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SOLUTION SET 5 215B-QUANTUM MECHANICS, WINTER 2019

Problem 1. PROBLEMS FROM SAKURAI
4.1) Calculate the three lowest energy levels, together with their degeneracies for the following

systems (assuming equal mass distinguishable particles)
(a) Three non-interacting spin 1/2 particles in a one-dimensional box of length L
The Hamiltonian for three non-interacting particles of mass m in a one-dimensional box of length L is

H =
1

2m

3∑
i=1

p2i (1)

Consequently the state completely factorizes and we can independently designate the spin and position eigenstates of
each particle. The energy levels are independent of spin and given by

En⃗ =
π2ℏ2

2mL2

∑
i=1

3n2i (2)

The ground state has energy

E(1,1,1) = 3
π2ℏ2

2mL2
, (3)

with no degeneracy in the position wave-function, but a 2-fold degeneracy in equal energy spin states for each of the
three particles. Thus the ground state degeneracy is 8.
The first excited states have energy

E(2,1,1) = E(1,2,1) = E(1,1,2) = 3
π2ℏ2

mL2
, (4)

with a 3-fold degeneracy in position wavefunctions and 8-fold degeneracy in spin giving a total degeneracy of 24.
The second exited states have energy

E(2,2,1) = E(1,2,2) = E(2,1,2) = 9
π2ℏ2

2mL2
, (5)

with a 3-fold degeneracy in position wavefunctions and 8-fold degeneracy in spin giving a total degeneracy of 24.
(b) Four non-interacting spin 1/2 particles in a one-dimensional box of length L
Four particles is exactly analogous. The ground state has energy

E0 = 2
π2ℏ2

mL2
, (6)

with no degeneracy in the position wave-function, but a 2-fold degeneracy in equal energy spin states for each of the
four particles. Thus the ground state degeneracy is 16.
The first excited states have energy

E1 = 7
π2ℏ2

2mL2
, (7)

with a
(
4
1

)
-fold degeneracy in position wavefunctions and 16-fold degeneracy in spin giving a total degeneracy of 64.

The second excited states have energy

E2 = 5
π2ℏ2

mL2
, (8)

with a
(
4
2

)
-fold degeneracy in position wavefunctions and 16-fold degeneracy in spin giving a total degeneracy of 96.

4.2) Which of the following commute?
(a) Td and Td′

They commute because the generators of translation commute: [Pi, Pj ] = 0.
(b) D(n̂, ϕ) and D(n̂′, ϕ′)
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They do not commute in general because the generators of rotation do not all commute: [Ji, Jk] ̸= 0
(c) Td and π
They do not commute because parity does not commute with the generator of translations: [π, Pi] ̸= 0 (but

{π,Pi} = 0).
(d) D(n̂, ϕ) and π
They commute because the parity operator commutes with the generators of rotations: [Ji, π] = 0.

4.3)
For Ψ an eigenstate of anticommuting operators A,B with respective eigenvalues a, b, we have that

{A,B} = 0 ⇒ (AB +BA)|Ψ⟩ = (2ab)|Ψ⟩ = 0 . (9)

Thus, at least one of the eigenvalues a, b must be zero.
As an example, consider an eigenstate of the parity, π, an momentum operators, P, with eigenvalues π and p

respectively. Then one of the two must be zero. However, in this case we can go further: because π is an invertible
operators, it can not have a non-trivial nullspace. Thus, we must have that p = 0.

4.7)
(a) A plane wave in three dimensions has the wavefunction

ψp(x, t) =
1

(2π)3/2
exp{(ip · x− iωt)} . (10)

Thus we have that

ψ∗
p(x,−t) =

1

(2π)3/2
exp{(−ip · x− iωt)} = ψ−p(x, t) . (11)

(b) Recall (or consult Sakurai to find) that the two component eigenspinor of σ · n̂ with eigenvalue +1 can be
written explicitly as

χ+(n̂) =

(
cos(β/2)e−iγ/2

sin(β/2)e+iγ/2

)
. (12)

