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We study the spin- 1
2

Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic
interactions J

1

and J

2

, which possesses a nonmagnetic region that has been debated for many years and might
realize the interesting Z

2

spin liquid (SL). We use the density matrix renormalization group approach with
explicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders
with different boundary conditions. With increasing J

2

, we find a Néel phase, a plaquette valence-bond (PVB)
phase with a finite spin gap, and a possible spin liquid in a small region of J

2

between these two phases. From the
finite-size scaling of the magnetic order parameter, we estimate that the Néel order vanishes at J

2

/J

1

' 0.44.
For 0.5 < J

2

/J

1

< 0.61, we find dimer correlations and PVB textures whose decay lengths grow strongly with
increasing system width, consistent with a long-range PVB order in the two-dimensional limit. The dimer-dimer
correlations reveal the s-wave character of the PVB order. For 0.44 < J

2

/J

1

< 0.5, both spin order, dimer
order, and spin gap are small on finite-size systems and appear to scale to zero with increasing system width,
which is consistent with a possible gapless SL or a near-critical behavior. We compare and contrast our results
with earlier numerical studies.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

Introduction.—Quantum spin liquid (SL) is an exotic state
of matter where a spin system does not form magneti-
cally ordered state or break lattice symmetries even at zero
temperature[1]. Understanding spin liquids is important in
frustrated magnetic systems and may also hold clues to under-
stand non-Fermi liquid of doped Mott materials and high-T

c

superconductivity of strongly correlated systems[2]. The ex-
citing properties of spin liquids such as deconfined quasiparti-
cles and fractional statistics have been revealed in many artifi-
cially constructed systems such as quantum dimer models[3–
5], Kagome spin model in the easy axis limit[6–10], and Ki-
taev model[11]. The possibility of finding spin liquids in real-
istic Heisenberg models, which may be close to experimental
materials, has attracted much attention of the field over the last
twenty years. The prominent example is the Kagome antifer-
romagnet, where recent density matrix renormalization group
(DMRG) studies point to a gapped Z

2

SL[10, 12–15] char-
acterized by a Z

2

topological order and fractionalized spinon
and vison excitations[16–20].

One of the simplest candidate Heisenberg models for SL is
the spin- 1

2

J
1

-J
2

square lattice model. The Hamiltonian is

H = J
1

X

hi,ji

S
i

· S
j

+ J
2

X

hhi,jii

S
i

· S
j

, (1)

where the sums hi, ji and hhi, jii run over all the nearest-
neighbor (NN) and the next nearest-neighbor (NNN) bonds,
respectively. We set J

1

= 1 as energy scale. The frustrating
J
2

couplings suppress the Néel order and induce a nonmag-
netic region around the strongest frustration point J

2

= 0.5,
which has been studied extensively[21–42]. Different candi-
date states have been proposed based on various approximate
methods or small-size exact diagonalization calculations, such
as plaquette valence-bond (PVB) state[23, 26, 29, 30, 32, 35,
42], columnar valence-bond (CVB) state[21, 22, 25], or gap-
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FIG. 1: (color online) Phase diagram of spin- 1
2

J

1

-J
2

square Heisen-
berg model for J

2

< 0.61 obtained by our SU(2) DMRG studies.
With growing J

2

, the model has a Néel phase for J
2

< 0.44 and a
PVB phase for 0.5 < J

2

< 0.61. Between these two phases, there
is a small gapless region that exhibits no order in our calculations,
consistent with a gapless SL. The main panel shows Néel order pa-
rameter m

s

and spin gap �
T

in the thermodynamic limit. The inset
is a sketch for a RC4-6 cylinder; J

pin

shows the modified odd vertical
NN bonds providing the boundary pinning for dimer orders.

less SL[27, 28, 40, 41]. However, the true nature of the quan-
tum phase has remained unresolved.

Recent large-scale DMRG study of the J
1

-J
2

square lattice
model[37] proposed a gapped Z

2

SL for 0.41  J
2

 0.62
by establishing the absence of the magnetic and dimer orders,
by finding nonzero singlet and triplet gaps, and by measuring
a positive topological entanglement entropy term close to the
value � = ln 2 expected for a Z

2

SL[43, 44]. Very recent
VMC work[41] with two steps of Lanczos improvement pro-
posed a gapless Z

2

SL for 0.45 . J
2

. 0.6 with competitive
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energies. On the other hand, recent DMRG studies[45–47] of
another bipartite frustrated system—the J

1

-J
2

spin-1/2 hon-
eycomb lattice Heisenberg model—found a PVB phase in the
nonmagnetic region, with a possible SL phase between the
Néel and PVB phases[47] or with a direct Néel to PVB transi-
tion characterized by a deconfined quantum critical point[45–
49]. These studies[46, 47] also found that in the nonmagnetic
region the convergence of DMRG in wider systems, which is
controlled by the number of states kept, is crucial for deter-
mining the true nature of the ground state.

