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We study point-contact tunneling in the integer quantum Hall state of bosons. This symmetry-protected topo-
logical state has electrical Hall conductivity equal to 2e2/h and vanishing thermal Hall conductivity. In contrast
to the integer quantum Hall state of fermions, a point contact can have a dramatic effect on the low energy
physics. In the absence of disorder, a point-contact generically leads to a partially-split Hall bar geometry. We
describe the resulting intermediate fixed point via the two-terminal electrical (Hall) conductance of the edge
modes. Disorder along the edge, however, both restores the universality of the two-terminal conductance and
helps preserve the integrity of the Hall bar within the relevant parameter regime.

I. INTRODUCTION

The low-energy excitations of a quantum Hall droplet live
along the edges of the sample. When two opposing edges of
the same droplet are well separated, the bulk mobility gap pre-
vents tunneling interactions between these low-energy excita-
tions. However, if a constriction is introduced such that the
two opposing sides meet near a point, the amplitude for inter-
edge tunneling can be appreciable. At finite temperature, the
resulting quasiparticle tunneling degrades the Hall current as
it allows backscattering between opposing edges at the point
contact.

As an example, consider the Laughlin states at filling frac-
tion ν = 1/m. These states have (fractionally) quantized Hall
conductance G0(T ) = νe2/h in the absence of a constric-
tion. Tunneling at any such constriction is generically dom-
inated by the transfer of (fractionally-)charged νe quasipar-
ticles and leads to the reduction of the Hall current by the
amount, Ga(T )− νe2/h = −aT 2ν−2 for some positive con-
stant a.1 While this perturbative result is necessarily only valid
for temperatures, T |2−2ν| " ah

νe2 , it shows the marked differ-
ence between the integral and fractional quantum Hall regimes
when extrapolated to zero temperature. For the integral case,
the conductance is merely reduced by a finite, constant value
that is independent of temperature. In the fractional case,
2 − 2ν > 0, so the perturbative calculation indicates that the
effect of backscattering at the point contact on the Hall con-
ductance is to reduce its value as the temperature is lowered,
eventually leading to a vanishing conductance. This means
that the Hall droplet has effectively split into two pieces. The
perturbative picture is supported by an exact solution at cer-
tain filling fractions: the model is integrable at ν = 1/3 and
at other Laughlin states after fine-tuning to a single relevant
interaction.2,3

The above results can be understood purely from the per-
spective of the low-energy edge modes. Consider the situ-
ation where the Hall fluid is put on the infinite strip. For
the ν = 1/m Laughlin states, the counter-propagating edge
modes living on each side of the strip together form a non-
chiral Luttinger liquid. The point contact provides a perturba-
tion at a single spatial point that scatters a left moving mode
into a right moving mode and vice versa. The scaling di-
mension of this tunneling operator ∆ = ν and is relevant,
in the renormalization group (RG) sense, if ν < 1. If rele-
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FIG. 1: Qualitative geometries of the Hall bar at the various fixed
points. The fully connected geometry in Fig. 1A describes a single-
component Hall bar. The partially-split geometry in Fig. 1B rep-
resents the intermediate fixed point present in certain parameter
regimes in the bosonic IQH state, spin Hall insulator, and the bosonic
E8 state. The fully disconnected geometry in Fig. 1C describes a
Hall bar consisting of two disconnected components coupled via a
point-contact interaction.

vant, the perturbation drives the theory to a new infrared (IR)
fixed point which, in the Laughlin case, corresponds to a fully
disconnected geometry where the Hall bar has split in two.
When ν = 1, the perturbation is exactly marginal and de-
scribes a line of fixed points parameterized by the coefficient
of this perturbing operator. In Fig. 1A and Fig. 1C, we draw
the geometries corresponding to the fully connected and fully
disconnected fixed points present in point-contact perturbed
Hall states. The analysis of the Laughlin states immediately
generalizes to other abelian fractions with the basic conclu-
sion being that an abelian fluid perturbed by a point contact
will generically flow to a new IR fixed point if the abelian
state has quasiparticles with fractional braid statistics.

From the edge point of view, the point contact is an impurity
that leads at low energies to a change in the boundary condi-
tions for the edge modes at the location of the impurity, if the
tunneling operator is relevant.2,4 Thus, a boundary RG flow



2

Point-Contact Induced RG Flows of Various Hall Fluids

Generic Long-Range Entangled RG Flow

(i)

Generic Short-Range Entangled RG Flows

(ii)

(iii)

(iv)

FIG. 2: Qualitative boundary renormalization group flow diagrams
of point-contact perturbed Hall fluids. The (blue) left-most dot rep-
resents the fixed point describing a fully connected Hall bar geometry
while the right-most (red) dot represents the fixed point that describes
a Hall bar geometry that has fully split into two pieces. A (green) dot
in between represents an intermediate fixed point. A fixed point is IR
stable with respect to a particular (irrelevant) operator if the arrow
on the line connected to it is directed towards the representative dot,
while a line with no arrow indicates a fixed line. Fractional quantum
Hall states realize (i). Integer quantum Hall states of fermions realize
the fixed line drawn in (ii). The bosonic integer quantum Hall state
realizes (ii) and (iii) in the dirty and clean limits, respectively. The
bosonic E8 state realizes (iv). The spin Hall insulator realizes (ii) -
(iv) in various edge interaction parameter regimes.

is initiated by the presence of the point contact. (A bound-
ary RG flow is one where the edge mode dispersion remains
gapless along the RG trajectory, while there is a change in the
conformally-invariant boundary conditions between the ultra-
violet (UV) and IR fixed points.5) This flow is characterized
by the change in the Affleck-Ludwig boundary entropy6; the
boundary entropy is a scalar quantity that functions much like
the central charge7 in 1+1d conformal field theory (CFT) as it
monotonically decreases along boundary RG trajectories.8

Using the celebrated bulk-boundary correspondence of
Chern-Simons theory, Fendley, Fisher, and Nayak made a
beautiful observation relating the behavior of the edge and
bulk theories upon perturbation of a Hall state by a point
contact.9 They identified the change in the boundary entropy
with the change in the bulk thermodynamic entropy of the Hall
state. The change in the latter quantity is negative because a
splitting of the Hall bar implies a decrease in the amount of
uncertainty regarding the state of the fluid. The change in
both quantities is equal to − log(D), where the total quantum
dimension of a topological state, D =

√

∑

i d
2
i = 1/S00,

where di are the quantum dimensions of the individual quasi-
particles of a topological state and S00 is the 00-th entry of
the modular S-matrix. This identification unites the bulk and
boundary viewpoints on the behavior of the Hall fluid upon
perturbation by a point contact.

