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Non-Fermi-liquid d-wavemetal phase of
strongly interacting electrons
Hong-Chen Jiang1, Matthew S. Block2, Ryan V. Mishmash3, James R. Garrison3, D. N. Sheng4, Olexei I. Motrunich5

& Matthew P. A. Fisher3

Developing a theoretical framework for conducting electronic fluids qualitatively distinct from those described by
Landau’s Fermi-liquid theory is of central importance to many outstanding problems in condensed matter physics.
One such problem is that, above the transition temperature and near optimal doping, high-transition-temperature
copper-oxide superconductors exhibit ‘strange metal’ behaviour that is inconsistent with being a traditional Landau
Fermi liquid. Indeed, a microscopic theory of a strange-metal quantum phase could shed new light on the interesting
low-temperature behaviour in thepseudogap regime andon thed-wave superconductor itself. Herewepresent a theory
for a specific example of a strange metal—the ‘d-wave metal’. Using variational wavefunctions, gauge theoretic
arguments, and ultimately large-scale density matrix renormalization group calculations, we show that this
remarkable quantum phase is the ground state of a reasonable microscopic Hamiltonian—the usual t–J model with
electron kinetic energy t and two-spin exchange J supplemented with a frustrated electron ‘ring-exchange’ term,
which we here examine extensively on the square lattice two-leg ladder. These findings constitute an explicit
theoretical example of a genuine non-Fermi-liquid metal existing as the ground state of a realistic model.

Over the past several decades, experiments on strongly correlated
materials have routinely revealed, in certain parts of the phase dia-
gram, conducting liquids with physical properties that are qualita-
tively inconsistent with Landau’s Fermi-liquid theory1. Examples of
these ‘non-Fermi-liquid’ metals2 include the strange-metal phase of
the copper-oxide superconductors3,4 and the heavy fermion materials
near a quantum critical point5,6. However, such non-Fermi-liquid
behaviour has been challenging to characterize theoretically, largely
owing to the lack of a weakly interacting quasiparticle description. It is
even difficult to define a non-Fermi liquid unambiguously, although
possible deviations from Fermi-liquid theory include, for example,
violation of Luttinger’s volume theorem7, vanishing quasiparticle
weight, and anomalous thermodynamics and transport5,8–12. This
theoretical difficulty is probably preventing a full understanding of
the mechanism behind high-temperature superconductivity and also
hampering theoretically guided searches for new exotic materials.
Pioneering early theoretical work on the copper oxides relied on

twomain premises3,13–17, which guide but do not constrain our pursuit
of non-Fermi-liquid physics: (1) that the microscopic behaviour can
be described by the square lattice Hubbard model with on-site
Coulomb repulsion, which at strong coupling reduces in its simplest
form to the t–J model; and (2) that the physics of the system can be
faithfully represented by the ‘slave-boson’ technique, in which the
physical electron operator is written as the product of a slave boson
(‘chargon’), which carries the electronic charge, and a spin-half fer-
mionic ‘spinon’18, which carries the spin (both chargon and spinon
are strongly coupled to an emergent gauge field). However, within the
slave-boson formulation, it has been difficult to access non-Fermi-
liquid physics at low temperatures because this requires the chargons
to be in an uncondensed, yet conducting, quantum phase19—the elu-
sive ‘Bose metal’. Early attempts to describe the strange metal in this
framework treated it as a strictly finite-temperature phenomenon in

which the slave bosons form an uncondensed, but classical, Bose
fluid15,16, a treatment which excludes the possibility that the strange
metal is a true quantum phase at all.
In our view, the strange metal should be viewed as a genuine two-

dimensional (2D) quantum phase, which may be unstable to super-
conducting or pseudogap behaviour. Indeed, recent experimental
work on La2–xSrxCuO4 has shown that when superconductivity is
stripped away by high magnetic fields, strange-metal behaviour per-
sists over a wide doping range down to extremely low temperatures20.
Thus, the strange metal in the copper oxides is quite possibly a true,
extended, zero-temperature quantum phase4.
Inspired by these results and building on our previous work, which