In this Letter, we reexamine the J
1

-J
2

square lattice
Heisenberg model for J

2

< 0.61 using DMRG algorithm
with explicit implementation of the SU(2) spin rotation
symmetry[50] (we do not study the well known stripe anti-
ferromagnetic phase at larger J

2

). We find accurate results
on cylinders with system width up to 12 ⇠ 14 lattice spac-
ings by keeping as many as 36000 optimal U(1)-equivalent
states. We find a Néel phase below J

2

' 0.44 and a nonmag-
netic region for 0.44 < J

2

< 0.61 by finite-size scaling of
the magnetic order parameter. In the nonmagnetic region, we
establish a PVB order for J

2

> 0.5—in contrast to the previ-
ous proposal [37] of a Z

2

SL—by observing that the PVB
decay length grows strongly with increasing system width.
Some of our findings for the phases in this model had been
suggested in Ref. [51]. We identify the PVB order as the s-
wave plaquette[30] by studying dimer-dimer correlations. For
0.44 < J

2

< 0.5, we find that the magnetic order, valence-
bond crystal (VBC) orders, as well as spin excitation gap all
vanish with increasing system width, which suggest a possi-
ble gapless SL in agreement with the VMC results[41] or a
near-critical behavior.

We consider both torus and cylinder samples in DMRG cal-
culations, but all the phases are established based on high ac-
curacy results on cylinders[52]. We use two cylinder geome-
tries. The first is the rectangular cylinder (RC) with closed
boundary in the y direction and open boundaries in the x di-
rection. Such a system is denoted RCL

y

-L
x

, where L
y

and
L
x

are number of sites in the y and x directions; the width
of the cylinder is W

y

= L
y

. The inset of Fig. 1 shows an
RC4-6 cylinder. The RC cylinders preserve translational sym-
metry in the y direction. If we want to study VBC order with
dimers oriented in the y direction, we can induce such an or-
der near the open boundaries by modifying every other NN
vertical bond on the boundary to be J

pin

6= J
1

, which is also
illustrated in Fig. 1. The second geometry is the tilted cylinder
(TC) obtained by cutting cylinder edge along one diagonal di-
rection of the square lattice, as shown below in Fig. 4(a) when
discussing the PVB order.

Néel order.—Néel order parameter m2

s

is defined as m2

s

=
1

N

2

P
i,j

hS
i

· S
j

iei~q·(~ri�~rj) (N is the total number of sites)
with the antiferromagnetic ordering wave vector ~q = (⇡,⇡).
We calculate m2

s

from the spin correlations of the L⇥ L sites
in the middle of the RCL-2L cylinder, which efficiently re-
duces boundary effects[37, 53]. In Fig. 2(a), we show m2

s

for
different systems with L = 4 to 14[54]. We fit the finite-size
data using the polynomial function up to fourth order, which
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FIG. 2: (color online) (a) m2

s

plotted vs 1/L for RCL-2L cylinder
with L = 4, 6, 8, 10, 12, 14; lines are polynomial fits up to fourth
order. The inset is J

2

dependence of the obtained magnetic order
in the 2D limit m2

s,1. (b) Same data shown as log-log plot of m2

s

versus width L.

works quite well. The intercept with the vertical axis provides
an extrapolation of m2

s

to the two-dimensional (2D) limit, and
we show thus obtained m2

s,1 in the inset of Fig. 2(a). Such an
analysis suggests that the Néel order vanishes for J

2

> 0.44.
The estimated critical J

2

of spin order vanishing is differ-
ent from the point where the PVB order develops as found
below. One possibility is an intermediate SL phase. Another
possibility is that the system is near critical in the window
0.44 < J

2

< 0.5. In the latter case, to get some idea about
the criticality, Fig. 2(b) shows log-log plot of m2

s

versus L.
m2

s

approaches finite value in the Néel phase, and we see this
developing for J

2

= 0.35 and 0.4. On the other hand, we ex-
pect m2

s

(L) ⇠ L�(1+⌘) at a critical point and m2

s

(L) ⇠ L�2

in the nonmagnetic phase. The accelerated decay of m2

s

(L)
at J

2

= 0.55 is consistent with vanishing Néel order at this
point: from the two largest sizes at J

