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We provide an e↵ective description of a particle-hole symmetric state of electrons

in a half-filled Landau level, starting from the traditional approach pioneered by

Halperin, Lee and Read. Specifically, we study a system consisting of alternating

quasi-one-dimensional strips of composite Fermi liquid (CFL) and composite hole

liquid (CHL), both of which break particle-hole symmetry. When the CFL and

CHL strips are identical in size, the resulting state is manifestly invariant under the

combined action of a particle-hole transformation with respect to a single Landau

level (which interchanges the CFL and CHL) and translation by one unit, equal to

the strip width, in the direction transverse to the strips. At distances long compared

to the strip width, we demonstrate that the system is described by a Dirac fermion

coupled to an emergent gauge field, with an anti-unitary particle-hole symmetry, as

recently proposed by Son.
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I. INTRODUCTION

An influential way of understanding much of the physics of the quantum Hall regime

invokes the idea of composite fermions [1]. In essence, a composite fermion can be viewed

as an electron (or hole) bound to several flux quanta. The challenging problem of electrons

strongly interacting with one another in a partially filled Landau level can be recast in terms

of (hopefully) simpler e↵ective descriptions involving composite fermions. While ultimately

an inspired guess, the composite fermion perspective nevertheless leads to an elegant un-

derstanding of all observed quantum Hall states. Furthermore, theories based on composite

fermions have led to several spectacular predictions [1] - including that of a gapless metal-
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lic ground state in a half-filled (⌫ = 1/2) Landau level - which have been experimentally

observed [2–4].

In a pioneering study, Halperin, Lee and Read [5] (as well as Kalmeyer and Zhang [6])

suggested that this gapless state at half-filling ought to be a metallic state of composite

fermions - a composite Fermi liquid (CFL), in zero background magnetic field. This approach

is a simple e↵ective field theory in which electrons bound to two flux quanta form a filled

Fermi sea. The e↵ective description involves composite fermion “quasiparticles” that are

coupled to a Chern-Simons gauge field - which implements flux attachment - and the resulting

system is strongly coupled. Despite such di�culties the CFL theory has led to a widely

accepted qualitative understanding of the half-filled Landau level, and its instabilities to

incompressible states as are seen in the second Landau level at ⌫ = 5/2 [7].

Although the CFL theory motivates a physically-compelling mean-field description of

the half-filled Landau level, it su↵ers from a drawback: it strongly breaks particle-hole (PH)

symmetry, which is a property of the half-filled lowest Landau level Hamiltonian in the limit

of vanishing Landau level mixing, in apparent contradiction with electrical transport exper-

iments [8–10].11 Indeed, as suggested in [12], in order that the electrical Hall conductivity

�
xy

= 1
2
e

2

h

– the value required by PH symmetry at half-filling – the composite fermions

must exhibit a large Hall conductivity �(cf)
xy

= �1
2
e

2

h

.13 Since the composite fermions “feel”

zero magnetic field on average at half-filling, one instead expects �(cf)
xy

= 0 and concludes

that PH symmetry must be broken.

Remarkable recent experiments [14–16] highlighting the importance of PH symmetry

(and the PH transformation, more generally) in the half-filled lowest Landau level led to

the study [17] of an alternate construction of the ⌫ = 1/2 state, the composite hole liquid

(CHL), which consists of holes of a filled Landau level, at half-filling, attached to two flux

quanta.18 In a theory that admits a spontaneous breaking of PH symmetry, the CHL and

CFL may be thought of as two degenerate ground states, one of which is spontaneously

chosen, in analogy with the up and down spin states of an Ising model. Alternatively, a first

order transition may also occur between these two distinct states.

Our goal here is to understand how PH symmetry might be restored, starting from

the symmtry-broken CFL and CHL formulations. At first glance, such a task appears to

be hopeless: it is loosely analogous to constructing a description of the critical point of the

Ising model in terms of the ordered phases that describe the physics far away from criticality.
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Nevertheless, by considering an inhomogeneous configuration built from both the CFL and

CHL, we will show that it is possible to restore PH symmetry on long length scales. In

analogy to the Ising model, it is as though we attempt to construct a critical state by

studying domains of up and down spin configurations. With the help of hindsight, we know

that such a construction can indeed restore the symmetry: in the case of the Ising model,

fermionic modes associated with the domain walls are deconfined at the critical point, and

provide a description of the emergent critical behavior.

More specifically, we describe the PH symmetric ⌫ = 1/2 state by considering a two-

dimensional (2D) spatial plane patterned with CFL and CHL strips (Fig. 3), where domain

walls between the two regions possess new emergent fermions that will ultimately represent

the low-energy degrees of freedom of a PH symmetric half-filled Landau level. As we show

below, this strategy leads to a successful description of the PH symmetric half-filled LL.