In this paper, a long-range entangled (topological) state of

matter is defined to be a gapped state with non-zero topolog-
ical entanglement entropy,10–12 − log(D), and so D > 1; a
short-range entangled (topological) state is then a gapped state
with vanishing topological entanglement entropy, D = 1.
Thus, in the absence of symmetry considerations, a point con-
tact has a very different effect on Hall states that are long-
range entangled versus those that are only short-range entan-
gled: long-range entangled states generally split in two un-
der RG flow while short-range entangled states do not. A
RG trajectory between the fully connected and fully discon-
nected limits is only possible when D > 1. Otherwise, there
must either be a fixed line connecting the fully connected and
fully disconnected fixed points or there must be an intermedi-
ate fixed point that prevents a direct flow between these two
limits. To emphasize this point, we sketch in Fig. 2 the quali-
tative RG flows for a few illustrative quantum Hall liquids.

In 2+1d, short-range entangled states of fermions are built
from layers of ν = 1 Laughlin states which are characterized
by their thermal Hall conductance13 (in the absence of any
symmetry), a quantity that measures the chiral central charge
of the state. For an abelian state, the chiral central charge is
simply the difference in the number of left and right moving
edge modes. As we have reviewed, a point contact in this sys-
tem is merely an exactly marginal perturbation and does not
lead to a splitting of the Hall droplet as the temperature is low-
ered. In the absence of symmetry, short-range entangled states
of bosons are built from layers of the E8 state which have a
minimum of eight chiral edge modes.14–17 In contrast to the
ν = 1 Laughlin state, the lowest dimension point-contact tun-
neling operator for the E8 state has (boundary) scaling dimen-
sion ∆ = 2 and is strictly irrelevant. Again, the state does not
split in two as the temperature is lowered.

Symmetry-protected topological states are short-range en-
tangled states that are stabilized by a particular global
symmetry.18–21 If the symmetry is broken, the state is adiabat-
ically connected to the trivial vacuum state. It is interesting
to ask whether symmetry-protected states can display novel
behavior that is not shared by short-range entangled or long-
range entangled states obeying no symmetry requirements.

This question has been studied in the context of the
time-reversal invariant spin Hall insulator.22,23 These authors
mapped the Lagrangian describing the edge modes of the spin
Hall insulator to the Lagrangian of two decoupled Luttinger
liquids of spin and charge bosons. The Luttinger parameters,
gc and gs, cannot take arbitrary values; rather, they are con-
strained to lie upon the line gc× gs = 1. As we would expect,
there is no RG flow between the fully connected and discon-
nected fixed points. Away from the marginal point in parame-
ter space at gc = gs = 1, there is always an intermediate fixed
point that is IR stable or unstable, depending upon where on
the line, gc × gs = 1, the electron-electron interactions lie.

In this paper, we study the simplest bosonic symmetry-
protected topological state that respects a U(1) charge-
conservation symmetry.24 The electrical Hall conductivity of
this bosonic state takes the minimum value σxy = 2e2/h con-
sistent with the fact that it is short-range entangled and can
border the trivial vacuum. Within this note, we refer to this
state as the bosonic integer quantum Hall (IQH) state. (A sec-
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ond candidate for this name is the previously mentioned E8

bosonic state that has eight chiral edge modes.) Interestingly
and in contrast to the spin Hall insulator, we find that the point
contact (almost) always generates an RG trajectory to a new
fixed point that describes a Hall droplet that has partially split
in two. The RG diagram for this flow is shown in Fig. 2
(iii). Here, we are assuming that the edge is clean and that we
are working away from the isolated point in parameter space
where the point-contact perturbation is marginal. We charac-
terize the resulting IR stable fixed point in terms of observ-
able current-current correlation functions. Surprisingly, we
also find that the flow to this fixed point is integrable in the
same sense that the RG flow of the point-contact perturbed
fractional quantum Hall state is integrable.

Disorder along the edge modifies this picture.25,26 In the
domain of attraction of the strong disorder fixed point, the
leading point-contact tunneling term turns out to be marginal.
And so the point-contact perturbed Hall bar is described by
the fixed line drawn in Fig. 2 (ii). Disorder has the benefit of
restoring the universality of the two-terminal electrical Hall
conductance of the edge modes to its value inferred from the
bulk topological order.

The remainder of this note is organized as follows. In Sec-
tion II, we introduce and define the bosonic IQH state. In Sec-
tion III, we describe how edge equilibration drives the system
towards a strong-disorder fixed point where the two-terminal
electrical Hall conductance equals 2e2/h. In Section IV, we
add the point contact and describe the resulting fixed point
for a clean edge. In Section V, we calculate various current-
current correlation functions in order to characterize the dif-
ferent fixed points. In Section VI, we summarize and con-
clude.

II. THE BOSONIC IQHE

In the present section, we define the bulk and boundary
actions that describe the bosonic IQH state in order to set
the stage for the description of edge equilibration and point-
contact tunneling in the following sections.

A. Bulk Action

By the bosonic IQH state, we mean the symmetry-
protected topological state of bosons stabilized by U(1)
charge-conservation symmetry.24 This state has vanishing
thermal Hall conductivity, an electrical Hall conductivity
σxy = 2e2/h, and the ability to border the topologically trivial
vacuum. This latter constraint means that the state can exist
purely as a 2+1d topological phase and need not live on the
boundary of a 3+1d spacetime.

The bosonic IQH state can be described using abelian
Chern-Simons theory and the so-called K-matrix formalism.27

The bulk action,

Sbulk =

∫

d2xdt
[ εµνρ
4π

KIJa
µ
I ∂

νaρJ −
εµνρ
2π

tIA
µ∂νaρI

]

,

(1)

where the K-matrix, KIJ = (σx)IJ =

(

0 1
1 0

)

, and the

charge-vector tI = (1, 1). The gauge fields aµI describe the
number currents of the bosons on each “layer” indexed by
I = 1, 2 and Aµ is a background electromagnetic field. The
spacetime index µ = 0, 1, 2 = t, x, y. Our convention for the
totally anti-symmetric tensor εµνρ is to choose ε012 = 1.

The thermal Hall conductivity is proportional to the sig-
nature of KIJ . In units of e2/h, the electrical Hall conduc-
tivity σxy = tI(K−1)IJ tJ = 2. For convenience, we have
set the unit of electrical charge e and Planck’s constant ! to
unity in the above action, Eqn. (1), and in future formulas
unless otherwise specified. Quasiparticle excitations are la-
belled by an integer vector nI = (n1, n2); their charge is
given by tI(K−1)IJnJ = n1 + n2 and their mutual statistics
by 2πn′

I(K
−1)IJnJ = 2π(n′

1n2 + n′
2n1). The self-statistics

of a quasiparticle nI is obtained by halving the expression for
the mutual statistics and replacing n′

I = nI . Thus, all quasi-
particles are bosonic and have integral charge.

B. Edge Action

The bulk Chern-Simons theory requires the presence of
gapless edge modes living along the boundary of any space
upon which the theory is defined.28,29 We consider the bosonic
IQH state to live on a strip of width W in the y-direction and
length 2L → ∞ in the x-direction. Thus, there are two dis-
connected edges that we refer to as the top and bottom of the
Hall bar located at, say, y = W and y = 0, respectively. For
every bulk gauge field aµI and for each boundary component,
we introduce the bosonic edge modes φI and φ̃I . Our conven-
tion is to take the φI fields to live on the top of the Hall bar
and the φ̃I fields to live along the bottom of the bar.

