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Problem Set 1 Solutions

from Jennifer Cano

I. HUNDS RULES

(a) First consider n ≤ 2l + 1. Then Hund’s first rule tells us the all the spins will align, yielding S = n
2 . Hund’s second

rule tells us to maximize L, hence, L = l + (l − 1) + (l − 2) + ... + (l − (n − 1)) = n
2 (2l − n + 1) = S|2l + 1 − n|.

Hund’s third rule tells us that J = |L − S| = S|1 − (2l − n + 1)| = S|n − 2l|. So we have the desired result in this case.

Next consider n > 2l + 1. Hund’s first rule tell us that the first 2l + 1 spins will align and the remaining n − (2l + 1) will

anti-align, yielding S = 1
2 (2l + 1− (n− (2l + 1))) = 1

2 (2(2l + 1)− n). Hund’s second rule tells us to maximize L, yielding

L = l + (l − 1) + (l − 2) + ...+ (l − (n− (2l + 1)− 1)) = (n− (2l + 1))(2l + 1 − n
2 ) = S|2l + 1− n|. Hund’s third rule

tells us J = L+ S = S(1 + n− (2l + 1)) = S|n− 2l|.

(b) First consider L ≥ S. Then the RHS evaluates to:

L+S
∑

J=L−S

(2J + 1) =

2S
∑

k=0

(2(k + L− S) + 1) = (2S + 1)(1 + 2(L− S)) + (2S)(2S + 1) = (2S + 1)(2L+ 1) (1)

By exchanging L and S, we get the same result when L < S.

(c) Rewrite the spin-orbit interaction: λ(~L · ~S) = λ
2 (J

2 − L2 − S2). In a particular LS-multiplet, L and S are fixed, but J
varies from L+ S to |L− S|. Thus, the splitting within the multiplet is given by

EJ=L+S − EJ=|L−S| =
λ

2
((L+ S)(L + S + 1)− |L− S|(|L− S|+ 1)) =

λ

2
(4LS + L+ S − |L− S|), (2)

which yields λS(2L + 1) when L > S and λL(2S + 1) if L < S. The splitting between success J-multiplets within the

LS-multiplet is given by EJ+1 − EJ = λ
2 ((J + 1)(J + 2)− J(J + 1)) = λ(J + 1).

II. CRYSTAL FIELD EFFECTS

Rewrite the crystal field term in terms of the raising and lowering operators L± = Lx ± iLy:

Hcrys = aL2
x+bL

2
y+cL

2
z = a

(

L+ + L−
2

)2

+b

(

L+ − L−
2i

)2

+cL2
z =

a− b

4
(L2

++L
2
−)+

a+ b

4
(L+L−+L−L+)+cL

2
z (3)

The (2L + 1)(2S + 1)-fold degenerate set of eigenstates can be labelled by their Sz and Lz eigenvalues; since spin does not

enter inHcrys, it is already diagonal in the Sz basis, so we need only label states by their Lz eigenvalue. In the case where L = 1,

these states have Lz = −1, 0, or 1. We label the corresponding eigenstates |−〉, |0〉, |+〉. We want to diagonalize Hcrys in this

basis to do degenerate perturbation theory. Hence, we compute:

Hcrys|−〉 =
(

a− b

2

)

|+〉+
(

a+ b

2
+ c

)

|−〉

Hcrys|+〉 =
(

a− b

2

)

|−〉+
(

a+ b

2
+ c

)

|+〉

Hcrys|0〉 = (a+ b)|0〉 (4)

where we have used L2
+|−〉 = 2|+〉, L2

−|+〉 = 2|−〉, L±L∓|±〉 = 2|±〉, L±L∓|0〉 = 2|0〉, L2
z|m〉 = m2|m〉 and the fact

that all other states are annihilated by the operators in Hcrys. From Eq (4), we can see that the eigenstates of Hcrys are
1√
2
(|+〉+ |−〉) , 1√

2
(|+〉 − |−〉) and |0〉, with respective (non-degenerate) energies a+ c, b+ c and a+ b.
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It remains to show that all matrix elements of ~L vanish in these states:

(〈+| ± 〈−|)L+ (|+〉 ± |−〉) ∝ (〈+| ± 〈−|) |0〉 = 0 (5)

(〈+| ± 〈−|)L− (|+〉 ± |−〉) ∝ (〈+| ± 〈−|) |0〉 = 0 (6)

(〈+| ± 〈−|)Lz (|+〉 ± |−〉) = (〈+| ± 〈−|) (|+〉 ∓ |−〉) = 0 (7)

〈0|L±|0〉 ∝ 〈0|±〉 = 0, 〈0|Lz|0〉 = 0 (8)

III. SINGLET GROUND STATE OF THE (SPIN-INDEPENDENT) TWO ELECTRON HAMILTONIAN

(a) Because the Hamiltonian is spin-independent, the total wave function can be written as a product of a spatial wave func-

tion and a spin wave function. Because the total wave function must be antisymmetric under exchange of the two electrons,

symmetric spatial wave functions are antisymmetric under exchanging spins, and thus must have the spins in the singlet state.

Similarly, antisymmetric spatial wave functions must have the spins in one of the triplet states. Using the variational principle,

E ≥ Et when restricted to antisymmetric spatial wave functions, while E ≥ Es when restricted to spatial wave functions.

(b) It is reasonable to take V real; thus, we are given that ψt is real. Consequently, |ψt| = ±ψt, depending on the sign of

ψt, and |∇iψt| = |∇i|ψt||, except at the nodes, where there is a discontinuity in ∇i|ψt|; however, these isolated points should

not contribute to the full integral. Thus, E(|ψt|) = E(ψt) ≡ Et. But we know from part (a) that E(|ψt|) ≥ Es because |ψt| is

symmetric. Thus, Es ≤ Et.

IV. HUBBARD MODEL OF THE HYDROGEN MOLECULE

(a) The problem statement provides us with the Hamiltonian in the |R〉, |R’〉 basis:

h =

(

ǫ −t
−t ǫ

)

(9)

From the symmetry of this matrix, it is easy to check that the eigenstates are 1√
2
(|R〉 ± |R’〉) with energies ǫ∓ t.

(b) The crudest approximation of the two-electron ground state is to put both electrons in the single-electron ground state,
1√
2
(|R〉+ |R’〉). Not accounting for electron-electron interactions, the energy of this state is 2(ǫ − t). We can estimate the

effect of interactions by adding an energy penalty U when both electrons are on the same proton. In this state, the probability

that both electrons are on the same proton is the sum of the probability that both electrons are at R with the probability that both

are at R’. Since each probability is
(

1
2

)2
= 1

4 , the total probability that both electrons are on the same proton is 1
4 + 1

4 = 1
2 .

Hence, this logic estimates the ground state energy to be 2(ǫ− t) + U
2 .

(c) The full set of spatially symmetric (singlet) two-electron states is spanned by the basis states: Φ0 = 1√
2
(|R〉|R’〉+ |R’〉|R〉),

Φ1 = |R〉|R〉,Φ2 = |R’〉|R’〉. We can rewrite the estimated state from the previous section in terms of these states as:

Φie ≡
1

2
(|R〉+ |R’〉) (|R〉+ |R’〉) = Φ0√

2
+

1

2
(Φ1 +Φ2) (10)

We can compute the total Hamiltonian H in the basis of symmetric states, Φ0,Φ1,Φ2: first, noting that in Φ1 and Φ2,

there is a 100% chance that both electrons are on the same atom, while in Φ0 there is a 0% chance, we compute the diagonal

entries: H00 = 2ǫ,H11 = H22 = 2ǫ + U . The off-diagonal entries are computed by considering electron hopping: the

single-electron hopping operator is given by Hhop = −t|R〉〈R’|+ h.c.. Thus, matrix elements of the two-electron are given by,

for example, H10 = 〈R|〈R|
(

− t|R〉〈R’| ⊗ I− tI⊗ |R〉〈R’|
)

1√
2
(|R〉|R’〉+ |R’〉|R〉) = −

√
2t. By symmetry and Hermiticity,

H01 = H10 = H02 = H20. The remaining matrix elements are H12 = H21 = 0 because there is no term that simultaneously
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hops both electrons. We have verified Eq (32.38) in Ashcroft & Mermin.