Our configuration enjoys the combined symmetry of a PH transformation and translation

by one “unit,” equal to the strip width, in the direction transverse to the strips. In the long-

wavelength limit, i.e. for lengths much larger than the width of these strips, the resulting

system at low energies consists of an electrically-neutral composite Dirac particle coupled

to an emergent U(1) gauge field (analogous to [19]), with an anti-unitary implementation

of the PH symmetry, precisely of the form conjectured by Son in a remarkable recent paper

[20]. Recent work [21–27] has sought to confirm and explore the duality proposed by Son.

While our construction shows that there is in principle an RG flow between the CFL/CHL

states and the composite Dirac liquid, other possibilities, including first order transitions

between the CFL and CHL can also occur, but will not be considered here.

The paper is organized as follows. In Sec. II, we review the composite Fermi and com-

posite hole theories and describe the action of the particle-hole transformation. In Sec. III,

we show how a particle-hole symmetric composite Fermi liquid emerges at long wavelengths

from the patterned plane configuration. We conclude and mention a few possible directions

of future work in Sec. IV.
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II. COMPOSITE ELECTRONS AND HOLES

A. Bulk description

The traditional approach to the e↵ective description of the half-filled lowest Landau

level (LLL) involves the composite Fermi liquid lagrangian, LCFL = L
f

+ Lgauge + Lint (see

Refs.1,28,29 for reviews):

L
f

= f †
⇣
i@

t

+ (a
t

+ A
t

) +
1

2m
f

(@
j

� i(a
j

+ A
j

))2
⌘
f,

Lgauge =
1

2

1

4⇡
✏
µ⌫⇢

a
µ

@
⌫

a
⇢

,

Lint = �1

2

Z
d2r0

⇣
f †f(r) � n

f

⌘
Ur,r0

⇣
f †f(r0) � n

f

⌘
. (II.1)

f is the destruction operator of a composite electron with e↵ective mass m
f

, a
µ

is an

emergent gauge field, A
µ

represents the electromagnetic gauge field with non-zero average

magnetic flux h@
x

A
y

� @
y

A
x

i = B > 0 (the indices µ, ⌫, ⇢ 2 {t, x, y}, the totally anti-

symmetric symbol is defined by fixing ✏
txy

= 1, the two spatial coordinates r = (x, y) and

r

0 = (x0, y0), and both gauge charges have unit magnitude). The average density of composite

electrons hf †fi ⌘ n
f

.

A partially-filled LLL can equally well be described in terms of holes of the filled Landau

level. Thus, we might instead describe the half-filled LLL using the composite hole liquid

lagrangian, LCHL = L
h

+ Lgauge + Lint
17,

L
h

= h†
⇣
i@

t

+ (b
t

� A
t

) +
1

2m
h

(@
j

� i(b
j

� A
j

))2
⌘
h,

Lgauge = �1

2

1

4⇡
✏
µ⌫⇢

b
µ

@
⌫

b
⇢

+
1

4⇡
✏
µ⌫⇢

A
µ

@
⌫

A
⇢

,

Lint = �1

2

Z
d2r0

⇣
h†h(r) � n

h

⌘
Ũr,r0

⇣
h†h(r0) � n

h

⌘
, (II.2)

where now, h is the destruction operator of a composite hole with e↵ective mass m
h

, and

b
µ

is an emergent gauge field. The second term in Lgauge describes the filled Landau level

vacuum, which leads to an integer Hall conductance. Note that the electromagnetic charge

of the composite holes is equal in magnitude but opposite in sign to that of the composite

electrons.

Before we proceed with an explicit construction of a PH symmetric half-filled Landau

level, we require that the two Lagrangians above yield consistent predictions for the electronic
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properties of the ⌫ = 1/2 state. For instance, the physical electromagnetic charge density

follows from di↵erentiating both LCFL and LCHL with respect to A
t

. Equating the resulting

operators, we find:

f †f + h†h =
B

2⇡
. (II.3)

At a heuristic level, LCFL and LCHL describe the dynamics of the particles that result

from attaching two units of flux to the electrons or to the holes of the lowest Landau level.