The action for these edge modes,

Sedge =
1

4π

∫

dtdx
[

KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

+ K̃IJ∂tφ̃I∂xφ̃J − ṼIJ∂xφ̃I∂xφ̃J

+ 2εµν
(

tIAµ(W )∂νφI + t̃IAµ(0)∂ν φ̃I

)]

(2)

where KIJ = −K̃IJ =

(

0 1
1 0

)

, tI = t̃I =
(

1 1
)

, and

VIJ , ṼIJ are symmetric, positive-definite matrices that pa-
rameterize the density-density or forward scattering interac-
tions along a given edge. Clearly, the kinetic structure (and,
therefore, the operator algebra) of the theory defined by the
KIJ , K̃IJ matrices is inherited from the bulk topological or-
der, while the VIJ , ṼIJ interactions are non-universal from
the perspective of the bulk physics as they depend upon edge
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properties. The edge modes are periodically identified,

φI ∼ φI + 2πaI , φ̃I ∼ φ̃I + 2πbI , aI , bI ∈ Z. (3)

The background electromagnetic gauge field Aµ propagates
throughout the bulk and we denote its restriction to a given
edge by Aµ(y) for y = 0,W , while suppressing its t and x
coordinates. Aµ couples to the edge current densities, jµI =
εµν

2π ∂νφI and j̃µI = εµν

2π ∂ν φ̃I .
In general, there is no relation between VIJ and ṼIJ when

the two edges are disconnected; for simplicity, we will assume
that VIJ = ṼIJ . Scaling of the coordinates and a shift to the
edge mode velocity allows us to write this matrix as VIJ =
(

g 0
0 1/g

)

.

To see this, we begin with an arbitrary matrix VIJ (with
positive determinant in order to ensure the spectrum of the
Hamiltonian is bounded from below). Next, rescale the space
and time coordinates as:

t′ = (V11V22)
1/4t, x′ = (V11V22)

−1/4x. (4)

We assume V11 and V22 are positive. (Additionally, one must
rescale the gauge field components identically to ∂µ.) Thus,
we identify g = (V11/V22)1/2. Under the rescaling, Eqn.
(4), V12 → V12/(V11V22)1/2. We now must consider the off-
diagonal elements of VIJ .

To do so and in order to facilitate the study of the effects of
a point contact in later sections, it is convenient to perform a
field redefinition and rewrite Sedge in terms of left and right
moving chiral fields. We define:

φ1 =
1√
2g

(XR +XL), φ2 =
1√
2
(XR −XL),

φ̃1 =
1√
2g

(X̃R + X̃L), φ̃2 =
1√
2
(−X̃R + X̃L), (5)

where XR, X̃R and XL, X̃L are functions of x − t and
x + t, respectively. The off-diagonal term, (∂xφ1)(∂xφ2) →
1/(2g)

(

(∂xXR)(∂xXR) + (∂xXL)(∂xXL)
)

, merely shifts
the velocities of the left and right moving modes by the same
amount. Positive definiteness of the Hamiltonian requires
1 + (V12/(V11V22)1/2 > 0 and so the velocity shift is in-
consequential. We shall assume this condition is satisfied and
set V12 = 0 in the remainder of this note.

In terms of the left and right moving fields, Sedge becomes,

Sedge =
1

4πg

∫

dtdx
[

∂xXR(∂t − ∂x)XR

+ ∂xXL(−∂t − ∂x)XL + ∂xX̃R(∂t − ∂x)X̃R

+ ∂xX̃L(−∂t − ∂x)X̃L +
4πgεµν

2
√
2π

Aµ∂ν
(

(
1

g

+ 1)(XR + X̃L) + (
1

g
− 1)(XL + X̃R)

]

. (6)

Recall that the tilded and un-tilded fields are spatially sep-
arated and refer to edge modes on the bottom and top of the

Hall bar, respectively. The gauge field Aµ that multiplies these
fields is understood to be evaluated at the location of the edge
mode that it multiplies.

Because the signature of KIJ vanishes, the general expec-
tation is that a symmetry is required to stabilize the modes on
a given edge from the generation of a mass gap. While there
are exceptions to this rule,30–33 the edge of the bosonic IQH
state is not one of them. Charge conservation protects the edge
modes from the possible generation of a gap via backscatter-
ing. Indeed, a general backscattering operator on the top edge
has the form, cos(n1φ1 + n2φ2). This operator carries total
charge tI(K−1)IJnJ = n1+n2 and so we require n1 = −n2

for neutrality. However, a mass-generating term must have
equal left ∆L and right ∆R scaling dimensions; that is, such
a term must have vanishing spin. The field redefinitions in
Eqns. (5) and the action Eqn. (6) show that cos(n(φ1 − φ2))
has spin equal to ∆R −∆L = −n2. So we conclude that the
edge of the bosonic IQH state is stable as long as charge con-
servation is maintained. Phrased in terms of the null vector
criterion,30 the edge is stable because there does not exist a
nontrivial neutral null vector for the bosonic IQH state.

III. EDGE EQUILIBRATION

The Kubo formula expresses a two-terminal conductance in
terms of a current-current correlation function. In the absence
of a point contact, the two-terminal Hall electrical conduc-
tance G for the edge modes on the top and bottom of a Hall
bar is given by the expression:

G =
e2

!'

∫ %

0
dx′ lim

ω→0

∫ ∞

−∞
dτeiωτ 〈J(x, τ)J(x′, 0)〉

ω
. (7)

The conductance in Eqn. (7) relates the current through the
point x ∈ [0, '] found in linear response to a constant electric
field applied to a section of length ' within a wire of infinite
length.

Notice that we take the ω → 0 limit before performing the
integral over x′.34 In the DC ω → 0 limit, the right-hand-side
of Eqn. (7) does not depend upon where in [0, '] the partic-
ular x is chosen. In Section V, we will evaluate two other
conductances by varying the choice of current-current corre-
lation function considered. Note that the conductance above
is denoted in Section V by Gx̂,x̂.

In Eqn. (7), we have analytically continued to imaginary
time, t → iτ . The total current running through the point x
along the top and bottom of the Hall bar,

J(x, τ) = −
i

2π
∂τ

(

φ1(x, t) + φ2(x, t) + φ̃1(x, t) + φ̃2(x, t)
)

=
1√
22π

[(1

g
+ 1

)(

∂zX̃L(z)− ∂̄z̄XR(z̄)
)

+
(1

g
− 1

)(

∂zXL(z)− ∂̄z̄X̃R(z̄)
)]

,

(8)

where z = x + iτ, z̄ = x − iτ, ∂z = 1
2 (∂x − i∂τ ), and ∂̄z̄ =

1
2 (∂x + i∂z).
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We distinguish the two-terminal Hall conductance G from
the electrical Hall conductivity previously denoted by σxy . G
generally differs from σxy in that it depends upon properties
of and conditions at the edge while σxy , as defined previously,
is an (intensive) property of the bulk state. Indeed, because the
bosonic IQH state is non-chiral, the value of the conductance
G depends upon the VIJ interactions. Using the action, Eqn.
(6), we find that Eqn. (7) evaluates to G = ( 1g +g) e

2

h . (Details
of the calculation that leads to this conclusion can be found
in Section V where we calculate closely related correlation
functions.) Only at g = 1 do we obtain the equality G = σxy .

