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More than half a century after first being proposed by Sir Nevill Mott, the decep-
tively simple question of whether the interaction-driven electronic metal-insulator tran-
sition may be continuous remains enigmatic. Recent experiments on two-dimensional
materials suggest that when the insulator is a quantum spin liquid, lack of magnetic
long-range order on the insulating side may cause the transition to be continuous, or
only very weakly first order. Motivated by this, we study a half-filled extended Hub-
bard model on a triangular lattice strip geometry. We argue, through use of large-scale
numerical simulations and analytical bosonization, that this model harbors a continu-
ous (Kosterlitz-Thouless-like) quantum phase transition between a metal and a gapless
spin liquid characterized by a spinon Fermi sea, i.e., the “spin Bose metal”. These
results may provide a rare insight into the development of Mott criticality in strongly
interacting two-dimensional materials and elucidate a mechanism by which spin-liquid
phases are stabilized in the vicinity of such transitions.

Strongly correlated electronic systems may have in-
sulating phases that originate entirely from electron-
electron interactions. These insulators, and their phase
transitions to metallic phases have a long history reaching
back into the pioneering work of Mott1,2. However, de-
spite decades of study, metal-insulator transitions driven
by strong correlations—Mott’s namesake—remain rather
poorly understood. Central to this di�culty is the fact
that Mott transitions exhibit strong quantum fluctua-
tions, which can inherit correlations from both the adja-
cent metallic and insulating phases. Thus, the nature of
the Mott transition may depend crucially on the proper-
ties of each of these phases.

Conventional insulating phases, such as those with
magnetic long-range order, appear to predominantly give
rise to first-order Mott transitions, as has been observed
in a number of experimental systems in the past3–7. The
reason for first-order behavior is simple: The properties
of both the spin and charge sectors change qualitatively
at the transition, the former developing magnetic long-
range order and the latter localizing to form an insulating
state. In contrast, systems that harbor unconventional,
exotic insulating phases showing no symmetry break-
ing down to zero temperature—so-called quantum spin
liquids8–11—o↵er a promising playground for finding the
long-sought-after continuous Mott transition. For exam-
ple, one beautiful possiblity is that the spin sector on the
insulating side may be described by a spinon Fermi sur-
face coupled to a U(1) gauge field12 (the so-called “spin
Bose metal”13). In this case, the behavior of the spin cor-
relations would be qualitatively unchanged14 upon cross-
ing the transition, making the nature of the transition
determined entirely by the charge sector. Thus, as pro-
posed in Refs. 15–17, perhaps the electronic Mott tran-
sition in d spatial dimensions can be in the (d + 1)D XY

universality class, the same as obtained for bosons18!
Fortunately, this sort of physics is more than just

a theorist’s dream, as recently several experimental
groups have found strong evidence for spin-liquid be-
havior proximate to a Mott transition in two separate
quasi-two-dimensional triangular lattice organic materi-
als. In 2003, a putative spin-liquid phase in -(BEDT-
TTF)

2

Cu
2

(CN)
3

was discovered19, which is insulating
at ambient pressure with no apparent long-range or-
der but can indeed be driven metallic by application of
moderate pressure20. More recently, Itou et al. found
a spin-liquid candidate in EtMe

3

Sb[Pd(dmit)
2

]
2

.21 Fur-
ther experiments indicated the existence of highly mo-
bile gapless spin excitations in both compounds22,23, al-
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FIG. 1: Schematic of the half-filled extended Hubbard
model on the two-leg triangular strip and its phase
diagram. Top: Our electronic model contains electron hop-
pings t and t0 in addition to repulsive Hubbard interactions up
to fourth neighbor [see Eqs. (1)-(2)]. As shown, we view the
two-leg triangular strip as a 1D chain and attack the problem
with DMRG and bosonization. Bottom: The phase diagram
of our model as a function U/t for the chosen characteristic
parameters (see text).
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though the precise nature of the spin excitations in -
(BEDT-TTF)

2

Cu
2

(CN)
3

at the lowest temperatures is
still highly controversial24. These findings suggest that
the spin Bose metal is likely a good starting point for
understanding the spin-liquid behavior observed in these
two materials12,14. In addition, the pressure-induced
Mott transition from the metal to the spin liquid is ob-
served to be either only very weakly first order20, or per-
haps even continuous25.

Motivated by these experiments, we consider a model
of interacting electrons on a half-filled triangular lattice
“strip” geometry (see Fig. 1), which we solve using large-
scale density matrix renormalization group (DMRG) cal-
culations. By increasing the strength of the repulsive
electron-electron interactions, we drive the ground state
of the system from a metallic Fermi liquid-like phase
to an insulating phase identified as the electronic spin
Bose metal12,26 via an intervening continuous Kosterlitz-
Thouless-like quantum phase transition. Further in-
creasing the electron interactions eventually drives the
system into a spin-gapped valence bond solid (VBS)
insulator—the phase realized by the e↵ective Heisen-
berg spin model that our half-filled electronic model ap-
proaches at strong repulsion. Our calculations thus rep-
resent a direct quasi-one-dimensional (quasi-1D) analog
of tuning a two-dimensional (2D) half-filled Hubbard-
type model from a metal to a quantum spin liquid to
a conventional ordered phase via increasing overall elec-
tron repulsion27–29, a result with clear potential relevance
to the Mott physics observed in the organic spin liquid
materials20.

EXTENDED HUBBARD MODEL ON THE
TWO-LEG TRIANGULAR STRIP

The most appropriate microscopic model for the
triangular-lattice organic materials is a Hamiltonian con-
sisting of electron hopping plus moderately strong, pos-
sibly extended30, Coulomb repulsion. As is well-known
from some 30 years of research on the high-temperature
cuprate superconductors10, such a model does not suc-
cumb easily to either exact analytical field theory nor
direct numerical simulations in two dimensions due to
the fermionic “sign problem”.

Recently, some of us have proposed a novel approach to
the 2D limit of such models through a sequence of studies
on quasi-1D ladder geometries, which have the significant
advantage that they can be solved exactly with DMRG31.
Sheng et al. used this line of attack to extensively study
an e↵ective spin model appropriate for the “weak” Mott
insulating regime of the organic materials14,28 and in-
deed found exceptionally strong evidence that quasi-1D
descendants of the spin Bose metal exist as the ground
state over a large region of the phase diagram13,32. The
low-energy degrees of freedom of this exotic spin liq-
uid are modeled as mobile and charge-neutral spin-1/2
fermionic spinons coupled to a U(1) gauge field. In 2D,

these gapless spinons give rise to a spin structure factor
with power-law singularities residing on an entire “Bose
surface” in momentum space. However, in quasi-1D the
Bose surface is reduced to a set of points, so that quasi-
1D descendants of the 2D spin liquid are dramatically
recognizable on ladders, making the quasi-1D approach
very fruitful13,32–35.

Inspired by these recent developments and restricting
ourselves to the two-leg triangular strip for numerical
tractability, we consider the following extended Hubbard
model (see Fig. 1):

H = �
X

x,↵

⇥
t c†

↵

(x)c
↵

(x + 1) + t0c†
↵

(x)c
↵

(x + 2) + H.c.
⇤

+
1

2

X

x,x

0

V (x � x0)n(x)n(x0), (1)

where c
↵

(x) destroys an electron at site x with spin
↵ = ", # , n(x) ⌘

P
↵

c†
↵

(x)c
↵

(x) is the electron number
operator, and we take the system to be half-filled with
one electron per site.

In the usual on-site Hubbard model, we would have
V (x � x0) = U�

x,x

0 . However, inspired by the results
of Ref. 26, we allow for longer-ranged repulsion in our
Hamiltonian. For concreteness, we take the following
model potential:

V (x � x0) =

8
><

>:

U , |x � x0| = 0

Ue��|x�x

0| , 1  |x � x0|  4

0 , |x � x0| > 4 .

(2)

The reasoning for considering such longer-ranged re-
pulsion in the model Hamiltonian is twofold. First,
such terms are well-motivated by recent ab initio
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ε(q) = −2t cos(q) − 2t′ cos(2q) − µ

kF 2 −kF 1 kF 1 −kF 2

kF 2 = −kF 1 − π/2

FIG. 2: Electron/spinon bands on the two-leg trian-
gular strip. In the noninteracting U/t = 0 limit, the ground
state of our model for t0/t > 0.5 consists of two disconnected
Fermi seas (bands) with Fermi points as labeled above. On
the other hand, the insulating two-band spin Bose metal can
be modeled, in a pure spin system, by Gutzwiller projecting
the same band structure (see Ref. 13). Here, we realize a con-
tinuous Mott transition between these two phases driven at
strong interactions by an eight-fermion umklapp term which
scatters both spin-up and spin-down electrons across each
Fermi sea (black arrows).
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calculations30, which indicate a substantial long-ranged
tail in the e↵ective screened Coulomb repulsion appro-
priate for -(BEDT-TTF)

2

Cu
2

(CN)
3

. Second, on the
two-leg ladder, such terms fight the spin-gap tendencies
present in the metallic phase of the t-t0-U Hubbard model
(i.e., our model with  = 0; see, for example, Refs. 36–
38), thus at least allowing for the possibility of a di-
rect, continuous transition between a spin gapless two-
band metal and two-band spin Bose metal spin liquid26.
Guided by the weak and intermediate coupling analysis of
Ref. 26, in what follows we choose characteristic param-
eters t0/t = 0.8,  = 0.5, and � = 0.2, leaving the single
dimensionless ratio U/t to control the overall strength of
electron repulsion.

MOTT METAL-INSULATOR TRANSITION AND
REALIZATION OF THE ELECTRONIC SPIN

BOSE METAL

We first sketch the low-energy e↵ective theory describ-
ing the putative metal to spin Bose metal transition and
then present strong numerical evidence that this exotic
scenario is indeed realized. In the absence of interactions
(U/t = 0), our model for t0/t > 0.5 simply describes
two bands of noninteracting spinful electrons (see Fig. 2).
Importantly, the weak-coupling analysis of Ref. 26 indi-
cates that this spin gapless two-band metallic state—so-
called C2S2 in the literature, where C↵S� denotes a Lut-
tinger liquid with ↵ gapless charge modes and � gapless
spin modes36—is stable in our extended Hubbard model,
Eqs. (1)-(2), in the presence of infinitesimal U/t. At half-
filling, there is an allowed eight-fermion umklapp term in
our two-band system (see Fig. 2). Bosonizing (see, e.g.,
Refs. 39–42) this interaction gives

H
8

= 2u cos(4✓
⇢+

), (3)

where ✓
⇢+

is the density field for the overall charge mode,
i.e., �n(x) = 2@

x

✓
⇢+

/⇡ is the coarse-grained electron den-
sity. Assuming the C2S2 metal is stable against opening
of a spin gap26, then the fixed-point Lagrangian L

C2S2

in-
volves four gapless bosonic modes, one being ✓

⇢+

(see the
Supplementary Information and Ref. 26 for details). For
free electrons, the scaling dimension of the eight-fermion
umklapp term is �[H

8

] = 4 > 2, so that H
8

is strongly
irrelevant at weak coupling. However, increasing U/t in
our microscopic model will feed into “sti↵ening” ✓

⇢+

in
L

C2S2

, thus decreasing �[H
8

]. Eventually �[H
8

] = 2,
beyond which the umklapp is relevant so that u grows at
long scales pinning ✓

⇢+

into one of the minima of the co-
sine potential in H

8

. The resulting phase is a remarkable
C1S2 Luttinger liquid, which is precisely the electronic
spin Bose metal13, where the remaining “charge mode”
does not transport charge along the ladder but rather
represents local current loop fluctuations.