Away from half-filling, the system of interest may be described either in terms of composite

electrons or composite holes: the two descriptions represent a di↵erent way of encoding

the same state. For instance, the Laughlin state at ⌫ = 1/3 can be described either as

an integer quantum Hall state of composite electrons, ⌫
f

= 1, or of composite holes with

a di↵erent filling fraction ⌫
h

= 2. At half-filling, however, PH symmetry requires that the

two descriptions must be one and the same. This requirement is obscured by the fact that

treated at mean-field level, both LCFL and LCHL manifestly break PH symmetry. We will

see how to overcome this di�culty below. For now, we note that in order for LCFL and LCHL

to map into one another under a PH transformation, the couplings must satisfy m
f

= m
h

and U(x) = Ũ(x). In addition, we require that the anti-unitary PH transformation be

implemented using the following three steps. First, we transform

(a
t

, a
x

, a
y

) 7! (a
t

,�a
x

,�a
y

),

(b
t

, b
x

, b
y

) 7! (b
t

,�b
x

,�b
y

),

(A
t

, A
x

, A
y

) 7! (�A
t

, A
x

, A
y

), (II.4)

along with the mapping (t, x, y) 7! (�t, x, y) and i 7! �i.30 Next, we shift Lgauge ! Lgauge+

1
4⇡
✏
µ⌫⇢

A
µ

@
µ

A
⇢

.31 Lastly, we take f 7! h, h 7! f , and relabel the two emergent gauge fields:

a
µ

$ b
µ

. In this way, LCFL and LCHL map into one another.

B. Boundary lagrangians

If the CFL is placed in the lower half-plane y < 0 with a topologically trivial vacuum in

the upper half-plane (y > 0), gauge invariance requires the presence of boundary degrees of
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freedom at y = 0 with lagrangian:

L
@CFL =

2

4⇡

h
(@

t

�
f

+
1

2
a
t

)(@
x

�
f

+
1

2
a
x

) � v
�

f

(@
x

�
f

+
1

2
a
x

)2 +
1

2
✏
µ⌫y

V
µ

@
⌫

�
f

i
�(y = 0).

(II.5)

Together, the boundary and bulk lagrangians of composite electrons are invariant under the

gauge transformation,

a
µ

7! a
µ

+ @
µ

⇤
a

,

f 7! ei⇤af,

�
f

7! �
f

� 1

2
⇤

a

. (II.6)

The first two terms in Eq. (II.5) are gauge invariant and describe the dynamics of the bound-

ary modes. The third is required to absorb the (anomalous) gauge transformation of the

bulk Chern-Simons term in Lgauge [17, 32–34]. Since f carries unit electromagnetic charge,

it follows from above that the boundary operator  
e

= e2i�ff carries unit electromagnetic

charge but is neutral with respect to a
µ

. Thus, we naturally identify  
e

with the electron

destruction operator at a boundary.

Likewise, if the CHL is placed in the lower half-plane (with the topologically-trivial

vacuum in the upper half-plane), gauge invariance requires the addition of the boundary

degrees of freedom:

L
@CHL = � 2

4⇡

h
(@

t

�
h

� 1

2
b
t

)(@
x

�
h

� 1

2
b
x

) + v
�

h

(@
x

�
h

� 1

2
b
x

)2 � 1

2
✏
µ⌫y

b
µ

@
⌫

�
h

i
�(y = 0)

+
1

4⇡

h
@
x

�LL(@t � vLL@x)�LL + 2✏
µ⌫y

A
µ

@
⌫

�LL

i
�(y = 0),

(II.7)

so that the total system remains invariant under

b
µ

7! b
µ

+ @
µ

⇤
b

,

h 7! ei⇤bh,

�
h

7! �
h

+
1

2
⇤

b

. (II.8)

In addition to the hole destruction operator,  
h

= e�2i�
hh which has opposite electromag-

netic charge as  
e

above, and is neutral with respect to b
µ

, there is a chiral boson field

�LL describing the edge mode of a filled Landau level: the corresponding edge electron

destruction operator of the filled Landau level is  LL ⇠ ei�LL .
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composite hole liquid

           Hall state⌫ = 1

composite Fermi liquid

trivial vacuum

FIG. 1. The left side of the figure depicts the CFL in the lower half-plane and the topologically

trivial vacuum in the upper half-plane. The chiral field �

f

is indicated by the short dashed line and

described by the lagrangian in Eq. (II.5). The right side displays the CHL in the lower half-plane

and the ⌫ = 1 integer quantum Hall state in the upper half-plane. The chiral field �

h

is indicated by

the long dashed line and described by the lagrangian in Eq. (II.7). A particle-hole transformation

maps the left and right configurations into one another and transforms the part of the lagrangians

describing �

f

and �

h

into one another.