2

= 0.55, we estimate
m2

s

(L) ⇠ L�1.82, which is quite close to m2

s

(L) ⇠ L�2.
In the near-critical region, we can fit the J

2

= 0.44 data to
L�(1+0.15) and the J

2

= 0.5 data for L > 8 to L�(1+0.44).
This range of ⌘ is compatible with the findings in the J-Q mod-
els on the square (⌘ ' 0.26 � 0.35)[55–61] and honeycomb
(⌘ ' 0.3)[62] lattices, which show continuous Néel to VBC
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FIG. 3: (color online) (a) Log-linear plot of vDOP for J
2

= 0.5 and
J

pin

= 2.0 on RC cylinder. The inset is the comparison of width
dependence of the vertical dimer decay length ⇠

y

with Ref. [37]. (b)
and (c) are ⇠

y

and ⇠

x

versus W

y

on RC cylinders with J

pin

= 2.0
for a range of J

2

shown with the same symbols in both panels.

transition argued to be in the deconfined criticality class, so
our model is compatible with this scenario as well.

VBC orders.—To investigate the VBC order on cylinder, we
introduce the “pinning” bonds J

pin

6= J
1

on boundaries to in-
duce a vertical dimer pattern, and measure the decay length of
the dimer order parameter (DOP) texture from the edge to the
middle of cylinder[37, 51]. The vertical DOP (vDOP) for each

column is defined as the difference of the strong and weak ver-
tical bond energies. In Fig. 3(a), we show log-linear plot of the
vDOP for J

2

= 0.5 and J
pin

= 2.0 on long cylinders, which
allows us to determine the decay length ⇠

y

by a straight line
fitting to the data points. If we take different pinning strength
J
pin

at the boundary, we find that although the amplitude of
the vDOP texture changes, the decay length ⇠

y

is independent
of J

pin

(see Suppl. Material). In the inset of Fig. 3(a) we com-
pare our ⇠

y

at J
2

= 0.5 with those in Ref. [37]. We observe
consistency on small sizes W

y

 8, but disagreement on large
sizes W

y

� 10[63]. The disagreement might originate from
less good convergence in Ref. [37]. Our results are fully con-
verged by keeping 16000 (24000) states for L

y

= 10 (12)
systems, and we also find that ⇠

y

is independent of the system
length on our studied long cylinders (see Suppl. Material). In
Fig. 3(b), we show width dependence of ⇠

y

for various J
2

with
J
pin

= 2.0. The ⇠
y

grows slowly and saturates to a constant
on wide cylinders for J

2

< 0.5, demonstrating the vanishing
VBC order. For J

2

> 0.5, the ⇠
y

grows faster than linear in
W

y

, which suggests nonzero vDOP in the 2D limit.
Besides the vertical dimer texture, the system also has the

horizontal bond dimer pattern with an exponentially decaying
horizontal DOP (hDOP) from the boundary to the bulk. In
Fig. 3(c), we find that the hDOP decay length ⇠

x

also grows
strongly for J

2

> 0.5. Thus our results indicate the nonzero
horizontal dimer order coexisting with the vertical dimer or-
der, which suggests that the VBC state has plaquette (PVB)
rather than columnar (CVB) order.

We also study the spontaneous nonzero bulk hDOP on RC
cylinders with odd L

y

[37, 64] (see Suppl. Materials). We find
that with increasing L

y

, the hDOP drops rapidly to zero for
J
2

< 0.5, but decreases slowly and possibly approaches a
finite value for J

2

> 0.5, consistent with a VBC order.
To find if there is a strong tendency of the system to-

wards developing dimer order without using boundary pin-
ning, we study the structure factors S

vbc

and S
col

as described
in Ref. [30]; the former detects both the PVB and CVB orders
while the latter is nonzero only for the CVB order. We take
RCL-2L cylinders with no pinning and calculate the structure
factors using the dimer-dimer correlations of the L ⇥ L sites
in the middle. The picture of the dimer correlations is consis-
tent with the s-wave plaquette state[30] (see Suppl. Material).
The finite-size extrapolations of the structure factors show that
while S

vbc

/N possibly approaches finite values for J
2

> 0.5,
S
col

/N clearly approaches zero with increasing L
y

in the non-
magnetic region, which definitely excludes the CVB order.