The critical theory describing the C2S2!C1S2 metal-
insulator transition is a sine-Gordon-like theory43, with a
technical complication arising because ✓

⇢+

is coupled to

the “relative charge” field ✓
⇢� in L

C2S2

(see the Supple-
mentary Information). Nonetheless, the transition is still
Kosterlitz-Thouless-like44 [(1+1)D XY] and represents a
direct, nontrivial two-leg analog of the (2 + 1)D scenario
recently proposed by Senthil16,17.

We now present our numerical results, giving strong ev-
idence that the above scenario is actually realized. To nu-
merically characterize the system, we focus on four main
quantities: the density structure factor h�n

q

�n�q

i, the
spin structure factor hS

q

·S�q

i, the dimer structure factor
hB

q

B�q

i, and the electron momentum distribution func-
tion hc†

q↵

c
q↵

i, where �n
q

, S
q

, B
q

, and c
q↵

are the Fourier
transforms of the local operators �n(x) ⌘ n(x) � hn(x)i,
S(x) ⌘ 1

2

P
↵,�

c†
↵

(x)�
↵�

c
�

(x), B(x) ⌘ S(x) · S(x + 1),
and c

↵

(x), respectively. In the data presented here, we
consider systems up to L = 96 sites with periodic bound-
ary conditions. (See the Supplementary Information for
all details, including discussion of boundary conditions,
as well as further complementary data.)

We focus first on the density (charge) structure fac-
tor h�n

q

�n�q

i. A crucial aspect of h�n
q

�n�q

i lies in its
ability to distinguish metallic from insulating behavior
at small wavevectors q. For a metallic state, we expect
h�n

q

�n�q

i ⇠ |q| for q ⇠ 0. Specifically, for the two-band
C2S2 metal, the slope of h�n

q

�n�q

i at q = 0 is related
to the “Luttinger parameter” g

⇢+

for the overall charge
mode ✓

⇢+

:

h�n
q

�n�q

i = 2g
⇢+

|q|/⇡ as q ! 0. (4)

Importantly, the quantity g
⇢+

as determined from Eq. (4)
gives a direct measure of the scaling dimension of H

8

:
�[H

8

] = 4g
⇢+

(see the Supplementary Information).
Once �[H

8

] < 2 [corresponding to measured g
⇢+

< 1/2
in Eq. (4)], then the umklapp is relevant, and the system
is necessarily insulating. We then expect g

⇢+

! 0 at long
scales so that h�n

q

�n�q

i becomes quadratic at small q:
h�n

q

�n�q

i ⇠ q2 in the Mott insulator.
In Fig. 3, we show a series of density structure fac-

tor measurements ranging from the noninteracting limit
at U/t = 0 to deep in the Mott insulating phase at
U/t = 7.0. In the inset, we show estimates of g

⇢+

by
plotting h�n

q

�n�q

i/(2|q|/⇡) [see Eq. (4)]. Based on the
above arguments, we see that the Mott transition occurs
near a critical value of U/t = 1.6 where g

⇢+

drops below
1/2. Note, however, that for these system sizes h�n

q

�n�q

i
still appears linear in q until much larger overall repul-
sion, i.e., U/t ' 5.0. Still, we argue that the system
becomes insulating at U/t = 1.6, as this is where H

8

is
determined to be relevant based on the measurement of
g

⇢+

. That is, we, rather remarkably, have an insulating
state with a charge correlation length comparable to our
system size (L = 96) for 1.6 . U/t . 5.0. Indeed, such
large correlation lengths are expected in the weak Mott
insulating spin Bose metal, which we now argue is pre-
cisely the phase realized immediately on the insulating
side of our model.

To this end, we now turn to the spin structure fac-
tor hS

q

· S�q

i in Fig. 4. In the noninteracting limit
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FIG. 3: Density structure factor: Locating the
Mott transition and power-law Friedel oscillations in
a Mott insulator. Measurements of the density structure
factor, h�nq�n�qi, allow us to locate the Mott transition
near U/t = 1.6 (black curve with ⇤ symbols). The onset
of the Mott transition occurs when the overall charge Lut-
tinger parameter g⇢+ drops below 1/2. We measure g⇢+
via the slope of h�nq�n�qi at q = 0, as shown in the in-
set [see Eq. (4)]. For U/t > 1.6, the system is insulating,
yet displays power-law singularities in h�nq�n�qi at finite
wavevectors45 (see black ? and hexagram symbols). Data
correspond to a system of length L = 96 with U/t =
0, 0.4, 0.8, 1.2, 1.6, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 (from top to bot-
tom, blue to red).

U/t = 0, we have familiar singularities at wavevec-
tors q = 2k

F1

, 2k
F2

, ⇡/2, k
F2

� k
F1

originating from
various “2k

F

” processes in our two-band system (see
Fig. 2). These singularities are simple slope discontinu-
ities, i.e., the scaling dimension for the spin operator at
each wavevector is unity as guaranteed by Wick’s theo-
rem. As we enter the putative interacting C2S2 metal by
turning on finite U/t, the scaling dimensions at wavevec-
tors 2k

F1

, 2k
F2

, ⇡/2, k
F2

� k
F1

are renormalized slightly
but remain near unity.

Near the Mott transition value U/t = 1.6 as deter-
mined from h�n

q

�n�q

i above, we observe the remark-
able result that the singular features in hS

q

· S�q

i all
survive, and those at q = 2k

F1

, 2k
F2

, ⇡/2 are actually
enhanced upon entering the insulating phase. Indeed,
these are characteristic signatures of the spin Bose metal.
(In Figs. 3-5, we display characteristic C1S2 spin Bose
metal data at U/t = 4.0 with distinctive dark green
square symbols.) First, the singular features in hS

q

·S�q

i
still correspond to the same “2k

F

” processes as in the
metallic phase, but with the charge gapped they now
correspond to spinon transfers across the Fermi sea.
Second, in the spin Bose metal, we indeed expect the
scaling dimensions of the spin operator at wavevectors
2k

F1

, 2k
F2

, ⇡/2 to be decreased (singularities enhanced)
from their mean-field values13. This enhancement can be
understood clearly within the bosonization framework.
Specifically, when written in terms of bosonized fields,

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

q/⇡

hS
q

·S
�

q

i

0 0.05 0.1 0.15
0

0.5

1

1.5

q/⇡

hS
q

·S
�

q

i/
(3

q/
2
⇡
)

0.15 0.2 0.25

0.2

0.3

0.4

k
F 2

� k
F 1

2k
F 1

U/t
2k

F 2

⇡

2

FIG. 4: Spin structure factor: Watching electrons
evolve into spinons. Measurements of the spin structure
factor, hSq ·S�qi, strongly point toward the presence of gapless
spin excitations in both the metal and putative spin Bose
metal immediately after the Mott transition at U/t = 1.6
(black curve with ⇤ symbols). Gapless spin excitations are
characterized by hSq · S�qi ⇠ |q| as q ! 0, and, as shown
in the top inset, the opening of a spin gap occurs only for
U/t & 5.0, at which point the system dimerizes. The “2kF ”
features of the two electron bands in the metallic phase are
inherited by the two spinon bands in the spin Bose metal,
and, as highlighted in the bottom inset for q = 2kF2, they are
actually enhanced. Data correspond to the same U/t values
and color scheme as in Fig. 3.

the slowly varying part of the spin operator at wavevec-
tors Q = 2k

F1

, 2k
F2

, ⇡/2 contains directly the field ✓
⇢+

,
i.e., S

Q

⇠ e±i✓⇢+(· · · )—see the Supplementary Informa-
tion and Ref. 13. Thus, pinning of ✓

⇢+

at the Mott tran-
sition reduces the fluctuating content of the spin operator
at these wavevectors, which in turn reduces the scaling
dimensions and, ultimately, enhances the structure fac-
tor singularities. This enhancement is actually a (1+1)D
realization of “Amperean” attraction between a spinon
“particle” and “hole” moving in opposite directions13,46.

In the density structure factor measurements of Fig. 3,
we also have singular features at the “2k

F

” wavevectors
q = 2k

F1

, 2k
F2

, ⇡/2, k
F2

�k
F1

within the metallic phase,
and in fact in the noninteracting U/t = 0 limit, the den-
sity and spin structure factors as defined are identical:
h�n

q

�n�q

i = 4

3

hS
q

· S�q

i. In the interacting C2S2 metal,
the features at q = 2k

F1

, ⇡/2, k
F2

� k
F1

are still clearly
visible. In fact, some of these features survive even upon
entering the putative spin Bose metal insulator and re-
main until U/t ' 4.0 (see black ? symbols in Fig. 3).
That is, we have power-law density correlations at finite
2k

F

wavevectors—a manifestation of which are the fa-
mous Friedel oscillations common in metals—even in a
Mott insulator!

Indeed, this remarkable result is expected in the two-
band spin Bose metal theory, where, as with the spin
operator, the slowly varying part of the density opera-
tor at wavevectors Q = 2k

F1

, 2k
F2

, ⇡/2 again contains
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FIG. 5: Dimer structure factor: Period-2 valence
bond solid order in the strong Mott insulator. Mea-
surements of the dimer structure factor, hBqB�qi, show the
emergence of a C0S0 period-2 valence bond solid for U/t &
5.0. Its long-range order is very clearly demonstrated by the
prominent Bragg peaks at q = ⇡, as shown in the inset. Data
correspond to the same U/t values and color scheme as in
Figs. 3 and 4. In the main panel (inset), we show data only
for the metal and spin Bose metal (valence bond solid) corre-
sponding to values U/t < 5.0 (U/t � 5.0).