The key physical reason for the difference between G and
σxy when g += 1 is due to the lack of equilibration between
modes on a given edge. We have seen how charge conserva-
tion and translation invariance prevent mass-generating cou-
plings between φ1 with φ2. However, these symmetries also
prevent edge equilibration. We generally expect any phys-
ically realized edge to have some amount of disorder that
breaks translation invariance. Such disorder allows the trans-
fer of charge between the two modes with the impurities ab-
sorbing the excess momenta. In other words, impurities allow
φ1 and φ2 to equilibrate.

Thus, we are lead to consider charge and momentum ex-
change via an impurity. The lowest dimension term that al-
lows tunneling between φ1 and φ2 has the form,

Sdisorder =

∫

dtdx
[

ξ(x)eiφ1−iφ2 + h.c.
]

, (9)

where ξ(x) is a complex Gaussian random variable satisfying,
〈〈ξ∗(x)ξ(x′)〉〉 = Dδ(x − x′). The double bracket denotes a
disorder average. The above term tunnels a φ1 mode into a φ2

mode and vice versa. Any momentum mismatch is absorbed
by the field ξ.
D functions as a coupling constant for this interaction be-

tween φ1 and φ2. The leading RG equation for D takes the
form,35

∂D

∂'
=

(

3− 2∆R(g)
)

D, (10)

where ∆R(g) = 1/2(g + 1/g) equals the scaling dimension
of the operator, exp(iφ1 − iφ2). Thus, disorder is relevant if
1
2 (3−

√
5) < g < 1

2 (3 +
√
5).

Let us suppose that we are in a region of parameter space
where disorder is relevant. For general g within this regime,
perturbation theory is certainly not reliable. To access the
strong coupling fixed point, we switch to the charged φρ and
neutral φσ fields:

φρ =
1

2

(

(
1

g
+ 1)XR + (

1

g
− 1)XL

)

,

φσ =
1

2

(1

g
− 1)XR + (

1

g
+ 1)XL

)

. (11)

The motivation for this redefinition is that it is
√
2φρ that en-

ters into the definition of the charge current in Eqn. (6) while
only φσ is involved in the disorder-mediated interaction, Eqn
(9).

Let us write the action in terms of these fields and show
that at the strong-disorder fixed point, the charge and neutral
sectors decouple. Setting the background gauge field to zero,
the action for the edge modes on the top edge in Eqn. (6) may
be rewritten as,

S =
1

4π

∫

dtdx
[

∂xφρ(∂t −
1

g
∂x)φρ

+ ∂xφσ(−∂t −
1

g
∂x)φσ − vρσ∂xφρ∂xφσ

+ (ξ(x)ei
√
2φσ + h.c.)

]

, (12)

where

vρσ =
(1 − 1

g2 )

∆R(g)
. (13)

Notice the appearance of an emergent SU(2) global symme-
try when vρσ = 0. Since ∆R(g) > 0, this occurs when g = 1.
The emergent SU(2) symmetry allows an exact solution for
the neutral sector of the model. (The charged sector is al-
ready described by a free field theory at this decoupled point.)
Considering small deviations away from the decoupled fixed
point, the exact solution shows that the decoupled fixed point
action, Eqn. (12) at vρσ = 0, describing the charged and neu-
tral modes is attractive.25

In summary, disorder, if relevant, drives the system to-
wards the g = 1 point, where the two-terminal Hall con-
ductance takes its universal value (from the bulk perspective),
G = σxy = 2. Interestingly, the point-contact perturbation is
marginal at this fixed point as we will see shortly.

IV. POINT-CONTACT TUNNELING FIXED POINTS

A. Point-Contact Perturbations

For well separated boundaries, terms that couple the two
sets of edge modes together are absent due to locality – the
matrix element defining the possible interaction is exponen-
tially small as long as the bulk gap is non-zero. Indeed, a
tunneling operator of lowest dimension tunnels a single boson
from one edge to the other and, in general, has amplitude pro-
portional to exp(−bMW ) where M is the bulk gap, W is the
distance between the top and bottom edges, and b is a positive
constant.

However, a point-contact constriction allows non-zero tun-
neling between the top and bottom modes at a single spatial
location. See Fig. 1 for the relevant geometrical pictures il-
lustrating the possible tunneling. About the fully connected
geometry displayed in Fig. 1A, the lowest dimension tunnel-
ing operators take the form,

OI,J (x) = cos
(

φI − φ̃J

)

δ(x), (14)

where we have chosen coordinates so that the single tunnel-
ing event occurs at the origin. From the action Eqn. (6), we
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determine the scaling dimensions ∆IJ of the four lowest di-
mension tunneling terms to be:

∆IJ = g2I−3δI,J +
1

2

(1

g
+ g

)

δI,J+1, (15)

for I ∼ I + 2. (Note that depending upon g, some subset of
the four operators could have higher harmonics that are more
relevant than some of the listed fields; when listing the four
operators above, we are implicitly considering their higher
harmonics as well and so we will not mention them explic-
itly further.) The resulting RG equations for each boundary
operator is then,

1

cI,J

∂cI,J
∂'

= 1−∆I,J

= 1− g2I−3δI,J −
1

2

(1

g
+ g

)

δI,J+1. (16)

At g = 1, all four operators are marginal. For any g += 1, O1,2

and O2,1 are strictly irrelevant. For g > 1, O1,1 is relevant,
while O2,2 is strictly irrelevant. and vice versa for g < 1.

It is important to emphasize that for g += 1, either O1,1

or O2,2 is relevant at weak coupling, but not both. It is
this fact that results in an IR attractive fixed point describ-
ing a partially-split Hall droplet. The single relevant operator
drives a (boundary) RG trajectory where the Hall bar partially
pinches off; however, it does not split into two disconnected
liquids. We schematically illustrate the partially-split geome-
try corresponding to this fixed point in Fig. 1B.

In the next two subsections, we will describe the result-
ing (boundary) fixed point and demonstrate its stability. To
this end, consider the fully disconnected geometry in Fig. 1C
where there are two disconnected Hall bars coupled together
at a single point contact. As we will describe, from precisely
the same analysis as above, there exists a relevant (bound-
ary) tunneling term that drives an RG trajectory towards a
partially-split geometry. We will provide evidence that this IR
fixed point is the same as the one obtained by starting from the
fully connected Hall droplet of Fig. 1A, thus implying a sin-
gle, isolated IR stable fixed point separating the fixed points
describing the fully connected and fully disconnected geome-
tries.

