# Spin Liquids with Topological Order

2d Mott Insulators with one electron per unit cell

Quantum s=1/2 magnets



Will show that topologically ordered spin liquids have:

- an emergent "gauge structure"
- Quantum number fractionalization
- Ground state degeneracy on a torus

Focus on Spin liquids with:

- Z<sub>2</sub> Topological order
- Fully gapped with bosonic "spinons" and "visons"
- 2d square lattice and Kagome lattice



## **Resonating Valence Bond "Picture"**



2d square lattice s=1/2 AFM

$$H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j + \dots$$



Singlet or a Valence Bond - Gains exchange energy J



Valence Bond Solid

## Plaquette Resonance





Resonating Valence Bond "Spin liquid"

## Plaquette Resonance





Resonating Valence Bond "Spin liquid"

## Plaquette Resonance





Resonating Valence Bond "Spin liquid"

**Gapped Spin Excitations** 

"Break" a Valence Bond - costs energy of order J

Create s=1 excitation

Try to separate two s=1/2 "spinons"

Valence Bond Solid



Energy cost is linear in separation

Spinons are "Confined" in VBS

#### **RVB State:** Exhibits Fractionalization!



Energy cost stays finite when spinons are separated

Spinons are "deconfined" in the RVB state

Spinon carries the electrons spin, but not its charge ! The electron is "fractionalized".

# Gauge Theory Formulation of RVB Spin liquid

Focus on the Valence bonds and their quantum dynamics - "A Quantum Dimer model"





Define: Plaquette "Flux"

$$\mathcal{F}_p = \sigma^z_{ij} \sigma^z_{jk} \sigma^z_{kl} \sigma^z_{li}$$



### Hamiltonian:

where

$$\mathcal{H} = -K \sum_{p(ijkl)} \sigma_{ij}^z \sigma_{jk}^z \sigma_{kl}^z \sigma_{li}^z$$

Need a Constraint: One valence bond coming out of each site

## Z<sub>2</sub> Gauge Theory:

$$\begin{aligned} \mathcal{H} &= -K \sum_{p(ijkl)} \sigma_{ij}^{z} \sigma_{jk}^{z} \sigma_{kl}^{z} \sigma_{li}^{z} - J \sum_{ij} \sigma_{ij}^{x} \\ \text{Constraint on "gauge"} \quad Q_{i} &= \prod_{j=1}^{4} \sigma_{ij}^{x} = -1 \end{aligned}$$

Since  $[Q_i, \mathcal{H}] = 0$  can diagonalize  $Q_i$  and H

 $\mathcal{H}|\tilde{E}\rangle = E|\tilde{E}\rangle$ 

Given an eigenstate:  $\mathcal{H}|E\rangle = E|E\rangle$ Can construct:  $|\tilde{E}\rangle \equiv \mathcal{P}|E\rangle$  with  $\mathcal{P} = \prod [1-Q_i]/2$   $Q_i$  = -1 implies one or three bonds out of each site

Large J energetically selects one valence bond only

Cf: Maxwell Electrodynamics $H = \mathbf{B^2} + \mathbf{E^2}; \quad \nabla \cdot \mathbf{E} = \mathbf{0}$ 

## Gauge Redundancy (not symmetry!!)

$$\sigma_{ij}^z \to \epsilon_i \sigma_{ij}^z \epsilon_j$$

Leaves Hamiltonian invariant for arbitrary  $\epsilon_i=\pm 1$ 

(Gauge transformation)

Physical observables are gauge invariant such as the "electric field"  $\sigma_{ij}^x$ and the "magnetic flux"  $\mathcal{F}_p = \sigma_{ij}^z \sigma_{jk}^z \sigma_{kl}^z \sigma_{li}^z$ but NOT the "gauge field"  $\sigma_{ij}^z \longrightarrow \text{description using } \sigma_{ij}^z$  is redundant

#### Hilbert Space



States related by a gauge transformation are physically equivalent, ie. each gauge inequivalent class has a redundancy of 2<sup>N</sup>

Number of physically distinct states is  $2^{2N}/2^N = 2^N$  corresponding to fluxes  $\mathcal{F}_p = \pm 1$ 