proposed21 and realized22–24 a true, zero-temperature Bose metal, we
use a variant of the slave-boson approach to construct and analyse an
exotic 2D non-Fermi-liquid quantum phase, which we refer to as the
‘d-wave metal’. The d-wave metal is modelled by a variational wave-
function consisting of a product of a d-wave Bose-metal wave-
function21–24 for the chargons and a usual Slater determinant for the
spinons. Importantly, placing the chargons in the d-wave Bose metal
state provides the many-electron wavefunction with a sign structure
that is qualitatively distinct from that of a simple Slater determinant,
and in particular, imprints strong singlet d-wave two-particle cor-
relations. This results in a gapless, conducting quantum fluid with
an electron momentum distribution function that exhibits a critical,
singular surface that violates Luttinger’s volume theorem7, as well
as prominent critical Cooper pairs with d-wave character. The d-
wave nature of our phase is tantalizingly suggestive of incipient
d-wave superconductivity and is thus of possible relevance to the
copper oxides.
Furthermore, tying back into premise (1) above, we propose a rea-

sonably simple model Hamiltonian to stabilize the d-wave metal by
augmenting the traditional t–J model with a four-site ring-exchange
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term K. Then, thanks to the numerical and analytical tractability
provided by the density matrix renormalization group (DMRG)25,26

and bosonization27–30, we can place the problem on a quasi-one-
dimensional (1D) two-leg ladder geometry (see Fig. 1). In this system,
we establish several lines of compelling evidence that the d-wave
metal phase exists as the quantum ground state of our t–J–K model
Hamiltonian, andwe are able to characterize and understand the phase
very thoroughly. Importantly, our realized two-leg d-wave metal state
is non-perturbative, in that it cannot be understood within conven-
tional Luttinger liquid theory27 starting from free electrons31. We
believe this study to be one of the first unbiased numerical demonstra-
tions of a non-Fermi-liquid metal as the stable ground state of a local
Hamiltonian. We also discuss straightforward extensions of these
results to two dimensions, and comment on their potential relevance
to the actual non-Fermi liquids observed in experiments.

Gauge theory and variational wavefunctions
Our theoretical description of the non-Fermi-liquid d-wave metal
begins by writing the electron operator for site r and spin state
s5 ", # as the product of a bosonic chargon b(r) and fermionic spinon
fs(r); that is, cs(r)5 b(r)fs(r). With b(r) a hard-core boson operator,
this construction prohibits doubly occupied sites, an assumption
we make from here on. The physical electron Hilbert space is reco-
vered by implementing at each site the constraint b{ rð Þb rð Þ~P

s f
{
s rð Þfs rð Þ~

P
s c

{
s rð Þcs rð Þ~ne rð Þ, which physically means that

a given site is either empty or contains a chargon and exactly one
spinon to compose an electron. Theoretically, this is achieved by
strongly coupling the b and f fields via an emergent gauge field3.
Under the natural assumption that the spinons are in a Fermi-sea

state, the behaviour of the chargons determines the resulting elec-
tronic phase. Condensing the bosonic chargons so that Æb(r)æ? 0
implies cs(r) / fs(r); so, in this case, the electronic phase is that of
a Fermi liquid. It then follows that to describe a non-Fermi-liquid
conducting quantum fluid within this framework, the chargons
must not condense, Æb(r)æ5 0, butmust still conduct. However, acces-
sing such a ‘Bosemetal’ phase has proved extremely difficult. In recent
work21–24, however, we have realized a concrete, genuine Bose-metal
phase, which we named the ‘‘d-wave Bose liquid’’ or, equivalently, the
‘‘d-wave Bose metal’’ (DBM). The DBM is central to our construction
of the d-wavemetal. Specifically, in theDBM,we decompose the hard-
core boson as b rð Þ~d1 rð Þd2(r) with the constraint d{1 rð Þd1 rð Þ~
d{2 rð Þd2 rð Þ~b{ rð Þb rð Þ, where d1 and d2 are fermionic slave particles
(‘partons’) with anisotropic hopping patterns: d1 (d2) is chosen to hop
preferentially in the x̂ ŷð Þ direction. The resulting bosonic phase is a
conducting, yet uncondensed, quantum fluid, which is precisely the
phase into which we place the charge sector of the d-wave metal.
That is, for the d-wave metal we take an all-fermionic decomposition
of the electron