In the previous section, we observed that edge equilibra-
tion is relevant when 1

2 (3 −
√
5) < g < 1

2 (3 +
√
5) and the

system is driven towards a strong-disorder fixed point where
g = 1. At this value of g, all four tunneling operators are
marginal. The point-contact analysis in the remainder of this
section either assumes that g is outside the attractive regime of
this strong-disorder fixed point, or that the edge is sufficiently
clean and studied at high enough temperatures such that disor-
der has not had “time” to renormalize the system to the g = 1
point.

3A.
X ′

L = XR XR

X ′

R = XL XL

X̃ ′

L = X̃R X̃R

X̃ ′

R = X̃L X̃L

3B. XR

X ′

L

X ′

R

XL

X̃R

X̃ ′

L

X̃ ′

R

X̃L

FIG. 3: The Folding Procedure. The point contact is represented by
the shaded rectangle and the boundary conditions at the fully con-
nected fixed point are shown using dotted arrows. In Fig. 3A, we
draw the un-folded geometry; the fields on the left of the point con-
tact are renamed as indicated. In Fig. 3B, we draw the folded geom-
etry.

B. Repulsive g > 1 Interactions

1. The Approach from the Fully Connected Fixed Point

When g > 1, O1,1 = cos(φ1− φ̃1)δ(x) is the most relevant
tunneling operator – it has scaling dimension ∆1,1 = 1/g.
The tunneling of φ2 bosons between the two edges is strictly
irrelevant.

To understand the resulting boundary fixed point obtained
after perturbation by O1,1, we “fold” the geometry about the
location of the point contact.4 Our folding conventions are
shown in Fig. 3. The folding procedure is merely a conve-
nient method for analyzing the problem that makes clear the
structure of the resulting boundary fixed point.

To this end, the Luttinger liquid extends along the x-axis
from −L to +L with the understanding that L → ∞. The
point contact will be placed at x = 0. We fold by defining the
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fields,

XR(x) = XR(x), X ′
L(x) = XR(−x), x ∈ [0, L],

XL(x) = XL(x), X ′
R(x) = XL(−x), x ∈ [0, L],

X̃R(x) = X̃R(x), X̃ ′
L(x) = X̃R(−x), x ∈ [0, L],

X̃L(x) = X̃L(x), X̃ ′
R(x) = X̃L(−x), x ∈ [0, L]. (17)

The folding operation has introduced the primed fields which
are simply the continuation to x ∈ [−L, 0] of the un-primed
fields. Note that a right/left moving field on the negative x-
axis becomes a left/right moving field when redefined to live
on the positive x-axis.

When there is no point contact present, the field redefinition
in Eqn. (17) is unnecessary. However, it will prove very useful
in understanding the partially-split fixed point and for comput-
ing current-current correlation functions in the next section.

It will be important to compare the boundary conditions
obeyed by the fields in the fully connected geometry to the

boundary conditions obtained at the putative IR fixed point
induced by O1,1. When there is no point contact, the bound-
ary conditions on the fields at x = 0 are simply:

XR(0) = X ′
L(0), XL(0) = X ′

R(0),

X̃R(0) = X̃ ′
L(0), X̃L(0) = X̃ ′

R(0). (18)

We will refer to the boundary conditions when there is no
point contact as the fully connected boundary conditions with
the corresponding geometry shown in Fig. 1A. In the folded
setup, these boundary conditions are displayed in Fig. 3B.

In order to study the non-trivial boundary fixed point in-
duced by the perturbation O1,1, it is convenient to first make
the following field redefinitions by introducing the right and
left moving fields Ri and Lj for i, j = 1, ..., 4 (these field
redefinitions are motivated by repeatedly taking linear combi-
nations of the boundary conditions in Eqn. (18)):

XR =
1

2
(R1 +R2 +R3 +R4), X ′

R =
1

2
(−R1 −R2 +R3 +R4),

X̃R =
1

2
(R1 −R2 +R3 −R4), X̃ ′

R =
1

2
(−R1 +R2 +R3 −R4),

XL =
1

2
(−L1 − L2 + L3 + L4), X ′

L =
1

2
(L1 + L2 + L3 + L4),

X̃L =
1

2
(−L1 + L2 + L3 − L4), X̃ ′

L =
1

2
(L1 − L2 + L3 − L4). (19)

All fields are understood to live on the half-line, x ∈ [0, L]. The inverse of the transformation in Eqn. (19):

R1 =
1

2
(XR −X ′

R + X̃R − X̃ ′
R), R2 =

1

2
(XR −X ′

R − X̃R + X̃ ′
R),

R3 =
1

2
(XR +X ′

R + X̃R + X̃ ′
R), R4 =

1

2
(XR +X ′

R − X̃R − X̃ ′
R),

L1 =
1

2
(−XL +X ′

L − X̃L + X̃ ′
L), L2 =

1

2
(−XL +X ′

L + X̃L − X̃ ′
L),

L3 =
1

2
(XL +X ′

L + X̃L + X̃ ′
L), L4 =

1

2
(XL +X ′

L − X̃L − X̃ ′
L). (20)

The action remains diagonal after the field redefinitions in
Eqn. (19), however, the coupling to the gauge field is changed.
In terms of these fields, the fully connected boundary condi-
tions in Eqn. (18) become:

Ri(0) = Li(0), (21)

for all i.
We are now ready to study the effects of the point contact.

An important point is that because we have (redundantly) dou-

bled the number of fields in folding the geometry, a point con-
tact now corresponds to two boundary perturbations. In the
folded geometry, the operator O1,1 becomes:

O1,1 → cos(φ1 − φ̃1)δ(x) + cos(φ′
1 − φ̃′

1)δ(x), (22)

where the primed fields, φ′
I , φ̃

′
J are the continuation to x ∈

[−L, 0] of the un-primed fields, φI , φ̃J , respectively. Hope-
fully without leading to any confusion, we will continue to
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refer to this operator in the folded geometry as O1,1.
The benefit of the field redefinitions in Eqn. (19) is that

the boundary conditions induced by the operator O1,1 take a
particularly simple form. The effect of the point-contact per-
turbation, O1,1, is to freeze φ1 = φ̃1 and φ′

1 = φ̃′
1 at x = 0.

(This breaks the periodicity symmetry, Eqn. (3), of the indi-
vidual fields down to the diagonal when the action is expanded
about a particular vacuum. It will not be necessary for us to
keep track of the modified periodicity conditions obeyed by
the redefined fields.) In terms of the folded fields, this bound-
ary condition becomes:

XR(0) +XL(0) = X̃R(0) + X̃L(0),

X ′
R(0) +X ′

L(0) = X̃ ′
R(0) + X̃ ′

L(0). (23)

These two conditions take a simple form when written in
terms of the Ri, Lj fields: R2(0) = L2(0) and R4(0) =
−L4(0). The boundary conditions on the other pair of fields,
Ri, Lj for i, j = 1, 3, remain the same as in the fully con-
nected case, Eqn. (21).