✓
⇢+

(but not the wildly fluctuating conjugate field '
⇢+

),
i.e., �n

Q

⇠ e±i✓⇢+(· · · ). Thus, we should even expect
the scaling dimension of the density operator at these
wavevectors to be reduced due to the same Amperean at-
traction mechanism responsible for enhancement of spin
correlations in Fig. 4. However, there are overriding
nonuniversal amplitudes that are expected to be small
in a Mott insulator thus preventing observation of this
enhancement—this is likely the case in our data. Fur-
thermore, we see development of a feature, though appar-
ently weak or with very small amplitude, as anticipated,
at a wavevector q = 4k

F2

= �4k
F1

(see black hexagram
symbols in Fig. 3). This feature is again expected from
theory and is actually a four-fermion contribution to the
density operator13 (and thus is extremely weak at weak
coupling). Interestingly, all these power-law density cor-
relations in our electronic two-band spin Bose metal are
a direct two-leg analog47 of the charge Friedel oscillations
expected on the insulating side of the continuous Mott
transition in higher dimensions, as recently stressed by
Mross and Senthil45.

Returning to the spin sector, we can use the small q
behavior of hS

q

· S�q

i to assess whether or not the spin
sector is gapless in the realized phases. In analogy with
Eq. (4), for a spin gapless state we have

hS
q

· S�q

i = 3g
�+

|q|/2⇡ as q ! 0, (5)

where g
�+

is the “Luttinger parameter” associated with
the overall spin mode ✓

�+

, which for a gapless SU(2) in-
variant fixed point is necessarily unity: g

�+

= 1 (see the
Supplementary Information and also, e.g., Refs. 42,48).
In the top inset of Fig. 4, we show hS

q

· S�q

i/(3|q|/2⇡),

q/⇡

U
/
t

hc†
q↵

c
q↵

i
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FIG. 6: Electronic momentum distribution function:
Disappearance of the Fermi surface. A dense scan of
the electron momentum distribution function, hc†q↵cq↵i, over
U/t shows the gradual disapperance of the Fermi surface with
increasing interactions, as we move from a two-band C2S2
metal (U/t < 1.6) across the insulating C1S2 spin Bose metal
(1.6 < U/t . 5.0) to the C0S0 valence bond solid insulator
(U/t & 5.0). Vertical dashed lines mark the Fermi points (see
Fig. 2), and the data is for the same L = 96 site system as
shown in Figs. 3-5

where we see that for free electrons g
�+

= 1, while in-
creasing U/t pushes the L = 96 estimate of g

�+

above
unity—this increasing trend continues until U/t ' 4.0,
i.e., well beyond the Mott critical value of U/t = 1.6.
This robust increasing measurement of g

�+

> 1 (we ex-
pect g

�+

! 1 as L ! 1) well into the insulator is
a strong indicator that the spin is gapless on both the
metallic and insulating sides of the Mott transition, lend-
ing strong credence that we are indeed observing the
sought-after C2S2!C1S2 scenario described above. In
the Supplementary Information, we discuss these results
in more depth and make comparisons to how g

�+

behaves
in the on-site t-t0-U Hubbard model at  = 0.

Eventually, above U/t ' 5.0 we see that g
�+

drops be-
low unity and hS

q

· S�q

i ⇠ q2 for small q, indicating the
opening of a spin gap. We identify this strong Mott in-
sulating phase as a fully gapped (C0S0) period-2 valence
bond solid, which is continuously connected to the dimer-
ized phase realized by the J

1

-J
2

Heisenberg model49 (and
also the on-site t-t0-U Hubbard model at large U/t 50). To
this end, we turn to the dimer structure factor in Fig. 5.
In the inset, we indeed see clear Bragg peaks developing
in hB

q

B�q

i at q = ⇡ for U/t & 5.0, hence strongly indica-
tive of period-2 valence bond solid order. Furthermore,
the operator content of the density, �n(x), and bond en-
ergy, B(x), are identical at all wavevectors except ⇡ (see
Ref. 13 and the Supplementary Information). Thus, in
the gapless phases (C2S2 and C1S2) we expect singu-
larities in hB

q

B�q

i at the same “2k
F

” wavevectors for
which we find singularities in h�n

q

�n�q

i (see Fig. 3). In-
deed, in the main plot of Fig. 5 we clearly see features in
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hB
q

B�q

i at q = 2k
F1

, 2k
F2

, k
F2

� k
F1

, and 4k
F2

. Once
in the putative C1S2 insulator, these features are more
apparent in hB

q

B�q

i than in h�n
q

�n�q

i since the latter
are expected to have small amplitudes in a Mott insula-
tor. In our data, this is especially true at wavevectors
2k

F2

and 4k
F2

, the latter of which is the very nontrivial
four-fermion contribution discussed above.

Finally, we discuss the behavior of the electron mo-
mentum distribution function hc†

q↵

c
q↵

i as shown for a
dense scan of U/t values in Fig. 6. Beyond the Mott
transition, when the field ✓

⇢+

gets pinned, we expect
the electron Green’s function to decay exponentially so
that the power-law singularities in hc†

q↵

c
q↵

i at the four
Fermi points q = ±k

F1

, ±k
F2

become gapped. While
it is not exceedingly apparent that finite correlation
lengths emerge at the Fermi points when we cross the
Mott transition at U/t = 1.6 (as determined from g

⇢+

measurements—see Fig. 3), we believe this is another
manifestation of the large charge correlation lengths
present in the exotic C1S2 insulator. Deep into the pu-
tative C1S2 phase though, e.g., for U/t ' 4.0, finite cor-
relation lengths are more apparent.

DISCUSSION AND OUTLOOK

In this paper, we have explored the Mott tran-
sition between a metal and a quantum spin liquid,
presenting strong evidence through large-scale DMRG
simulations in quasi-1D that such a continuous tran-
sition can be realized in reasonable electronic mod-
els. Our study is strongly motivated by recent exper-
iments on the quasi-two-dimensional organic materials
-(BEDT-TTF)

2

Cu
2

(CN)
3

and EtMe
3

Sb[Pd(dmit)
2

]
2

,
each of which is a quantum spin liquid that can be driven
through a Mott transition to a Fermi liquid under pres-
sure. We believe our simulations of an extended Hub-
bard model—a model well-motivated by recent ab initio
calculations30 on -(BEDT-TTF)

2

Cu
2

(CN)
3

—represent
an important first step toward numerically characterizing
this transition. While our study is restricted to the two-
leg triangular strip, it does show the universal physics
of a clear and direct quasi-1D analog of the continuous
Mott metal-to-spin liquid transition in two dimensions16.

Our calculations also elucidate the remarkable proper-
ties of the spin-liquid state stabilized on the insulating
side. In many ways, this electronic “spin Bose metal”
weak Mott insulator, as realized in our model, behaves
very much like a metal on length scales shorter than
the charge correlation length, and indeed exhibits long-
distance density and spin correlations reminiscent of the
nearby metallic phase (see Figs. 3 and 4). It is precisely
this striking similarity between the metallic and insu-
lating states—in basically all properties except the fi-
nite charge correlation length in the latter—which makes
a continuous Mott metal-insulator transition plausible,
perhaps even likely.

Going forward, it would clearly be desirable to move

towards two dimensions and explore the Mott transition
in models such as Eq. (1) on wider ladders and eventu-
ally in full 2D, with the goal to make real connections
with the actual experiments20,25. In the end, the transi-
tion may turn out to not be continuous but instead be
weakly first order, as is perhaps realized in -(BEDT-
TTF)

2

Cu
2

(CN)
3

. Still, our numerical calculations pre-
sented here, as well as the recent field theoretic work of
Senthil and Mross, suggest that a continuous Mott tran-
sition in the (d + 1)D XY universality class between a
metal and quantum spin liquid is a very real, exciting
possibility.
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SUPPLEMENTARY INFORMATION

I. DETAILS OF DMRG CALCULATIONS AND
OBSERVABLES

We use large-scale DMRG calculations to calculate
ground state properties of our model Hamiltonian,
Eqs. (1)-(2), on finite-size chains of length L sites. While
we have performed simulations with both open and peri-
odic boundary conditions, we find the latter to be prefer-
able for our model in spite of the well-known more chal-
lenging convergence properties with periodic boundaries
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in DMRG calculations. The long-ranged nature of our in-
teraction potential [Eq. (2)], however, makes open bound-
aries problematic. The issue is that all interactions up
to fourth neighbor are chosen to scale with the overall
Hubbard strength U , so that, at least for the parameters
chosen in our study, it is energetically favorable for the
end sites of an open chain to become doubly occupied at
large U/t. That is, even though the system then has to
pay very large on-site U on the end sites, it gains signif-
icant energy by not having to pay as substantial V

1

to
V

4

. Therefore, for the calculations on the extended Hub-
bard model presented in the main text, we have employed
periodic boundary conditions.

To numerically characterize the ground state proper-
ties of the system with the DMRG, we calculate the den-
sity structure factor h�n

q

�n�q

i, the spin structure fac-
tor hS

q

· S�q

i, the dimer structure factor hB
q

B�q

i, and
the electron momentum distribution function hc†

q↵

c
q↵

i
(where ↵ = ", # with no implied summation). In each
case, the structure factor is defined as the Fourier trans-
form of the associated two-point function. Specifically,
we have

h�n
q

�n�q

i =
1

L

X

x,x

0

e�iq(x�x

0
)h�n(x)�n(x0)i, (6)

hS
q

· S�q

i =
1

L

X

x,x

0

e�iq(x�x

0
)hS(x) · S(x0)i, (7)

hc†
q↵

c
q↵

i =
1

L

X

x,x

0

e�iq(x�x

0
)hc†

↵

(x)c
↵

(x0)i, (8)

hB
q

B�q

i =
1

L

X

x,x

0

e�iq(x�x

0
)hB(x)B(x0)i, (9)

where n(x) ⌘
P

↵=",# c†
↵

(x)c
↵

(x) is the number
operator [with �n(x) ⌘ n(x) � hn(x)i], S(x) ⌘
1

2

P
↵,�

c†
↵

(x)�
↵�

c
�

(x) is the spin operator, and B(x) ⌘
S(x) · S(x + 1) is the bond energy operator. For sim-
plicity, we set hB(x)B(x0)i = 0 if B(x) and B(x0) share
common sites13. When presenting all structure factor
measurements, we only show data for q � 0 since the
measurements are symmetric about q = 0.

For the dimer structure factor in Eq. (9), we do not
subtract a product of local averages from the hB(x)B(x0)i
correlations as we do, e.g., for the density structure fac-
tor in Eq. (6). The main reason for this choice is that at
large U/t & 5.0 our DMRG calculations, even with peri-
odic boundary conditions, have a tendency to get “stuck”
in one of the two possible symmetry broken period-2 VBS
patterns, giving a rather strong period-2 signal in the lo-
cal expectation value hB(x)i = hS(x) · S(x + 1)i. This is
likely due to the somewhat awkward way in which peri-
odic boundaries are implemented in a traditional DMRG
setup which treats the end sites on a di↵erent footing.