Then we have that

−iσ2χ∗
+(n̂) = −i

(
0 −i
i 0

)(
cos(β/2)e+iγ/2

sin(β/2)e−iγ/2

)
(13)

=

(
− sin(β/2)e−iγ/2

cos(β/2)e+iγ/2

)
(14)

Now we could explicitly check that this is the eigenspinor with the spin direction reversed. However, note that the
two eigenspinors with reversed spin directions are orthogonal and span the Hilbert space. Thus it suffices to check
that this new spinor is orthogonal to χ+:

−iσ2χ∗
+(n̂) · χ∗

+(n̂) =

(
− sin(β/2)e−iγ/2

cos(β/2)e+iγ/2

)(
cos(β/2)e+iγ/2

sin(β/2)e−iγ/2

)
= − sin(β/2) cos(β/2) + sin(β/2) cos(β/2)

= 0 . (15)

4.8)
(a) The question as written is false. The statement is in fact only true for an energy eigenfunction. This is proved

in Sakurai already as Theorem 4.2.
(b) Plane wave eigenfunctions of the free particle Hamiltonian are not a violation of part (a) because the energy

spectrum is degenerate (there are many states with the same energy p2/2m).

4.9)
Let

|α⟩ =
∫
d3pϕ(p)|p⟩ . (16)
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Then we have that

Θ|α⟩ =
∫
d3pϕ∗(p)Θ|p⟩ (17)

and thus that

Θ|α⟩ =
∫
d3p ϕ∗(p)| − p⟩ =

∫
d3p ϕ∗(−p)|p⟩ . (18)

We conclude Θϕ(p) = ϕ∗(−p).

4.11)
First recall that a non-degenerate spectrum implies that an energy eigenstate |E⟩ is invariant under time reversal

up to a phase:

|Ẽ⟩ = Θ|E⟩ = eiδ|E⟩ (19)

and that angular momentum is odd under time-reversal:

ΘLΘ−1 = −L . (20)

From these two facts, we find (cf. (4.4.44)

⟨E|L|E⟩ = −⟨Ẽ|L|Ẽ⟩ = −⟨E|e−iδLe−iδ|E⟩ = −⟨E|L|E⟩ . (21)

This can only be true if

⟨E|L|E⟩ = 0 . (22)

Recall from problem 4.8 that, because we have a nondegenerate spectrum, ψE(x)e
iδ = ψ∗(x). If we expand the

wavefunction as

ψ(x) =
∑
l

∑
m

Fl,m(r)Y m
l (θ, ϕ) (23)

then this equation becomes

eiδ
∑
l

∑
m

Fl,m(r)Y m
l (θ, ϕ) =

∑
l

∑
m

F ∗
l,m(r)Y m∗

l ∗ (θ, ϕ) =
∑
l

∑
m

F ∗
l,m(r)(−1)mY −m

l (θ, ϕ) (24)

We can then project onto one mode

eiδ
∫ ∑

l

∑
m

Fl,m(r)Y m
l (θ, ϕ)YM

L (θ, ϕ)dΩ =

∫ ∑
l

∑
m

F ∗
l,m(r)(−1)mY −m

l (θ, ϕ)YM
L (θ, ϕ)dΩ

⇒ eiδFL,M (r) = (−1)MF ∗
L,−M (r) (25)

4.12)
The Hamiltonian

H = AS2
z +B(S2

x − S2
y) (26)

can be written explicitly as

H = ℏ2
A 0 B

0 0 0
B 0 A

 . (27)

This matrix has eigenvectors

|1⟩ =

0
1
0

 , |2⟩ = 1√
2

1
0
1

 , |3⟩ = 1√
2

 1
0
−1

 , (28)
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with respective eigenvalues 0, ℏ2(A+B), ℏ2(A−B).
Now ΘSiΘ

−1 = −Si implies ΘS2
i Θ

−1 = S2
i so ΘHΘ−1 = H and the Hamiltonian is invariant.

