
PHYSICAL REVIEW B 84, 195436 (2011)

Majorana zero modes in one-dimensional quantum wires without
long-ranged superconducting order
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We show that long-ranged superconducting order is not necessary to guarantee the existence of Majorana
fermion zero modes at the ends of a quantum wire. We formulate a concrete model, which applies, for instance,
to a semiconducting quantum wire with strong spin-orbit coupling and Zeeman splitting coupled to a wire
with algebraically decaying superconducting fluctuations. We solve this model by bosonization and show that it
supports Majorana fermion zero modes. We show that electron backscattering in the superconducting wire, which
is caused by potential variations at the Fermi wave vector, generates quantum phase slips that cause a splitting of
the topological degeneracy, which decays as a power law of the length of the superconducting wire. The power
is proportional to the number of channels in the superconducting wire. Other perturbations give contributions to
the splitting that decay exponentially with the length of either the superconducting or semiconducting wires. We
argue that our results are generic and apply to a large class of models. We discuss the implications for experiments
on spin-orbit coupled nanowires coated with superconducting film and for LaAlO3/SrTiO3 interfaces.
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I. INTRODUCTION

Kitaev1 showed that a class of superconducting quantum
wires supports a pair of Majorana fermion zero modes, one
at each end. Lutchyn et al.2 and Oreg et al.3 discovered that,
in the presence of a parallel magnetic field, semiconducting
wires with strong spin-orbit coupling fall in this class if
superconductivity is induced by proximity to a bulk three-
dimensional (3D) superconductor (see Fig. 1). As a result
of the Majorana zero modes, the ground state is doubly
degenerate. The two states differ by fermion parity, which is
not locally measurable; therefore, they form a protected qubit.
Networks of such semiconducting wires have been proposed
for topological quantum information processing.4–7

Long-ranged superconducting order is an essential feature
of these analyses. Although such order is sufficient, it does
not seem necessary. Protected Majorana zero modes also
exist in models of the 5/2 fractional quantum Hall state8–13

and in Kitaev’s honeycomb lattice spin model,14 and neither
of these systems has long-ranged superconducting order.
Therefore, one might expect that a quantum wire with strong
superconducting fluctuations but no long-ranged order could
also support Majorana fermion zero modes. Consider, on the
other hand, a spinless one-dimensional Luttinger liquid, which
has algebraic order, i.e., the two-point correlation function
of the superconducting order parameter decays to zero as a
power of the separation rather than approaching a constant.
Such a system has gapless bulk fermionic excitations, so if
Majorana fermion zero modes were found at the ends of such
a model, there would be nothing protecting them against small
perturbations. Furthermore, in the absence of superconducting
order, the two states of a pair of Majorana fermion zero
modes would have different electric charges, and not merely
fermion parity. Simply changing the electrostatic potential
should cause an energy splitting between states with different
electric charges. Therefore, one might, instead, conclude that
long-ranged superconducting order is necessary to protect
Majorana fermion zero modes in quantum wires.

In this paper, we show that this is not the case. We construct
a model of a spin-orbit coupled semiconducting wire in a
magnetic field, which is coupled to an s-wave superconducting
wire with power-law order. A schematic picture of such a
heterostructure is depicted in Fig. 2. We show that this model
supports Majorana fermion zero modes at the ends of the
wire. However, a single wire does not support a qubit; at
least two wires are needed. The basic idea is simple. Consider
Kitaev’s1 model of a superconducting quantum wire of spinless
fermions:

H = −t
∑

i

(c†i+1ci + c
†
i ci+1)

+ |�|
∑

i

(eiφcici+1 − e−iφc
†
i c

†
i+1). (1)

Here, φ is the phase of the superconducting order parameter.
Let us assume, for the moment, that φ is a constant, as in
Kitaev’s original paper1 and in Refs.2 and3. If we rotate the
fermion operators to the local value of the phase of the order
parameter ci → e−iφ/2c̃i , then the Hamiltonian takes the form

H = −t
∑

i

(c̃†i+1c̃i + c̃
†
i c̃i+1) + |�|

∑
i

(c̃i c̃i+1 − c̃
†
i c̃

†
i+1).

(2)

At the special point t = |�|, this Hamiltonian can be di-
agonalized by introducing the Majorana fermion operators
γ2i−1 = c̃i + c̃

†
i , γ2i = (c̃i − c̃

†
i )/i:

H = i|�|
∑

i

γ2iγ2i+1. (3)

These operators satisfy γi = γ
†
i and {γi,γj } = 2δij . Note that

γ1 and γ2N do not appear in the Hamiltonian. Therefore,
the ground state is doubly degenerate: iγ1γ2N can be either
±1, while iγ2iγ2i+1 = −1 for 1 � i � N − 1. Apart from
the degeneracy of the ground state, there is a gap 2|�| to
excitations. The operators γ1 and γ2N are Majorana fermion
zero modes, and the qubit that they form, iγ1γ2N = ±1, is
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FIG. 1. (Color online) A semiconductor nanowire in contact with
a bulk 3D superconductor.

protected since the two states are distinguished only by fermion
parity, which can not be measured by a local operation. Only
an operator that acts on both sites 1 and N can affect it. Away
from the special point t = |�|, the physics is very similar:
there is a gap in the bulk above two nearly degenerate ground
states, which have an energy splitting ∼e−Na/ξ , where ξ is
inversely proportional to the bulk gap and a is the lattice
spacing. This phase persists to the more physical |�| � t

limit. Electron-electron interactions in the wire determine the
region of the phase diagram occupied by this phase.15–18

Now suppose that φ is a fluctuating dynamical field. We
can still perform a change of variables similar to the one that
we made in going from Eq. (1) to Eq. (2). This will remove
the phase of the order parameter from the second term in
Eq. (1), the pairing term. However, it will introduce a coupling
between the fermions and gradients of the order parameter.
If these terms can be neglected, then we will have mapped
a model with fluctuating order parameter to one with fixed
order parameter that is decoupled from the fluctuations of φ;
therefore, it will have Majorana fermion zero modes. However,
there are some subtleties involved in the change of variables
from ci to c̃i when φ fluctuates. These are most easily handled
using a bosonized formulation of the electronic degrees of
freedom in the wire. We find a special point in Secs. III and
IV at which the bosonized formulation simplifies and allows
us to completely analyze the model. We then show in Sec. V
that our analysis is qualitatively unchanged by perturbations
that take the system away from the special point.

The technical subtleties alluded to above have a physical
origin related to the conservation of charge. Note that the
ground-state energy has the form

E(N ) = NE + Eeven,odd + O(e−aL) (4)

for even and odd electron numbers N , respectively. (See
Ref. 19 for the analogous relation for paired quantum Hall

(a)

(b)

FIG. 2. (Color online) A semiconductor nanowire in contact with
a 1D superconducting wire. The superconducting wire could be a
coating that (a) completely covers the semiconductor or (b) only
covers part of it.

states.) The signature of Majorana fermion zero modes at the
endpoints of a wire is that Eodd = Eeven. In a superconducting
system without zero modes, we would have Eodd > Eeven. The
difference Eodd − Eeven would simply be the energy cost of
an unpaired electron. In the presence of zero modes, this cost
vanishes. As may be seen from Eq. (4), however, a single
wire does not have degenerate states unless the electrostatic
potential is tuned so that E = 0. Note that, in the presence of
unscreened Coulomb interactions, E is not a constant but also
includes a term that is linear in N . One can find a particular N

at which E = 0, but this requires fine tuning.
If, however, we consider two such wires, then there are two

degenerate states for fixed total electron number without any
fine tuning. Suppose that there are 2N electrons in the system.
Let us denote the energy of the two wires, isolated from each
other by E1(N ), E2(N ). They are given by Eq. (4) with E (1),
E (2) and E

(1)
even,odd, E

(2)
even,odd taking the place of E and Eeven,odd.

If there are Majorana zero modes at the endpoints of both wires
in isolation, then E

(1)
odd = E(1)

even and E
(2)
odd = E(2)

even. Then,

E1(N ) + E2(N ) = E1(N − m) + E2(N + m) (5)

for any m, so long as E (1) = E (2). Now, suppose that the two
semiconducting wires are coupled to the same (power-law)
s-wave superconducting wire (which is assumed to be much
longer than either semiconducting wire so that it can be
coupled to both while keeping them far apart), so that the
electrochemical potential must be the same in the two wires.
Then, E (1) = E (2). Furthermore, Cooper pairs can tunnel from
either semiconducting wire to the superconductor. Therefore,
rather than a degenerate ground state for each value of m in (5),
there will be two nearly degenerate states, corresponding to an
even or odd number of electrons in each wire. (Furthermore,
there will only be a charging energy for the whole system,
not for each wire separately, which justifies taking E (1), E (2) as
constants.) Such a protected qubit exists for any fixed electron
number. If the electron number were odd, then the two states
would correspond, instead, to (a) an even electron number in
wire 1, odd in wire 2; and (b) an odd electron number in wire 1,
even in wire 2.