cs rð Þ~d1 rð Þd2 rð Þfs rð Þ ð1Þ

subject to the constraint

d{1 rð Þd1 rð Þ~d{2 rð Þd2 rð Þ~
X

s

f {s rð Þfs rð Þ~ne rð Þ ð2Þ

The resulting theory now includes two gauge fields: one to glue
together d1 and d2 to form the chargon and another to glue together
b and f to form the electron. In the Supplementary Information,we give
a detailed bosonization analysis of this gauge theory for the two-leg
ladder study (see below).
Guided by the slave-boson construction, one cannaturally construct

electronic variational wavefunctions by taking the product of a hard-
core bosonic wavefunction yb and a fermionic wave function yf and
evaluating them at the same coordinates (Gutzwiller projection):

yc r:i

n o
, r;i

n o! "
~ G yb Rif gð Þ|yf r:i

n o
, r;i

n o! "h i
ð3Þ

where G performs the projection into the physical electronic Hilbert

space: Rif g~ r:i

n oS
r;i

n o
. If we put the f partons into a spin-singlet

Fermi-sea state with orbitals {kj} (Slater determinant), that is,

yf r:i

n o
, r;i

n o! "
~ det eikj : r

:
i

h i
det eikj : r

;
i

h i
~yFS

f , then we can

model both the Fermi-liquid metal and the non-Fermi-liquid d-
wave metal in a unified way. In both cases, the wavefunctions are
straightforward to implement using variational Monte Carlo (VMC)
methods32–34.
For the Fermi liquid, we put the b partons into a superfluid wave-

function ySF
b via a typical Jastrow form, so that, schematically, yFL

c ~

G ySF
b |yFS

f

h i
. Given that ySF

b is a positive wavefunction, the sign

structure35 of yFL
c is identical to that of the non-interacting Fermi-

sea state. In contrast, to model the d-wave metal, we put the b partons
into a Bose-metal wavefunction according to the DBM construction
of refs 21–24:

yb Rif gð Þ~yd1 Rif gð Þ|yd2 Rif gð Þ~yDBM
b ð4Þ

where yd1 yd2

# $
is a Slater determinant with a Fermi sea compressed

in the x̂ ŷð Þ direction21. Then, we have

yd-wave metal
c ~ G yDBM

b |yFS
f

h i
~ G yd1|yd2|yFS

f

h i
ð5Þ

Interestingly, this construction, equation (5), is actually a time-
reversal invariant analogue of the composite Fermi-liquid description
of the half-filled Landau level36, where the d-wave Bose-metal wave-
function21 has the role of Laughlin’s n5 1/2 bosonic state37. Just as
Laughlin’s wavefunction imprints a nontrivial complex phase pattern
on the Slater determinant, the DBM wavefunction imprints a non-
trivial d-wave sign structure. There are many physical signatures
associated with putting the chargons into the DBM phase, making
the d-wave metal dramatically distinguishable from the traditional
Landau Fermi liquid (see below).