Summarizing, we find that the point-contact perturbation
drives a boundary RG flow to the fixed point characterized by
the boundary conditions,

Ri(0) = Li(0), i = 1, 2, 3,

R4(0) = −L4(0). (24)

Thus, the point contact only affects R4 and L4. If we form
the non-chiral bosons χi = Ri + Li, then the effect of the
point contact is to drive the (integrable) boundary flow from
the Neumann to the Dirichlet boundary condition for χ4 with
the other three fields maintaining their initial Neumann con-
ditions at the point contact. The boundary conditions in Eqn.
(24) define the partially-split fixed point and, for brevity, we
shall refer to these boundary conditions as the partially-split
boundary conditions.

2. The Approach from the Fully Disconnected Fixed Point

We now wish to give further evidence for the stability or
attractiveness of the partially-split fixed point. As we have
seen, starting from a fully connected fixed point, perturbation
by the relevant operator O1,1 drives the system towards the
partially-split fixed point.

Consider instead the approach to the partially-split fixed
point from the fully disconnected geometry where there are
two bosonic IQH droplets interacting via a single point con-
tact drawn schematically in Figure 1C. In terms of the folded
fields of Fig. 3A, the fully disconnected geometry is defined
by the following boundary conditions:

X̃L(0) = XR(0), XL(0) = X̃R(0),

X̃ ′
L(0) = X ′

R(0), X ′
L(0) = X̃ ′

R(0). (25)

To facilitate comparison with the fully connected boundary
conditions in Fig. 3, the fully disconnected boundary condi-
tions are drawn in Fig. 4. Rewritten in terms of the Ri, Lj

4A.
X ′

L XR

X ′

R XL

X̃ ′

L X̃R

X̃ ′

R X̃L

4B.
XR

X ′

L

X ′

R

XL

X̃R

X̃ ′

L

X̃ ′

R

X̃L

FIG. 4: The boundary conditions at the fully disconnected fixed
point. The point contact is represented by the shaded rectangle and
the boundary conditions at the fully disconnected fixed point are
shown using dotted arrows. Figs. 4A and 4B show the respective un-
folded and folded geometries. (Compared to Fig. 3, we have smeared
out the point contact even further in order to avoid line crossings in
the figure.)

fields, these conditions become:

R1(0) = −L1(0), R2(0) = L2(0),

R3(0) = L3(0), R4(0) = −L4(0). (26)

Thus, if the partially-split fixed point is an attractor, the effect
of the point contact at the fully disconnected fixed point must
be to change the boundary condition relating R1 and L1 in
order to match Eqn. (24).

To verify that this does indeed occur, we shall un-fold the
geometry beginning at the disconnected fixed point boundary
conditions, Eqn. (25), and show that the leading point-contact
perturbation drives the theory to the partially-split fixed point.
Using Eqn. (25) and Fig. 4, we define the fields

ϕ1 =
1√
2g

(XR +XL), ϕ2 =
1√
2
(XR −XL),

ϕ̃1 =
1√
2g

(X ′
R +X ′

L), ϕ̃2 =
1√
2
(−X ′

R +X ′
L). (27)
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In making these definitions, we have identified X̃L(x) =
XR(−x) and similarly for the other tilded fields shown in Fig.
4. The action for the fully disconnected geometry takes ex-
actly the same form, Eqn. (2), as the action for the fully con-
nected geometry with the replacements φI ↔ ϕI , φ̃I ↔ ϕ̃I

(along with the understanding that we are now describing edge
modes belonging to disconnected Hall samples).

The leading point-contact perturbation in the un-folded
variables takes the form: O′

1,1 = cos(ϕ1 − ϕ̃1)δ(x). To
analyze the effects of this operator, we fold the geometry as
shown in Fig. 4. (In contrast to how we folded when starting
at the full connected fixed point, we now introduce tilded left
and right moving fields instead of primed left and right mov-
ing fields.) As we previously noted, folding splits the point-
contact perturbation into two boundary operators and imposes
the constraints:

XR +XL = X ′
R +X ′

L,

X̃R + X̃L = X̃ ′
R + X̃ ′

L. (28)

By taking linear combinations of these two equations and us-
ing Eqns. (20), we see that in terms of the Ri and Lj vari-
ables, these boundary conditions become: R1 = L1 and
R2 = L2. O′

1,1 does not affect the boundary conditions of
R3,4 and L3,4 given in Eqn. (26). We recognize the result-
ing boundary conditions as describing the partially-split fixed
point. Thus, the leading point-contact perturbation drives an
RG trajectory from either the fully connected or fully discon-
nected fixed points to the partially-split fixed point in the IR,
thereby implying the existence of a single, isolated fixed point
in between these two limits.

3. Operator Spectrum

Having demonstrated the symmetry between the two ap-
proaches to the partially-split fixed point, we now ask whether
there exist additional instabilities at this IR fixed point. In
other words, are there potential runaway “directions” in cou-
pling constant space?

To answer this question, we need only enumerate all bound-
ary perturbations at the partially-split fixed point and compute
their scaling dimensions. In the unfolded language, an arbi-
trary tunneling perturbation takes the form:

Oai,bj = cos
(

a1φI + b1φ̃1 + a2φ2 + b2φ̃2

)

δ(x), (29)

for ai, bj ∈ Z. We must compute the dimension of this op-
erator at the IR fixed point. This IR scaling dimension will
generally take a different value than at the UV fixed point.

First, we need to constrain the form of the operator so that
it conserves U(1) charge. Neutrality requires: a1 + a2 + b1 +
b2 = 0. The scaling dimension of Oni,mj

is

∆ai,bj =
g

4

(

(a2 − b2)
2 + 2(a2 + b2)

+
1

g2
(a1 + b1)

2
)

, (30)

subject to the neutrality constraint.
No operator Oai,bj is relevant at the partially-split fixed

point. To see this, consider three low-dimensional examples.
O1,2 = cos(φ1 − φ̃2)δ(x) and O2,1 = cos(φ̃1 − φ2)δ(x)
are both of scaling dimension, ∆1,2 = ∆2,1 = g

4 (3 + 1/g2).
O2,2 = cos(φ2 − φ̃2)δ(x) has scaling dimension, ∆2,2 = g.
Both sets of operators, along with all other operators given in
Eqn. (29), are irrelevant when g > 1.

C. Attractive g < 1 Interactions

It is straightforward to apply the method outlined in the pre-
vious section to the case when g < 1. Therefore, we more
or less state the following results instead of providing a full
derivation as in the previous subsection.