To explicitly demonstrate the PVB order, we study cylin-
ders with a different geometry obtained by cutting the cylin-
der along one diagonal direction of the square lattice and trim-
ming every other site on the boundary as shown in Fig. 4(a).
We label such a tilted cylinder as TCL

y

-L
x

, where L
y

and L
x

denote number of square plaquettes stacked along their diag-
onals in the vertical and horizontal direction; the width of the
cylinder is W

y

=
p
2L

y

in units of NN lattice spacing. The
trimmed edges induce strong PVB order on boundaries as can
be seen in Fig. 4(a). We denote the sum of the four NN bond
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FIG. 4: (color online) (a) NN bond energy for J

2

= 0.55 on the
left half of TC8-25 cylinder; all the bond energies have subtracted
a constant �0.2948. We trim every other site on both boundaries
to make lattice select unique PVB order. E

s

(E
w

) denotes the sum
of four NN bond energies of the red (blue) plaquette with negative
(positive) numbers. (b) Dependence of the pDOP decay length ⇠

P

on
the cylinder width W

y

.

energies of a “strong” red (“weak” blue) plaquette as E
s

(E
w

).
Thus the plaquette DOP (pDOP) is defined as the difference
of E

s

and E
w

, which is found to decay exponentially with a
decay length ⇠

P

. In Fig. 4(b), we examine the W
y

dependence
of the decay length ⇠

P

and observe a strong growth of ⇠
P

with
W

y

for J
2

> 0.5, consistent with the PVB state.
Spin gap and ground state energy.—We calculate spin gap

�
T

on RCL-2L cylinders up to L = 10 following the method
from Ref. [13]: We sweep the ground state first, and then tar-
get the S = 1 sector sweeping the middle L⇥L sites to avoid
edge excitations. In Figs. 5(a) and 5(b), we show energies ver-
sus DMRG truncation error for RC10-20 cylinder at J

2

= 0.5
in the S = 0 and S = 1 sectors, respectively. In both plots, we
have subtracted the ground-state energy E

G

= �99.022(1)
obtained through extrapolation keeping up to 36000 states as
shown in Fig. 5(a). We find that we need about twice as many
states to achieve the same energy error in the S = 1 sector as
in the S = 0 sector. The difficulty to reach the convergence
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FIG. 5: (color online) (a) and (b) Ground-state energies for RC10-20
cylinder at J

2

= 0.5 in the S = 0 (E
S=0,M

) and S = 1 (E
S=1,M

)
sectors vs the DMRG truncation error ". All the energies have sub-
tracted the ground-state energy E

S=0,1 = �99.022(1). M is the
number of kept U(1)-equivalent DMRG states and is also indicated
next to the symbols. (c) Finite-size extrapolations of the spin gap �

T

on RCL-2L cylinders (L = 4, 6, 8, 10). For J
2

< 0.5, the data are
fitted using the formula �

T

(L) = �
T

(1)+↵/L

2+�/L

3+�/L

4,
while for J

2

� 0.5, we fit the data using �
T

(L) = �
T

(1)+a/L+
b/L

2+c/L

4. We estimate �
T

(1) = 0.018±0.01 and 0.04±0.01
for J

2

= 0.5 and 0.55, respectively.

of the energy in the S = 1 sector may explain the overesti-
mate of the spin gap in the earlier work Ref. [37]: We find
�

T

' 0.207 while Ref. [37] estimates �
T

' 0.248. We
obtain accurate spin gaps by keeping up to 36000 states at
L
y

= 10, which sets the limit of our simulations.
In Fig. 5(c), we show �

T

and the finite-size extrapolations
(see additional extrapolated �

T

data in Fig. 1). In our fits,
we find that �

T

extrapolates to zero for J
2

 0.48, which
is consistent with the Néel order for J

2

 0.44 and suggests
gapless spin excitations also for 0.44 < J

2

< 0.5. For J
2

=
0.5 and 0.55, �

T

(L ! 1) is fitted to 0.018±0.01 and 0.04±
0.01, respectively; this is compatible with the VBC ordered
phase with finite spin gap.

We have compared our DMRG ground-state energies on
L ⇥ L tori to VMC results with additional Lanczos improve-
ment steps from Ref. [41]. Since the torus system is extremely
difficult to fully converge for 8⇥ 8 or larger sizes, we keep up
to 32000 states and extrapolate the energy with the DMRG
truncation error[52]. The extrapolated DMRG and Lanczos-
VMC results are quite close to each other in the possible SL
region 0.45 < J

2

< 0.5 (see comparisons in Suppl. Mate-
rial), indicating that the gapless Z

2

SL of Ref. [41] has very
competitive energies in this region.

