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Non-Abelian statistics and topological quantum
information processing in 1D wire networks
Jason Alicea1*, Yuval Oreg2, Gil Refael3, Felix von Oppen4 and Matthew P. A. Fisher3,5

The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies

most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum

information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using

one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles

known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be

meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ ip
superconductor. We propose experimental set-ups that enable probing of theMajorana fusion rules and the efficient exchange

of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that

benefits from physical transparency and experimental feasibility.

The experimental realization of a quantum computer ranks
among the foremost outstanding goals in physics and has
traditionally been hampered by decoherence. In this regard

topological quantum computing holds considerable promise, as
here one embeds quantum information in a non-local, intrinsically
decoherence-free fashion1–6. A toy model of a spinless, two-
dimensional (2D) p + ip superconductor nicely illustrates the
key ideas. Vortices in such a state bind exotic particles known
as Majorana fermions, which cost no energy and therefore
generate ground state degeneracy. Because of the Majoranas,
vortices exhibit non-Abelian braiding statistics7–11: adiabatically
exchanging vortices noncommutatively transforms the system from
one ground state to another. Quantum information encoded in this
ground state space can be controllably manipulated by braiding
operations—something the environment finds difficult to achieve.

Despite this scheme’s elegance, finding suitable ‘hardware’
poses a serious challenge. Although most effort has focused on
the quantum Hall state at filling fraction10,12 ν = 5/2, numerous
realistic alternative routes to generating non-Abelian topological
phases have recently appeared13–20. Among these, two groups21,22
recognized that one-dimensional (1D) semiconducting wires
can be engineered, relatively easily, into Kitaev’s23 topological
superconducting state supporting Majorana fermions. Motivated
by this exciting possibility, we examine the prospect of exploiting
1Dwires for topological quantum computation.

The suitability of 1D wires for this purpose is far from obvious.
Manipulating, braiding, and realizing non-Abelian statistics of
Majorana fermions are all central to topological quantum computa-
tion (althoughmeasurement-only approaches sidestep the braiding
requirement5). Whereas Majorana fermions can be transported,
created, and fused by gating a wire, braiding and non-Abelian statis-
tics pose serious puzzles. Indeed, braiding statistics is ill-defined in
1D because particles inevitably ‘collide’ during an exchange. This
problem can be surmounted in wire networks, the simplest being
a T-junction formed by two perpendicular wires. Even in such
networks, however, non-Abelian statistics does not immediately
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follow, as recognized by Wimmer and colleagues24. For example,
non-Abelian statistics in a 2D p+ ip superconductor is intimately
linked to vortices binding the Majoranas10,11. We demonstrate that,
despite the absence of vortices, Majorana fermions in semicon-
ducting wires exhibit non-Abelian statistics and transform under
exchange exactly like vortices in a p+ip superconductor.

We further propose experimental setups ranging from minimal
circuits (involving one wire and a few gates) for probing
the Majorana fusion rules, to scalable networks that permit
efficient exchange of many Majoranas. The ‘fractional Josephson
effect’13,21–23,25, along with Hassler et al.’s recent proposal26 enable
qubit readout in this setting. The relative ease with whichMajorana
fermions can be stabilized in 1D wires, combined with the physical
transparency of their manipulation, render these set-ups extremely
promising topological quantum information processing platforms.
Although braiding of Majoranas alone does not permit universal
quantum computation6,27–30, implementation of these ideas would
constitute a critical step towards this ultimate goal.

Majorana fermions in 1D wires
We begin by discussing the physics of a single wire. Valuable
intuition can be garnered from Kitaev’s toy model for a spinless,
p-wave superconductingN -site chain23:

H = −µ
N�

x=1

cx †cx −
N−1�

x=1

(t cx †cx+1 +|�|eiφcxcx+1 +h.c .) (1)

where cx is a spinless fermion operator and µ, t > 0, and |�|eiφ
respectively denote the chemical potential, tunnelling strength,
and pairing potential. The bulk- and end-state structure becomes
particularly transparent in the special case23 µ = 0, t = |�|. Here
it is useful to express

cx = 1
2
e−i(φ/2)(γB,x + iγA,x) (2)

with γα,x = γα,x
† Majorana fermion operators satisfying

{γα,x , γα�,x � } = 2δαα�δxx � . These expressions expose the defining
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in

the limit µ=0, t= |�|. Each spinless fermion in the chain is decomposed in

terms of two Majorana fermions γA,x and γB,x. Majoranas γB,x and γA,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy

end Majoranas γA,1 and γB,N as shown
23
. b, A spin–orbit-coupled

semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana

modes by applying an external magnetic field
21,22

. c, Band structure of the

semiconducting wire when B=0 (dashed lines) and B �=0 (solid lines).

