
Spin Liquids with Topological Order

               2d Mott Insulators with one electron per unit cell

                              Quantum s=1/2 magnets

Will show that topologically ordered spin liquids have:

• an emergent “gauge structure”

• Quantum number fractionalization

• Ground state degeneracy on a torus

Focus on Spin liquids with:
• Z2 Topological order
• Fully gapped with bosonic “spinons” and “visons”
• 2d square lattice and Kagome lattice



Resonating Valence Bond “Picture”

=

Singlet or a Valence Bond - Gains exchange energy J

2d square lattice  s=1/2 AFM 

Valence Bond Solid



Plaquette Resonance 

Resonating Valence Bond “Spin liquid”



Plaquette Resonance 

Resonating Valence Bond “Spin liquid”



Plaquette Resonance 

Resonating Valence Bond “Spin liquid”



Valence Bond Solid

Gapped Spin Excitations

“Break” a Valence Bond - costs
energy of order J

Create s=1 excitation

Try to separate two s=1/2 “spinons”

Energy cost is linear in separation

Spinons are “Confined” in VBS



RVB State:  Exhibits Fractionalization! 

Energy cost stays finite when spinons are separated

Spinons are “deconfined” in the RVB state

Spinon carries the electrons spin, but not its charge !

              The electron is “fractionalized”.



Gauge Theory Formulation of RVB Spin liquid

Focus on the Valence bonds and their quantum
dynamics - “A Quantum Dimer model”

i jPlace a “spin” on each link
of the lattice

vector of Pauli matrices

no bond on link ij

bond on link ij

-1 -1

1

1

 Define: Plaquette “Flux”



Hamiltonian:

Need a Constraint:  One valence bond
coming out of each site

Constraint on “gauge”
charges Qi :

Z2 Gauge Theory:

Qi = -1 implies one or three
bonds out of each site

Large J energetically selects
one valence bond only

Cf: Maxwell Electrodynamics

 Since                        can diagonalize Qi and H

Given an eigenstate: 
Can construct:  
where 

with



Gauge Redundancy (not symmetry!!)

Leaves Hamiltonian invariant for arbitrary

(Gauge transformation)

Physical observables are gauge invariant - 
such as the “electric field”      
  
and the “magnetic flux”

but NOT the “gauge field” description using          is redundant

Hilbert Space

Square lattice with N sites and 2N links 22N total states

States related by a gauge transformation are physically equivalent, ie. each gauge
inequivalent class has a redundancy of 2N  

Number of physically distinct states is 22N/2N = 2N  corresponding to fluxes



Phase Diagram of Z2 Gauge Theory

J/K

Perimeter Law:  <WL > = exp(-cL)  in “deconfined” phase,

Area law:  <WL > = exp(-cL2)  in “confined” phase

Characterize phases by gauge invariant Wilson loop operator

L

0 (J/K)c“deconfined” “confined”

Deconfined phase:  “Magnetic flux” fixed,
                         “Electric field” fluctuating

Confined phase:  “Electric field” fixed,
                         “Magnetic flux” fluctuating

RVB Spin liquid

Valence bond solid



Topological Order - Ground State Degeneracies

Put the 2d system on a cylinder, and in the 
deconfined spin liquid phase with 

“Vison” Excitations in the Deconfined Spin liquid

Assume “magnetic” flux is +1 thru all plaquettes in the ground state

Excited state:  Put flux -1 thru a single plaquette - “vison”

+

+

+

-1
Energy cost of vison is roughly K - 
 visons are gapped in RVB phase

Two fold degenerate ground state - flux/no-flux thru
hole in cylinder

Ground state degeneracy depends on
the topology (ie. 4-fold for torus) !



Put back in the “Spin(ons)”  

Site with spinon has no connecting valence bond 

Spinon carries “electric” gauge charge Qi = -1 

Introduce spinon creation operator at each 
site with spin up/down: 

Spinon “Hopping” Hamiltonian: 

Spinons are “minimally” coupled
to the Z2 gauge field (cf. Maxwell)



-1

vison

“Statistical” Interaction between spinon and vison
(in Z2 spin liquid)

Taking a spinon (Z2 “electric” charge) around a
vison (Z2 “magnetic flux”) gives a sign change
to the spinon wavefunction

Confinement at large J/K  - appropriate for quantum dimer model
( the Valence Bond Solid phase)

Confined phase:  “Electric field” fixed
                         “Magnetic flux” fluctuating

• Visons have proliferated - 
            ie, they are “condensed”
• The spinons cannot propogate thru the fluctuating “magnetic”
            flux - they are “confined” and no longer present as 
            finite energy excitations in the VBS phase



Desperately seeking topologically ordered spin liquids

2d square lattice near-neighbor s=1/2 Heisenburg model orders antiferromagnetically,
and even with frustrating further neighbor interactions a Z2 spin liquid seems unlikely

Try other lattices - with “geometric frustration”   

?
eg. triangular lattice (Lecture 4)

Kagome lattice (Japanese for basket weave)
-lattice of corner sharing triangles, perhaps
the “most frustrated” lattice

?



Example: Generalized Kagome Ising Antiferromagnet

J1

J2

J3

J1=J2=J3

added by hand
Jz enforces  3 up and 3
down spins on every
hexagon

K

“ring term”

Flipping one spin (sz=1) makes 
 two “magnetized” hexagons

sz=1/2 sz=1/2

If they can be separated,
one has two(!) s=1/2 spinons



Kagome Phase Diagram

10-0.5

Z2 spin liquid

2-spin
point

soluble
“RK” point

• Exact diagonalization

• Spin liquid state is stable in the two-spin limit!

- c.f. this model is equivalent to a 3-dimer model on the triangular lattice (Moessner-
Sondhi).  Appears to have much more stable spin liquid phase than 1-dimer model.

Can also define “vison” excitations, which “live” on the triangles 

(a “string” operator)
Z2 spin liquid is stable if the visons are gapped



Other models with topologically
ordered spin liquid phases

• Quantum dimer models

• Rotor boson models

• Honeycomb “Kitaev” model

• 3d Pyrochlore antiferromagnet

Moessner, Sondhi Misguich et al

Motrunich, Senthil

Hermele, Balents, M.P.A.F

Freedman, Nayak, ShtengelKitaev

(a partial list)

■ Models are not crazy but contrived.  It remains a huge
challenge to find these phases in the lab – and develop
theoretical techniques to look for them in realistic models.



Summary & Conclusions

• Quantum spin models can exhibit exotic paramagnet phases  - “spin liquids”

       with topological order and quantum number fractionalization

• Gauge theory offers a simple way to characterize such topologically ordered
phases, and to encode the statistical interactions

•  The Z2 spin liquid is the “tip of the iceberg”.  There are many, many much more

       intricate topologically ordered phases possible, some with excitations carrying

       fractional and even non-Abelian statistics  - the latter would provide the

       “hardware” for a decoherence free “topological quantum computer”

•  Much future work:

– Find topological order in experiment??

– Engineer simple Hamiltonians exhibiting topological order?

– Experimentally engineer a real topologically ordered phase

      (eg. in a Josephson junction array)?