In order to find a consistent definition for how a PH transformation should act on the

boundary degrees of freedom, it is useful to consider a setup where the CFL lies in the

lower half-plane and the topologically trivial vacuum is in the upper-half plane (Fig. 1). A

particle-hole transformation maps this system onto a filled Landau level for y > 0 and a

CHL in y < 0. Thus, we require

�
f

7! �
h

� (1 � �)
⇡

4
,

�
h

7! �
f

� (1 + �)
⇡

4
,

�LL 7! ��LL + �
⇡

2
, (II.9)

where � = +1 for a right-moving field and � = �1 for a left-moving field. (The choice for

the constant shifts of the fields is not determined from consistency of the above picture, but
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rather from a consistent transformation rule for the emergent composite fermion described

in the next section.) At first glance, the resulting description seems to miss the mode

corresponding to the filled Landau level. However, as shown in Fig. 1, the filled Landau

level occurs over the entire 2D plane. Thus, generally, it thus does not contribute any new

edge mode.

composite hole liquidcomposite Fermi liquid

composite hole liquid composite Fermi liquid

FIG. 2. The left side of the figure depicts the CFL in the lower half-plane and the CHL in the

upper half-plane. The right side displays the CFL in the lower half-plane and the CHL in the

upper half-plane. The chiral field �

f

is indicated by the short dashed line, the �

h

field by the long

dashed line, and the chiral mode �LL of the filled Landau level by the full line. A particle-hole

transformation maps the left and right configurations into one another.

We infer the PH transformation on the filled Landau level mode using a setup where the

composite Fermi liquid is in the lower-half plane and the composite hole liquid is in the upper

half-plane (Fig. 2). Under a PH transformation, the chirality of the Landau level mode is

reversed, but the sign of the coupling to electromagnetism is maintained. This ensures that

the electromagnetic charge of  LL is preserved since an initially right-moving Landau level

electron creation operator along the interface  †
LL ⇠ ei�LL maps to a left-moving destruction

operator  LL ⇠ ei�LL under a PH transformation in this particular setup.
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III. EMERGENCE OF A PARTICLE-HOLE SYMMETRIC EFFECTIVE

THEORY

A. General setup

Having reviewed the description of a half-filled Landau level in terms of composite elec-

trons or composite holes, we now describe how a PH symmetric state arises from alternating

strips of the composite Fermi and composite hole liquid. The specific setup that we consider

is illustrated in Fig. 3. It consists in taking the CFL to lie in narrow strips of width �

oriented along the x-direction for y 2 [q�, (q + 1)�] with q 2 2Z + 1 and the CHL to lie in

the strips between y 2 [p�, (p+ 1)�] with p 2 2Z. This setup is invariant under translations

along the x-direction and translations by 2� along the y-direction, but it is not invariant

under general spatial rotations.

composite Fermi liquid

composite Fermi liquid

composite Fermi liquid

composite hole liquid

composite hole liquid

· · · · · ·

··
·

··
·

x

y
�

FIG. 3. Schematic picture of the two-dimensional spatial plane patterned with alternating strips

of the composite Fermi liquid – shown in red – and the composite hole liquid – shown in blue. The

strips have width equal to � and run along the x-direction.

This configuration is not invariant under a PH transformation. However, it is invariant

under the combined action of a PH transformation and a translation by one unit equal

to � in the y-direction. We refer to this combined action as the microscopic particle-hole
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transformation. At long wavelengths, we will see that the combined action becomes identical

to a PH transformation.

B. Coupled-wire approach

The long wavelength theory is obtained in the limit where the strip width � ! 0. In this

limit, the physics of the CFL and CHL regions e↵ectively becomes one-dimensional. Thus,

it is natural to describe the composite fermions and composite holes within their respective

narrow strips in terms of wire arrays.

We consider a setup in which there are N
f

(N
h

) composite Fermi (hole) wires within each

composite Fermi (hole) strip. The wires are taken to run along the x-direction and to lie

at regularly spaced intervals between y/� 2 Z. On each wire, indexed by y, it is convenient

to expand f † and h† in terms of their chiral components; for convenience, we also write out

the form of the electron creation operator of the filled Landau level mode:

f †(t, x, y) = e�ik

L

f

(y)xf †
L

(t, x, y) + e�ik

R

f

(y)xf †
R

(t, x, y),

h†(t, x, y) = e�ik

L

h

(y)xh†
L

(t, x, y) + e�ik

R

h

(y)xh†
R

(t, x, y),

 †
LL(t, x, y) = �

y

e�ikLL(y)xe(�1)
y

�

i�LL(t,x,y). (III.1)

The Klein factors (�
y

= �⇤
y

) obey the anti-commutation relations: {�
y

, �
y

0} = 2�
y,y

0 , {�
y

, f} =

0, and {�
y

, h} = 0. The di↵ering factors of eikf,hx in the above expansions are due to the

fact that f and h couple to electromagnetism with opposite sign and the possibility that

N
f

6= N
h

.