When g < 1, the most relevant operator at the fully con-
nected and fully disconnected fixed point is O2,2 and O′

2,2, re-
spectively (using notation introduced previously). Just as the
boundary conditions induced by O1,1 only involved R2,4 and
L2,4, the conditions imposed by O2,2 only involve R1,3 and
L1,3. Around the fully connected fixed point, the conditions,
φ2 = φ̃2 and φ′2 = φ̃′2 imposed by the leading point-contact
perturbation when g < 1 results in a fixed point characterized
by the boundary conditions:

R1(0) = −L1(0), R2(0) = L2(0),

R3(0) = L3(0), R4(0) = L4(0). (31)

(About the fully disconnected fixed point, O′
2,2 drives the sys-

tem to the same IR stable partially-split fixed point, but in-
stead involves the fields R3,4 and L3,4.) The RG diagram for
this flow takes the form shown in Fig. 1 (iii). The stability
of the fixed point, Eqn. (31), is also immediate since the low-
est dimension tunneling operator is O1,1 which has boundary
scaling dimension equal to 1/g > 1 for g < 1.

Thus, the transformation g ↔ 1/g and R1, L1 ↔ R4, L4

takes us between the fixed point induced by O1,1 (O′
1,1) and

O2,2 (O′
2,2).

V. TWO-TERMINAL CONDUCTANCES

We now describe how the boundary conditions character-
izing the various fixed points studied in the previous section
are reflected in the current-current correlation functions that
determine two-terminal electrical conductances.

The conductances that we are interested in relate the current
through the point x ∈ [0, '] about the dashed lines shown in
Fig. 5 obtained in response to a constant electric field applied
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5A.
X′

L
X′

R
XR XL

X̃′

R
X̃′

L X̃L X̃R

5B.
X′

L
X′

R
XR XL

X̃′

R
X̃′

L X̃L X̃R

5C.
X′

L
X′

R
XR XL

X̃′

R
X̃′

L X̃L X̃R

FIG. 5: The dashed lines in the above three figures denote the line
through which the three currents in Eqn. (32) flow; the conductances
in Eqn. (33) measure the flow of charge through this line. As a point
of reference, Fig. 5A measures the conductance along the Hall bar
for the current Jx̂, Fig. 5B measures the conductance across the Hall
bar for the current Jŷ, and Fig. 5C measures a skew conductance
with respect to the fully connected fixed point of Fig. 1A for the cur-
rent Js. The green square represents a possible (boundary) interac-
tion induced by a point contact and the modes are labelled according
to the conventions of Fig. 3.

to a section of wire of length '. The currents,

Jx̂(x, τ) =
1√
22π

[(1

g
+ 1

)(

∂zX̃L(z)− ∂̄z̄XR(z̄)
)

+
(1

g
− 1

)(

∂zXL(z)− ∂̄z̄X̃R(z̄)
)]

,

Jŷ(x, τ) =
1√
22π

[(1

g
+ 1

)(

∂zX
′
L(z)− ∂̄z̄XR(z̄)

)

+
(1

g
− 1

)(

∂zXL(z)− ∂̄z̄X
′
R(z̄)

)]

,

Js(x, τ) =
1√
22π

[(1

g
+ 1

)(

∂zX̃L(z) + ∂zX
′
L(z)

)

−
(1

g
− 1

)(

∂̄z̄X̃R(z̄) + ∂̄z̄X
′
R(z̄)

)]

, (32)

where z = x+iτ . Using the Kubo formula, we shall calculate
the following three conductances at the fixed points previously
described for g > 1:

G(A)
x̂,x̂ =

e2

!'

∫ %

0
dx′ lim

ω→0

∫ ∞

−∞
dτeiωτ 〈Jx̂(x, τ)Jx̂(x′, 0)〉A

ω
,

G(A)
ŷ,ŷ =

e2

!'

∫ %

0
dx′ lim

ω→0

∫ ∞

−∞
dτeiωτ 〈Jŷ(x, τ)Jŷ(x′, 0)〉A

ω
,

G(A)
s,s =

e2

!'

∫ %

0
dx′ lim

ω→0

∫ ∞

−∞
dτeiωτ 〈Js(x, τ)Js(x′, 0)〉A

ω
,

(33)

where A = FC, PS, or FD denote the fully connected,
partially-split, and fully disconnected fixed points.

The first two conductances of Eqn. (32) are sufficient to
distinguish the fixed points and make particularly clear the
symmetry present at the partially-split fixed point. From the
perspective of a fully connected geometry shown in Fig. 1A,
G(FC)

x̂,x̂ measures the conductance along the bar, while G(FC)
ŷ,ŷ

measures the conductance across the Hall bar. G(FC)
ŝ,̂s is a

type of skew conductance where the potential on leads on
diametrically-opposite sides of the point contact are raised rel-
ative to the other two. Its value, however, is independent of the
particular fixed point considered and we shall not consider it
further.

The central results of this section are the following two-
terminal electrical conductances:

G(FC)
x̂,x̂ = G(FD)

ŷ,ŷ =
(1

g
+ g

)e2

h
,

G(FD)
x̂,x̂ = G(FC)

ŷ,ŷ = 0,

G(PS)
x̂,x̂ = G(PS)

ŷ,ŷ =
1

g

e2

h
. (34)

We note the equality of the conductances along and across
the Hall bar at the partially-split fixed point. Using either the
mapping described in the previous section or an explicit calcu-
lation, the conductances for g < 1 are obtained by substituting
g ↔ 1/g in Eqn. (34). Interestingly, setting e2/h = 1, the
conductance at the partially-split fixed point is equal to the
boundary scaling dimension of the operator O1,1 (O′

1,1) that
drives the system towards the intermediate fixed point from
either the fully connected or fully disconnected fixed points.

In order to calculate G(A)
x̂,x̂ , for instance, we need the fol-

lowing correlation functions. Note that only a subset of the
non-zero correlation functions are listed with the additional
correlators obtained by methods exactly similar to those that
we state below. Correlation functions containing purely (anti-
)holomorphic fields are not generally affected by the boundary
conditions at the point contact:

〈∂̄z̄XR(z̄)∂̄z̄′XR(z̄
′)〉A =

g

(z̄ − z̄′)2
,

〈∂zXL(z)∂z′XL(z
′)〉A =

g

(z − z′)2
, (35)

and similarly for other two-point correlators of pairs of purely
(anti-)holomorphic fields. Correlation functions between two
different (anti-)holomorphic fields vanish. However, corre-
lators between a holomorphic field and an anti-holomorphic
field do depend upon the specific boundary conditions at the
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point contact:

〈∂̄z̄XR(z̄)∂z′X ′
L(z

′)〉A =
g

(z′ + z̄)2

(

δA,FC +
1

2
δA,PS

)

,

〈∂̄z̄XR(z̄)∂z′XL(z
′)〉A = −

g

2(z′ + z̄)2
δA,PS ,

〈∂̄z̄XR(z̄)∂z′X̃L(z
′)〉A =

g

(z′ + z̄)2

(

δA,FD +
1

2
δA,PS

)

,

〈∂̄z̄XR(z̄)∂z′X̃ ′
L(z

′)〉A =
g

2(z′ + z̄)2
δA,PS .