Summary and discussion.—We have studied the ground
state of the spin- 1

2

J
1

-J
2

square lattice Heisenberg model by
accurate SU(2) DMRG simulations on cylinders with differ-
ent geometries. We find that the Néel order persists up to
J
2

= 0.44, while we find a nonmagnetic phase for 0.44 <
J
2

< 0.6. Contrary to the previous proposals of a possi-
ble gapped Z

2

SL from DMRG[37] or a gapless Z
2

SL from



5

VMC simulations[41], we establish the s-wave PVB order for
J
2

> 0.5 by observing rapidly growing characteristic lengths
of both the vertical and horizontal dimer orders on the RC
systems, as well as the PVB order on the TC system. Be-
tween the Néel and PVB phases, we find a possible gapless
SL for 0.44 < J

2

< 0.5 as summarized in the phase dia-
gram in Fig. 1. However, since the gapless SL region is small,
it is also possible that the system has a deconfined quantum
critical point in this region with larger length scale than the
system width we can approach. We hope future studies can
resolve these scenarios more clearly.
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FIG. 6: (color online) DMRG ground-state energy per site for J
2

=
0.5 and 0.55 on torus, on RC cylinder without pinning or with ver-
tical dimer boundary pinning J

pin

= 2.0 (see Fig. 1), as well as on
TC cylinder (Fig. 4). The energies on torus are obtained through ex-
trapolation with DMRG truncation error (see Table I). On cylinder,
we get bulk energy by subtracting the energies of two long cylinders
with different system lengths. With growing system width, the ener-
gies on different samples approach each other, giving the estimates
of ground-state energy in the 2D limit for J

2

= 0.5 and 0.55 as
e1 ' �0.4968 and �0.4863, respectively.

Supplementary Material

DMRG ground-state energies for J
2

= 0.5 and 0.55.—We
show our DMRG ground-state energies for J

2

= 0.5 and 0.55
in Fig. 6. We study L⇥ L torus systems with L = 4, 6, 8, 10.
We keep more than M = 32000 optimal states for DMRG
sweeping, and estimate the energy through extrapolation of
finite-M energies via DMRG truncation error (see data in Ta-
ble I below). For cylinders, we obtain bulk energy by subtract-
ing the energies of two long cylinders with different system
lengths to eliminate boundary effects.

As shown in Fig. 6, the energies per site of all samples in-
crease slowly with increasing system width W

y

and approach
close to each other for W

y

& 10. The energies on torus are
lower than those on cylinder, and the difference decreases with
increasing W

y

. The bulk energy on RC cylinder is essentially
independent of the boundary pinning J

pin

. As the ground-
state energy appears close to convergence for W

y

� 8, we
take a simple straight line fitting of the large-size results to
give estimates of the energy in the 2D limit e1 as shown
by the dashed lines in Fig. 6. We find e1 ' �0.4968 and
�0.4863 for J

2

= 0.5 and 0.55, respectively.
Horizontal dimer order on RC cylinder without pinning.—

On RC cylinder without pinning, the open edges break the lat-
tice translation symmetry only in the x direction. The horizon-
tal NN bond energies have the “strong-weak” dimer pattern as
shown in Fig. 7(a). We define the hDOP as the difference of
the adjacent horizontal NN bond energies, which decays ex-
ponentially with a decay length ⇠

x

. In Fig. 7(b), we show the
hDOP decay length ⇠

x

versus system width. For J
2

< 0.5,
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W

y
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ξ x

J
2
=0.4

J
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=0.44

J
2
=0.48

J
2
=0.5

J
2
=0.55

(b)

FIG. 7: (color online) (a) Subtracted NN bond energies for J

2

=
0.55 on RC10-60 cylinder without pinning; the subtracted number
�0.2763 is the average horizontal bond energy in the bulk of the
lattice. Here we show the left 12 columns. The alternation of red
(negative number) and blue (positive number) bonds indicates hori-
zontal dimer texture. (b) hDOP decay length ⇠

x

versus system width
on RC cylinder without pinning. The extracted decay lengths ⇠

x

are
similar to those in Fig. 3(c) obtained on RC cylinder with the vertical
dimer pinning.

⇠
x

grows more slowly than linearly and approaches saturation
on large size, which is consistent with vanishing dimer order.
However, for J

2

> 0.5, ⇠
x

grows fast, suggesting nonzero
bulk hDOP on wider cylinders. This horizontal dimer order
supports our claim of the VBC state for J

2

> 0.5. We also
find that the ⇠

x

obtained here are almost the same as those in
Fig. 3(c) where the cylinder systems have the vertical bond
pinning.