Microscopic ring-exchange model
The t–J–K model Hamiltonian which we propose to stabilize the
d-wave metal phase is given by

H~HtJzHK ð6Þ

HtJ~{t
X

i,jh i,s~:,;

c{iscjszc{jscis
! "

zJ
X

i,jh i
Si : Sj ð7Þ

HK~2K
X

%
S{
13S24zS{

24S13

! "
ð8Þ

where Æi, jæ and% indicate sums over all nearest-neighbour bonds and
all elementary plaquettes of the 2D square lattice, respectively. In the

t

t

J

K

1 2

34
–HK( )     =     2K( – )

a

b

Figure 1 | Schematic of the t–J–K model Hamiltonian. a, Picture of the full
t–J–K model, equation (6), on the two-leg ladder. We use periodic boundary
conditions in the long (x̂) direction for all calculations. b, Action of the ring
term HK, equation (8), on a single plaquette, elucidating its ‘singlet-rotation’
nature.
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spirit of the t–Jmodel, we choose to work in the subspace of no doubly

occupied sites, but for simplicity, we do ignore the term {
J
4
ninj

present in typical definitions of the t–J model3. In equation (8),
we have defined a singlet creation operator on two sites as S{

ij~
1ffiffiffi
2

p c{i:c
{
j;{c{i;c

{
j:

! "
, so that HK can be viewed as a four-site singlet-

rotation term (see Fig. 1). ForK. 0, the ground state ofHK on a single
plaquette with two electrons is a dxy-orbital spin-singlet; so, loosely
speaking, HK has a tendency to build d-wave correlations into the
system and qualitatively alter the sign structure of the electronic
ground state. Further arguments for studying this model in our inves-
tigation of the d-wave metal can be found in the Supplementary
Information.
Although not particularly conventional, our ring-exchange term

HK (which should not be confused with four-site cyclic spin-
exchange38–40) is present when projecting the continuum many-body
Hamiltonian for screened Coulomb-interacting electrons into a nar-
row, tight-binding band41 (see Supplementary Information). In fact,
estimating the strength of K, or coefficients on related terms, in real
materials such as La2–xSrxCuO4 is an interesting unresolved question.

DMRG and VMC study of two-leg model
Unfortunately, as with any interacting fermionic model, our t–J–K
Hamiltonian suffers from the ‘fermionic sign problem’, rendering
quantum Monte Carlo calculations inapplicable42. We thus follow
the heretofore successful22–24,39,40 approach of accessing 2D gapless
phases by studying their quasi-1D descendants on ladder geometries,
relying heavily on large-scale DMRG calculations. In fact, we have
already established22–24 that for two, three and four legs, the DBM
phase itself is the stable ground state of a boson ring-exchange model
analogous to equation (6). Here, we take the important first step of
placing the electron ring t–J–Kmodel on the two-leg ladder in search
of a two-leg descendant of the d-wave metal.
For concreteness, we now consider the model, equation (6), on the

two-leg ladder (see Fig. 1) at a generic electron density of r5Ne/
(2Lx)5 1/3, where Ne5Nc"1Nc# is the total number of electrons
and Lx is the length of our two-leg ladder (that is, the system has
Lx3 2 total sites). At this density r5 1/3, 1/2 on the two-leg ladder,
the non-interacting ground state is a spin-singlet wherein electrons of
each spin partially fill the bonding band (ky5 0), leaving the anti-
bonding band (ky5 p) empty. Thus, for t?K, we expect the system
to be in a simple one-band metallic state, which is a two-leg analogue
of the Fermi liquid. Formally speaking, this phase is a conventional
Luttinger liquid with two 1D gaplessmodes (central charge c5 2). For
moderate values of ring exchange, K *> t, we anticipate the unconven-
tional non-Fermi-liquid d-wave metal to be a candidate ground state.
On the two-leg ladder at this density, the d-wave metal phase has
characteristic band-filling configurations for the d1, d2 and f"/#

partons as shown in Fig. 2: d1 partially fills both bonding and anti-
bonding bands, whereas d2 and f"/# fill only the bonding band. (The d1
and d2 configurations constitute the phase denoted ‘‘DBL[2,1]’’ in
ref. 22.) In a mean-field approximation in which the partons do not
interact, the system has five 1D gapless modes corresponding to the
five total partially filled bands. However, in the strong-coupling limit
of the full quasi-1D gauge theory (see the Supplementary Information
for details), two orthonormal linear combinations of the original five
modes are rendered massive, leaving an unconventional Luttinger
liquid with c5 3 gapless modes.
We now provide extensive numerical evidence that this two-leg

