we can perform measurements for such
wave functions on systems with up to N = 50 sites.

The Zero Flux state has two variational parameters, A2

and µ (setting A1 = 1). When µ is very close to the bot-
tom of the band—i.e., the Schwinger bosons are very close
to condensation—the RVB singlet amplitudes are power-law
long-ranged and the wave function is a good approximation to
the Néel state.74,75 On the other hand, when µ is away from the
bottom of the band, the wave function represents a short-range
RVB state.

Figure 16 shows optimized trial energies for the ZF
Schwinger boson wave function and the SPS slave fermion
wave function, on a 2× 5× 5 system, together with the exact
DMRG results. The optimal parameters in the SPS are similar
to the ones discussed in Sec. VI. Here we focus on the ZF SB
case. For small J2 < 0.2, the optimized chemical potential
is close to the bottom of the spinon band, and the SB wave
function provides an accurate approximation to the Néel or-
dered state. For larger J2, the chemical potential moves far

below the bottom of the band, and the wave function repre-
sents a short-range RVB liquid. We find that the optimal A2

is small in this regime, A2/A1 . 0.1. We illustrate this in
Fig. 16 by plotting also the trial energy with fixed A2 = 0 and
varying only the chemical potential, which gives essentially
the optimal ZF SB energy.

In the absence of A2, the resulting RVB state has only
singlets connecting the different sublattices. This is usually
viewed as a U(1) spin liquid, hence the label “U(1) RVB” in
the figure. The common belief is that the U(1) spin liquid with
gapped spinons is unstable beyond mean field in (2+1)d once
gauge fluctuations are included and that the ultimate state is
Valence Bond Solid.10,69,76 Since the constructed formal wave
function does not include the gauge fluctuations and is not
the full theory, it need not represent a qualitatively accurate
physical ground state and need not have such a VBS order.
Numerical studies of U(1) RVB wave functions on the square
lattice found exponenentially decaying spin correlations but
power-law decaying dimer correlations.77,78 Therefore, while
they are not accurate representations of the VBS phase, we
can still view the U(1) RVB wave functions as suggesting in-
cipient VBS order. Because of this, it would be interesting
to determine long-distance properties of the U(1) RVB wave
functions also on the honeycomb lattice (this was not possible
with our method using permanents but should be feasible with
valence bond Monte Carlo as in Refs. 77,78).

On the other hand, if we had a substantial non-zero A2,
the resulting state would be a stable Z2 spin liquid. As the
variational results stand, they are not conclusive about the ro-
bustness of the spin liquid state and can also be interpreted as
suggesting proximity to a VBS order. It is ultimately for un-
biased numerical studies like the DMRG to determine the true
nature of the ground state.

We conclude by noting that Ref. 43 conjectured that the ZF
Schwinger boson wave function and the SPS slave fermion
wave function represent the same Z2 spin liquid. On a crude
level, Fig. 16 shows that the optimized energetics is very sim-
ilar in the two states. We have also compared the spin and
dimer structure factors in the optimized Schwinger boson and
slave fermion states and found that they are quantitatively
close. This supports the conjecture in Ref. 43, but we cau-
tion that both wave functions are close to the U(1) regime.
We have also compared such properties of the ZF and SPS
wave functions deep in the presumed Z2 regime and found
them to be similar. Note, however, that we have compared
only correlations of local observables and only on relatively
small N ≤ 50 clusters, while it is important to compare topo-
logical properties79 to ascertain that the two states are in the
same phase; we leave this as an interesting open problem.
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