Fourier transforming hB(x)B(x0)i � hB(x)ihB(x0)i then
washes out the Bragg peaks preasent at q = ⇡. Hence,
we just use hB(x)B(x0)i as the real-space two-point func-
tion and exclude plotting hB

q

B�q

i at q = 0. This both
well captures the obvious Bragg peaks at q = ⇡ in the
C0S0 and also gives very clear power-law singularities at
the various “2k

F

” wavevectors as expected in the C1S2
insulator (see Fig. 5, Sec. II C, and Ref. 13).

More generally, we find that the averaging done in our
Fourier transforms when summing over both x and x0
in Eqs. (6)-(9) does an e↵ective job of representing the
structure factors in cases where, due to slight lack of
convergence in the DMRG ground state, the two-point
functions depend on both the separation distance x � x0
and the “origin” x0. (Of course, for a perfectly transla-
tionally invariant state the two-point functions depend
only on x � x0.)

In our DMRG calculations, we keep up to m = 6000
states and perform at least 6 finite-size sweeps which re-
sults in a density matrix truncation error of on the order
of 10�5 or smaller. All measurements are well-converged
to the extent necessary to establish the statements made
in the main text. To get a feel for the di�culty encoun-
tered in obtaining highly accurate data on the sti↵ness
parameters g

⇢+

and g
�+

(see the main text and Sec. II
below), one can observe the data in the insets of Figs.
3 and 4 at the free electron point U/t = 0—basically
the most challenging point for the DMRG. For free elec-
trons, we should have g

⇢+

= g
�+

= 1. We see that there
is a rather severe error at the first allowed momentum
q = 2⇡/L, yet the error for momenta q > 2⇡/L is very
acceptable, on the order of 1% or less.

II. LUTTINGER LIQUID DESCRIPTION AND
SOLUTION BY BOSONIZATION

In this section, we spell out the e↵ective low-energy
description of the C2S2 metal and C1S2 spin Bose metal
and intervening Kosterlitz-Thouless (KT)-like Mott tran-
sition, focusing on those aspects of the theory most rel-
evant to the DMRG results presented in the main text.
Some aspects of our presentation follow that of Refs. 13
and 26.

A. Long-wavelength description of C2S2 metal and
C1S2 spin Bose metal

Consider noninteracting electrons at half-filling on the
two-leg triangular strip (see Fig. 1). When viewed as a 1D
chain with first-neighbor and second-neighbor hopping, t
and t0, the electron dispersion is given by (see also Fig. 2)

✏(q) = �2t cos(q) � 2t0 cos(2q) � µ. (10)

For t0/t > 0.5, which is the case of interest here, the
ground state consists of two disconnected Fermi seas
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(bands) which we label by a = 1, 2. We take the conven-
tion that the Fermi velocities v

Fa

are positive (negative)
for electrons moving near k

Fa

(�k
Fa

), corresponding to
right and left movers, respectively. Furthermore, tak-
ing the system to be at half-filling gives the sum rule
k

F1

+ k
F2

= �⇡/2 mod 2⇡.
As usual42, we take the low-energy continuum limit

and expand the electron operator in terms of slowly vary-
ing continuum fields at the four Fermi points:

c
↵

(x) =
X

a,P

eiPkFaxc
Pa↵

, (11)

where ↵ = ", # denotes the electron spin, and the sum
runs over a = 1, 2 for the two Fermi seas and P = R/L =
+/� for the right and left moving electrons at the Fermi
points of each Fermi sea. Although not written explic-
itly, the continuum fields of course depend on position x:
c
Pa↵

= c
Pa↵

(x).
Next, we bosonize42 the continuum fields according to

c
Pa↵

= ⌘
a↵

ei('a↵+P✓a↵), (12)

where '
a↵

and ✓
a↵

are the canonically conjugate bosonic
phase and phonon fields, respectively. Specifically, we
have

['
a↵

(x), '
b�

(x0)] = [✓
a↵

(x), ✓
b�

(x0)] = 0, (13)

['
a↵

(x), ✓
b�

(x0)] = i⇡�
ab

�
↵�

⇥(x � x0). (14)

The fields ⌘
a↵

are the Klein factors, i.e., Majorana
fermions {⌘

a↵

, ⌘
b�

} = 2�
ab

�
↵�

, which are necessary to
ensure the correct anticommutation relations among dif-
ferent fermionic species a↵. Finally, the slowly varying
component of the electron density is given by the deriva-
tive of the ✓

a↵

fields: ⇢
a↵

=
P

P=± c†
Pa↵

c
Pa↵

= @
x

✓
a↵

/⇡,

where c†
Pa↵

c
Pa↵

= @
x

(✓
a↵

+P'
a↵

)/(2⇡). Hence, Eq. (14)
is essentially a statement of the density-phase uncertainty
relation: [⇢(x), '(x0)] = i�(x � x0).

Next, we linearize about the Fermi points and express
the problem in terms of the bosonized fields introduced
above. Working in the Euclidean path integral formal-
ism, the low-energy continuum Lagrangian density for
the two-band noninteracting electron gas then reads:

L
free

= H
free

+
X

a,↵

i

⇡
(@

x

✓
a↵

)(@
⌧

'
a↵

), (15)

where

H
free

=
X

a,↵

v
Fa

2⇡

⇥
(@

x

✓
a↵

)2 + (@
x

'
a↵

)2
⇤
. (16)

We now introduce the “charge” and “spin” modes for
each band:

✓
a⇢/�

⌘ 1p
2

(✓
a" ± ✓

a#) , (17)

and the “overall” and “relative” combinations with re-
spect to the two bands:

✓
µ± ⌘ 1p

2
(✓

1µ

± ✓
2µ

) , (18)

where µ = ⇢, �. Fields analogous to Eqs. (17) and
(18) are also defined for the '’s. These newly defined
fields satisfy the same canonical commutation relations
as the original fields [Eqs. (13)-(14)]. The free-electron
Lagrangian L

free

then as usual decouples into charge and
spin sectors:

L
free

= L⇢

free

+ L�

free

, (19)

where

Lµ

free

= Hµ

free

+
X

a

i

⇡
(@

x

✓
aµ

)(@
⌧

'
aµ

), (20)

Hµ

free

=
X

a

v
Fa

2⇡

⇥
(@

x

✓
aµ

)2 + (@
x

'
aµ

)2
⇤
. (21)

We are finally in position to discuss interactions. In the
interacting C2S2 Luttinger liquid, the fixed-point theory
is similar to Eq. (19), i.e.,

L
C2S2

= L⇢

C2S2

+ L�

C2S2

, (22)

except we have general mode velocities and, in the charge
sector, nontrivial Luttinger parameters. For convenience
in the discussion that follows, in the charge sector we
work in the ⇢± basis of Eq. (18) and write the most
general charge sector Lagrangian as

L⇢

C2S2

= H⇢

C2S2

+
i

⇡
@

x

⇥T · @
⌧

�, (23)

H⇢

C2S2

=
1

2⇡

⇥
@

x

⇥T · A · @
x

⇥ + @
x

�T · B · @
x

�
⇤
, (24)

where ⇥T ⌘ (✓
⇢+

, ✓
⇢�) and �T ⌘ ('

⇢+

, '
⇢�); A and

B are symmetric, positive definite 2x2 matrices which
encode interactions. Note that even for free electrons, if
v

F1

6= v
F2

, the charge sector is not diagonal in the ⇢±
basis, i.e., A

12

= A
21

6= 0, B
12

= B
21

6= 0, and in general
the interacting C2S2 metal will have coupled ⇢+ and ⇢�
modes26.

For the spin sector, we stay in the band basis a = 1, 2
and write

L�

C2S2

= H�

C2S2

+
X

a

i

⇡
(@

x

✓
a�

)(@
⌧

'
a�

), (25)

H�

C2S2

=
X

a

v
a�

2⇡


1

g
a�

(@
x

✓
a�

)2 + g
a�

(@
x

'
a�

)2
�

. (26)

SU(2) invariance dictates only trivial Luttinger parame-
ters in the spin sector, i.e., g

1�

= g
2�

= 1 (see Sec. II C),
but we keep them general in Eq. (26) for further analysis
below. Our representation of the spin sector here is some-
what schematic in that allowed strictly marginal chiral
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interactions will couple the bare spin modes [Eq. (17)]
in the quadratic part of the C2S2 action. However,
the resulting H�

C2S2

is symmetric under interchanging
✓

a�

$ '
a�

and so can easily be brought back to diag-
onal form via a simple orthogonal transformation which
acts identically on the ✓

a�

and '
a�

fields, hence keeping
the Luttinger parameters at their trivial values. Thus,
for the quadratic part of the C2S2 fixed-point theory,
Eq. (26) is completely general for our purposes. In-
terestingly, the full C2S2 fixed-point theory also con-
tains a strictly marginal chiral interband scattering term
of the form (H�

chiral

)? ⇠ cos(2'
��) cos(2✓

��), which is
nonharmonic48. However, we expect that the presence of
this, presumably exactly marginal, nonharmonic chiral
interaction will not quantitatively alter the spin sector
at the C2S2 (and C1S2; see below) fixed point—at least
with respect to the Luttinger parameters and contribu-
tions to the scaling dimensions of various operators (see
Sec. II C). In fact, assuming that (H�

chiral

)? is exactly
marginal already implies trivial spin sector Luttinger pa-
rameters, g

1�

= g
2�

= 1, which is encouraging.

In addition to such strictly marginal interactions, there
are many nonchiral interactions allowed by symmetry
which may be added to Eq. (22) and potentially desta-
bilize the C2S2 theory described above. To connect to
a given microscopic Hamiltonian, a common approach is
to employ a weak-coupling renormalization group (RG)
scheme. That is, one can project the microscopic in-
teractions onto all continuum symmetry-allowed interac-
tions and read o↵ initial conditions for all such couplings;
these initial conditions can then be subsequently used
in a controlled RG analysis valid for weak microscopic
coupling U/t ⌧ 1. Then, bosonizing the four-fermion
interactions—particularly those that may flow to strong
coupling, hence destabilizing the “mother” C2S2—emits
a direct physical interpretation of the resulting phase.
This is the approach pioneered many years ago in Ref. 36,
where it was shown (see also Ref. 37) that for the on-site
t-t0-U Hubbard model, the C2S2 metal is generally unsta-
ble at weak repulsive interactions to the opening of a spin
gap. The basic idea is that the RG flow equations—which
are indeed rather complicated for the two-band system
and in general require a detailed numerical analysis—
have a tendency to eventually drive attractive divergent
couplings in the spin sector (e.g., the terms denoted g

a�

in Ref. 36 or, equivalently, ��

aa

in Ref. 26). These di-
vergent couplings conspire to gap out all modes except
the overall conducting charge mode ✓

⇢+

, leaving a one-
mode C1S0 conducting Luttinger liquid, essentially the
quasi-1D analog of a superconductor.