These arguments are supported by explicit calculations in
Secs. III and IV. First, we show in Sec. II how the topological
degeneracy is manifested when a semiconducting nanowire is
coupled to a bulk 3D superconductor. Pair tunneling between
the wire and the 3D superconductor is represented by a term
in the bosonized effective Hamiltonian of the form

Hpair tun. ∝ sin 2θ, (6)

where θ is the bosonic field satisfying ρ = 1
π
∂tθ , where ρ

is the charge density. The two ground states of the system
correspond to the two minima of sin 2θ as a function of θ . As
we discuss in Sec. II, these two states differ in fermion parity,
as expected for a pair of Majorana zero modes. Furthermore,
if the two ends of the wire are connected to form a ring,
then the ground-state degeneracy disappears because only the
equal amplitude superposition of the two minima is allowed
for periodic boundary conditions of the electrons (while the
orthogonal superposition occurs for antiperiodic electronic
boundary conditions). When we turn in Secs. III and IV to
the case in which the superconductor is also one dimensional
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and, therefore, does not have long-ranged order, our analysis
will depend on a careful treatment of the target space of the
bosonic fields. The periodicity conditions satisfied by these
fields encode the quantization of charge, and the ground-state
degeneracy can not be counted properly without accounting
for them. The use of bosonization techniques also requires
a careful treatment of locality: putative Majorana modes
in a transformed system may simply be a reflection of a
spontaneously broken global Z2 in the original variables (cf.
the duality between the transverse-field Ising model and a
Majorana wire). We wish to stress the topological nature of
the Majorana degeneracy in our model: no local observable
can distinguish the two states. A key feature of these models is
that there is a single-fermion gap even though there are gapless
superconducting phase fluctuations, as is already apparent in
Eq. (2) if the second line is benign (as we show it to be).
This may be viewed as a form of the “spin-gap proximity
effect.”20,21 This gap protects the Majorana fermion zero
modes. However, as we show below, in addition to fermion
tunneling events, which lift the topological degeneracy even
in models with long-range superconducting order, there is
another error-causing process involving quantum phase slips
that will have a vanishingly small probability of occurring in
a bulk 3D superconductor. The effect of a quantum phase slip
in the middle of a superconducting wire can be understood
as that of a vortex encircling a pair of Majorana zero modes.
Such a process results in reading out the fermionic parity
via the Aharonov-Casher effect and effectively leads to a
splitting of the degeneracy. We show that backscattering from
impurities generates quantum phase slips in the middle of
the wire and causes a splitting of the topological degener-
acy that decays algebraically with the size of the system
rather than exponentially. However, the exponent is propor-
tional to the number of channels in the superconducting wire.
Thus, by making a superconducting wire with sufficiently
many channels, we can make the splitting decay as a high
power of the length.

When this is the case, it is sufficient for the wires and
wire networks of Refs. 2–4 to be in proximity to systems
with power-law superconducting order; long-ranged order is
not necessary. Consequently, it may be possible to sputter
superconducting grains onto the semiconducting wire or
to coat it with superconducting film of a finite thickness.
This is important because it may be difficult to tune a
semiconducting wire between topological and nontopological
phases by applying a gate voltage if it is in contact with a
bulk superconductor, which will presumably fix its chemical
potential.

Recently, it has been shown that quasi-1D wires can be
“written” on LaAlO3/SrTiO3 (LAO/STO) interfaces,22 which
have substantial Rashba spin-orbit coupling.23 These wires
show strong superconducting fluctuations. As we will discuss
in detail elsewhere,24 a possible model for this system is a
spin-orbit coupled quantum wire in contact with local super-
conducting regions, which fail to percolate across insulating
SrTiO3, but can induce still superconducting fluctuations in
quantum wires at the LAO/STO interface. Our results imply
that these superconducting fluctuations may be sufficient to
support Majorana zero modes at the ends of such wires if a
parallel magnetic field is applied.

II. A SEMICONDUCTOR NANOWIRE COUPLED TO A
BULK 3D SUPERCONDUCTOR:
BOSONIZED FORMULATION

Before introducing our model, we briefly review the pro-
posal for realizing Majorana quantum wires in semiconductor-
superconductor heterostructures2,3 and recast it in bosonic
form. Its basic ingredient is a semiconductor nanowire with
strong spin-orbit interactions. Superconductivity is induced
via the proximity effect. The Hamiltonian for the nanowire is
(h̄ = 1)

HNW =
∫ L/2

−L/2
dx ψ†

σ (x)

(
− ∂2

x

2m∗ −μ+iασy∂x +Vxσx

)
σσ ′

ψσ ′(x),

(7)

HP =
∫ L/2

−L/2
dx[�0ψ↑ψ↓ + H.c.],

where m∗, μ, and α are the effective mass, chemical potential,
and strength of spin-orbit Rashba interaction, respectively.
An in-plane magnetic field Bx leads to a spin splitting
Vx =gNWμBBx/2, where gNW and μB are the g factor
in the semiconducting nanowire and the Bohr magneton,
respectively. In the simplest model for the nanowire, we
assume that the semiconductor nanowire (NW) is in tunneling
contact with a bulk 3D superconductor (SC), as depicted in
Fig. 1. Then, electron tunneling between the NW and the SC
leads to the proximity effect described by the Hamiltonian
HP . The superconducting pairing potential �0 is assumed to
be a static classical field, and quantum fluctuations of the
superconducting phase are neglected.

The nanowire described by the Hamiltonian HT = HNW +
HP can be driven into a nontrivial topological state by adjusting
the chemical potential so that it lies in the gap |μ| <

√
V 2

x − �2
0.

Under these conditions, the Hamiltonian can be projected to
the lower band of the two bands that form as a result of the
combined effect of the spin-orbit coupling and magnetic field.
The low-energy limit of this Hamiltonian then takes the same
form as Eq. (2) for low energies E � t , assuming |�| � t2.
Therefore, the topological superconducting phase described
by HT harbors Majorana fermion operators γL and γR , which
are zero modes, up to exponential corrections, localized about
the two endpoints:

γa = γ †
a , {γa,γb} = 2δab, (8)

[HT ,γa] = 0 + O(e−L/ξ ), (9)

{γL,ψσ (x)} ∼ e−|x+L/2|/ξ , {γR,ψσ (x)} ∼ e−|x−L/2|/ξ . (10)

Here, ξ is the effective coherence length. The presence of
these zero modes leads to topological degeneracy up to an
exponential splitting energy δE ∝ e−L/ξ . The two nearly
degenerate states correspond to the two eigenvalues of iγ1γ2

and have even and odd fermion parity,1 respectively, which
can be exploited for topological quantum computation.25

These results were obtained1–3 using the properties of the
free-fermion band structure embodied by HT . We now re-
derive them using a bosonic representation. In later sections,
we will use this representation to analyze the case when there
is no long-ranged superconducting order, unlike in HT . First,
we bosonize the semiconductor Hamiltonian (7). In the helical
regime corresponding to a large Zeeman gap, HNW can be
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approximated by projecting the system to the lowest subband
and writing the field operator �(x) ≡ (ψ↑(x),ψ↓(x)) as

�(x)≈�−(pF )eipF xcR(x) + �−(−pF )e−ipF xcL(x), (11)

where the spinor �−(pF ) = 1√
2
(−eiκ(pF ),1) and κ(pF ) =

tan−1(αpF /Vx). Substituting Eq. (11) into HNW, the Hamil-
tonian can be written in terms of the spinless right- and left-
moving fermions cR(x) and cL(x) and eventually bosonized
using cR/L = 1√

2πa
e−i(±φ−θ):

HNW ≈ v

∫ L/2

−L/2
dx[ic†L(x)∂xcL(x)−ic

†
R(x)∂xcR(x)] (12)

≈ v

2π

∫ L/2

−L/2
dx[K(∂xθ )2 + K−1(∂xφ)2]. (13)

Here, v is the fermion velocity v = pF ( 1
m∗ − α2√

V 2
x +α2p2

F

) and

K is the Luttinger parameter for the nanowire. The fields φ

and θ satisfy the canonical commutation relation

[∂xφ(x),θ (x ′)] = iπδ(x − x ′). (14)

The charge density and current near wave vector zero are given
by ρ = 1

π
∂xφ = 1

π
∂tθ and j = − 1

π
∂tφ = 1

π
∂xθ . The fields φ

and θ can be interpreted as the phase of the density at wave
vector 2kF and the pair field, respectively:

ρ2kF
(x) = e−2iφ(x),

�pair(x) ≡ ψ↑(x)ψ↓(x) = e2iθ(x). (15)

For the Hamiltonian HNW, in which electron-electron
interactions in the semiconductor have been neglected, K = 1
(the free-fermion value). However, the bosonic representa-
tion accommodates short-ranged interactions in the nanowire
such as