On each wire, the 1D composite fermion density – identified with the 1D limit of the

electron fluid density – equals
k

R

f

(y)�k

L

f

(y)

2⇡
(and similarly for the quasi-hole density on each

wire). The half-filling condition on the electrons or holes combined with the existence of N
f

(N
h

) wires per length � in the y-direction implies

k
L/R

f

(y) = ⌥ |B|�
4N

f

� By,

k
L/R

h

(y) = ⌥ |B|�
4N

h

+By. (III.2)

The position-dependent shift proportional to By of the Fermi points away from their zero

field values at ±(kR

f

(y) � kL

f

(y))/2 (and similarly for the holes) implies that we do not
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assume the emergent gauge fields cancel the background magnetic flux. In other words,

we do not assume that the composite Fermi or composite hole liquids realize the mean-field

solution to the equations of motion in which the emergent gauge field screens the background

magnetic flux. Away from half-filling, the one-dimensional composite Fermi and composite

hole densities generally di↵er.

To describe the filled Landau level, we take NLL � 2 free fermion wires regularly spaced

at y/� 2 2Z + n

NLL�1
for n = 0, 1, . . . , NLL � 1 within each composite hole region.35 Within

these regions, the wires are coupled together via appropriate inter-wire integer Hall state

generating perturbations.36 There are no free fermion wires in the composite Fermi regions.

The Fermi momenta of the filled Landau level edge modes:

kLL(y) =
|B|�

2(NLL � 1)
� By, (III.3)

for the right-movers at y/� 2 2Z, while

kLL(y) = � |B|�
2(NLL � 1)

� By, (III.4)

for the left-movers at y/� 2 2Z+ 1.

While the numbers of wires N
f

, N
h

and NLL within each region are free parameters,

we find it necessary to make a specific choice in the analysis presented below. We take

N
f

= N
h

= (NLL � 1)/2 = 1. From the above equations, we see that this choice implies

the 1D densities of the modes on each wire are identical; N
f

= N
h

= 1 is simply the

minimal number of wires required and naturally obtains in the one-dimensional � ! 0 limit

of interest. We will show that this choice ensures that the interactions we study preserve

translation invariance along the wires; for general values of N
f

, N
h

and NLL, our route to

a PH symmetric composite Fermi liquid requires translation-invariance to be broken along

the wires.37

The emergent gauge fields are not restricted to the wires; they can be taken to live

throughout each narrow strip. Thus, a
µ

lives in the composite Fermi strips x 2 (�1,1), y 2
[q�, (q+1)�] for q 2 2Z+1, while b

µ

is defined in the composite hole regions x 2 (�1,1), y 2
[p�, (p+ 1)�] for p 2 2Z.
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1. Coupled-wire e↵ective action

Writing out the low-energy e↵ective action S = Sbulk+Sinterfaces for the patterned plane in

terms of the emergent gauge fields and one-dimensional wire degrees of freedom introduced

above, we find

Sbulk =
X

y/�22Z� 1
2

Z

t,x

h
f †
L

i
⇣
Df

t

� v
f

Df

x

⌘
f
L

+ f †
R

i
⇣
Df

t

+ v
f

Df

x

⌘
f
R

i

+
1

4⇡

X

q22Z+1

Z

t,x,

Z (q+1)�

q�

dy
h1
2
✏
µ⌫⇢

a
µ

@
⌫

a
⇢

i

+
X

y/�22Z+ 1
2

Z

t,x

h
h†
L

i
⇣
Dh

t

� v
h

Dh

x

⌘
h
L

+ h†
R

i
⇣
Dh

t

+ v
h

Dh

x

⌘
h
R

i

+
1

4⇡

X

p22Z

Z

t,x,

Z (p+1)�

p�

dy
h

� 1

2
✏
µ⌫⇢

b
µ

@
⌫

b
⇢

+ ✏
µ⌫⇢

A
µ

@
⌫

A
⇢

i
(III.5)

and

Sinterface =
1

4⇡

X

y/�2Z

Z

t,x

h
2(�1)

y

�

⇣
@
t

�
f

+
(�1)

y

�

2
a
t

⌘⇣
@
x

�
f

+
(�1)

y

�

2
a
x

⌘
� v

�

f

⇣
@
x

�
f

+
(�1)

y

�

2
a
x

⌘2

+✏
µ⌫y

a
µ

@
⌫

�
f

+ 2(�1)
y

�

⇣
@
t

�
h

+
(�1)

y

�

2
b
t

⌘⇣
@
x

�
h

+
(�1)

y

�

2
b
x

⌘
� v

�

h

⇣
@
x

�
h

+
(�1)

y

�

2
b
x

⌘2

+ ✏
µ⌫y

b
µ

@
⌫

�
h

+ @
x

�LL

⇣
(�1)

y+�

� @
t

� vLL@x

⌘
�LL + 2✏

µ⌫y

A
µ

@
⌫

�LL

i
.