When µ lies in the band gap generated by the field, pairing inherited from

the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = −it
N−1�

x=1

γB,xγA,x+1

Consequently, γB,x and γA,x+1 combine to form an ordinary fermion
dx = (γA,x+1 + iγB,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are γA,1 and γB,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(γA,1+ iγB,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend†|0�,
where dend|0�=0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
�

dx
�
ψx

†

�
− h̄2∂x 2

2m
−µ− ih̄uê ·σ∂x

− gµBBz

2
σ z

�
ψx + (|�|eiϕψ↓xψ↑x +h.c .)

�
(3)

The operator ψαx corresponds to electrons with spin α, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and σ = (σ x ,σ y ,σ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g � 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = � = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap ∝|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on �
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and −k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and −k states.) Quantitatively, realizing the
topological phase requires21,22 |�|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |�| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | � mu2, |�| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ψ↑x ∼ (u(ey + iex)/gµB|Bz |)∂x�x and
ψ↓x ∼ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ∼
�

dx
�
�x

†

�
− h̄2∂x 2

2m
−µeff

�
�x

+
�
|�eff|eiϕeff�x∂x�x +h.c .

��
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|�eff|eiϕeff ≈ u|�|
gµB|Bz |

eiϕ(ey + iex) (5)

The dependence of ϕeff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
����
gµB|Bz |

2
−

�
|�|2 +µ2

����

For |µ|<µc =
√
(gµBBz/2)2 −|�|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k)≈ h̄v|k|, with velocity v = 2u|�|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Figure 2 |Applying a ‘keyboard’ of individually tunable gates to the wire
allows local control of which regions are topological (dark blue) and
non-topological (light blue), and hence manipulate Majorana fermions
while maintaining the bulk gap. As a and b illustrate, sequentially applying

the leftmost gates drives the left end of the wire non-topological, thereby

transporting γ1 rightward. Nucleating a topological section of the wire from

an ordinary region or vice versa creates pairs of Majorana fermions out of

the vacuum as in c. Similarly, removing a topological region entirely or

connecting two topological regions as sketched in d fuses Majorana

fermions into either the vacuum or a finite-energy quasiparticle.

length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ∼ h̄vπ/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ∼π/Lgate.) Assuming gµB|Bz |/2 ∼ 2|�| and
h̄u∼ 0.1 eVÅ yields a velocity v ∼ 104 m s−1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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Figure 3 |A T-junction provides the simplest wire network that enables
meaningful adiabatic exchange of Majorana fermions. Using the methods

of Fig. 2, one can braid Majoranas bridged by either a topological region

(dark blue lines) as in a–d, or a non-topological region (light blue lines) as

in e–h. The arrows along the topological regions in a–d are useful for

understanding the non-Abelian statistics, as outlined in the main text.

decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |�| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
φ = φL/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H� = −�(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H� ∼ − i�
2
cos

�
φL −φR

2

�
γ L
B,Nγ R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a π-junction—
that is, when φL − φR = π—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the sameφL−φR dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual π junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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Recall from equation (5) that the spin orientation favoured by
spin–orbit coupling determines the effective superconducting phase
of the semiconducting wires. Two wires at right angles to one
another therefore exhibit a π/2 phase difference, well away
from the pathological limits mentioned above. One can thus
always transport Majorana fermions across the junction without
generating spurious zero-modes.

T-junctions allow exchange of Majoranas residing on either
the same or different topological regions. Figure 3a–d illustrates
a counterclockwise braid for the former case, whereas Fig. 3e–h
illustrates the latter. Although theMajoranas cannowbe exchanged,
their non-Abelian statistics remains to be proven. Let us first recall
how non-Abelian statistics of vortices arises in a spinless 2D p+ ip
superconductor10,11. Ultimately, this can be deduced by considering
two vortices which bind Majorana fermions γ1 and γ2. As the
spinless fermion operators effectively change sign on advancing the
superconducting phase by 2π, one introduces branch cuts emanat-
ing from the vortices; crucially, a Majorana fermion changes sign
whenever crossing such a cut. On exchanging the vortices, γ2 (say)
crosses the branch cut emanating from the other vortex, leading to
the transformation rule γ1 → γ2 and γ2 → −γ1, which is generated
by the unitary operator U12 = exp(πγ2γ1/4). With many vortices,
the analogous unitary operators Uij implementing exchange of γi
and γj donot generally commute, implying non-Abelian statistics.