However, this spin-gap tendency is not unavoidable.
For example, one can fight such pairing tendencies by
adding longer-ranged repulsion to the model Hamilto-
nian. This approach was recently explored systematically
in Ref. 26, where it was shown that the C2S2 metal oc-
cupies a substantial portion of the weak-coupling phase
diagram for the model considered in our work: Eqs. (1)-
(2). Stability of the C2S2 metal at weak coupling in-

deed seems to be a necessary component for realizing
the C2S2!C1S2 Mott transition presented numerically
in the main text, and we buttress o↵ the weak-coupling
phase diagram presented in Ref. 26 when selecting the
specific parameters of our model Hamiltonian.

Finally, as stressed in the main text, our Mott transi-
tion is driven at strong interactions by an eight-fermion

umklapp term wherein both spin-up and spin-down elec-
trons are scattered across each Fermi sea (see Fig. 2):

H
8

= u(c†
R1"c

†
R1#c

†
R2"c

†
R2#cL1"cL1#cL2"cL2#+H.c.), (27)

which when written in terms of the bosonized fields sim-
ply becomes a cosine of the overall charge field ✓

⇢+

:

H
8

= 2u cos(4✓
⇢+

). (28)

The C1S2 spin Bose metal spin liquid corresponds to rel-
evance of H

8

so that u flows to strong coupling. That is,
the field content of the C1S2 fixed-point theory looks
identical to that of C2S2 but with a massive overall
charge mode ✓

⇢+

. Specifically, we have

L
C1S2

= L⇢

C1S2

+ L�

C1S2

, (29)

where the “charge sector” now only contains the ⇢�
mode:

L⇢

C1S2

= H⇢

C1S2

+
i

⇡
@

x

✓
⇢�@

⌧

'
⇢�, (30)

H⇢

C1S2

=
v

⇢�
2⇡


1

g
⇢�

(@
x

✓
⇢�)2 + g

⇢�(@
⌧

'
⇢�)2

�
, (31)

which physically represents gapless local current fluctu-
ations, and the spin sector formally reads the same as
before:

L�

C1S2

= L�

C2S2

, (32)

still with trivial Luttinger parameters, g
1�

= g
2�

= 1.
For an extensive discussion of the C1S2 phase with re-
spect to its features and stability, we refer the reader to
Ref. 13.

B. Renormalization group analysis of the
C2S2!C1S2 Mott transition

We now present the details of the critical theory de-
scribing our Mott transition. The theory is KT-like with
a complication arising because the field ✓

⇢+

, which is be-
ing gapped out, is coupled to the field ✓

⇢� in the Gaussian
fixed-point action for the C2S2 [see Eq. (24)], and ✓

⇢� is
massless on both sides of the transition.

From the above considerations, the charge sector La-
grangian describing the transition between the C2S2
metal and C1S2 spin Bose metal reads

L = L
0

+ L
cos

, (33)
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where

L
0

=
1

2⇡

⇥
@

x

⇥T · C · @
x

⇥ + @
⌧

⇥T · D · @
⌧

⇥
⇤

(34)

is just L⇢

C2S2

from Eq. (23) with the '’s integrated out,
⇥T ⌘ (✓

⇢+

, ✓
⇢�), and

L
cos

= 2u cos(n✓
⇢+

) (35)

with n = 4 is our eight-fermion umklapp term. It is
convenient to diagonalize the quadratic part of the theory
L

0

in a fashion similar to that described in Ref. 26, thus
obtaining for the full theory

L
0

=
1

2⇡

X

i=1,2


1

v
i

(@
⌧

✓
i

)2 + v
i

(@
x

✓
i

)2
�

, (36)

L
cos

= 2u cos(n
1

✓
1

+ n
2

✓
2

), (37)

where we have absorbed the nontrivial Luttinger param-
eters of the two normal modes, ✓

1

and ✓
2

, into the real
coe�cients n

1

and n
2

via a rescaling of the fields. While
✓
1

and ✓
2

are specific linear combinations of ✓
⇢+

and ✓
⇢�,

e.g., n✓
⇢+

= n(c
1

✓
1

+c
2

✓
2

) = n
1

✓
1

+n
2

✓
2

, we do not spell
out the details here, but instead refer the reader to the
Appendix of Ref. 26 for a similar calculation. Ultimately,
this linear combination, as well as the velocities and Lut-
tinger parameters of the normal modes in the diagonal-
ized system, are rather complicated, but still analytic,
functions of the original parameters C and D of the cou-
pled system.

We have performed a renormalization group (RG)
analysis of the above two-mode system, obtaining the fol-
lowing leading-order KT-like (see below) flow equations
for all couplings:

dC
11

d`
=

⇡n2

⇤4 v
1

I

✓
v
2

v
1

,
n2

2

4

◆
u2, (38)

dD
11

d`
=

⇡n2

⇤4 v3

1

✓
v
2

v
1

◆�2n

2
2/4

I

✓
v
1

v
2

,
n2

2

4

◆
u2, (39)

du

d`
=


2 �

✓
n2

1

4
+

n2

2

4

◆�
u, (40)

where

I(↵, �) ⌘
Z

2⇡

0

d✓
cos2 ✓

(cos2 ✓ + ↵2 sin2 ✓)�

� 0. (41)

As with ordinary KT, the coupling u renormalizes ac-
cording to the scaling dimension of the cosine with re-
spect to the quadratic action,

�[cos(n✓
⇢+

)] = �[cos(n
1

✓
1

+ n
2

✓
2

)] =
n2

1

4
+

n2

2

4
, (42)

and obtaining its beta function, Eq. (40), can proceed in
a textbook Wilsonian fashion42. However, renormalizing
the parameters in L

0

is significantly more involved and
depends on the specific regularization scheme employed.

First, note that since L
cos

contains only the field ✓
⇢+

, it
cannot possibly renormalize any terms containing ✓

⇢� to
any order in perturbation theory; hence, the only nonzero
beta functions are those for the couplings C

11

and D
11

.
The respective beta functions, Eqs. (38) and (39), were
obtained using a field-theoretic approach43 in which we
consider insertions into correlation functions of the form
h@

x

✓
i

(x)@
x

✓
j

(y)i, where x and y are points in our (1+1)D
space-time. At O(u2), one has to integrate over two 2D
points from two u insertions, say z and z0. Indeed, as
z � z0 becomes small, the integral diverges logarithmi-
cally, and we cut it o↵ at a short-distance scale ⇤�1.
We then compute corrections to h@

x

✓
i

(x)@
x

✓
j

(y)i from
posited “counterterms” in L

0

which are chosen to ex-
actly cancel the aforementioned logarithmic divergence.
This allows us, after an altogether somewhat lengthy cal-
culation, to arrive at the above RG flow equations for C

11

and D
11

.
The case of vanishing ✓

⇢+

-✓
⇢� coupling in Eq. (34) cor-

responds to the limit n
2

! 0, so that ✓
1

/ ✓
⇢+

and C
11

and D
11

renormalize at the same rate (up to an over-
all scale of v2

1

). This of course corresponds to ordinary
Kosterlitz-Thouless RG wherein only one parameter in

L
0

renormalizes: d(g

�1
)

d`

⇠ u2, with g the single-mode
Luttinger parameter42.

In the general case, the beta functions for C
11

and D
11

involve highly nonuniversal content, and thus we have
not attempted a detailed study of the flows. Still, the
transition is KT-like in nature except that two parame-
ters (as opposed to one) in L

0

are renormalized by the
single cosine, and the transition occurs when the scaling
dimension of the cosine equals the space-time dimension:

�[cos(n✓
⇢+

)] = n

2
1
4

+ n

2
2
4

= 2, where n
1

and n
2

are func-
tions of the parameters C and D.

We can formally argue for the KT-like nature as fol-
lows. From the start, we focus only on the flowing param-
eters C

11

, D
11

, and u. Let us denote the (non-negative)
factors multiplying u2 in the beta functions for C

11

and
D

11

as A(C
11

, D
11

) and B(C
11

, D
11

), respectively, and
also denote the coe�cient of u in the beta function for
u as �(C

11

, D
11

). We emphasize that A, B, and � are
functions of C

11

and D
11

, which, while perhaps compli-
cated functions, are analytical and not special. As we
vary in the (C

11

, D
11

) plane, we generically expect to
find a line where � = 0 separating regions where a small
u perturbation is relevant or irrelevant. Let us consider

one point on this line, (C(0)

11

, D(0)

11

), and study small de-
viations (�C

11

, �D
11

) from this point. The RG equations
are, to leading order,

d �C
11

d`
= A(0)u2, (43)

d �D
11

d`
= B(0)u2, (44)

du

d`
=

⇣
↵(0)�C

11

+ �(0)�D
11

⌘
u, (45)

where A(0) and B(0) are the A and B functions evalu-
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ated at (C(0)

11

, D(0)

11

), while ↵(0) and �(0) are derivatives
@�/@C

11

and @�/@D
11

evaluated at the same point. De-
viations satisfying ↵(0)�C

11

+�(0)�D
11

= 0 correspond to
moving along the � = 0 line, while generic deviations will
cut across this line. Formally, we can change variables to
r = ↵(0)�C

11

+ �(0)�D
11

, s = ��(0)�C
11

+ ↵(0)�D
11

,
which flow as

dr

d`
=

⇣
↵(0)A(0) + �(0)B(0)

⌘
u2, (46)

ds

d`
=

⇣
��(0)A(0) + ↵(0)B(0)

⌘
u2, (47)

du

d`
= ru. (48)

Thus, the flow equations for the r and u variables have
familiar KT-like form and subsequent standard analysis
can kick in. On the other hand, the flow of the s variable
is simply slaved to u and does not a↵ect the KT analysis.

In principle, one should be able to confirm the KT
universality class from the numerical DMRG data, for
example, by performing Weber-Minnhagen44 style fits to
finite-size estimates of the scaling dimension of the co-
sine in the metallic phase (essentially the sti↵ness in the
XY model context; see also Sec. II C below). However,
this requires highly accurate data on large system sizes in
the scaling regime, which is currently prohibitive for our
multimode electronic system (see Sec. I). Also, it is not
unreasonable to expect that the presence of two renor-
malizing parameters in L

0

, instead of one, might make
the finite-size e↵ects more severe. In the end though, this
is a rather nonuniversal matter which we do not pursue
further.

C. Observables and sti↵ness parameters

To characterize the system, we have focused on the
density structure factor, the spin structure factor, the
dimer structure factor, and the electron momentum dis-
tribution function as presented in the main text and as
defined in Sec. I. In this section, we lay out the details of
the bosonization treatment which allows us to use these
measurements, both at finite and zero wavevectors, to
probe the nature of the Luttinger liquid phases realized
by our model Hamiltonian.