## Phase Diagram of Z<sub>2</sub> Gauge Theory

$$\mathcal{H} = -K \sum_{p(ijkl)} \sigma_{ij}^z \sigma_{jk}^z \sigma_{kl}^z \sigma_{li}^z - J \sum_{ij} \sigma_{ij}^x$$

Characterize phases by gauge invariant Wilson loop operator

Perimeter Law:  $\langle W_L \rangle = \exp(-cL)$  in "deconfined" phase, Area law:  $\langle W_L \rangle = \exp(-cL^2)$  in "confined" phase





## "Vison" Excitations in the Deconfined Spin liquid

Assume "magnetic" flux is +1 thru all plaquettes in the ground state

Excited state: Put flux -1 thru a single plaquette - "vison"

Energy cost of vison is roughly K - visons are gapped in RVB phase



## **Topological Order - Ground State Degeneracies**

Put the 2d system on a cylinder, and in the deconfined spin liquid phase with  $\,\mathcal{F}_{n} pprox 1\,$ 

Two fold degenerate ground state - flux/no-flux thru hole in cylinder

Ground state degeneracy depends on the topology (ie. 4-fold for torus) !



## Put back in the "Spin(ons)"

Site with spinon has no connecting valence bond

Spinon carries "electric" gauge charge  $Q_i = -1$ 



Spinon "Hopping" Hamiltonian:

$$\mathcal{H}_s = -t_s \sum_{ij} \sigma_{ij}^z b_{i\alpha}^{\dagger} b_{j\alpha} + h.c.$$

Spinons are "minimally" coupled to the Z<sub>2</sub> gauge field (cf. Maxwell)

## "Statistical" Interaction between spinon and vison (in Z<sub>2</sub> spin liquid) viso

Taking a spinon ( $Z_2$  "electric" charge) around a vison ( $Z_2$  "magnetic flux") gives a sign change to the spinon wavefunction

$$\psi_s 
ightarrow -\psi_s$$



Confinement at large J/K - appropriate for quantum dimer model (the Valence Bond Solid phase)

Confined phase: "Electric field" fixed  $\sigma^x_{ij} \approx \pm 1$ "Magnetic flux" fluctuating

> Visons have proliferated ie, they are "condensed"



 The spinons cannot propogate thru the fluctuating "magnetic" flux - they are "confined" and no longer present as finite energy excitations in the VBS phase

## Desperately seeking topologically ordered spin liquids

2d square lattice near-neighbor s=1/2 Heisenburg model orders antiferromagnetically, and even with frustrating further neighbor interactions a  $Z_2$  spin liquid seems unlikely

Try other lattices - with "geometric frustration"



eg. triangular lattice (Lecture 4)



Kagome lattice (Japanese for basket weave) -lattice of corner sharing triangles, perhaps the "most frustrated" lattice

#### Example: Generalized Kagome Ising Antiferromagnet



If they can be separated, one has two(!) s=1/2 spinons

s<sub>7</sub>=1/2

s<sub>7</sub>=1/2

## Kagome Phase Diagram

Can also define "vison" excitations, which "live" on the triangles



 $Z_2$  spin liquid is stable if the visons are gapped

(a "string" operator)

#### • Exact diagonalization



#### • Spin liquid state is stable in the two-spin limit!

- c.f. this model is equivalent to a **3**-dimer model on the triangular lattice (Moessner-Sondhi). Appears to have much more stable spin liquid phase than **1**-dimer model.

# Other models with topologically ordered spin liquid phases (a partial list)



Models are not crazy but contrived. It remains a huge challenge to find these phases in the lab – and develop theoretical techniques to look for them in realistic models.

# Summary & Conclusions

- Quantum spin models can exhibit exotic paramagnet phases "spin liquids" with topological order and quantum number fractionalization
- Gauge theory offers a simple way to characterize such topologically ordered phases, and to encode the statistical interactions
- The Z<sub>2</sub> spin liquid is the "tip of the iceberg". There are many, many much more intricate topologically ordered phases possible, some with excitations carrying fractional and even non-Abelian statistics the latter would provide the "hardware" for a decoherence free "topological quantum computer"
- Much future work:
  - Find topological order in experiment??
  - Engineer simple Hamiltonians exhibiting topological order?
  - Experimentally engineer a real topologically ordered phase (eg. in a Josephson junction array)?