Following an approach similar to Stern and colleagues34, we
now argue that Majorana fermions in wires transform exactly like
those bound to vortices under exchange, and hence also exhibit
non-Abelian statistics. This can be established most simply by
considering the exchange of two Majorana fermions γ1 and γ2, as
illustrated in Fig. 3a–d. At each step of the exchange, there are two
degenerate ground states |0� and |1�= f †|0�, where f = (γ1+ iγ2)/2
annihilates |0�. In principle, one can deduce the transformation
rule from the Berry phases χn ≡ Im

�
dt �n|∂t |n� acquired by the

many-body ground states |n� = |0� and |1�, although in practice
these are hard to evaluate.

As exchange statistics is a universal property, however, we are
free to deform the problem to our convenience provided the energy
gap remains finite. As a first simplification, because the semicon-
ductor Hamiltonian and Kitaev’s model in equation (1) can be
smoothly connected, let us consider the case where each wire in the
T-junction is described by the latter. More importantly, we further
deform Kitaev’s Hamiltonian to be purely real as we exchange γ1,2.
The states |0� and |1� can then also be chosen real, leading to an
enormous simplification: although these states still evolve nontriv-
ially the Berry phase accumulated during this evolution vanishes.

For concreteness, we deform the Hamiltonian such that µ < 0
and t = � = 0 in the non-topological regions of Fig. 3. For the
topological segments, reality implies that the superconducting
phases must be either 0 or π. It is useful to visualize the sign
choice for the pairing with arrows as in Fig. 3. (To be concrete,
we take the pairing |�|eiφcj cj+1 such that the site indices increase
moving rightward/upward in the horizontal/vertical wires; the case
φ = 0 then corresponds to rightward/upward arrows, whereas
leftward/downward arrows indicate φ = π.) To avoid generating π
junctions, when two topological segments meet at the junction, one
arrow must point into the junction while the other must point out.
With this simple rule in mind, we see in Fig. 3 that although we
can successfully swap theMajoranas while keeping theHamiltonian
real, we inevitably end up reversing the arrows along the topological
region. In other words, the sign of the pairing has flipped relative to
our initial Hamiltonian.

To complete the exchange we must then perform a gauge trans-
formation which restores the Hamiltonian to its original form. This
can be accomplished by multiplying all fermion creation operators
by i; in particular, f † = (γ1 − iγ2)/2→ if † = (γ2 + iγ1)/2. It follows
that γ1 → γ2 and γ2 → −γ1, which the unitary transformation
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Figure 4 | Experimental set-ups that allow the probing of non-Abelian
statistics and Majorana-fermion fusion rules. a, Example of a

semiconductor wire network which allows for efficient exchange of many

Majorana fermions. Adjacent Majoranas can be exchanged as in Fig. 3,

whereas non-adjacent Majoranas can be transported to the lower wire to

be similarly exchanged. b, Minimal set-up designed to detect the non-trivial

Majorana fusion rules. Majoranas γ1,2 are first created out of the vacuum.

In the left path, γ2 is shuttled rightward, and Majoranas γ3,4 always

combine to form a finite-energy state which is unoccupied. In the right

path, γ3,4 are also created out of the vacuum, and then γ2 and γ3 fuse with

50% probability into either the vacuum or a finite-energy quasiparticle. The

Josephson current flowing across the junction allows the deduction of the

presence or absence of this extra quasiparticle.