Pinning independence of the vDOP decay length ⇠
y

.— In
the main text, we introduced modified vertical bonds J

pin

on
boundaries to break the lattice translational symmetry in the
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FIG. 8: (color online) Log-linear plot of the vDOP on RC10 cylin-
ders with different system lengths at J

2

= 0.5 and J

pin

= 0.0. The
exponential fitting gives decay length ⇠

y

= 3.531.
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(c) RC8-48
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FIG. 9: (color online) Comparisons of the vDOP textures on RC
cylinder with different boundary pinnings. We have studied several
different J

pin

and found that although the vDOP varies with J

pin

, the
decay length ⇠

y

is almost independent of the pinning strength. Here
we show the results with J

pin

= 0.0 and 2.0.

y direction, allowing us to study the vDOP and the width
dependence of the vDOP decay length. A direct question is
whether the pinning strength affects these quantities. We have
compared the vDOP and its decay length for several different
pinning strengths, from weak pinning J

pin

= 1.01, 1.1, 1.2
to strong pinning J

pin

= 2.0 and J
pin

= 0.0. First of all,
in Fig. 8 we show that our results are obtained on quite long
cylinders, thus minimizing the influence of finite-size effects
on the decay length. Next, in Fig. 9 we show some exam-
ples of varying boundary pinning at J

2

= 0.5, 0.55; we find
that although the amplitude of the vDOP texture varies with
J
pin

, the decay length ⇠
y

is almost independent of the pinning
strength, indicating that our results with pinning are robust
properties of the bulk (infinitely long cylinder) phase.
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FIG. 10: (color online) (a) The NN bond energies for RC5-56 cylin-
der at J

2

= 0.5, showing bonds with x from 17 to 28. The system
has a spontaneous bulk horizontal dimer order, and the bulk hDOP
is defined as the difference of the strong and weak bond energies in
the middle of cylinder. (b) Width dependence of the hDOP on the
odd-L

y

RC cylinders, showing the data for W
y

= 3, 5, 7, 9.

Horizontal dimer order on RC cylinder with odd L
y

.—On
finite-size odd-L

y

RC cylinder, the system spontaneously de-
velops a nonzero horizontal dimer order in the bulk, which
happens both when the 2D phase is VBC or Z

2

SL[37, 64].
For a Z

2

SL in the 2D limit, the dimer order would decay ex-
ponentially with growing L

y

. On the other hand, for a VBC
state, it should go to a finite value in the 2D limit[37, 64]. We
study the horizontal dimer order on odd-L

y

RC cylinder with
L
y

up to 9 and L
x

up to 100 to get the results representing
L
x

! 1 cylinders. We define the absolute difference of the
strong and weak horizontal bond energies in the bulk as hDOP,
see Fig. 10(a). We show thus measured hDOP versus 1/W

y

in Fig. 10(b). For J
2

< 0.5 the hDOP decays fast with the
cylinder width and appears to extrapolate to zero, while for
J
2

> 0.5 the hDOP has a slow decay and seems to saturate to
a finite value. The nonzero hDOP does not support a Z

2

SL,
but indicates a VBC state for J

2

> 0.5.

Dimer structure factors on RC cylinder.— The CVB order
breaks rotational symmetry, while the PVB order preserves it.
Following Ref. [30], we consider two structure factors S

vbc

and S
col

obtained from the dimer-dimer correlations. S
vbc

diverges in both the CVB and PVB states, while S
col

diverges
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FIG. 11: (color online) Phase factors "

�

(k, l) for (a) “vbc” and (b)
“col” dimer structure factors defined in Eq. (2). The solid bonds
have phase factor "

�

(k, l) = 1, while dashed bonds have "

�

(k, l) =
�1. The (k, l) bonds that are nearest neighbors to the reference bond
(i, j) (central black solid bond) are omitted in the calculation of the
structure factors.


































































































































































































































































































































































































































































































































































































































































































































































































FIG. 12: (color online) Dimer-dimer correlation function for J
2

=
0.55 on RC10-20 cylinder. The black bond in the middle of the cylin-
der denotes the reference bond (i, j). The blue and red bonds indi-
cate the positive and negative correlations, respectively. Here the
middle 10⇥ 10 lattice dimer correlations are shown, which are used
to calculate the dimer structure factors.

only in the CVB state. The structure factors are defined as

S
�

=
X

(k,l)

"
�

(k, l)C
ijkl

, (2)

where � is either “vbc” or “col”. The phase factors "
�

(k, l)
are shown in Fig. 11, which reproduces Fig. 7 in Ref. [30].
Dimer-dimer correlation function C

ijkl

is defined as

C
ijkl

= 4 [h(S
i

· S
j

)(S
k

· S
l

)i � hS
i

· S
j

ihS
k

· S
l

i] . (3)

We calculate dimer-dimer correlation function on the RCL-
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FIG. 13: (color online) Size dependence of dimer structure factors (a)
S

vbc

/N

b

and (b) S
col

/N

b

. S
vbc

/N

b

appears to extrapolate to finite
values for J

2

> 0.5, while S
col

/N

b

decays quite fast and approaches
zero with increasing system size thus excluding the CVB order. This
suggests the PVB order for J

2

> 0.5.