(d) The eigenvalues of this Hamiltonian are 2ǫ + U, 2ǫ + 1
2U ±

√

4t2 + 1
4U

2. Thus, the ground state energy is 2ǫ + 1
2U −

√

4t2 + 1
4U

2. Below, we plot this ground state energy compared to the Heitler-London approximation and the independent

electron approximation, setting ǫ = 0 to fix the overall energy shift. We can see that there are two regimes: when U ≤ t,
the independent electron approximation approximates the full two-electron approximation to leading (linear) order; this makes

sense because when U is small, the Coulomb repulsion is small and the electrons don’t see each other, which is exactly the

single-electron approximation. On the other hand, when U ≫ t, the two electron energy asymptotes to 2ǫ and is independent

of t. This makes sense because when U is large, the Coulomb repulsion dominates and the electrons do not want to be on the

same site; this is exactly the Heitler-London ground state. When U = 2t, the independent electron approximation is a better

approximation than the Heitler-London to the full two electron energy.
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(e) The ground state we find from diagonalizing (32.38) in Mathematica is
(√

16t2+U2+U

2
√
2t

, 1, 1
)

in the basis (Φ0,Φ1,Φ2). We

can rewrite this to look like the form in Ashcroft & Mermin by inverting
(√

16t2+U2+U
2t

)−1

= 2t√
16t2+U2+U

= 2t(
√
16t2+U2−U)

16t2 =

−U
8t +

1
2

√

1 + U2

16t2 . The probability of finding two electrons on the same ion is the sum of the probabilities to be in Φ1 and Φ2,

which is 2 12

U(
√

16t2+U2+U)
4t2

+4

= 8t2

U(
√
16t2+U2+U)+16t2

= 1
2x(

√
1+x2+x)+2

= 1
2

(

1− x√
1+x2

)

, where we have defined x = U/4t.

As U → 0, the probability goes to 1/2, consistent with what we found in the independent electron approximation, and as

U → ∞, the probability goes to zero, consistent with the Heitler-London approximation.
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(f) The unique spatially antisymmetric eigenstate of the two-electron problem is Φt ≡ 1√
2
(|R〉|R’〉 − |R’〉|R〉). Since the

hopping term annihilates this state, t does not enter its energy and because the two electrons are never on the same site, U does

not enter. Thus, the energy is 2ǫ, the sum of the single-electron energies.

(g) In the limit U ≫ t, the Coulomb repulsion dominates and we expect to be in a regime where there is only one electron per

site; the only two spatial states which meet this requirement are the singlet state Φ0 and the triplet state. From part (d), expanding

the square root to leading order yields the energies for the singlet states, U,U + J and Es ≡ −J , while from part (e), the energy

of the triplet state is Et ≡ 0; we have subtracted an overall shift of 2ǫ from each energy and defined J = 4t2

U
> 0. Thus, the low

energy manifold consists of Φ0 and the three degenerate triplet states with spatial wave function Φt. We can always describe

a four-level quantum system with two pseudospin-1/2 operators. In this case, since three states are degenerate at energy zero

and one state has energy −J , the Hamiltonian is a projector onto that one state. In terms of spin language, the operator that

projects onto a single state is the (pseudo)spin singlet projector, − 1
2S

2 + 1. Defining S = SR + SR’ yields the Hamiltonian

H = −J(− 1
2S

2 + 1) = −J
(

− 1
2 (SR + SR’)

2
+ 1

)

= JSR · SR’ − J
4 , where we have used S2

R
= S2

R’
= 3

4 .

Before taking the large-U/t limit, we can compute the difference between the triplet and singlet states: ∆E = − 1
2U +

√

4t2 + 1
4U

2. Below we plot this compared to J ≡ 4t2

U
and see that they converge in the large-U/t limit:
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