HNW int. = u

∫ L/2

−L/2
dx ψ†

σ (x)ψσ (x) ψ
†
σ ′ (x)ψσ ′(x) (16)

simply by shifting the value of K and rescaling v. Here, K > 1
for repulsive interactions and K > 1 for attractive interactions.
As we shall see below, the Majorana degeneracy persists for a
whole range of K , which includes the free Fermi point K = 1.
The bosonic form for HP in Eq. (7) is

HP = �P

(2πa)

∫ L/2

−L/2
dx sin(2θ ). (17)

Therefore, HT can be written in the bosonic form

HT =
∫ L/2

−L/2
dx

(
v

2π
[K(∂xθ )2 + K−1(∂xφ)2]

+ �P

(2πa)
sin(2θ )

)
. (18)

This interaction term HP is relevant unless there are very
strong repulsive interactions in the nanowire. To be more
precise, the lowest-order renormalization-group (RG) equation
for the dimensionless coupling y = 2�P a/v is

dy

dl
= (2 − K−1) y. (19)

For noninteracting electrons, K = 1, and even for repulsive
interactions up until K = 1/2, this is a relevant perturbation.
If y is initially small at short distances, then we can use Eq. (19)
to conclude that y(l) ∼ 1 at the length scale l = ln(ξ/a0),
where the effective coherence length ξ in the semiconducting
nanowire is given by ξ ∼ a0(v/2�P a0)K/(2K−1). Here, a0 is
the short-distance cutoff, which is the shortest length scale at
which the effective description (18) is valid. We can take it to
be the coherence length or the Josephson length of the bulk
3D superconductor, but, at any rate, it must be larger than the
Fermi wavelength in the semiconducting wire.

At longer length scales, the field θ is pinned to the minimum
of sin(2θ ). Since there are two minima, θ = −π/4, 3π/4,
there are two degenerate ground states in the L → ∞ limit.
These two ground states are related to each other by the global
Z2 symmetry of the model θ → θ + π . To understand this
symmetry better, it is helpful to note that the fermion parity
(−1)NF can be written in the form

(−1)NF = ei[φ(L/2)−φ(−L/2)]. (20)

Therefore, using the commutation relation (14), we see that
the fermion parity (−1)NF generates the symmetry transfor-
mation θ → θ + π . Since the two degenerate ground states
corresponding to θ = −π/4, 3π/4 are transformed into each
other by fermion parity, the following quantum superpositions
are fermion-parity eigenstates:

|even,odd〉 = 1√
2

(| − π/4〉 ± |3π/4〉). (21)

The ends of the wire are crucial for this qubit. If we
were to connect the two ends of the wire to form a ring of
circumference L, then we would expect only a single ground
state, not a degenerate pair. To see that this is indeed the case,
consider the fermion annihilation operators

cR,L(x) = 1√
2πa

e−i(±φ−θ). (22)

Since ρ = 1
π
∂xφ, the ring will have even fermion parity if the

boundary conditions on φ are

φ(x + L) = φ(x) + 2nπ

for integer n. If the fermions have periodic boundary conditions
cR,L(x + L) = cR,L(x), then the boundary condition on θ

must be

θ (x + L) = θ (x) + 2n′π

for integer n′. Since constant solutions are allowed for this
boundary condition on θ , the ground state |even〉 = 1√

2
(| −

π/4〉 + |3π/4〉), which is a linear superposition of constant
solutions, is allowed in this case. This state has even fermion
parity (20), so it is consistent with the boundary conditions on
φ. If the ring has odd fermion parity, however, then φ(x + L) =
φ(x) + (2n + 1)π . Consequently, if the fermions have periodic
boundary conditions, the boundary condition on θ must
be θ (x + L) = θ (x) + (2n′ + 1)π . This precludes a constant
solution. Therefore, the state |odd〉 = 1√

2
(| −π/4〉 − |3π/4〉),

which is odd under fermion parity (20), is not an allowed
state if the fermions have periodic boundary conditions. As
expected, we conclude that there is only a single ground state
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for a ring, in contrast with a line segment, which has a doubly
degenerate ground state.

The Majorana fermion zero modes of this system are
manifested on a ring by the presence of a corresponding
state for antiperiodic boundary conditions on the fermions. If
cR,L(x + L) = −cR,L(x), then for odd fermion parity φ(x +
L) = φ(x) + (2n + 1)π , the boundary condition on θ must
be θ (x + L) = θ (x) + 2n′π for integer n′. This boundary
condition allows constant solutions, so the ground state is
|odd〉 = 1√

2
(| −π/4〉 − |3π/4〉). Therefore, the ground state

with periodic boundary conditions and the ground state with
antiperiodic boundary conditions have the same energy density
and opposite fermion parities. This can already be seen in the
Kitaev chain. On a line segment, the operators γ1 and γ2N do
not appear in the Hamiltonian, as we saw in the Introduction.
On a ring with periodic boundary conditions, there is a term
itγ2Nγ1. If the boundary conditions are antiperiodic, the term
is instead −itγ2Nγ1. The ground-state energy is the same
in both cases, but the ground states differ in fermion parity,
iγ2Nγ1 = ±1.

Returning now to the case of open boundary conditions,
we observe that, for finite L, these two states are split in
energy because there are instantons that tunnel between the
two minima. The Euclidean action in the strong-coupling
limit is

S = v

2π

∫
dx dτ

[
(∂xθ )2+v−2(∂τ θ )2 + y

ξ 2
sin(2θ )

]
. (23)

The splitting is then given by δE ∝ Nf e−S0 , where S0

is the action of the Euclidean instanton θ0(x,τ ) satisfying
θ0(x, − ∞) = −π

4 , θ0(x,∞) = 3π
4 and Nf is a prefactor that

comes from fluctuations. Clearly, the lowest action instanton is
translationally invariant, at least away from x = −L/2, L/2,
so the problem reduces to a (0 + 1)-dimensional problem, with
action

SQM = L

π

∫
dz

[
1

2
(∂zθ )2 + V (θ )

]
, (24)

where V (θ ) = y

ξ 2 sin(2θ ) and z = vτ . Following Ref. 26,

S0 = L

π

∫ 3π/4

−π/4
dθ

√
2[V (θ ) − E] = 4

√
y

π

L

ξ
, (25)

where E = −y/ξ 2 is the energy of the minimum of the
potential. The splitting then scales like δE ∝ exp(− 4

√
y

π
L
ξ

),
as expected.

Since 2θ changes by 2π while the phase of the bulk
superconductor is unchanged, such an instanton can be
interpreted roughly as the motion of a vortex between the
NW and the bulk superconductor. (We say “roughly” because
our instanton is a spatially uniform phase slip rather than a
spatially localized vortex.) Since it causes a transition between
the states | − π/4〉 and |3π/4〉, it splits the states |even〉 and
|odd〉. Thus, it can also be interpreted as a Majorana fermion
tunneling between the two ends of the wire.

III. A SINGLE SEMICONDUCTING NANOWIRE
COUPLED TO AN ALGEBRAICALLY ORDERED

SUPERCONDUCTING WIRE

We now include the effect of quantum fluctuations by
replacing the bulk superconductor in the above proposal with
an s-wave superconducting wire with power-law order. This
model preserves the overall U(1) charge symmetry [there is
no spontaneous U(1) breaking] and allows for the study of
the topological superconducting phase in the particle number-
conserving setting. For the sake of concreteness and simplicity,
we will take the Hamiltonian for the superconducting wire
to be the attractive U Hubbard model. However, our results
hold for any spin-gapped system with s-wave superconducting
fluctuations.27

We use the standard bosonization procedure for spinful
fermions, with the convention28 that

ψr,σ = 1√
2πa

e
− i√

2
[(rφρ−θρ )+σ (rφσ−θσ )]

, (26)

where r = ± and σ = ± for right- and left-moving fermions
with up and down spin, and a the lattice cutoff. The fields φρ,σ

and θρ,σ satisfy the same commutation relations (14). In terms
of these fields, the Hamiltonian for the superconducting wire
can be written as

HSC = H
(ρ)
SC + H

(σ )
SC , (27)

H
(ρ)
SC = vF

2π

∫ L/2

−L/2
dx

[
Kρ(∂xθρ)2 + K−1

ρ (∂xφρ)2
]
, (28)

H
(σ )
SC = vF

2π

∫ L/2

−L/2
dx

[
Kσ (∂xθσ )2 + K−1

σ (∂xφσ )2
]

(29)

− 2|U |
(2πa)2

∫ L/2

−L/2
dx cos(2

√
2φσ ),

where vF , a, and U are the Fermi velocity, the effective cutoff
length, and the interparticle interaction potential, respectively.