2L cylinder with a reference bond (i, j) in the middle of
the cylinder (we have considered both horizontal and verti-
cal reference bonds but will show only the former). Figure 12
shows the dimer-dimer correlations on the RC10-20 cylinder
at J

2

= 0.55 with the reference bond (i, j) oriented horizon-
tally in the middle of the cylinder. The red and blue bonds in-
dicate negative and positive dimer correlations, respectively.
We see alternating red and blue horizontal bonds of compa-
rable strengths, while the vertical bonds show significantly
weaker correlations; this picture looks much more like the pat-
tern of the pure s-wave plaquette state (PVB) in Table III of
Ref. [30] rather than the pattern of the pure columnar state.

Figure 13 shows the structure factors S
vbc

/N
b

and S
col

/N
b

obtained with a horizontal reference bond (i, j) and normal-
ized by the number of bonds N

b

used to calculate the struc-
ture factors. In Fig. 13(a), we see that S

vbc

/N
b

approaches
zero for J

2

< 0.5 and possibly extrapolates to finite values
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for J
2

> 0.5 if we fit the large-size data using polynomials
of 1/N . This suggests PVB or CVB orders at J

2

> 0.5. In
Fig. 13(b), we see that S

col

/N
b

decays quite fast with sys-
tem size and always approaches zero in the thermodynamic
limit, which implies vanishing CVB order. Thus, the behavior
of these two structure factors reveals the possible PVB order
at J

2

> 0.5 and clearly excludes the CVB order. We ob-
serve similar results with a vertical reference bond (i, j) (not
shown).

We also notice that when we plot S
vbc

/N
b

versus 1/L
(L =

p
N ), the data could be extrapolated to zero or small

values also for J
2

> 0.5, which would be similar to the anal-
ysis in Ref. [37]. However, for J

2

= 0.55, the extrapolation
function to zero is almost linear in 1/L (plot not shown), while
in a phase with no VBC order we would expect S

vbc

/N
b

to
vanish as 1/N ⇠ 1/L2. Thus this data is not consistent with
vanishing VBC order.

Comparisons of torus energies from DMRG and VMC.—
Table I shows energy comparisons of DMRG and VMC for
J
2

= 0.4, 0.45, 0.5, and 0.55; it includes DMRG results ob-
tained by keeping 4096, 6144, and 8192 SU(2) states [equiv-
alent to about 16000, 24000, and 32000 U(1) optimal states],
as well as VMC results with Lanczos improvement steps from
Ref. [41]. DMRG (1) denotes the DMRG energy extrapo-
lated with truncation error; as illustrated in Fig. 14, we extrap-
olate the data points using a straight line fitting. VMC (p=1)
denotes the VMC energy extrapolations with the variance in
Ref. [41]. The overall agreement shows, on one hand, that the
DMRG is performing reasonably well even in the most chal-
lenging torus geometry. Here we emphasize that all results in
the main text are obtained using cylinder geometry where the
DMRG measurements are much better converged[52] and rep-
resent essentially exact unbiased measurements. On the other
hand, the excellent performance of the Lanczos-VMC method
is also notable. It would be interesting to see this method tried
in the cylinder geometries and results subjected to the finite-
size scaling analysis as in the present work.

Entanglement entropy.—For gapped quantum states
with topological order, topological entanglement entropy
(TEE) � is proposed to characterize non-local feature of
entanglement[43, 44]. The Renyi entropies of a subsys-
tem A with reduced density matrix ⇢

A

are defined as
S
n

= (1 � n)�1 ln(Tr⇢n
A

); n ! 1 limit gives the Von
Neuman entropy. For a topologically ordered state, Renyi
entropies have the form S

n

= ↵L � �, where L is the
boundary of the subsystem, and all other terms vanish in the
large L limit; ↵ is a non-universal constant, while a positive �
is a correction to the area law of entanglement and reaches a
universal value determined by total quantum dimension D of
quasiparticle excitations[43, 44]. Previous DMRG study[37]
found � ⇡ ln 2 in the intermediate region of J

2

consistent
with a Z

2

SL for this model. We compute the entanglement
entropy (EE) on long cylinders by partitioning the system in
the middle along the vertical direction. For each fixed L

y

,
we fit the entropy to L

x

! 1 limit to find the entropy of a
possible minimum entropy state[15].
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FIG. 14: (color online) Ground-state energy per site e versus DMRG
truncation error " on the L⇥L torus systems for (a) J