U12 = exp(πγ2γ1/4) generates as in the 2D p+ ip case. (Note that
one could alternatively multiply all fermion creation operators by
−i instead of i to change the sign of the pairing, which would lead
to the slightly different transformation γ1 →−γ2 and γ1 → γ2. The
ambiguity disappears if one exchanges theMajoranas while keeping
the superconducting phases fixed as one would in practice; see the
Supplementary Information for a detailed discussion.) We stress
that this result applies also in the physically relevant case where gates
transport the Majoranas while the superconducting phases remain
fixed; we have merely used our freedom to deform the Hamilto-
nian to expose the answer with minimal formalism. Furthermore,
because Fig. 3e–h also represents a counterclockwise exchange, it is
natural to expect the same result for this case. The Supplementary
Information analyses both types of exchanges from a comple-
mentary perspective (and when the superconducting phases are
held fixed), confirming their equivalence. There we also establish
rigorously that in networks supporting arbitrarily many Majoranas
exchange is implemented by a set of unitary operatorsUij analogous
to those in a 2D p+ ip superconductor. (The Methods section out-
lines the analysis.) Thus the statistics is non-Abelian as advertised.

Discussion
The keyboard of gates shown in Fig. 2 and the T-junction of Fig. 3
provide the basic elements allowing manipulation of topological
qubits in semiconductingwires. In principle, a single T-junction can
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support numerous well-separated Majorana modes, each of which
can be exchanged with any other. (First, create many Majoranas
in the horizontal wire of the T-junction. To exchange a given
pair, shuttle all intervening Majoranas down to the end of the
vertical wire and then carry out the exchange using the methods of
Fig. 3.) However, networks consisting of several T-junctions—such
as the set-up of Fig. 4a—enable more efficient Majorana exchange.
In the figure, all adjacent Majorana fermions can be immediately
swapped using Fig. 3, whereas non-adjacent Majoranas can be
shuttled down to the lower wire to be exchanged. This ‘ladder’
configuration straightforwardly scales up by introducing extra
‘rungs’ and/or ‘legs’.

As Fu and Kane suggested in the topological insulator context13,
fusing Majorana fermions across a Josephson junction provides a
readout method for the topological qubit states. We illustrate the
physics with the schematic set-up of Fig. 4b, which extends the
experiments proposed in refs 21,22 to allow the Majorana fusion
rules to be directly probed. Here a semiconducting wire bridges
two s-wave superconductors with initial phases ϕL/R

i; we assume
�ϕi ≡ ϕL

i − ϕR
i �= π. Three gates drive the wire from an initially

non-topological ground state into a topological phase. Importantly,
the order in which one applies these gates qualitatively affects the
physics. As we now discuss, only in the left path of Fig. 4b can the
qubit state at the junction be determined in a singlemeasurement.

Consider first germinating Majorana fermions γ1 and γ2 by
applying the left gate. Assuming fA = (γ1 + iγ2)/2 initially costs
finite energy as γ1 and γ2 separate, the system initializes into a
ground state with fA unoccupied. Applying the central and then
right gates shuttles γ2 to the other end (see the left path of Fig. 4b).
As a narrow insulating barrier separates the superconductors,
an ordinary fermion fB = (γ3 + iγ4)/2 arises from two coupled
Majoranas γ3,4 at the junction. Similar to equation (6), the energy
of this mode is well-captured by21–23 HJ ∼ i� iγ3γ4 = � i(2fB†fB −1),
where � i = δcos(�ϕi/2) with non-universal δ. The system has been
prepared in a ground state, so the fB fermion will be absent if � i > 0
but occupied otherwise.

Suppose we now vary the phase difference across the junction
away from its initial value to �ϕ. The measured Josephson current
(see Supplementary Information for a pedagogical derivation)
will then be

I = 2e
h̄

dE
d�ϕ

= eδ
h̄
sgn(� i)sin(�ϕ/2)+ I2e (7)

where E is the ground-state energy and I2e denotes the usual
Cooper-pair-tunnelling contribution. The first term on the right
reflects single-electron tunnelling originating from the Majoranas
γ3,4. This ‘fractional’ Josephson current exhibits 4π periodicity in
�ϕ, but 2π periodicity in the initial phase difference�ϕi.