(III.6)

Fig. 4 depicts more precisely our specific setup. We have taken the CFL and CHL wires

to lie at y/� 2 2Z ⌥ 1
2
. Since N

f

= N
h

= 1, there is no inter-wire composite fermion

tunneling within a CFL or CHL region. The covariant derivatives: Df ⌘ @ � i(a+A) and

D

h ⌘ @ � i(b � A). The Fermi velocities: v
f

= k
F

/m
f

and v
h

= k
F

/m
h

. Invariance under

the microscopic PH transformation requires all velocities to be independent of position and

to satisfy: v
f

= v
h

⌘ v
F

and v
�

f

= v
�

h

⌘ v.

To study the action S, it is convenient to make the following field redefinitions along the

13



· · · · · ·

··
·

··
·

FIG. 4. Wires hosting composite fermions are depicted by short-dashed lines along y/� 2 2Z � 1
2

within the (red) composite Fermi liquid regions, while wires hosting composite holes are indicated

by long-dashed lines along y/� 2 2Z+ 1
2 within the (blue) composite hole liquid regions. The solid

lines along y/� 2 Z denote line interfaces between the composite Fermi and composite hole liquids

with excitations described by the action Sinterfaces. The solid lines host the co-propagting left-

moving (right-moving) fields �

f

and �

h

and the counter-propagating right-moving (left-moving)

filled Landau level mode �LL for y/� 2 2Z (y/� 2 2Z + 1).

line interfaces located at y/� 2 Z,

�
f

=
'+ '̃

2
,

�
h

=
'� '̃

2
,

a
µ

= ↵
µ

� �
µ

,

b
µ

= ↵
µ

+ �
µ

, (III.7)
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in terms of which action along the interfaces becomes

Sinterfaces =
1

4⇡

X

y/�2Z

Z

t,x

h
(�1)

y

�

⇣
@
t

'+ (�1)
y

�↵
t

⌘⇣
@
x

'+ (�1)
y

�↵
x

⌘
� v

2

⇣
@
x

'+ (�1)
y

�↵
x

⌘2

+✏
µ⌫y

↵
µ

@
⌫

'+ (�1)
y

�

⇣
@
t

'̃+ (�1)
y+�

� �
t

⌘⇣
@
x

'̃+ (�1)
y+�

� �
x

⌘
� v

2

⇣
@
x

'̃+ (�1)
y+�

� �
x

⌘2

� ✏
µ⌫y

�
µ

@
⌫

'̃+ @
x

�LL

⇣
(�1)

y+�

� @
t

� vLL@x

⌘
�LL + 2✏

µ⌫y

A
µ

@
⌫

�LL

i
.

(III.8)

Note that ' carries +1 (�1) charge – it transforms as ' 7! '+(�1)
y+�

�

⇤
a

+⇤
b

2
– under an ↵

µ

gauge transformation, while '̃ carries �1 (+1) charge – it transforms as '̃ 7! '̃+(�1)
y

�

⇤
b

�⇤
a

2

– under a �
µ

gauge transformation for y/� 2 2Z + 1 (y/� 2 2Z). In the next section, we

will argue that ' describes the low-energy excitations of a PH symmetric composite Fermi

liquid.

Within our coupled-wire setup, the electron, hole, and filled Landau level boundary or

interface creation operators defined at y/� 2 Z take the form,

 †
e

(t, x, y) = e(�1)
y+�

�

i('+'̃)(y)f †(y ⌥ �

2
),

 †
h

(t, x, y) = e(�1)
y+�

�

i('�'̃)(y)h†(y ± �

2
),

 †
LL(t, x, y) = �

y

e�ikLL(y)xe(�1)
y

�

i�LL(y), (III.9)

for y/� 2 2Z (upper) or y/� 2 2Z+1 (lower).  †
e

may be said to create ' and '̃ excitations

along with the composite fermion. In contrast,  †
h

creates a ' excitation, annihilates a '̃

excitation, and creates a composite hole. Note that we are working in the ↵
y

= �
y

= 0

gauge.