2

= 0.5, L = 8,
and (b) J

2

= 0.5, L = 10. The numbers in the figures denote
the kept SU(2) states M for obtaining the energy. We extrapolate
the data with a straight line fitting and denote the " ! 0 intercept
(corresponding to M ! 1) as DMRG (1).
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FIG. 15: (color online) Entanglement entropy as a function of system
width on RC and TC cylinders. For each width, we obtain the entropy
by extrapolating measurements on long cylinders to L

x

! 1 limit.
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J

2

= 0.40 DMRG (4096) DMRG (6144) DMRG (8192) DMRG (1) VMC (p = 0) VMC (p = 1) VMC (p = 2) VMC (p = 1)
L = 6 �0.529734 �0.529742 �0.529744 �0.529747(1) �0.52715(1) �0.52928(1) �0.52957(1) �0.52972(1)

L = 8 �0.524648 �0.525013 �0.525196 �0.5262(1) �0.52302(1) �0.52501(1) �0.52539(1) �0.52556(1)

L = 10 �0.521487 �0.522043 �0.522391 �0.5253(2) �0.52188(1) �0.52368(1) �0.5240(1) �0.52429(2)

J

2

= 0.45 DMRG (4096) DMRG (6144) DMRG (8192) DMRG (1) VMC (p = 0) VMC (p = 1) VMC (p = 2) VMC (p = 1)
L = 6 �0.515637 �0.515652 �0.515655 �0.515660(1) �0.51364(1) �0.51538(1) �0.51558(1) �0.51566(1)

L = 8 �0.510162 �0.510534 �0.510740 �0.5116(1) �0.50930(1) �0.51101(1) �0.51125(1) �0.51140(1)

L = 10 �0.507193 �0.507677 �0.507976 �0.5110(3) �0.50811(1) �0.50973(1) �0.51001(1) �0.51017(2)

J

2

= 0.50 DMRG (4096) DMRG (6144) DMRG (8192) DMRG (1) VMC (p = 0) VMC (p = 1) VMC (p = 2) VMC (p = 1)
L = 6 �0.503771 �0.503797 �0.503805 �0.503808(1) �0.50117(1) �0.50323(1) �0.50357(1) �0.50382(1)

L = 8 �0.497598 �0.497961 �0.498175 �0.4992(1) �0.49656(1) �0.49855(1) �0.49886(1) �0.49906(1)

L = 10 �0.495044 �0.495301 �0.495530 �0.4988(2) �0.49521(1) �0.49718(1) �0.49755(1) �0.49781(2)

J

2

= 0.55 DMRG (4096) DMRG (6144) DMRG (8192) DMRG (1) VMC (p = 0) VMC (p = 1) VMC (p = 2) VMC (p = 1)
L = 6 �0.495096 �0.495150 �0.495167 �0.495186(1) �0.48992(1) �0.49303(1) �0.49399(1) �0.49521(7)

L = 8 �0.487685 �0.487982 �0.488160 �0.4891(1) �0.48487(1) �0.48777(1) �0.48841(2) �0.48894(3)

L = 10 �0.484890 �0.485239 �0.485434 �0.4880(2) �0.48335(1) �0.48622(1) �0.48693(3) �0.48766(6)

TABLE I: DMRG and VMC ground-state energies on L⇥L tori with J

2

= 0.4, 0.45, 0.5 and 0.55. DMRG energies are obtained by keeping
4096, 6144, and 8192 SU(2) states. DMRG (1) is obtained from the straight line energy extrapolation with DMRG truncation error as
illustrated in Fig. 14. The VMC energies are from Ref. [41]; p denotes the Lanczos step; and VMC (p = 1) is obtained from extrapolation
with the variance.

In Fig. 15, we show our DMRG results for the EE at
J
2

= 0.46 and 0.55 on both TC and RC cylinders. We obtain
accurate EE when W

y

< 12. For W
y

= 12, we extrapolate
the EE with the DMRG truncation error, which has signifi-
cant uncertainty from the extrapolation. On RC cylinder, we
perform linear fit of the EE versus W

y

using the three largest
sizes. We find the TEE at J

2

= 0.46 is close to ln 2, while
at J

2

= 0.55 is close to �1.3. However, the system appears
to have large finite-size effects, which can be seen by com-

paring the results on the RC and TC cylinders. On the TC
cylinder, the linear fits of the EE vs W

y

give the TEE close to
zero, which is different from the RC cylinder. Similar effect
has also been observed in the J

1

-J
2

model on the honeycomb
lattice[46, 47]. Because of such strong finite-size effects, the
TEE obtained by fitting EE on our small sizes may not be able
to distinguish different quantum phases in the J

1

-J
2

square
lattice model.