We can rewrite the eigenstates in terms of spin eigentstates

|1⟩ = |1, 0⟩

|2⟩ = 1√
2
(|1, 1⟩+ |1,−1⟩)

|3⟩ = 1√
2
(|1, 1⟩ − |1,−1⟩) . (29)

Then recall the convention in (4.4.77)

Θ|l,m⟩ = (−1)m|l,−m⟩ (30)

so that we find

Θ|1⟩ = |1, 0⟩ = |1⟩

Θ|2⟩ = 1√
2
(|1, 1⟩+ |1,−1⟩) = 1√

2
(−|1,−1⟩ − |1, 1⟩) = −|2⟩

Θ|3⟩ = 1√
2
(|1, 1⟩ − |1,−1⟩) = 1√

2
(−|1,−1⟩+ |1, 1⟩) = |3⟩ . (31)
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Problem 2. SHOR’S ERROR CORRECTING CODE
(a.1) Noticing that

OiO′
j = O′

jOi, where i ̸= j, and O,O′ = X,Z; (32)

ZiXi = −XiZi, (33)

we can check that gigj = gjgi for any pair of i, j, by verifying that the number of sites where gi has Z (X) and gj
has X (Z) is even.
Noticing that

Z1Z2 (|000⟩ ± |111⟩) = Z2Z3 (|000⟩ ± |111⟩) = |000⟩ ± |111⟩ , (34)

X1X2X3 (|000⟩ ± |111⟩) = ± (|000⟩ ± |111⟩) , (35)

we can see that gi |z⟩ = |z⟩ for z = 0, 1.

(a.2) The independence is somewhat obvious. One can explicitly show that by computing the rank of some
corresponding matrix on Z2.
We can use the same observation in (a.1) to show that the operators commute.
Suppose |ψ⟩ is a codeword, that is, gi |ψ⟩ = |ψ⟩ ∀i. We see that

giZ |ψ⟩ = Zgi |ψ⟩ = Z |ψ⟩ , (36)

giX |ψ⟩ = Xgi |ψ⟩ = X |ψ⟩ . (37)

Thus, Z |ψ⟩ and X |ψ⟩ are still codewords.

(a.3) Using the observation in (a.1) (that X and Z on the same site anticommute), we can show that ZX = −XZ
(notice the typo in the problem).
We can also show that

Z
∣∣0⟩ = ∣∣0⟩, Z ∣∣1⟩ = −

∣∣1⟩ , (38)

X
∣∣0⟩ = ∣∣1⟩,X ∣∣1⟩ = ∣∣0⟩ . (39)

Thus the matrix representation.

(a.4) Since the logical operators commute with the stabilizers, we can assume, without loss of generality,

Z
′
= Zgp1

1 g
p2

2 . . . gp8

8 , (40)

X
′
= Xgq11 g

q2
2 . . . gq88 , (41)

where pi, qi ∈ {0, 1}. We still have

Z
′ ∣∣0⟩ = ∣∣0⟩, Z ′ ∣∣1⟩ = −

∣∣1⟩ , (42)

X
′ ∣∣0⟩ = ∣∣1⟩,X ′ ∣∣1⟩ = ∣∣0⟩ , (43)

because gi |z⟩ = |z⟩. Thus, Z ′
and X

′
are also good logical operators.

(b.1) Noticing that

g1X1 = −X1g1, gi>1X1 = X1gi>1, (44)

we have

g1X1 |ψ⟩ = −X1g1 |ψ⟩ = −X1 |ψ⟩ , (45)

gi>1X1 |ψ⟩ = X1gi>1 |ψ⟩ = X1 |ψ⟩ . (46)

Measuring the stabilizers won’t change the wavefunction since it is an eigenstate; we have the error syndrome
(−,+,+,+,+,+,+,+).
We correct the error by applying X1 on |ψX1⟩.

(b.2) Noticing that

g7Z1 = −Z1g7, gi ̸=7Z1 = Z1gi ̸=7, (47)
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we have the error syndrome (+,+,+,+,+,+,−,+).
We correct the error by applying Z1 on |ψZ1

⟩.