Tunneling between the superconducting wire and the
semiconducting wire can be described using a simple model
Hamiltonian

Ht = t
∑

σ

∫ L/2

−L/2
dx(ψ†

σ ησ + η†
σψσ ), (30)

where t is the tunneling amplitude and ψσ and ησ represent
fermion annihilation operators in the semiconducting and
superconducting systems, respectively. Given that single-
electron tunneling into the superconducting wire is suppressed
due to the presence of the spin gap Eg (see below), the
dominant contribution to the action comes from pair hopping.
The perturbative expansion in t to second order leads to the
following imaginary-time action:

SPH = −t2
∑

σ

∫
dx dτ dx ′dτ ′

× [ψ†
σ (x,τ )ψ†

−σ (x ′,τ ′)ησ (x,τ )η−σ (x ′,τ ′)+H.c.]. (31)

We now analyze the bosonized action. First, the spin field
φσ orders as a result of the last term in Eq. (29), opening
a spin gap Eg in the superconducting wire. The dual field
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θσ is disordered, and its correlation function decays expo-

nentially 〈e− i√
2
θσ (x,τ )

e
i√
2
θσ (0,0)〉σ ∼ a/

√
x2 + (vF τ )2 exp[−Eg√

τ 2 + x2/v2
F ]. This allows us to simplify the action (31) and

make a local approximation

SPH ≈− �P

(2πa)

∫
dτ

∫ L/2

−L/2
dx sin(

√
2θρ − 2θ ) (32)

valid in the long-time limit |τ − τ ′| � E−1
g . Here, the Cooper-

pair-hopping amplitude �P is given by �P ∼ t2

Eg

αpF√
(αpF )2+V 2

x

similarly to the proximity-induced gap in the perturbative
tunneling limit t � Eg . If the field θρ were pinned (i.e.,
θρ = 0), we would recover the model considered in Refs. 2 and
3. In the present case, however, overall U(1) symmetry is not
broken due to the presence of fluctuating field θρ . Henceforth,
we thus analyze the following effective low-energy model:

HM = v

2π

∫ L/2

−L/2
dx[K(∂xθ )2 + K−1(∂xφ)2]

+ vF

2π

∫ L/2

−L/2
dx

[
Kρ(∂xθρ)2 + K−1

ρ (∂xφρ)2
]

− �P

(2πa)

∫ L/2

−L/2
dx sin(

√
2θρ − 2θ ), (33)

and study the effect of quantum fluctuations of θρ on the
stability of the topological superconducting phase. This model
is quadratic, except for the interaction �P . The dimensionless
coupling y = 2�P a/v has the RG equation

dy

dl
=

(
2 − 1

2
K−1

ρ − K−1

)
y. (34)

For 1
2K−1

ρ + K−1 > 2, this interaction is irrelevant, and we
can ignore Cooper-pair tunneling between the wires. However,
interwire pair tunneling is relevant for 1

2K−1
ρ + K−1 < 2,

which includes the case of weakly attractive interactions
in the superconducting wire Kρ�1, and weakly repulsive
interactions in the semiconducting wire K�1.

This model simplifies significantly at the special point
vF = v and 2Kρ = K . At this point, one can diagonalize
the Hamiltonian (33) by introducing new variables θ+ =
θρ/

√
2 + θ and θ− = θρ/

√
2 − θ :

H = v

2π

∫ L/2

−L/2
dx

[
Kρ(∂xθ+)2 + K−1

ρ (∂xφ+)2
]

+ v

2π

∫ L/2

−L/2
dx

[
Kρ(∂xθ−)2 + K−1

ρ (∂xφ−)2
]

− �P

(2πa)

∫ L/2

−L/2
dx sin(2θ−). (35)

The first line of this Hamiltonian describes gapless super-
conducting phase fluctuations. The second and third lines,
which are decoupled from these gapless fluctuations, are
identical to the Hamiltonian (18) for the proximity effect from
a bulk 3D superconductor with long-ranged superconducting
order parameter. At this point, the dimensionless coupling
y = 2�P a/v has the RG equation

dy

dl
= (

2 − K−1
ρ

)
y. (36)

Therefore, a fermionic gap �F ∼ v
a0

(�P a0/v)1/(2−K−1
ρ ) opens

up as a result of the coupling between the wires.
The single wire model, however, does not exhibit Majorana

degeneracy without fine tuning of the electrostatic potential.
Semiclassically, this is because the moduli space of low-energy
field configurations (i.e., those where θ− is pinned) has only
one connected component. Naively, the �P sin(

√
2θρ − 2θ )

term might lead one to expect two connected components,
corresponding to the two minima θ = θρ√

2
− 3π

4 ,
θρ√

2
− 7π

4 .
However, these are in fact connected in the θρ,θ moduli space
(see Fig. 3). One can interpolate from one to the other by
winding

√
2θρ → √

2θρ + 2π and simultaneously winding θ

half as fast, so that θ → θ + π . θ− remains pinned throughout
the interpolation, but the two vacua are exchanged. Therefore,
there is no potential barrier; the field θρ/

√
2 + θ is free to

fluctuate along a flat direction of the potential between these
two points. Consequently, there is just a single vacuum, not
two degenerate states. This reflects the conservation of charge:
when θρ/

√
2 + θ has large fluctuations, the total charge is

fixed. Given that the two states |even/odd〉 correspond to
different fermion-parity states and, thus, satisfy different
boundary conditions for the field φ+, there is a degeneracy
splitting determined by the charging energy of the system
Ec = vρ/2LKρ .

Note that, in the argument above, the two minima were
exchanged if we could identify

√
2θρ ≡ √

2θρ + 2π . Naively,
these two field values are not equivalent since a shift of

√
2θρ

by 2π changes the sign of the fermion according to Eq. (26).
However, (

√
2θρ,

√
2θσ ) ≡ (

√
2θρ + 2π,

√
2θσ + 2π ). Since

φσ is fixed, θσ is disordered, so there is no energy cost for
shifting θσ . Thus, we can treat

√
2θρ as 2π periodic, rather than

FIG. 3. (Color online) The moduli space of semiclassical vacua is
the torus, which is here depicted as a cylinder with the top and bottom
edges identified. For any fixed θρ , there are two different semiclassical
ground states, depicted by the intersection points between the dotted
vertical line and the line of fixed

√
2θρ − 2θ , which winds twice

around the cylinder. If θρ is, indeed, fixed, as in Sec. II, then there
is a tunneling barrier between these two ground states. However, if
the total charge mode 1√

2
θρ + θ can fluctuate, as in Sec. III, then the

entire line of fixed
√

2θρ − 2θ is the same quantum ground state, and
there is no degeneracy.
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4π periodic, and the flat direction of the potential connects the
two putative minima.

IV. TWO MAJORANA WIRES

As discussed in the Introduction and as we saw in the
previous section, if the electron number is fixed, then states
with different electron numbers will not be degenerate without
fine tuning. However, if we have two semiconducting wires of
length � coupled to the same superconducting wire of length
L, then there will be two degenerate states of the system for
any fixed total charge. These states correspond to even or
odd electron numbers in each semiconducting wire, with a
constraint that the sum of the parities of the two wires must
equal the parity of the total electron number. There need not
be literally two separate wires. We could instead have a single
wire similar to the spin-orbit coupled semiconducting wire of
Eq. (7). In the regions −L/2 < x < −L/2 + � and L/2 − � <

x < L/2, we would need to adjust the chemical potential so
that |μ| <

√
V 2

x − �2
0, and in the region −L/2 + � < x <

L/2 − �, we would need |μ| >
√

V 2
x − �2

0. Then, the system
would be in a topological (power-law) superconducting phase
for L/2 − � < |x| < L/2 and in a nontopological (power-law)
superconducting phase for −L/2 + � < x < L/2 − �. While
we will sometimes call the region −L/2 + � < x < L/2 − �

the “nontopological region,” we will usually simply treat the
system as if there were no wire there since the section of
nontopological wire in this region has a qualitatively similar
effect to the absence of a wire.

Let us analyze this setup in more detail. The Hamiltonian
for such a system takes the form

H2 wires =
∫ −L/2+�

−L/2
dx

(
v1

2π

[
K1(∂xθ1)2 + K−1

1 (∂xφ1)2
]

− �P 1

(2πa)
sin(

√
2θρ − 2θ1)

)

+
∫ L/2

L/2−�

dx

(
v2

2π

[
K2(∂xθ1)2 + K−1

2 (∂xφ1)2
]

− �P 2

(2πa)
sin(

√
2θρ − 2θ2)

)

+
∫ L/2

−L/2
dx

vρ

2π

[
Kρ(∂xθρ)2 + K−1

ρ (∂xφρ)2
]
. (37)

The first two lines are the Hamiltonian for the first semicon-
ducting wire, of length � � L, and its Josephson coupling to
the superconducting wire of length L. The third and fourth
lines are the analogous terms for the second semiconducting
wire. The final line reflects the charge degrees of freedom of
the Hamiltonian for a wire with power-law superconducting
fluctuations. The gapped spin degrees of freedom have been
integrated out. In Eq. (37), we have neglected exponentially
small corrections ∝ exp[−Eg(L − 2l)/vF ] due to tunneling
between the wires (see Sec. V for details).