(36)

In deriving Eqn. (36), we used the field redefinition in Eqn.
(19) and the fact that:

〈∂̄z̄Ri(z̄)∂z′Lj(z
′)〉A = ±δij

g

(z′ + z̄)2
, (37)

if Ri(0, τ) = ±Lj(0, τ) at the point contact.

We are now ready to verify the conductances quoted in Eqn.
(34). The calculations of G(A)

x̂,x̂ and G(A)
ŷ,ŷ are related by the re-

placements, X̃R,L ↔ X ′
R,L and δA,FD ↔ δA,FC . (The cal-

culation of G(A)
ŝ,̂s proceeds analogously.) Therefore, we only

show the calculation of G(A)
x̂,x̂ below.

The correlation function in the top line of Eqn. (33) factors
into twelve non-zero terms:

〈Jx̂(x, τ)Jx̂(x′, 0)〉A =
1

8π2

[

(
1

g
+ 1)2

(

〈∂̄z̄XR(z̄)∂̄z̄′XR(z̄
′)〉A − 〈∂̄z̄XR(z̄)∂z′X̃L(z

′)〉A − 〈∂zX̃L(z)∂̄z̄′XR(z̄
′)〉A

+ 〈∂zX̃L(z)∂z′X̃L(z
′)〉A

)

+ (
1

g
− 1)2

(

〈∂̄z̄X̃R(z̄)∂̄z̄′X̃R(z̄
′)〉A − 〈∂̄z̄X̃R(z̄)∂z′XL(z

′)〉A

− 〈∂zXL(z)∂̄z̄′X̃R(z̄
′)〉A + 〈∂zXL(z)∂z′XL(z

′)〉A
)

− (
1

g2
− 1)

(

〈∂̄z̄XR(z̄)∂z′XL(z
′)〉A

+ 〈∂zXL(z)∂̄z̄′XR(z̄
′)〉A + 〈∂̄z̄X̃R(z̄)∂z′X̃L(z

′)〉A + 〈∂zX̃L(z)∂̄z̄′X̃R(z̄
′)〉A

]

, (38)

where z = x+ iτ and z′ = x′. Making use of Eqn. (35), (36)
in the above equation, and substituting into the Kubo formula,
Eqn. (33), we encounter integrals of the form:
∫ ∞

−∞
dτ

eiωτ

(

± iτ + (x− x′)
)2 = 2πωe−|x−x′|ωΘ

(

± (x − x′)
)

,

(39)

where Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0 is the
Heaviside step function. (The non-zero difference |x − x′|
functions as an UV regulator of the τ -integral.) Taking the
DC ω → 0 limit and integrating over x′, we find:

G(A)
x̂,x̂ =

e2

h

(

(
1

g
+ g)− (

1

g
+ g)δA,FD − gδA,PS

)

. (40)

Thus, we have checked the value of G(A)
x̂,x̂ quoted in Eqn. (34).

The calculation of G(A)
ŷ,ŷ proceeds in precisely the same way

with the substitution X̃R,L ↔ X ′
L,R in Eqn. (38).

VI. SUMMARY

In this note, we have studied how the bosonic integer quan-
tum Hall state responds to two distinct perturbations: disorder

and point-contact tunneling. The bosonic IQH state is sta-
ble as long as charge conservation is maintained, however,
the two-terminal electrical Hall conductance inferred from the
conductance of its edge modes leads to a value that depends
continuously on a particular edge-mode interaction parameter
that we denoted by g. When inter-mode equilibration occurs
via impurities, the interaction parameterized by g renormal-
izes towards the value g = 1 at which the two-terminal elec-
trical conductance G takes the universal value of 2e2/h and
the leading point-contact tunneling perturbation is marginal.

Equilibration via interactions induced by impurities along
the edge is only a relevant perturbation when g is within a cer-
tain range of values. Outside of the domain of attraction of
the strong-disorder fixed point, these impurity-mediated in-
teractions are irrelevant and so equilibration does not occur.
The two-terminal electrical conductance then depends upon
the edge interaction parameter g.

When the impurity-mediated interactions are irrelevant or
when the temperature cuts off the RG flow towards the strong-
disorder fixed point, we may consider how a point-contact af-
fects the bosonic IQH state. Away from the g = 1 point, a
point contact drives a boundary RG trajectory to a single, iso-
lated IR stable fixed point where the Hall bar partially splits
into two pieces. The partially-split fixed point is characterized
by equal two-terminal electrical conductances both along and
across the Hall bar.
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This point-contact induced partial splitting should be con-
trasted with other short-range entangled states whose RG tra-
jectories are drawn in Fig. 2. Fermionic IQH states do not
split under renormalization group flow as a result of perturba-
tion by a point contact – this perturbation is exactly marginal
– and instead are described by a line of fixed points. All point
contact perturbations of the E8 state of bosons are strictly
irrelevant and do not affect the low energy physics at weak
coupling.14–17

The time-reversal invariant spin Hall insulator shows be-
havior similar to its bosonic counterpart studied in this paper.
In contrast to the spin Hall insulator, the bosonic IQH state
generically admits a relevant point contact perturbation.

Long-range entangled states generally do split as a result
of a relevant point-contact perturbation. Thus, the bosonic in-
teger quantum Hall state in the clean limit and the spin Hall
insulator fit somewhere in between fermionic IQH states and
long-range entangled states in terms of their response to a
point contact.

This behavior is in keeping with the general interpreta-
tion of point-contact induced RG flows as dynamical loss of
entropy.9 Because “there is no entropy to lose,” short-range
entangled states cannot RG flow between fully connected and
fully disconnected fixed points; there must either be no flow,
or a flow to or from an intermediate fixed point where the Hall
bar has partially split. The RG diagrams in Fig. 2 (ii) and (iii)
of the bosonic integer quantum Hall effect reflect this behav-
ior.

Boundary conformal fixed points have a beautiful descrip-
tion in terms of boundary states.5 Indeed, the Affleck-Ludwig
boundary entropy6 characterizing the boundary renormaliza-

tion group flow naturally emerges within this formalism. It
is an interesting open question to consider how the boundary
state formalism could shed light on the properties of the IR
unstable boundary fixed point obtained from the point-contact
perturbed E8 state.

The one-to-many nature of the association between the bulk
topological order of an abelian Hall state and its edge modes
has been emphasized recently:17,36 the same bulk state can ad-
mit more than one distinct edge phase. Ignoring symmetry,
the spin-Hall insulator admits an edge transition to a phase in
which the low energy edge excitations are identical to those
of the bosonic integer quantum Hall state. While this tran-
sition necessarily breaks time-reversal, it is entirely possible
for it to be the most relevant instability of the spin-Hall edge
modes (when time-reversal is allowed to be broken) by fine-
tuning edge interaction parameters (the analog of what we
called VIJ ). It would be interesting to consider in further work
the relation between these two edge phases.
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