1. Establishing the result �[H8] = 4g⇢+

As stressed in the main text, we can directly measure
the scaling dimension of the eight-fermion umklapp term
[see Eqs. (3) and (28)] responsible for driving our Mott
transition by measuring the slope of the density structure
factor at q = 0 momentum [see Eq. (4)]. We now spell out
how these two quantities, �[H

8

] and g
⇢+

, are formally
related.

The former is defined through the corresponding two-
point function:

D
ei4✓⇢+(x)e�i4✓⇢+(0)

E
⇠ 1

|x|2�[H8]
, (49)

where, for simplicity, we work at equal (imaginary) time
such that x is a spatial coordinate only. Assuming that
the system is in the C2S2 phase so that the charge sec-
tor is described by the quadratic Lagrangian L⇢

C2S2

of
Eq. (23), we can use a standard identity42 and write

D
ei4✓⇢+(x)e�i4✓⇢+(0)

E
= e� 42

2 h[✓⇢+(x)�✓⇢+(0)]

2i. (50)

Now, the slowly varying component of the total elec-
tron density (measured relative to the average density) is
given by �n(x) = 2@

x

✓
⇢+

/⇡, so that the long-wavelength
contribution to the density-density correlation function
in real space is given by

h�n(x)�n(0)i =
4

⇡2

@
x

@
x

0h✓
⇢+

(x)✓
⇢+

(x0)i|
x

0
=0

+ · · · .

(51)
The right-hand side can be obtained from Eq. (50)
via straightforward manipulations, which after invoking
Eq. (49) gives

h�n(x)�n(0)i = ��[H
8

]

2⇡2

1

x2

+ · · · . (52)

On the other hand, we define the slope of the
momentum-space density structure factor as q ! 0 ac-
cording to Eq. (4), i.e.,

h�n
q

�n�q

i =
2g

⇢+

⇡
|q|, (53)

such that g
⇢+

= 1 corresponds to a two-band nonin-
teracting electron gas. After Fourier transformation,
Eqs. (52) and (53) imply that

�[H
8

] = 4g
⇢+

, (54)

which is the desired result. Note that g
⇢+

is not gen-
erally a genuine Luttinger parameter due to the cou-
pling between the ⇢+ and ⇢� sectors in the C2S2 phase,
but should instead be viewed as a direct measurement of
�[H

8

] through the density structure factor.
In the main text, we relied heavily upon Eq. (54) to dis-

tinguish between metallic and insulating behavior, where
measured g

⇢+

> 1/2 (g
⇢+

< 1/2) implies that H
8

is irrel-
evant (relevant) so that the system is metallic (insulat-
ing). Of course, if �[H

8

] < 2, the system is necessarily
insulating and Eq. (53) no longer applies; instead we have
h�n

q

�n�q

i ⇠ q2 as q ! 0. That is, measured g
⇢+

< 1/2
via Eq. (53) on a finite-size system corresponds in the
thermodynamic limit to g

⇢+

! 0. In Fig. 3, even well
into the insulating phase of our model as determined by
the above arguments, we see on our L = 96 site system
that apparently h�n

q

�n�q

i ⇠ |q|; however, with H
8

rel-
evant, this must be a finite-size e↵ect due to the large
charge correlation length present in our weak Mott insu-
lating C1S2.
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2. Bosonized representation of operators at finite
wavevectors

We now give the bosonized expressions for the spin and
density operators at finite “2k

F

” wavevectors and math-
ematically establish the Amperean enhancement mech-
anism summarized in the main text. Expanding the
spin operator as S(x) =

P
Q

S
Q

eiQx, we can easily write
the slowly varying part of the spin operator at various
wavevectors, i.e., S

Q

= S
Q

(x), in terms of the right and
left moving electron operators defined in Sec. II A:

S
2kFa =

1

2
c†
La↵

�
↵�

c
Ra�

, (55)

S
⇡/2

=
1

2
c†
R1↵

�
↵�

c
L2�

+
1

2
c†
R2↵

�
↵�

c
L1�

, (56)

S
kF2�kF1 =

1

2
c†
R1↵

�
↵�

c
R2�

+
1

2
c†
L2↵

�
↵�

c
L1�

. (57)

Similarly, for the density operator, we have

�n
2kFa = c†

La↵

c
Ra↵

, (58)

�n
⇡/2

= c†
R1↵

c
L2↵

+ c†
R2↵

c
L1↵

, (59)

�n
kF2�kF1 = c†

R1↵

c
R2↵

+ c†
L2↵

c
L1↵

. (60)

In each case, summations over spin indices are implied,
and S�Q

= S†
Q

and �n�Q

= �n†
Q

. Throughout, our use
of denoting wavevectors with either Q or q is an attempt
to distinguish the long-wavelength component of an op-
erator, O

Q

, from the actual exact operator used in the
DMRG, O

q

.

Bosonizing the above electron bilinears using Eq. (12)
results in the following expressions for the spin:

Sx

2kFa
= �i⌘

a"⌘a#ei✓⇢+e±i✓⇢� sin(
p

2'
a�

), (61)

Sy

2kFa
= �i⌘

a"⌘a#ei✓⇢+e±i✓⇢� cos(
p

2'
a�

), (62)

Sz

2kFa
= �ei✓⇢+e±i✓⇢� sin(

p
2✓

a�

), (63)

Sx

⇡/2

= e�i✓⇢+

h
� i⌘

1"⌘2#e�i✓�� sin('
⇢� + '

�+

)

� i⌘
1#⌘2"ei✓�� sin('

⇢� � '
�+

)
i
, (64)

Sy

⇡/2

= e�i✓⇢+

h
� i⌘

1"⌘2#e�i✓�� cos('
⇢� + '

�+

)

+ i⌘
1#⌘2"ei✓�� cos('

⇢� � '
�+

)
i
, (65)

Sz

⇡/2

= e�i✓⇢+

h
� i⌘

1"⌘2"e�i✓�+ sin('
⇢� + '

��)

+ i⌘
1#⌘2#ei✓�+ sin('

⇢� � '
��)

i
, (66)

Sx

kF2�kF1
= e�i✓⇢�

h
� i⌘

1"⌘2#e�i✓�+ sin('
⇢� + '

�+

)

� i⌘
1#⌘2"ei✓�+ sin('

⇢� � '
�+

)
i
, (67)

Sy

kF2�kF1
= e�i✓⇢�

h
� i⌘

1"⌘2#e�i✓�+ cos('
⇢� + '

�+

)

+ i⌘
1#⌘2"ei✓�+ cos('

⇢� � '
�+

)
i
, (68)

Sz

kF2�kF1
= e�i✓⇢�

h
� i⌘

1"⌘2"e�i✓�� sin('
⇢� + '

��)

+ i⌘
1#⌘2#ei✓�� sin('

⇢� � '
��)

i
, (69)

and for the density:

�n
2kFa = 2iei✓⇢+e±i✓⇢� cos(

p
2✓

a�

), (70)

�n
⇡/2

= 2e�i✓⇢+

h
� i⌘

1"⌘2"e�i✓�+ sin('
⇢� + '

��)

� i⌘
1#⌘2#ei✓�+ sin('

⇢� � '
��)

i
, (71)

�n
kF2�kF1 = 2e�i✓⇢�

h
� i⌘

1"⌘2"e�i✓�� sin('
⇢� + '

��)

� i⌘
1#⌘2#ei✓�� sin('

⇢� � '
��)

i
, (72)

where for expressions with ± in the exponent, + refers
to band a = 1, while � refers to band a = 2.

Perhaps the most important point to take away is that
all operators at Q = 2k

Fa

, ⇡/2 are proportional to e±i✓⇢+ .
Therefore, the fluctuating field content of these operators
is reduced upon gapping out (pinning of) ✓

⇢+

when cross-
ing the Mott transition from the C2S2 metal to C1S2 in-
sulator. This leads to lowering of the associated scaling
dimensions and subsequent enhancement of the structure
factor singularities. To illustrate this concretely, assume
for the moment that the ⇢+ and ⇢� sectors are decou-
pled in the charge sector Lagrangian for the C2S2, i.e.,
A

12

= A
21

= B
12

= B
21

= 0 in Eq. (24), with cor-
responding Luttinger parameters g

⇢+

and g
⇢�. We then

have the following for the scaling dimensions of the above
operators:

�[S
2kFa ] = �[�n

2kFa ] =
1

2
+

g
⇢�
4

+
g

⇢+

4
, (73)

�[S
⇡/2

] = �[�n
⇡/2

] =
1

2
+

1

4g
⇢�

+
g

⇢+

4
, (74)

�[S
kF2�kF1 ] = �[�n

kF2�kF1 ] =
1

2
+

1

4g
⇢�

+
g

⇢�
4

, (75)

where we have assumed SU(2) invariance, g
1�

= g
2�

= 1
(see the next section). Right at the Mott transition
g

⇢+

= 1/2, while immediately on the insulating side
g

⇢+

! 0. Therefore, the dimensions in Eqs. (73) and
(74) corresponding to operators at Q = 2k

Fa

, ⇡/2 should
indeed decrease at the transition (by an amount of 1/8 in
the decoupled approximation). Such an enhancement of
the associated spin structure factor singularities on the



13

insulating side of the Mott transition is in fact dramati-
cally seen in the DMRG data of Fig. 4.

Furthermore, stability of the C1S2 insulator requires
g

⇢� < 1 (see Ref. 13), which implies �[S
⇡/2

] > �[S
2kFa ]

(and similarly for �n
Q

). Thus, for the structure factors
in the C1S2 phase, the features at q = 2k

Fa

should be
more pronounced than those at q = ⇡/2. Indeed, this is
observed in the spin structure factor data of Fig. 4 on
the insulating side of the Mott transition in our model.
More generally, the presence of clear power-law singular-
ities in hS

q

· S�q

i at finite wavevectors in both the metal
and weak Mott insulator points strongly towards to pres-
ence of gapless spin excitations in both phases [see also
Sec. II C 3].

Note that the density operator at Q = 2k
Fa

, ⇡/2, k
F2

�
k

F1

still remains power law when ✓
⇢+

gets pinned, i.e.,
�n

Q

does not contain the wildly fluctuating field '
⇢+

. In
fact, for Q = 2k

Fa

, ⇡/2 the density also contains directly
✓

⇢+

[see Eqs. (70), (71)] and has the same scaling dimen-
sion as the spin operator: �[�n

Q

] = �[S
Q

]! Therefore,
such Friedel oscillations should actually be enhanced in
the Mott insulator45. This enhancement is di�cult to see
in the density structure factor DMRG data of Fig. 3, but
that is likely due to the small amplitudes of the features.
The power-law nature, however, is still apparent, at least
around q = 2k

F1

, k
F2

� k
F1

.