descendant of the d-wave metal exists as the ground state of the
t–J–Kmodel over a wide region of the phase diagram.We summarize
these results in Fig. 3 by presenting the full phase diagram in the
parametersK/t versus J/t as obtained byDMRG calculations on length
Lx5 24 and 48 systems at electron density r5 1/3. For small K, we
find a conventional one-band (spinful) Luttinger liquid phase which
is a two-leg analogue of the Fermi-liquid metal. For moderate J and
upon increasing K, the system goes into the unconventional non-
Fermi-liquid d-wave metal phase, which is the main focus of this
work. The phase boundaries in Fig. 3, all of which represent strong
first-order transitions, were determined by measuring several stand-
ard momentum-space correlation functions in the DMRG (see the
Supplementary Information for details): the electron momentum dis-
tribution function c{qscqs

D E
, the density–density structure factor

dnqdn{q

& '
, and the spin–spin structure factor Sq : S{q

& '
.

For concreteness, we now focus on the cut along J/t5 2 in Fig. 3 for
a 483 2 system with Ne5 32 electrons. We take one point deep
within the conventional one-band metal at K/t5 0.5 and the other

0 π–π 0 π

f↑, f↓d2d1

kFd1
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–π(0)kFd1

(π) kFd2
0 π–π kFf
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(k
x,

 k
y) 

Figure 2 | Picture of the parton bands for the d-wavemetal phase. We show
orbitals for a 483 2 system, showing partially occupied bonding (ky5 0) and
antibonding (ky5p) bands for d1 and partially occupied bonding bands for d2
and f"/#; that is, each Slater determinant in equation (5) consists ofmomentum-
space orbitals as depicted here. The total electron number is Ne5Nc" 1

Nc#5Nd1 5Nd2 5Nf" 1 Nf#5 32, with Nf"5Nf#5 16 so that Stot5 0; the
longitudinal boundary conditions are periodic for d1 and antiperiodic for d2
and f"/#. This is precisely the same d-wave metal configuration for which we
display characteristic measurements in Fig. 5.
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Figure 3 | Phase diagram of the t–J–K electron ring-exchange model at
electron density r5 1/3 on the two-leg ladder. In addition to the
conventional one-band metal (‘Fermi-liquid metal’) and exotic ‘non-Fermi-
liquid d-wavemetal’, there are two other realized phases. For small J, there is an
intermediate phase with fully polarized electrons. For large K, owing to the
inherently attractive nature of ring-exchange interactions22, the system
generally phase separates along the ladder.
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point deep within the exotic d-wave metal at K/t5 1.8. First focusing
on the former case, in Fig. 4 we show DMRG measurements char-
acteristic of the conventional Luttinger liquid. The ground state is a
spin-singlet with a sharp singularity in the electron momentum dis-
tribution function at qy5 0 and qx~kF~pNc:

(
Lx~8 | 2p=48,

which is a usual Fermi wavevector determined solely from the elec-
tron density. The density–density and spin–spin structure factors
at qy5 0 also exhibit familiar features at qx5 0 and qx~2kF~
16 | 2p=48, both characteristic of an ordinary one-band metallic
state with gapless charge and spin modes27. We stress that, even with
the constraint of no double-occupancy and non-zero K/t5 0.5 and
J/t5 2, the interacting electronic system is still qualitatively very simi-
lar to the two-leg free Fermi gas; analogously, the 2D Fermi liquid is
in many ways qualitatively similar to the 2D free Fermi gas. In both
cases, the main differences are basically quantitative and are well
understood1,27.
We turn now to the characteristic point within the d-wave metal

phase at J/t5 2 and K/t5 1.8. In Fig. 5, we show a set of DMRG
measurements at this point, as well as measurements corresponding
to a variational wavefunction chosen such that its singular features
best reproduce the DMRG data (see the Supplementary Informa-
tion for details of our VMC methods). The selected d-wave metal

wavefunction is depicted schematically in Fig. 2. Specifically, we have
the following parton Fermi wavevectors: 2k 0ð Þ