Using Eq. (II.9), the fields introduced in Eq. (III.7) transform as follows under the PH

transformation:

' 7! '� ⇡

2
,

'̃ 7! �'̃+ �
⇡

2
,

(↵
t

,↵
x

,↵
y

) 7! (↵
t

,�↵
x

,�↵
y

),

(�
t

, �
x

, �
y

) 7! (��
t

, �
x

, �
y

). (III.10)

Recall that � = ±1 for a right/left-moving field. Thus, '̃ transforms identically to the

filled Landau level mode �LL, ↵µ

transforms by time-reversal, and �
µ

transforms by the
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combination of charge-conjugation and time-reversal, just like the electromagnetic field.

The microscopic PH transformation supplements the above action with a translation of

the y-coordinate of the fields by �. Using Eqs. (III.9) and (III.10), the microscopic PH

transformation takes

 †
e

(t, x, y) 7! (�1)
y+�

�  †
h

(t, x, y + �),

 †
h

(t, x, y) 7! (�1)
y

� †
e

(t, x, y + �),

 †
LL(t, x, y) 7! �i LL(t, x, y + �). (III.11)

C. Emergence of the particle-hole symmetric composite fermion

We now turn to a description for how a PH symmetric composite Fermi liquid can emerge

from S, supplemented by suitable interactions. In total, the symmetries we wish to preserve

are (i) electromagnetism, (ii) translations along the x-direction, (iii) translations by 2� in

the y-direction, and (iv) invariance under the microscopic PH transformation.

1. The interaction

In the spirit of e↵ective field theory, we generally allow all interactions consistent with

the symmetries of S. After some exploration, we have found it useful to concentrate upon

the e↵ects of the following interaction Hint = H1 +H2:

H1 = g1
X

y/�2Z
(�1)

y

�

⇣
 †
e

 
h

 LL@x LL

⌘
(y) + h.c.

H2 = g2
X

y/�22Z

⇣
 †
e

 LL

⌘
(y + �)

⇣
 
h

 LL

⌘
(y) � g2

X

y/�22Z+1

⇣
 †
h

 †
LL

⌘
(y + �)

⇣
 
e

 †
LL

⌘
(y) + h.c.

(III.12)

We will show that study of Hint provides a saddle-point from which a PH symmetric com-

posite Fermi liquid emerges. The couplings g1 and g2 are real. We verify using Eq. (III.11)

that Hint is invariant under the microscopic PH transformation. Using the expansions and
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definitions in Eqs. (III.1) - (III.4), the interaction reduces to

H1 = g1
X

y/�22Z
e
�2i

⇣
'̃(y)+�LL(y)

⌘
h
f †
L

(y � �

2
)h

R

(y +
�

2
) + f †

R

(y � �

2
)h

L

(y +
�

2
)
i

� g1
X

y/�22Z+1

e
2i

⇣
'̃(y)+�LL(y)

⌘
h
f †
L

(y +
�

2
)h

R

(y � �

2
) + f †

R

(y +
�

2
)h

L

(y � �

2
)
i
, (III.13)

H2 = g2
X

y/�22Z
e
i

⇣
'(y+�)+'̃(y+�)+�LL(y+�)

⌘

e
i

⇣
'(y)�'̃(y)��LL(y)

⌘

�
y+�

�
y

⇥
h
f †
L

(y +
3�

2
)h

L

(y +
�

2
) + f †

R

(y +
3�

2
)h

R

(y +
�

2
)
i

� g2
X

y/�22Z+1

e
�i

⇣
'(y+�)�'̃(y+�)��LL(y+�)

⌘

e
�i

⇣
'(y)+'̃(y)+�LL(y)

⌘

�
y+�

�
y

⇥
h
h†
L

(y +
3�

2
)f

L

(y +
�

2
) + h†

R

(y +
3�

2
)f

R

(y +
�

2
)
i
+ h.c. (III.14)

in the long wavelength e↵ective theory. In the above expansion, we have only retained terms

without oscillating prefactors. Note that we have had to assume that the composite electrons

and holes are at half-filling with respect to an underlying spatial lattice running along the

x-direction in order to obtain these expansions.

We imagine working in the perturbative limit g2 ⌧ g1 ⌧ 1 which allows us to first

focus upon the e↵ects of H1 and to subsequently study the e↵ects of H2. This limit may

be justified by noting that H1 is an “on-site” interaction for fields localized near a line

interface separating a composite Fermi and composite hole region, while H2 connects fields

across a strip. We show below that H1 patches together the composite Fermi and composite

hole strips. H2 both delocalizes the electrically-neutral composite fermion arising from the

fermionization of ' and lifts the composite fermions f and h from the low-energy e↵ective

theory.