The bilinears that get enhanced, i.e., those at Q =
2k

Fa

, ⇡/2, can be predicted by simple “Amperean rules”.
Specifically, in the (1+1)D U(1) gauge theory formulation
of the C1S2 spin Bose metal phase13, ✓

⇢+

corresponds to
the mode that is pinned upon inclusion of gauge fluc-
tuations which implements at long wavelengths the con-
straint of one spinon per site (in this language, the up
and down spinons carry the same gauge charge). We
then expect that the bilinears that get enhanced upon
introducing the gauge fluctuations are those composed
from operators that produce parallel gauge currents, so-
called Amperean attraction46. This is indeed the case for
the spin and density operators at Q = 2k

Fa

, ⇡/2 which
involve a particle and hole moving in opposite directions.
In contrast, the bilinears at Q = k

F2

� k
F1

involve op-
erators with antiparallel gauge currents and are there-
fore not enhanced; indeed these operators do not contain
✓

⇢+

at all. We remark that in our electronic model, the
above “gauge constraint” is implemented dynamically by
electron repulsion upon pinning of the overall conducting
charge mode ✓

⇢+

.

In the main text, we have also used the dimer corre-
lations, as defined and detailed in Sec. I, to characterize
the ground state. Following Ref. 13, we can approxi-
mate the bond energy as the electron hopping energy,
i.e., B(x) ⇠ �t

P
↵

⇥
c†
↵

(x)c
↵

(x + 1) + H.c.
⇤
. In fact, in

our DMRG measurements it would have been reasonable
to use this as the definition of B(x), but we instead im-
plemented the full B(x) = S(x) · S(x + 1), which makes
the two-point function hB(x)B(x0)i a four-spin (eight-
electron) measurement. In any case, expansion in con-

tinuum fields reveals

B
Q

⇠ eiQ/2�n
Q

, (76)

which holds for all Q 6= ⇡. Hence, we expect features at
the same wavevectors in measurements of both h�n

q

�n�q

i
and hB

q

B�q

i. This is indeed observed in Figs. 3 and 5,
where in the putative C1S2 insulator the power-law na-
ture of the features is, as expected, much more apparent
in the dimer correlations than in the density correlations.

We further note that hB
q

B�q

i very clearly picks up a
feature at q = 4k

F2

= �4k
F1

, while this feature is much
weaker, though still present, in h�n

q

�n�q

i. As mentioned
in the main text, the wavevector 4k

F2

= �4k
F1

is a four-
fermion contribution to the density/bond energy. Specif-
ically,

�n
4kF1 : c†

L1"c
†
L1#cR1"cR1# ⇠ ei2✓⇢+ei2✓⇢� , (77)

�n�4kF2 : c†
R2"c

†
R2#cL2"cL2# ⇠ e�i2✓⇢+ei2✓⇢� , (78)

both contribute with independent numerical prefactors,
and have scaling dimensions in the decoupled ⇢± approx-
imation of

�[�n
4kF2 ] = �[B

4kF2 ] = g
⇢+

+ g
⇢�. (79)

In the C1S2, g
⇢+

! 0 so that �[B
4kF2 ] = g

⇢�. Gapless-
ness of the spin sector requires g

⇢� < 1 (see Refs. 13,26).
Hence, the singularity at q = 4k

F2

in hB
q

B�q

i should be
stronger than a slope discontinuity (unit scaling dimen-
sion of the associated operator)—this indeed appears to
be the case in our dimer structure factor data of Fig. 5.

There is yet another important four-fermion contribu-
tion to the spin and density/bond energy at wavevec-
tor Q = ⇡. We here focus on the latter, where
for the bond energy we get contributions such as13

B
⇡

: i�n
2kF1�n2kF2 + H.c., which when bosonized gives

B
⇡

⇠ [cos(2✓
�+

) + cos(2✓
��)] sin(2✓

⇢+

) + · · · . (80)

This operator has unit scaling dimension at the C1S2
fixed point (�[B

⇡

] = 1) and should thus correspond to
a slope discontinuity in hB

q

B�q

i at q = ⇡. Remark-
ably, this appears to be consistent with e.g. our charac-
teristic C1S2 data point at U/t = 4.0 as presented in
the main text (see curve with green squares in Fig. 5).
Furthermore, inspecting Eq. (80) reveals that this fea-
ture will only be present in the C1S2 if the pinning of
✓

⇢+

due to relevance of H
8

= 2u cos(4✓
⇢+

) is such that
sin(2✓

⇢+

) 6= 0. This is precisely what we would expect
if the pinned value of ✓

⇢+

occurs at 4✓
⇢+

= ⇡ mod 2⇡,
which corresponds to the minima of cos(4✓

⇢+

). We thus
conclude that u > 0 in our eight-fermion umklapp in-
teraction, as might initially be expected for repulsively
interacting electrons13. On the other hand, u < 0 would
lead to pinning of ✓

⇢+

such that 4✓
⇢+

= 0 mod 2⇡, i.e.,
sin(2✓

⇢+

) = 0, thus killing the feature in hB
q

B�q

i at
q = ⇡.

At wavevector Q = ⇡, the bond-centered density B
⇡

is odd under mirror symmetry (x ! �x), while the site-
centered density �n

⇡

is even. Contributions to the latter
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include �n
⇡

: �n
2kF1�n2kF2 + H.c., which in terms of the

bosonized fields reads

�n
⇡

⇠ [cos(2✓
�+

) + cos(2✓
��)] cos(2✓

⇢+

) + · · · . (81)

Hence, the pinning condition 4✓
⇢+

= ⇡ mod 2⇡ inferred
above implies cos(2✓

⇢+

) = 0. Indeed, the DMRG data
shows no feature in h�n

q

�n�q

i at q = ⇡ within the pu-
tative C1S2 phase (see Fig. 3). Again, we conclude that
for our system with repulsively interacting electrons, we
must have u > 0 in H

8

.
Finally, presence of a feature at q = ⇡ in h�n

q

�n�q

i
in the C1S2 weak Mott insulator would lead to long-
range period-2 (site-centered) charge density wave order
in the C0S0 strong Mott insulator at very large U/t.
This is indeed very unnatural in our model where the
on-site U term is the largest interaction energy scale in
the Hamiltonian. Instead, the strong Mott insulator re-
alized in our model develops period-2 long-range order
in the bond-centered density, as evidenced by the Bragg
peak in hB

q

B�q

i at q = ⇡. The power-law feature at the
same wavevector in the weak Mott insulator [see Eq. (80)]
is the precursor of this eventual long-range VBS order at
large U/t.

We finally discuss the electron operator itself
[Eq. (12)], which is of course the most primitive oper-
ator of all. When written in terms of “⇢±” and “a�”
modes, we have

c
Pa↵

= ⌘
a↵

exp

⇢
ip
2


1p
2
('

⇢+

± '
⇢�) ± '

a�

�

+
iPp

2


1p
2
(✓

⇢+

± ✓
⇢�) ± ✓

a�

��
, (82)

where the first ± on each line refers to a = 1, 2, while the
second refers to ↵ = ", #. Of course, once the ✓

⇢+

field is
pinned, the electron Green’s function hc†

↵

(x)c
↵

(0)i is ex-
pected to decay exponentially at all wavevectors. Mathe-
matically, this is due to its conjugate field '

⇢+

also being
present in the bosonized representation of the electron
operator: By the uncertainty principle, pinning of ✓

⇢+

will cause '
⇢+

to fluctuate wildly leading to exponential
decay of the Green’s function. While it is somewhat di�-
cult to ascertain this exponential decay within the puta-
tive C1S2 phase for the electron momentum distribution
function DMRG data of Fig. 6, we again believe this is
due to the excessively large charge correlation lengths
present in our electronic spin Bose metal.

From Eq. (82), we also see that gapping of a spin mode
will cause the associated electron Fermi point to gap out,
and thus the electron Green’s function can in principle
detect spin-gap behavior. However, this is rather di�cult
in practice38, and in the following section we discuss a
better approach as employed in the main text.

3. Assessing gaplessness of the spin sector through g�+

Inspection of the bosonized expressions for the dif-
ferent components of the spin operator at wavevectors

Q = 2k
Fa

in Eqs. (61)-(63), reveals that in the fixed-
point theory for either the C2S2 metal or C1S2 insulator
we must have only trivial Luttinger parameters in the
spin sector: g

1�

= g
2�

= 1. Specifically, for arbitrary g
a�

as in Eq. (26) and decoupled ⇢+ and ⇢� modes as in the
illustrative discussion in Sec. II C 2 above, we have

�[Sx

2kFa
] = �[Sy

2kFa
] =

g
⇢+

4
+

g
⇢�
4

+
1

2g
a�

, (83)

�[Sz

2kFa
] =

g
⇢+

4
+

g
⇢�
4

+
g

a�

2
, (84)

where in the C1S2 insulator we have g
⇢+

! 0. There-
fore, SU(2) spin invariance manifest through isotropic
spin-spin correlations functions at wavevectors 2k

Fa

, i.e.,
�[Sx

2kFa
] = �[Sy

2kFa
] = �[Sz

2kFa
], indeed dictates that

g
1�

= g
2�

= 1, (85)

which constitutes a simple generalization of the well-
known one-mode case42 (see also Ref. 48).

We now show how measurement of the spin structure
factor at zero momentum can assess the condition in
Eq. (85). The slowly varying part of the spin density
is Sz(x) = @

x

✓
�+

/⇡, hence the long-wavelength part of
the real-space spin-spin correlation function evaluated in
the fixed-point theory for either the C2S2 or C1S2 [see
Eq. (26)] reads

hSz(x)Sz(0)i = �g
�+

2⇡2

1

x2

+ · · · , (86)

where we have defined

g
�+

⌘ g
1�

+ g
2�

2
. (87)

Equation (86) gives for the spin structure factor as q ! 0:

hSz

q

Sz

�q

i =
g

�+

2⇡
|q|, (88)

which we use in the main text to estimate the parameter
g

�+

[see Eq. (5) and the inset of Fig. 4]. Clearly then
within the fixed-point theory we should have g

�+

= 1,
while in the presence of a spin gap hSz

q

Sz

�q

i ⇠ q2, so that
g

�+

! 0. Note that, as with g
⇢+

above, g
�+

is not a
genuine Luttinger parameter as even free electrons are
not generally diagonal in the �± basis.