Fd1
~21 | 2p=48,

2k pð Þ
Fd1

~11 | 2p=48, 2kFd2~32 | 2p=48, and 2kFf~16 | 2p=48.
The overall agreement between the DMRG and VMC measurements
is very compelling, and we now summarize our understanding of
these results from the perspective of d-wave metal theory.
In sharp contrast to the conventional Luttinger liquid, the elec-

tron momentum distribution function now has singularities for both
qy5 0 and qy5 p at a wavevector qx~Ke:½k(0)Fd1

{k(p)Fd1
$
.
2. This

wavevector corresponds to a composite electron made from a com-
bination of parton fields consisting of a right-moving d1 parton, a left-
moving d2 parton, and a right-moving spinon: d(qy)1R d2Lf:R. In fact,
these ‘enhanced electrons’ can be guessed from simple ‘Amperian
rules’3,43,44 in our quasi-1D gauge theory, as described in detail in
the Supplementary Information.
The corresponding density–density and spin–spin structure fac-

tors, displayed in Fig. 5b and c, also show nontrivial behaviour. We
expect the density–density structure factor to be sensitive to each
parton configuration individually and thus have singular features
at various ‘2kF’ parton wavevectors (see refs 21, 23 and the Sup-
plementary Information). In the DMRG measurements, the most
noticeable features are at qy5 0 and qx~2k 0ð Þ

Fd1
, 2k pð Þ

Fd1
, which allow

DMRG qy = 0
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Figure 4 | DMRGmeasurements in the conventional Luttinger liquid phase
at J/t5 2 and K/t5 0.5. We show the electron momentum distribution
function (a), the density–density structure factor (b) and the spin–spin structure
factor (c). The important wavevectors kF and 2kF, as described in the text, are
highlighted by vertical dashed-dotted lines.
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Figure 5 | DMRGmeasurements in the unconventional d-wavemetal phase
at J/t5 2 andK/t5 1.8. Weshow the samequantities as in Fig. 4.Here, we also
show the matching VMC measurements using a d-wave metal trial
wavefunction, depicted in Fig. 2.
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us to read off directly the realized d1 parton configuration (see Fig. 2).
The lack of these features in the VMC data, as well as the lack of
analogous features at qx5 2kFd2 in the DMRG data, can be under-
stood within our gauge theory framework as presented in the Sup-
plementary Information, where we also note that our wavefunction is
only a caricature of the full theory. Finally, the spin–spin structure
factor at qy5 0 not only has a familiar, expected feature at qx5 2kFf
coming from the spinon, but also remarkably contains a feature at
qx5 2Ke that can be thought of as a ‘2kF’ wavevector from the dom-
inant ‘electron’ in Fig. 5a. All in all, as we further explain in the
Supplementary Information, the DMRG measurements are consis-
tent, even on a fine quantitative level, with being in a stable non-
Fermi-liquid d-wave metal phase.
We note that thewavevectorKe depends on the interaction strength

K/t because the wavevectors k 0ð Þ
Fd1

and k pð Þ
Fd1

vary with ring exchange22.
In Fig. 6, we show at J/t5 2 evolution with K/t of the wavevector Ke,
that is, the location of the sharp steps in the electron momentum
distribution function (see Fig. 5a), as determined by DMRG. Given
that the momentum-space ‘volume’ enclosed by these singular fea-
tures depends on the interaction K/t and is not simply determined by
the total density of electrons, we may confidently say that the d-wave
metal violates Luttinger’s volume theorem7. In fact, the very notion of
a single ‘Fermi surface’ is actually ambiguous in the d-wave metal
phase. We also show in Fig. 6, for those values of K/t at which they
are discernible, the wavevectors 2k 0ð Þ