As in the single-wire case, we introduce the fields

θ+(x) = 1√
2
θρ(x)u12(x) + θρ(x)[1 − u12(x)]

+ θ1(x)u1(x) + θ2(x)u2(x), (38)

θ−(x) = 1√
2
θρ(x)u12(x) − θ1(x)u1(x) − θ2(x)u2(x),

where u1(x) = 1 for −L/2 � x � −L/2 + � and u1(x) = 0
otherwise; u2(x) = u(−x); and u12(x) = u1(x) + u2(x). The
field θ−(x) is only defined for L/2 − � � |x| � L/2. Then,
for v1 = v2 = vρ = v and K1 = K2 = 2Kρ = K , the Hamil-
tonian takes the form

H2 wires =
∫ L/2

−L/2
dx

(
u12(x)

v

2π

[
Kρ(∂xθ−)2 + K−1

ρ (∂xφ−)2
]

+ 1

(2πa)
[�P 1u1(x) + �P 2u2(x)] sin(2θ−)

+ v

2π

[
Kρ(∂xθ+)2 + K−1

ρ (∂xφ+)2
])

. (39)

Naively, this Hamiltonian has four semiclassical ground states:
θ−(x) = ϑ1u1(x) + ϑ2u2(x), with ϑ1,2 = 3π

4 , 7π
4 . However, by

acting with (−1)N
(1)
F , (−1)N

(2)
F , and (−1)N

(1)
F +N

(2)
F on any one

of these states, we can obtain the other three. Thus, we
can form two quantum superpositions of these states with
(−1)N

(1)
F +N

(2)
F = 1 and two with (−1)N

(1)
F +N

(2)
F = −1. If we fix

the total electron number, then one of these two sets will be
allowed.

The argument that led us to conclude that a single nanowire
has no ground-state degeneracy now shows that the two-wire
system (37) at fixed electron number has two (nearly) degener-
ate ground states. There are two connected components in the
moduli space of low-energy field configurations. Here, there
is no electrostatic potential breaking the (almost) degeneracy;
the leading contributions instead come from instantons, as
we shall see below. To see this, note first that θ1 and θ2 can
be pinned to either θρ√

2
− 3π

4 or θρ√
2

− 7π
4 , naively leading to

four semiclassical ground states. However, as above, one can
wind

√
2θρ → √

2θρ + 2π , thus connecting the ground state
(ϑ1,ϑ2) = ( 3π

4 , 3π
4 ) with ( 7π

4 , 7π
4 ), and ( 3π

4 , 7π
4 ) with ( 7π

4 , 3π
4 ).

These two equivalence classes can not be connected to each
other, however, since that would require winding

√
2θρ by

2π on only one half of the system, leading to an unwanted
monopole in the

√
2θρ field. This monopole can be removed

by a phase slip, leading to degeneracy breaking, as we discuss
in Sec. VI. Note that there are no bulk operators local in
the fermion variables that can distinguish the two nearly
degenerate states. This is because all local terms on, say, wire
1 must be periodic in 2θ1; a term that distinguishes the two
ground states must necessarily be odd under θ1 → θ1 + π .

Our two-wire analysis can be generalized in a straight-
forward manner to N wires in series, coupled to the same
superconducting wire, which produce a degeneracy of 2N−1.
The ground states correspond to semiclassical vacua ( 3π

4 +
n1π, 3π

4 + n2π, . . . , 3π
4 + nNπ ), where ni = 0,1, subject to

the condition that the state (n1,n2, . . . ,nN ) ≡ (n1 + 1,n2 +
1, . . . ,nN + 1).
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One can formalize this argument for twofold ground-state
degeneracy by explicitly constructing an algebra of operators,
which commute with the Hamiltonian up to small errors,
and satisfy a Pauli algebra, again up to small errors. This
algebra then implies an approximate twofold degeneracy in
the spectrum, with a small splitting bounded by the size
of the errors. To define the algebra, it suffices to construct
two approximate symmetry operators A and B, which square
to 1 and anticommute. We let A = (−1)N

(1)
F , the fermionic

parity of wire 1. [Given that total fermion parity is fixed,
the other operator (−1)N

(2)
F is not independent.] B is more

subtle: we would like it to act diagonally on the four “phase”
eigenstates (ϑ1,ϑ2) defined above, having eigenvalue 1 on
( 3π

4 , 3π
4 ),( 7π

4 , 7π
4 ) and −1 on ( 3π

4 , 7π
4 ),( 7π

4 , 3π
4 ). Since ϑ1,ϑ2

are determined by θ− = θρ/
√

2 − θ1,2, a first guess for B

would be

B = cos (�) ,

� = 1

�

∫
1
dx

(
θρ(x)√

2
− θ1(x)

)
− 1

�

∫
2
dx

(
θρ(x)√

2
− θ2(x)

)
.

(40)

However, B is not well defined in Eq. (40) because θρ√
2

is
only well defined mod π . To ameliorate the situation, it is
useful for convenience to take the limit in which L � �, and
treat the topological wires as points (the argument also works
away from this limit, but the notation is more cumbersome).
Then, the above definition of � reduces to � = [θρ(0) −
θρ(L)]/

√
2 + θ2 − θ1. This is still not well defined but can

be made so by replacing the first term with an integral of a
total derivative. Thus,

A = (−1)N
(1)
F , (41)

B = cos

[
−

∫ L

0
∂xθρ(x)/

√
2 + θ2 − θ1

]
(42)

forms our desired set of operators. Clearly, B2 = 1 and
A2 = 1 up to errors exponentially small in � because the
argument of the cosine in the definition of B is pinned
to 0 or π , with fluctuations going like e−�/ξ . Furthermore,
B was constructed to exactly anticommute with A, so we
have an approximate Pauli algebra. One can now show that
there is topological degeneracy in this system. Consider two
different fermion-parity states |a〉 ≡ |ϑ1 = 3π

4 ,ϑ2 = 3π
4 〉 and

|b〉 ≡ |ϑ1 = 7π
4 ,ϑ2 = 3π

4 〉. Since they are eigenstates of B with
opposite eigenvalues, and [H,B] ≈ 0, they must individually
be approximate eigenstates of the Hamiltonian, with energies
Ea,Eb. Now, using |a〉 = A|b〉 and [H,A] ≈ 0, one can show
that the energies Ea and Eb must be equal:

Ea|a〉 = H |a〉 = HA|b〉 = AH |b〉 = AEb|b〉 = Eb|a〉.
(43)

Now, what terms in the Hamiltonian could fail to commute
with this algebra? In the case of A, the only such term would
be an electron tunneling between wire 1 and wire 2, which is
exponentially suppressed in L − �. In the case of B, there are
two possibilities: (1) instanton tunneling between two vacua on
either wire 1 or 2, as described above, and (2) 2π phase slips in√

2θρ in the middle region between the wires. These processes

are both allowed in the Hamiltonian and anticommute with
B. The first of these is exponentially suppressed with �, but
the second, as we shall see later, decays only as a power of
L, albeit possibly a large one. Hence, we get a corresponding
bound on the degeneracy splitting.

We now compute these various contributions to the degener-
acy splitting. First, we consider the instanton contributions and
show that they lead to an exponentially suppressed splitting;
this is done in the next section. In the following section, we
account for impurities and the associated phase slips. These
lead to a power-law splitting, which is naively much worse
than exponential suppression. However, the exponent in the
power law is proportional to the number of channels in the
SC, which can be made large, and the prefactor can be made
exponentially small in the length scale associated with the
smoothness of the disorder.

V. INSTANTON CONTRIBUTIONS

We now discuss the instanton contributions to the de-
generacy splitting, starting with the soluble point where,
according to (39), θ+ decouples, leaving a pinned θ− field
on each wire. To tunnel between the two vacua, we need
to tunnel from θ− = 3π

4 to θ− = 7π
4 along a single length

� wire, say wire 1. The instanton analysis proceeds exactly
as that of the proximity-induced case, leading to a splitting
δE ∼ exp(−√

Kρ
�
ξ

). In such a process, 2θ1 winds by ±2π

relative to
√

2θρ . This can be interpreted as a vortex tunneling
between the helical nanowire and SC wire, as depicted in
process (a) in Fig. 4. It equivalently can be interpreted as a
fermion tunneling from one end of wire 1 to the other.