The above considerations are valid for the fixed point
in the thermodynamic limit. However, there are several
marginal interactions that need to be irrelevant for the
spin sector to remain gapless and the C2S2 and C1S2 to
be stable phases. Thus, the presence of such marginally
irrelevant interactions will a↵ect measurement of g

�+

on
finite-size systems. In the case of our C2S2 and C1S2,
the residual interactions in the spin sector that mix right
and left movers read

H�

RL

= �
X

a,b

(w�

ab

J
Rab

· J
Lab

+ ��

ab

J
Raa

· J
Lbb

) , (89)
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where J
Pab

⌘ 1

2

c†
Pa↵

�
↵�

c†
Pb�

. In the C2S2 and C1S2,
the w�

ab

terms are strictly irrelevant, while the ��

ab

terms
are only marginally irrelevant13,26. Bosonizing the latter
interactions gives

H̃�

RL

= V
z

+ V?, (90)

V
z

=
X

a

��

aa

8⇡2

⇥
(@

x

'
a�

)2 � (@
x

✓
a�

)2
⇤

(91)

+
��

12

4⇡2

[(@
x

'
1�

)(@
x

'
2�

) � (@
x

✓
1�

)(@
x

✓
2�

)] , (92)

V? =
X

a

��

aa

cos(2
p

2✓
a�

) (93)

+ 2��

12

�̂ cos(2✓
�+

) cos(2'
��), (94)

where �̂ ⌘ ⌘
1"⌘1#⌘2"⌘2#.

A necessary condition for the spin to be gapless is that
the couplings ��

ab

be initially positive, corresponding to
the system being overall repulsive in the spin sector. Ul-
timate stability of the C2S2 and C1S2 corresponds to ��

ab

renormalizing to zero via slow marginal flows. It should
in principle be possible to calculate precise flows (and
finite-size scaling behavior) of our e↵ective g

�+

param-
eter by analyzing the behavior of the zero-momentum
piece of the spin structure factor perturbatively in the
��

ab

. We do not pursue this here, but instead to get
a rough, initial feel for the trends within our Abelian
bosonization, imagine for the moment naively ignoring
the V? cosines and ��

12

cross terms. Then, the quadratic
V

z

terms e↵ectively feed into renormalizing the g
a�

Lut-
tinger parameters above (below) unity for ��

aa

positive
(negative), hence e↵ectively corresponding to g

�+

> 1
(g

�+

< 1) on a finite-size system. This is indeed the
expected trend for overall repulsion in the spin sector.

On the other hand, the flows for the C1S0 supercon-
ductor (the main instability of the C2S2) correspond to
��

aa

eventually becoming negative (attraction in the spin
sector) and then diverging to �1. All modes then even-
tually get gapped out except the overall conducting ⇢+
mode36,37, so that for the spin structure factor we have
hSz

q

Sz

�q

i ⇠ q2 as q ! 0, i.e., g
�+

! 0. On a finite-size
system, we thus expect the spin gap to be manifest as
a measured g

�+

< 1. Note, though, that due to initial

repulsion in the spin sector [��

ab

(` = 0) > 0], even an
eventual C1S0 may exhibit “sti↵ening” of the spin sector
on relatively short length scales, i.e., measured g

�+

> 1.
These considerations highlight why it is so di�cult to de-
tect spin-gap behavior in models such as the t-t0-U Hub-
bard model38. We stress, however, that in our model with
longer-ranged repulsion—a model which is known to be
spin gapless at weak coupling (U/t ⌧ 1) for our chosen
parameters26—measurements of g

�+

still strongly indi-
cate spin gaplessness all the way up to U/t ' 5.0, well
past the Mott critical value of U/t = 1.6. In the next
section, we contrast this with the behavior of the on-site
t-t0-U Hubbard model at  = 0 in which the metal and
insulator are presumably both spin gapped.

Finally, we again mention that the observed power-law

singularities in the spin structure factor at the various
“2k

F

” wavevectors [see the main text and Sec. II C 2]
provide complementary evidence that the spin sector is
gapless in both the metal (C2S2) and weak Mott insula-
tor (C1S2) of our model.

D. Further analysis of g�+ DMRG data

Here we present more data of our DMRG measure-
ments of the parameter g

�+

discussed in the previous sec-
tion. Specifically, we define a finite-size estimate of g

�+

via Eq. (5) by evaluating the slope of the spin structure
factor at a momentum q = n 2⇡

L

with n a small integer:

g
�+

(L, n) ⌘ L

3n
hS

q

· S�q

i
��
q=n

2⇡
L

, (95)

where in what follows we choose n = 2.
In Figs. 7 and 8, we show g

�+

(L, n = 2) versus U/t on
several system sizes L for the extended Hubbard model as
presented in the main text [Eqs. (1)-(2) with t0/t = 0.8,
 = 0.5, � = 0.2] and the on-site t-t0-U Hubbard model
[Eqs. (1)-(2) with t0/t = 0.8,  = 0], respectively. In the
former case, we use periodic boundary conditions due to
the reasons discussed in Sec. I, while in the latter case
we use standard open boundary conditions. Note that
the L = 96 data in Fig. 7 corresponds to the second
(q = 2 2⇡

96

) data points in the inset of Fig. 4.
We first focus on the extended Hubbard model data

as shown in Fig. 7. Here, g
�+

(L) increases above unity
as we turn on U/t and continues to do so well past the
putative Mott transition from the C2S2 metal to C1S2
insulator at U/t = 1.6. Rather remarkably, the data does
not start renormalizing visibly downwards until U/t &
4.0. Around U/t ' 5.0, the system starts showing signs
of spin-gap behavior (e.g., a Bragg peak in the dimer
structure factor; see Fig. 5) near which g

�+

(L) finally
starts bending downward. While the data points on the
large sizes are still not fully converged due to the periodic
boundary conditions and inherent di�culty involved in
converging such a quantity at small momenta, we believe
that as L ! 1 we would find g

�+

= 1 for U/t . 5.0 and
g

�+

= 0 for U/t & 5.0 (see the previous section).
We here mention that we are not generally able to

converge perfectly to a spin-singlet in our DMRG sim-
ulations. To assess this, we can measure the total spin
S

tot

in the ground state (we work only in the Sz

tot

= 0
sector in the DMRG) by evaluating the computed spin
structure factor at q = 0:

hS
q

· S�q

i
��
q=0

=
1

L
hS2

tot

i =
1

L
S

tot

(S
tot

+ 1). (96)

In simulations of Eqs. (1)-(2) with periodic boundary
conditions, we often find for S

tot

some small noninteger
value on the order of unity. For example, on L = 96 sites
with m = 6000 states, at the free electron point U/t = 0,
we find S

tot

= 0.60, and at the characteristic C1S2 spin
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FIG. 7: Finite-size estimates of g�+ [see Eq. (95)] versus U/t
for the same parameters in the extended Hubbard model at
the focus of the main text. The putative realized phases (see
text) are labeled with separating vertical dashed-dotted lines.
At U/t = 0, our DMRG calculations give g�+(L, n = 2) = 1
to within 1% for all sizes; this serves as a very useful check
on our convergence since free electrons are, ironically, very
challenging to converge in the DMRG.

Bose metal point U/t = 4.0, we find S
tot

= 0.46. How-
ever, we believe this is just a benign e↵ect of our inabil-
ity to fully converge the DMRG and the eventual ground
state at m ! 1 will be a spin-singlet with S

tot

= 0. We
know this to be true at U/t = 0, while all indications
point toward a spin-singlet C1S2 for 1.6 < U/t . 5.0,
e.g., the features at 2k

F1

and 2k
F2

are symmetrically
located about q = ⇡/2 in measurements of hS

q

· S�q

i
(see Fig. 4). In fact, this convergence di�culty is to
be expected in our parameter regime of t0/t = 0.8, as
realization of the two-band spin Bose metal in a pure
spin model with ring exchanges (Ref. 13) found similar
DMRG convergence problems in the corresponding pa-
rameter regime of that model.

Also, these di�culties are likely responsible for the
small “jumps” in the data in Fig. 7, since measured fi-
nite total spin will have a small, somewhat unpredictable,
quantitative e↵ect on our g

�+

(L, n) values. For instance,
we are able to converge to a singlet for all U/t on the
L = 36 site system, and hence its curve is smooth. On
the other hand, on the L = 48 site system, the mea-
sured total spin starts abruptly dropping toward zero
near U/t = 4.4, and we believe this behavior is respon-
sible for the corresponding feature in the L = 48 curve
of Fig. 7. Ultimately, however, these convergence prob-
lems will almost certainly have no qualitative e↵ect on
our conclusions being drawn from the g

�+

data.
In Fig. 8, we show analogous g

�+

(L, n = 2) measure-
ments for the ordinary on-site t-t0-U Hubbard model at
t0/t = 0.8. This model has a spin gap at weak coupling
U/t ⌧ 1 (see, e.g., Refs. 36,37) so that at small finite
interaction strengths we expect the system to be in a
spin-gapped C1S0 phase. However, the RG flows which
describe the opening of this spin gap are rather intri-

0 1 2 3 4 50
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U/t

g �
+

(L
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=
2
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L = 36
L = 48
L = 72
L = 96
L = 128

C1S0 metal C0S0 insulator,
VBS

FIG. 8: Finite-size estimates of g�+ [see Eq. (95)] versus U/t
for the on-site t-t0-U Hubbard model at t0/t = 0.8. The ver-
tical dashed-dotted line at U/t = 3.5 indicates our estimate
of the Mott transition between the C1S0 metal and C0S0
period-2 VBS insulator from g⇢+ measurements (not shown;
see Ref. 51). This value is in good agreement with earlier
studies of the half-filled t-t0-U Hubbard model38,50. Here, we
use open boundary conditions which gives very good conver-
gence, though at the expense of some small systematic error in
determining g�+ from the momentum-space structure factor;
e.g., g�+(L, n = 2) is slightly less than one at U/t = 0 which
is due entirely to the usage of open boundary conditions.

cate. Specifically, due to the repulsive Hubbard U , the
system is initially repulsive (stable) in the spin sector,
while the eventual gapping out of both the spin modes
and the “⇢�” mode happens due to a delicate interplay
of all channels (see Fig. 3 of Ref. 26). We believe this
initial repulsion in the spin sector is responsible for mea-
sured g

�+

> 1 (see also discussion in the previous sec-
tion), while it will drop below unity for large enough
sizes. On the other hand, if the spin sector is initially
attractive (unstable), then we observe g

�+

< 1 for all
sizes. This occurs, e.g., in electronic models with explicit
Heisenberg coupling JS

i

· S
j

that favors a spin-gapped
(Luther-Emery) liquid (see Ref. 51).

The Mott transition in the t-t0-U Hubbard model will
also be driven by the same eight-fermion umklapp term
discussed above. By measuring its scaling dimension in
the same fashion as we have done for the extended model
(see Fig. 3 and Sec. II C), we have determined that for the
U -only Hubbard model at t0/t = 0.8 the Mott transition
occurs near U/t = 3.5, after which period-2 VBS order
sets in immediately (see Ref. 51 for more details). We see,
however, that g

�+

(L) already starts bending downward
well before then. We stress that this is in sharp contrast
to the data of Fig. 7 in which our model with longer-
ranged repulsion shows no signs of a spin gap until well
past the Mott transition. In that case, the intervening
phase is the spin gapless C1S2 spin liquid insulator.
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