Fd1
and 2k pð Þ

Fd1
as identified by fea-

tures in theDMRG-measured density–density structure factor at qy5
0 (see Fig. 5b). For all points, the locations of the identified features
satisfy the nontrivial identity Ke~½2k(0)Fd1

{2k(p)Fd1
$
.
4, as predicted by

our theory.
A remarkable property of the d-wave metal state found in the

DMRG is that it has prominent critical d-wave Cooper pairs residing
on the diagonals, as anticipated earlier from the ring energetics (see
the Supplementary Information). Such Cooper pair correlations have
the slowest power-law decay of all the discussed observables, includ-
ing the electron Green’s function. This is in stark contrast with a
conventional metal and suggests that the d-wave metal phase has
some incipient d-wave superconductivity in two dimensions.
As a final piece of evidence that the realized DMRG phase is in fact

the d-wavemetal, we havemeasured the number of 1D gaplessmodes,
that is, the effective central charge c, via scaling of the bipartite entan-
glement entropy45,46 in the DMRG and VMC47,48 wavefunctions. As
explained above, we expect c5 2 in the conventional Luttinger liquid
and c5 3 in the d-wavemetal. See the Supplementary Information for
a detailed comparisonof theDMRGandVMCentropymeasurements,
where we show that the DMRG–VMC agreement is just as impressive

as it is for the more traditional measurements of Fig. 5. The effective
central charge versus K/t at J/t5 2 as determined by the DMRG is
shown in Fig. 7. Indeed, these measurements indicate that c^2 in
the conventional one-band metal, whereas c^3 in the exotic d-wave
metal. Because c5 3. 2, our putative d-wavemetal phase clearly can-
not be understood as an instability out of the conventional one-band
metal, but also, because c5 3, 4, the critical bonding and antibonding
electrons inFig. 5a cannot be reproducedby anyperturbative treatment
starting from free electrons31 (see also the Supplementary Information).

Discussion and outlook
Here we have presented strong evidence for the stability of a two-leg
descendant of our exotic strange-metal phase, the d-wave metal, and
we conclude with an outlook on exciting future work. Firstly, our
present two-leg d-wave metal treatment is readily extendable to sys-
tems with more legs. Ref. 24 established the stability of the d-wave
Bose metal, the main ingredient of the d-wave metal, on three- and
four-leg ladders. Thus, we do not envision any conceptual obstacles in
the way of realizing a similar result for the d-wave metal. However, we
do anticipate that adding more legs will be very challenging numeri-
cally for the DMRG owing to the large amount of spatial entangle-
ment present in the d-wave metal and Fermi liquid—this is also the
current limitation preventing modern 2D tensor network state meth-
ods from attacking such problems49.
With the goal of connecting to experiments, it would be desirable to

perform a detailed energetics study of the t–J–Kmodel in two dimen-
sions and explore the applicability of such models to strongly corre-
latedmaterials. By studying 2D variational wavefunctions based on the
d-wavemetal, it should be possible to compare physical propertieswith
experimentally observed strange metals, such as that in the copper
oxides. This could include various instabilities of the d-wave metal,
such as spinon pairing as a model of a pseudogap metal or chargon
pairing as a model of an ‘‘orthogonal metal’’, discussed recently50. The
d-wave sign structure already inherent in the non-superconducting
parent d-wave metal suggests that there may be incipient d-wave
superconductivity of the copper-oxide variety, which is particularly
exciting. Although we have stressed its Luttinger volume violation as
a characteristic non-Fermi liquidproperty of thed-wavemetal,wenote
that the 2D phase will also have no Landau quasiparticle as well as
exhibit non-Fermi-liquid-like thermodynamics and transport. Com-
paring these predictionswith properties of real strangemetalswouldbe
interesting. In the end, however, we stress the conceptual nature of the
present study, and hope that our ideas may open up new avenues for
thinking about non-Fermi liquid electronic fluids.
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