We now show that the Majorana degeneracy is stable against
all possible translationally invariant perturbations around the
soluble point. We will consider the effect of impurities

ab

c

�

L

FIG. 4. (Color online) A schematic depiction of the different
processes that split the two states of the qubit. Process (a): A vortex
can tunnel between a semiconducting wire and the superconducting
wire. This causes a splitting that is exponentially small in �. Process
(b): An electron can tunnel from one semiconducting wire to another
through the superconducting wire. This causes a splitting that is
exponentially small in L − 2�. Process (c): A vortex can tunnel
through the superconducting wire between the semiconducting wires
as a result of an electron backscattering process. This causes a
splitting that decays as a power of L. This model applies also
to a situation in which there is a single semiconducting nanowire
that extends from −L/2 to L/2 and is in a topological phase for
L/2 − � < |x| < L (similar to our two semiconducting nanowires)
and is in a nontopological phase for |x| < L/2 − � (similar to our
superconducting wire).
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and phase slips associated with them in the next section.
The perturbations come in two varieties. First, there are
exponentially small pair-hopping terms that involve electrons
in different semiconductor nanowires. Second, there are
couplings between the semiconducting and superconducting
wires that we have not included in our initial model (37).
Third, there are shifts of the parameters that take us away from
the point K1 = K2 = 2Kρ , v1 = v2 = vρ . As we will see, the
second can be accounted for with the third.

First, we derive an effective action for interwire pair
hopping, starting with the following microscopic model:

Ht = t1
∑

σ

∫ −L/2+�

−L/2
dx1[ψ†

1σ (x1)ησ (x1) + H.c.]

+ t2
∑

σ

∫ L/2

L/2−�

dx2[ψ†
2σ (x2)ησ (x2) + H.c.]. (44)

At second order of perturbation theory in t , one obtains cross
terms proportional to t1t2. These exponentially small terms
were neglected in Eq. (37). Now, we take them into account
and study their effect on the degeneracy splitting. Consider the
term in the Euclidean effective action proportional to t1t2:

S
(12)
t = −2t1t2

∫
dτ1

∫
dτ2

∫ −L/2+�

−L/2
dx1

∫ L/2

L/2−�

dx2

× [ψ†
1↑(1)ψ†

2↓(2)η↓(1)η↓(2) + c.c.]. (45)

Bosonizing the action S
(12)
t and integrating out the massive

spin fields, one arrives at

S
(12)
t = −2t1t2αpF√

(αpF )2 + V 2
x

∫
dτ1

∫
dτ2

∫ −L/2+�

−L/2
dx1

∫ L/2

L/2−�

dx2

× cos

(
φρ(1)−φρ(2)√

2

)
sin

(
θρ(1)+θρ(2)√

2
−θ (1)−θ (2)

)

× a

(2πa)2

exp
[ − Eg

√
(τ1−τ2)2+ (x1−x2)2

v2
F

]
√

(x1−x2)2+v2
F (τ1−τ2)2

. (46)

The dominant contribution to the integral over τ1 − τ2 comes
from short times [|τ1 − τ2| � (L − 2�)/vF ] and can be
approximately carried out. The remaining spatial integral
is peaked at x1/2 = ±(L/2 − �), and the action can be
approximately written as

S
(12)
t ∝ −t1t2

Eg

e
− Eg

vF
(L−2�) αpF√

(αpF )2+V 2
x

×
∫

dτ cos

(
φρ(−x0,τ )−φρ(x0,τ )√

2

)

× sin

(
θρ(−x0,τ )+θρ(x0,τ )√

2
−θ (−x0,τ )−θ (x0,τ )

)

(47)

with x0 = L/2 − �. In fermionic language, the above expres-
sion has a very clear physical interpretation: it corresponds to
the Josephson coupling between the ends of the two wires.
It is due to single-fermion tunneling from one wire to the
other, as depicted in process (b) in Fig. 4. The terms on the
second and third lines of Eq. (47) are bounded, so such a term

causes a splitting, which decays exponentially in (L − 2�):

�E ∼ e
− Eg

vF
(L−2�).

We now consider interactions between the semiconductor
and superconductor wires. We assume that because of the
Fermi momenta mismatch in these two systems, one can ne-
glect interactions between the charge and spin densities at 2kSC

F

in the superconductor and the corresponding densities at 2kNW
F

in the semiconducting nanowire since these interactions will
be oscillatory. We will now write down all possible operator
couplings between the superconductor and the semiconductor
and generate all allowed terms preserving U(1) symmetry. For
the superconductor, the charge- and spin-density operators are
given by

Oρ = ψ
†
↑ψ↑ + ψ

†
↓ψ↓ = −

√
2

π
∂xφρ, (48)

Oz
σ = ψ

†
↑ψ↑ − ψ

†
↓ψ↓ = −

√
2

π
∂xφσ , (49)

Oy
σ=−i(ψ†

↑ψ↓−ψ
†
↓ψ↑)= −2

πa
sin(

√
2θσ ) cos(

√
2φσ ), (50)

Ox
σ=ψ

†
↑ψ↓+ψ

†
↓ψ↑ = 2

πa
cos(

√
2θσ ) cos(

√
2φσ ), (51)

and the singlet and triplet superconducting pairing operators
read as

OSS = ψ
†
↑ψ

†
↓ − ψ

†
↓ψ

†
↑ = 1

πa
e−i

√
2θρ cos(

√
2φσ ), (52)

Ox
TS = ψ

†
↑ψ

†
↑ + ψ

†
↓ψ

†
↓ = 1

πa
e−i

√
2θρ cos(

√
2θσ ), (53)

O
y

TS = −i(ψ†
↑ψ

†
↑ − ψ

†
↓ψ

†
↓) = −1

πa
e−i

√
2θρ sin(

√
2θσ ), (54)

Oz
TS = 0, (55)

where SS and TS denote triplet and singlet pairing. We now
write down these operators for the semiconductor nanowire.
Because of the large Zeeman gap, we perform projection to
the lowest subband as explained in Sec. II. The charge- and
spin-density operators in the semiconductor now become

Oρ = nR + nL = − 1

π
∂xφ, (56)

Oz
σ = 0, (57)

Oy
σ = αpF√

V 2
x + α2p2

F

(nR−nL)= ∂xθ

π

αpF√
V 2

x + α2p2
F

, (58)

Ox
σ = −Vx√

V 2
x + α2p2

F

(nR+nL) = ∂xφ

π

Vx√
V 2

x +α2p2
F

, (59)

and the superconducting pairing operators read as

OSS = iαpF√
V 2

x +α2p2
F

c
†
Rc

†
L = iαpF√

V 2
x +α2p2

F

e−2iθ

πa
, (60)

Ox
TS = O

y

TS = Oz
TS = 0. (61)

The triplet pairing operators vanish because, in our model, the
superconducting wire has a spin gap and, therefore, φρ is fixed.
Given these operators, one can construct all possible coupling
terms between the superconductor and the semiconductor.
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In addition to the pair-hopping term, which is essential for
our proposal to work and was already included in our model
(33), one can have additional couplings that represent various
density-density interactions:

H1 = Vρρ

∫
dx ∂xφρ ∂xφ, (62)

H2 = V (x)
σσ

∫
dx

a
sin(

√
2θσ ) cos(

√
2φσ )∂xφ, (63)

H3 = V (y)
σσ

∫
dx

a
sin(

√
2θσ ) cos(

√
2φσ )∂xθ. (64)

The first term above describes the charge density-density
interaction between the wires, whereas the Hamiltonians in
the second and third lines correspond to spin-spin interactions.
The couplings between current fluctuations are similar in form
to the density-density interactions and have not been included
explicitly because their analysis is so similar. Assuming that
|V (x,y)

σσ | are small compared to |U | in Eq. (29), the terms (63)
and (64) can be dropped because the field φσ orders and
θσ is disordered. Thus, the only coupling that is relevant in
the present setup is H1 [Eq. (62)]. We show below that this
quadratic term does not affect the stability of the Majorana
modes.

Therefore, a general perturbation is described by the
following Euclidean action:

S
(E)
2 wires =

∫ − L
2 +�

− L
2

dx

∫
dτ

(
K1

2πv1

[
(∂τ θ1)2 + v2

1(∂xθ1)2]

+ �P 1

2πξ
sin(

√
2θρ − 2θ1) + V (1)

ρρ (∂τ θρ)(∂τ θ1)

)

+
∫ L

2

L
2 −�

dx

∫
dτ

(
K2

2πv2

[
(∂τ θ2)2 + v2

2(∂xθ2)2
]

+ �P 2

2πξ
sin(

√
2θρ − 2θ2) + V (2)

ρρ (∂τ θρ)(∂τ θ2)

)

+
∫ L

2

− L
2

dx

∫
dτ

(
Kρ

2πvρ

[
(∂τ θρ)2 + v2

ρ(∂xθρ)2
])

.