The right path in Fig. 4b yields very different results, reflecting
the nontrivial Majorana fusion rules. Here, after creating γ1,2, one
applies the rightmost gate to nucleate another pair γ3,4. Assuming
fA and fB defined as above initially cost finite energy, the system
initializes into the ground state |0,0� satisfying fA/B|0,0� = 0.
Applying the central gate then fuses γ2 and γ3 at the junction.
To understand the outcome, it is useful to re-express the ground
state in terms of fA � = (γ1 + iγ4)/2 and fB � = (γ2 + iγ3)/2. In this
basis |0,0� = (|0�,0�� − i|1�,1��)/

√
2, where f �

A,B annihilate |0�,0��
and |1�,1�� = f �

A
†fB �†|0�,0��. Following our previous discussion, fB �

acquires finite energy at the junction, lifting the degeneracy between
|0�,0�� and |1�,1��. Measuring the Josephson current then collapses
the wavefunction with 50% probability onto either the ground
state, or an excited state with an extra quasiparticle localized at
the junction. In the former case equation (7) again describes the
current, whereas in the latter case the fractional contribution simply
changes sign.

In more complex networks, such as that of Fig. 4a, fusing the
Majoranas across a Josephson junction—and in particular measur-
ing the sign of the fractional Josephson current—similarly allows
qubit readout. Alternatively, the interesting recent proposal of
Hassler et al.26 for reading qubit states via ancillary non-topological
flux qubits can be adapted to these setups (and indeedwas originally
discussed in terms of an isolated semiconducting wire26).

To conclude, we have introduced a surprising new venue for
braiding, non-Abelian statistics, and topological quantum infor-
mation processing—networks of one-dimensional semiconducting
wires. From a fundamental standpoint, the ability to realize non-
Abelian statistics in this setting is remarkable. Perhaps even more
appealing, however, are the physical transparency and experimen-
tal promise of our proposal, particularly given the feats already
achieved in ref. 35. Although topological quantum information
processing in wire networks requires much experimental progress,
observing the distinct fusion channels characteristic of the two paths
of Fig. 4b would provide a remarkable step en route to this goal.
And ultimately, if braiding in this setting can be supplemented
by a π/8 phase gate and topological charge measurement of four
Majoranas, wire networks may provide a feasible path to universal
quantum computation6,27–30.

Methods
In the Supplementary Information we provide a rigorous, systematic derivation of
non-Abelian statistics of Majorana fermions in wire networks, thus establishing
a solid mathematical foundation for the results obtained in the main text. As the
analysis is rather lengthy, here we briefly outline the approach. We first define the
many-body ground states in the presence of arbitrarily many Majorana fermions
in an arbitrary wire network. We then establish three important general results
that greatly facilitate the derivation of non-Abelian statistics. (1) If two Majoranas
are exchanged without disturbing any other Majoranas in the network, all of these
other Majoranas simply ‘factor out’ in the sense that their presence in no way
affects how the degenerate ground states transform. (2) If we know how a given
pair of Majoranas transforms under exchange in some minimal setting, then the
same transformation holds when arbitrarily many extra Majoranas are introduced,
provided they are far from those being exchanged. These first two properties are
rather natural and follow from the locality of the Majorana wavefunctions. (3) The
transformation of the degenerate ground states under exchange (up to an overall
non-universal phase) can be deduced solely by understanding how the Majorana
operators transform. This provides an enormous simplification, as it distills the
problem down to understanding the behaviour of the single-body Majorana
operators being braided.

It follows from these results that to understand non-Abelian statistics in
wire networks composed of trijunctions, it suffices to deduce how the Majorana
operators transform under the two types of braids shown in Fig. 3.We subsequently
analyse these exchanges (when the superconducting phases are held fixed, as would
be the case in practice) and show that the operators transform similarly to
vortices in a 2D p+ ip superconductor, thereby establishing non-Abelian statistics.
Interestingly, the picture we develop in the Supplementary Information closely
resembles Ivanov’s construction for non-Abelian statistics of vortices, despite their
absence in wire networks. Very crudely, as the Majorana fermions move along
the network to be exchanged, the effective p-wave superconducting phases they
‘feel’ vary, in loose analogy to what happens when Majorana fermions bound to
vortices braid one another.

It is also interesting to note that it is not only the clockwise versus
counterclockwise nature of the braid that determines how the Majorana operators
transform, unlike in a 2D p+ ip superconductor. In addition to the handedness, the
superconducting phases of the wires forming the junction also play a critical role in
governing the outcome of an exchange. For example, a counterclockwise exchange
with a given set of superconducting phases can have the same effect as a clockwise
exchange when the superconducting phases are modified. Thus, wire networks
feature more available ‘knobs’ that one can tune to control how an exchange
impacts qubit states, whichmay have useful applications.

Received 29 June 2010; accepted 22 December 2010;
published online 13 February 2011
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