(b.3) Noticing that

g1Z1X1 = −Z1X1g1, g7Z1X1 = −Z1X1g7, gi ̸=1,7Z1X1 = Z1X1gi ̸=1,7, (48)

we have the error syndrome (−,+,+,+,+,+,−,+).
We correct the error by applying X1Z1 on |ψY1⟩.

(b.4) We see that |ψE⟩ is a superposition of |ψ⟩ , |ψX1⟩ , |ψZ1⟩ , |ψY1⟩, which are eigenstates of the stabilizers with
different eigenvalues (i.e. different error syndrome). They are orthogonal to each other.
Recall that measuring some hermitian operator always results in an eigenstate of that operator; in our case,

measuring the stabilizers will result in simultaneous eigenstates of the stabilizers. This should be enough information
to figure out the possible error syndromes.
We spell out the process of the measurements. Suppose we measure the stabilizers in the order g1, . . . , g8. For g1,

we have probability p1± = ⟨ψE | 1±g1
2 |ψE⟩ of getting the measurement outcome ±1. Now

1 + g1
2

|ψE⟩ = e0 |ψ⟩+ e1 |ψZ1⟩ , (49)

1− g1
2

|ψE⟩ = e2 |ψX1⟩+ e3 |ψY1⟩ , (50)

so p1+ = |e0|2 + |e1|2, and p1− = |e2|2 + |e3|2. The corresponding post-measurement wavefunctions, normalized, are

|ψ+⟩ = 1√
|e0|2+|e1|2

(e0 |ψ⟩+ e1 |ψZ1⟩) and |ψ−⟩ = 1√
|e2|2+|e3|2

(e2 |ψX1⟩+ e3 |ψY1⟩).
One can easily verify that measuring the stabilizers g2 through g6 always gives result +1, and does not change the

wavefunction. For g7, we have probability p7±|g1=± = ⟨ψ±| 1±g7
2 |ψ±⟩ of getting the measurement outcome ±1. Now

1 + g7
2

|ψ+⟩ =
e0√

|e0|2 + |e1|2
|ψ⟩ , (51)

1− g7
2

|ψ+⟩ =
e1√

|e0|2 + |e1|2
|ψZ1

⟩ , (52)

1 + g7
2

|ψ−⟩ =
e2√

|e2|2 + |e3|2
|ψX1⟩ , (53)

1− g7
2

|ψ−⟩ =
e3√

|e2|2 + |e3|2
|ψY1⟩ , (54)

(55)

so p7+|+ = |e0|2
|e0|2+|e1|2 , p

7
−|+ = |e1|2

|e0|2+|e1|2 , p
7
+|− = |e2|2

|e2|2+|e3|2 , and p7−|− = |e3|2
|e2|2+|e3|2 . The corresponding post-

measurement wavefunctions, normalized, are |ψ⟩, |ψZ1⟩, |ψX1⟩, and |ψY1⟩.
Similarly, measuring g8 always gives +1, and does not affect the wavefunction.
You should be convinced that the order in which we choose to measure the stabilizers is not essential.
The possible error syndromes, their corresponding probabilies, and the error correction unitaries are summarized

in the table below.
Error syndrome Probability Resulting state Correcting unitary

(+ + ++++++) |e0|2 = p1+ × p7+|+ |ψ⟩ Identity

(−+++++++) |e1|2 = p1+ × p7−|+ |ψX1⟩ X1

(+ + +++−++) |e2|2 = p1− × p7+|− |ψZ1⟩ Z1

(−++++−++) |e3|2 = p1− × p7−|− |ψY1⟩ X1Z1

Therefore, we can correct an arbitrary single qubit error.

(b.5) We will have g2 = −1, but gi = 1 for i ̸= 2. Therefore the state is not a codeword, and an error has happened
– one can detect the error.
However, this error syndrome is the same as the X3 error; instead of flipping X1X2, we will try to flip the third

physical qubit by X3, effectively applying a logical-Z operator on the state. We have failed correcting this error.

(b.6) Using the trick in (a.4), we can have X
′
= Xg2g4g6 = Z1Z4Z7; this is the minimal support we have. Thus

d = 3.


	Solution Set 5 215B-Quantum Mechanics, Winter 2019