(65)

We rewrite this action in terms of the new fields θ+, θ− defined
in Eq. (38). Up to local terms proportional to δ[x ± (L

2 − �)],
which we drop because they will contribute negligibly to the
bulk instanton action, we obtain

S
(E)
2 wires =

∫ − L
2 +�

− L
2

dx

∫
dτ

[
A(1)

τ (∂τ θ+)2 + A(1)
x (∂xθ+)2

+B(1)
τ (∂τ θ−)2 + A(1)

x (∂xθ−)2 + �P 1

2πξ
sin(2θ−)

+C(1)
τ (∂τ θ+)(∂τ θ−) + C(1)

x (∂xθ+)(∂xθ−)

]

+
∫ L

2

L
2 −�

dx

∫
dτ [1 → 2]

∫ L
2 −�

− L
2 +�

× dx

∫
dτ

[
Kρ

2πvρ

(∂τ θ+)2 + Kρvρ

2π
(∂xθ+)2

]
, (66)

where A(1)
τ = K1

8πv1
+ Kρ

4πvρ
+ V (1)

ρρ

2
√

2
, A(1)

x = K1v1
8π

+ Kρvρ

4π
, B(1)

τ =
K1

8πv1
+ Kρ

4πvρ
− V (1)

ρρ

2
√

2
, C(1)

τ = Kρ

2πvρ
− K1

4πv1
, C(1)

x = Kρvρ

2π
− K1v1

4π
,

and similarly with 1 replaced by 2.
We see that, in the general case, θ+ does not decouple.

However, its action is still quadratic, so we can integrate it out
exactly. We generate the following terms. On wire 1, we have

δS(1) =
∫

dω dk
2
(
C(1)

τ

)2
ω4

A
(1)
τ ω2 + A

(1)
x k2

θ2
−

+
∫

dω dk
2
(
C(1)

x

)2
k4

A
(1)
τ ω2 + A

(1)
x k2

θ2
−. (67)

We obtain an analogous expression for δS(2). We also obtain
the following bilinear, which couples wires 1 and 2:

δS(12) =
∫

dτ1 dτ2 dx1 dx2

× (
C(1)

τ C(2)
τ [∂τ1∂τ2〈θ+(1)θ+(2)〉][∂τ θ−(1)][∂τ θ−(2)]

+C(1)
x C(2)

x [∂x1∂x2〈θ+(1)θ+(2)〉][∂xθ−(1)][∂xθ−(2)]
)
.

(68)

Here, 〈θ+(1)θ+(2)〉 is the θ+ two-point function between wires
1 and 2.

Suppose now that the coupling δS(12) were absent. Then,
as in the instanton analysis of the proximity-induced case, we
could conclude that the lowest action instanton is translation-
ally invariant on 1 and 2 separately; taking k = 0 in (67) just
gives a renormalization of the kinetic term of the θ

(1)
− center

of mass mode, and similarly for δS(2). We are interested in an
instanton that tunnels from θ− = 3π

4 to θ− = 7π
4 on wire 1, and

remains in the same vacuum on wire 2. In the present context,
with δS(12) absent, such an instanton has the same form as
that obtained in the proximity-induced case on wire 1, and is
simply constant on wire 2. According to that analysis, it leads
to a splitting δE ∝ exp(−c �

ξ
).

Now, put back δS(12). We will show that the change in
the instanton (and the change in its action) is of order ξ

L−2�
,

and thus negligibly small when L − 2� � ξ . To declutter the
following argument, we set all velocities equal to 1, set all
dimensionless constants equal to 1, and let �r = (x,τ ). The
action is then

S =
∫

1and 2
dτ dx

[
(∇θ−)2 + 1

ξ 2
sin(2θ−)

]
+ δS(1) + δS(2)

+
∫

d�r1d�r2(f (�r2 − �r1)[∂τ θ−(�r1)][∂τ θ−(�r2)]

+ g(�r2 − �r1)[∂xθ−(�r1)][∂τ θ−(�r2)]), (69)

where

f (�r2 − �r1) = ∂τ1∂τ2 〈θ+(�r1)θ+(�r2)〉,
(70)

g(�r2 − �r1) = ∂x1∂x2 〈θ+(�r1)θ+(�r2)〉.
We do not need the precise forms of f and g; rather, all we
use is the fact that |∇f (�r2 − �r1)| < c′

(L−2�)3 for some constant
c′, whenever x2 − x1 > L − 2�, a condition that is always
satisfied in (69), and a similar condition for g. Let us start
with the instanton solution discussed above, i.e., the one that
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minimizes the action with δS(12) absent and tunnels between
the two vacua only on wire 1, while staying constant in one of
the vacua on wire 2. We plug it into (69) and vary with respect
to θ−(�r2) to obtain

∇2θ−(�r2) = 2

ξ 2
cos[2θ−(�r2)] + δS(�r2)

δθ−(�r2)
+ h(�r2), (71)

where

h(�r2) = π

∫
d�r1 δ(τ1)∂τf (�r2 − �r1) (72)

is sourced by the instanton on 1, which, because it varies on a
time scale ξ−1, can be taken to be πδ(τ1) for the purposes of
this calculation. From (72) and the previous bound on |∇f |,
we see that |h(�r2)| < c′�

(L−2�)3 . The key point now is that the

dimensionful quantity h(�r2) is smaller than 1
ξ 2 by a factor of

ε2 = c′�ξ 2

(L−2�)3 � 1. Thus, the inclusion of h(�r2) in (71) causes
θ−(�r2) to deviate from its zeroth-order solution only by an
amount order ε. This is the first step in a perturbative expansion
in ε, which shows that the inclusion of δS(12) causes only a
small change, of order ε, in the instanton and its action.

Our analysis did not require 2Kρ − K to be small since
we were able to integrate out θ+ exactly, regardless of their
values. Therefore, so long as 1

2K−1
ρ + K−1 < 2, which implies

that �P is relevant and generates a coherence length ξ ,
the instanton argument is still valid and leads to a splitting
δE ∝ exp(−c �

ξ
). Thus, the Majorana degeneracy is stable over

this entire region of the phase diagram, which includes more
physically interesting values than the soluble point.

VI. ELECTRON BACKSCATTERING AND PHASE SLIPS

We now study the effect of processes in the superconducting
wire, which backscatter a right-moving electron into a left-
moving one or vice versa. We can include the effect of an
electrostatic potential in the superconducting wire by adding
a term to the action

Hpot =
∫

dx V (x) ψ†
σ (x)ψσ (x)

=
∫

dx V (x) [ψ†
Rσ (x)ψRσ (x) + ψ

†
Lσ (x)ψLσ (x)

+ e−2ikF xψ
†
Rσ (x)ψLσ (x) + e2ikF xψ

†
Lσ (x)ψRσ (x)]

=
∫

dx V (x)

[√
2

π
∂xφρ +2 cos(

√
2φρ +2kF x) cos

√
2φσ

]

=
∫

dx V (x)

[√
2

π
∂xφρ + 2 cos(

√
2φρ + 2kF x)

]
. (73)

In going from the penultimate line to the final one, we have
used the fact that there is a spin gap in the SC wire that pins
the value of φσ . The first term in the final line is harmless and
can be absorbed by shifting φρ , which corresponds to a shift
of the chemical potential. Therefore, we will ignore this term
from now on. The second term in the final line causes 2π phase
slips in the order parameter in the superconducting wire ei

√
2θρ

since

[
√

2φρ(x), ∂x(
√

2θρ(x ′))] = −2πiδ(x − x ′). (74)

This equation expresses the fact that, when an electron in a 1D
system is backscattered, a 2π phase slip occurs.

These phase slips cause transitions between the two states
of the qubit (or, in the fermion-parity basis, they cause a
splitting between the two states). At a technical level, this
occurs because a phase slip at the origin causes

√
2θρ to wind

by 2π on half of the system. Then, θ1 can wind by π (while
remaining at the minimum of the cosine potential), and the
system will make a transition from the state ( 3π

4 , 3π
4 ) ≡ ( 7π

4 , 7π
4 )

to ( 3π
4 , 7π

4 ) ≡ ( 7π
4 , 3π

4 ). At a more physical level, when a
phase slip occurs, a vortex tunnels across the wire quantum
mechanically. Since there is no barrier for a vortex to move
outside the wire, a vortex that tunnels through the midpoint
of the SC wire can then encircle half of the SC wire, along
with the NW, which is in contact with that half of the SC wire.
The vortex thereby measures the fermion parity of that NW
by the Aharonov-Casher effect, as is depicted schematically
in process (c) in Fig. 4.

Note that if the phase slip occurs between −L + � and
L − �, where the semiconducting wire is nontopological or
is absent, there will only be gradient energy in θρ (or its dual
equivalent, fluctuation energy in φρ). However, if the phase slip
occurs at a point x satisfying |L − �| < |x| < |L|, where there
is a topological region of wire, then it will put a kink in

√
2θρ

in a region where it is locked by the potential sin(
√

2θρ − 2θ1).
Due to the energy cost of a kink, this will leave the system in
a higher energy state. The kink is simply a fermion excited
above the gap. In order to return to a ground state, another
instanton or an antiinstanton must occur. However, this double
process does not mix or split ground states.

We will consider three different types of potentials V (x),
which can backscatter electrons. First, we consider a single
impurity. For simplicity, we will focus on the case of a δ-
function impurity at the origin V (x) = v

2 δ(x), but the physics
will be the same for any potential that is nonzero only in a
region of length much less than L − 2� near the middle of the
SC wire. Then, the Hamiltonian (73) takes the form

H1−imp = v cos[
√

2φρ(0)]. (75)

The RG equation for v follows from the scaling dimension for
cos(

√
2φρ):

dv

dl
=

(
1 − 1

2
Kρ

)
v. (76)

For Kρ > 2, this is irrelevant; in the large-L, low-temperature
limit, the superconductor heals itself and the backscattering
amplitude goes asymptotically to zero. However, for Kρ < 2,
the SC wire is effectively broken in two by the impurity.
The qubit is then lost. Therefore, it is necessary to have
sufficiently strong attractive interactions in the SC wire
that Kρ > 2. Even when this is satisfied, the backscattering
amplitude vanishes as a power law in the system size, not
exponentially. Since backscattering and phase-slip processes
cause transitions between the two different states of the qubit
in the phase basis, they cause an energy splitting between states
of different fermion parity:

�E ∝ 〈v cos(
√

2φρ)〉 ∝ |v|
LKρ/2

. (77)
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Since φρ is fixed at the ends of the SC wire (since no current
flows off the ends), the one-point function for cos

√
2φρ has

the L dependence shown above.
Now, suppose, instead, that there is a random distribution

of impurities so that

V (x)V (x ′) = Wδ(x − x ′). (78)

Then, we replicate the action by introducing an additional
index α on the field φα

ρ with α = 1,2, . . . ,N . We will take
N → 0 at the end of the calculation in order to take the
quenched average over all realizations of the disorder. The
disorder-averaged effective action takes the form

Srandom =
∫

dτ dτ ′dx W cos
{√

2
[
φα

ρ (x,τ ) − φβ
ρ (x,τ ′)

]}
.

(79)

The RG equation for W is

dW

dl
= (3 − Kρ)W. (80)

Thus, we need a larger Kρ for the superconductivity to survive
a random distribution of impurities, and if Kρ > 3 is satisfied,
then there will be an energy splitting:

�E ∝ W

LKρ−2
. (81)

Thus far, we have focused on backscattering by impurities,
which effectively create weak spots in the wire where a
vortex can tunnel through. However, even in a completely
clean system, there is some amplitude for backscattering. For
instance, let us suppose that V (x) is constant near the middle of
the wire and goes to zero smoothly near the ends. To make this
concrete, let us take V (x) = V0 for |x| � L/2 and V (x) = 0
for |x| = L/2. We will assume that V (x) varies smoothly, so
that the Fourier transform Ṽ (q) ∼ e−q2b2

for q � 1/L, where
b > ξ . Then, from the last line of Eq. (73), we expect a splitting

�E ∝
∫ L

2 −�

− L
2 +�

dx
V (x) cos 2kF x(

L
2 − |x|) Kρ

2 −2
<

e−4k2
F b2

�
Kρ

2 −2
. (82)

Therefore, as the potential becomes smoother and smoother,
the splitting, which it induces through electron backscattering
and phase slips, goes exponentially to zero with the length scale
b over which the potential varies. Inhomogeneities enhance
backscattering, as we saw in Eqs. (77) and (81).

VII. DISCUSSION

As we saw in Sec. VI, the effects of electron backscattering
by impurities can be mitigated by making Kρ large. In a su-
perconducting wire, Kρ = 2π

√
Awρsκ ∝ k2

F Aw ∝ Nchannels

and v = √
Awρs/κ with Aw, ρs , and κ being the cross-

sectional area, superconducting stiffness, and compressibility,
respectively.29 Therefore, if the superconducting wire has
enough channels or, equivalently, if the superconducting wire
has sufficiently large cross-sectional area and/or sufficiently
large superfluid density, we can have Kρ large. For a typical
quasi-one-dimensional superconductor (e.g., aluminum) with
the cross-sectional area Aw ∼104 nm2, the Luttinger parameter
Kρ ∼106 and velocity v∼105 m/s. Although this is not as

good as exponential decay as a matter of principle, it may
be just as good as a practical matter. This may be important
since it could be very difficult to tune the chemical potential
appreciably in the semiconducting wire (which is necessary to
move the Majorana zero modes) if it is in contact with a bulk
3D superconductor. Furthermore, coating the semiconducting
wires with superconducting material, as depicted in Fig. 2,
may be the easiest way to make a complex network of wires
(especially a three-dimensional network), which is in contact
with a superconductor. [We thank C. Marcus for his colorful
culinary metaphor comparing the situation in Fig. 2(b) to
mustard on a hot dog.] However, such an architecture will
necessarily be, at best, an algebraically ordered superconductor
(except, perhaps, at the lowest temperatures, at which the
coupling between wires causes a crossover to 3D supercon-
ductivity). Therefore, it is significant that our results show
that such a network supports Majorana fermion nearly zero
modes and that their splitting can be made small (albeit not
exponentially so).

We also note that it is only important that Kρ be large
in the regions between the topological semiconducting wire
segments. In the topological semiconducting wire segments,
the phase is locked so that 2π phase slips can not occur
(although harmless 4π phase slips can occur). Therefore, one
can imagine a scenario in which the topological segments
are coated with a thin superconducting film, while the
nontopological segments between them are in contact with
essentially bulk 3D superconductors. This would lead to a
protected topological qubit, although it would be difficult
(if not impossible) to move the Majorana zero modes since
that would involve tuning the chemical potential in the
nontopological regions (which are in contact with bulk 3D
superconductors) to drive them into the topological phase. One
may, alternatively, in a system in which a semiconducting wire
is coated with a thin layer of superconducting material, use a
gate voltage to occupy a large (even) number of subbands
of the semiconducting wire in the nontopological regions.
This would lead to a large effective Kρ for the combined
superconductor-semiconductor system in the nontopological
regions and, therefore, a large power for the decay of the
splitting due to phase slips in these regions.

As the previous sentence anticipates, our methods should
be generalizable to multichannel semiconducting wires.30–33

They should also apply to a semiconducting wire, which is
near a superconducting grain (as in a model of quasi-1D wires
in LAO/STO interfaces24). If the linear size of the grain r

is smaller than the superconducting coherence length ξ , then
we can treat the grain as a zero-dimensional system. Suppose
that the wire also has length r . Then, the Hamiltonian for the
wire coupled to the grain is simply (1) with φ independent of
position i but dependent on time. There will also be a charging
energy U (N − N0)2, which causes φ to fluctuate. There will
be no long-ranged order in the superconducting grain, but it
can still induce a single-fermion gap in the semiconducting
wire. Of course, if the wire has length L � ξ , then the grain
will only change the behavior of a short section of the wire,
and the two ends of this section will be relatively close to
each other. But, if the wire passes near many such grains,
then they can induce a single-fermion gap in the wire. If the
coupling between the grains is large compared to their charging
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energies, then, in the long-wavelength limit, the grains will
develop algebraic order. The superconducting grains can be
modeled by a superconducting wire, and this situation can be
modeled with the Hamiltonian of Sec. III, but with a very small
velocity.34 If there is Ohmic dissipation, then the grains may
not even have power-law superconducting order, but may have
exponentially decaying superconducting correlations.

In fact, we will have Majorana zero modes in a system with
exponentially decaying superconducting correlations if we
simply take our model to finite temperature. Then, the θ+ field
in Eq. (39) will have exponentially decaying correlations, with
a correlation length inversely proportional to the temperature.
The θ− field will still be pinned to a minimum of the potential,
but it will be possible for the system to be thermally excited
over the barrier from one minimum to the other. Therefore, if
�F is the bulk single-fermion gap, there will be a contribution
due to processes (a) and (b) in Fig. 4 to the coherence time
for a Majorana qubit of order ∼ e−�F /T , just as if there
were long-ranged superconducting order. However, there will
also be a contribution from quantum phase slips, process (c),
which will increase with temperature as T Kρ/2 for a single
impurity and T Kρ−2 for a random distribution of impurities.
We similarly expect Majorana fermion zero modes to survive in
two-dimensional structures in which a superconducting gap is
induced via the proximity effect to stabilize a phase with Ising
anyons,35–40 but long-ranged superconducting order is disor-
dered by quantum or thermal fluctuations. If the single-particle
gap remains, then the Majorana fermion zero modes associated

with the Ising anyons could survive. However, quantum phase
slips are suppressed,41 and, therefore, the splitting will be
exponentially rather than algebraically decaying. Of course,
there is nothing surprising about having protected Majorana
zero modes in a system with no long-range order or even
algebraic order since this is precisely the case with any true
topological phase of matter, as in the examples mentioned in
the Introduction. However, the particular route that we have
found to such a system is new and interesting.

In this paper, we have shown that a gapless system can be
nearly as good as a fully gapped one at supporting protected
Majorana fermion zero modes. It is an interesting open
question as to whether a gapless system might be capable
of supporting protected degrees of freedom, which can not
occur in fully gapped 1D systems.42–44

Note added: After the initial version of this paper appeared
on the arXiv, several other papers45–47 on related topics were
submitted to the arXiv.
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