2. Patching the strips together

We first consider the e↵ects of H1. About the non-interacting point in parameter space,

H1 has scaling dimension equal to two and is marginal. We assume the presence of short-

ranged repulsive density-density interactions between '̃ and �LL which drive H1 relevant.
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Formally integrating out the composite fermions f and h at one-loop, we generate a (Eu-

clidean signature) e↵ective potential for the operator O1(t, x, y) = e
2i

⇣
'̃(t,x,y)+�LL(t,x,y)

⌘

,

VO1 = g21

Z
dk0dkxdy log(

p
k2
0 + k2

x

⇤
)O⇤

1(�k0,�k
x

, y)O1(k0, kx, y). (III.15)

In writing the above potential, we have performed a partial Fourier transform with respect

to the Euclidean time and x-coordinate. The cuto↵ ⇤ can be identified with the inverse of

a short-distance cuto↵, such as an underlying spatial lattice.

The one-loop potential VO1 has an instability in the infrared
p

k

2
0+k

2
x

⇤
⌧ 1 which favors

the condensation hO1i 6= 0. Invariance under the microscopic PH transformation implies

that the condensation occurs by fixing

h'̃+ �LLi = 0. (III.16)

Thus, we infer from the form of the one-loop potential that the IR dynamics are such that

Eq. (III.16) is satisfied.

What are the consequences of the condensate h'̃ + �LLi = 0? Under the emergent and

electromagnetic gauge symmetries, O1 transforms as

O1(t, x, y) 7! e(�1)
y+�

�

i(⇤
a

+⇤
A

)�i(⇤
b

�⇤
A

)O1(t, x, y) (III.17)

where ⇤
a

(⇤
b

) is the gauge parameter of a
µ

(b
µ

) and ⇤
A

is the parameter for electromag-

netism. Therefore, if O1 (or more precisely, |O1|2) acquires a vacuum expectation value, then

the expansion about the resulting minimum of the e↵ective potential results in a breaking

of the full gauge symmetry to the subgroup under which O1 is neutral. Thus, we equate

a
µ

+ A
µ

= b
µ

� A
µ

(III.18)

along the line interfaces. Eq. (III.18) is the patching condition that defines a single emergent

gauge field. This equation can equivalently be written as

�
µ

= A
µ

(III.19)

and allows us to identify ↵
µ

as the globally-defined emergent gauge field. (The electromag-

netic field is, of course, already defined throughout the 2D plane.) We can check using Eq.

(III.10) that the patching condition respects the PH transformation. The second conse-

quence is that the '̃ and �LL excitations obtain a mass and decouple from the low-energy
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physics. The third implication is simply that when we replace O1 by its vacuum expectation

value, i.e., set '̃+�LL = 0 in Eq. (III.13), the composite fermions f and h can hop into one

another across the 2D plane.

From the above considerations, S = Sbulk + Sinterfaces simplifies to

Sbulk =
1

4⇡

X

m2Z

Z

t,x

Z (m+1)�

m�

dy
h(�1)m+1

2
✏
µ⌫⇢

↵
µ

@
⌫

↵
⇢

� ✏
µ⌫⇢

A
µ

@
⌫

↵
⇢

+
1

2
✏
µ⌫⇢

A
µ

@
⌫

A
⇢

i

+
X

y/�22Z� 1
2

Z

t,x

h
f †
L

i
⇣
D

t

� v
F

D
x

⌘
f
L

+ f †
R

i
⇣
D

t

+ v
F

D
x

⌘
f
R

i

+
X

y/�22Z+ 1
2

Z

t,x

h
h†
L

i
⇣
D

t

� v
F

D
x

⌘
h
L

+ h†
R

i
⇣
D

t

+ v
F

D
x

⌘
h
R

i

(III.20)

for D
µ

⌘ @
µ

� i↵
µ

and

Sinterfaces =
1

4⇡

X

y/�2Z

Z

t,x

h
(�1)

y

�

⇣
@
t

'+ (�1)
y

�↵
t

⌘⇣
@
x

'+ (�1)
y

�↵
x

⌘

� v

2

⇣
@
x

'+ (�1)
y

�↵
x

⌘2

+ ✏
µ⌫y

↵
µ

@
⌫

'
i
. (III.21)

In Sbulk, we note the appearance of a Chern-Simons term for ↵
µ

with alternating coe�cient

proportional to (�1)m+1, a BF coupling between ↵
µ

and the electromagnetic field A
µ

, and

a level 1/2 Chern-Simons term for A
µ

. In the long wavelength limit � ! 0, the alternating

Chern-Simons term can be ignored. Therefore, we will henceforth drop this term in the

analysis below. Sinterfaces describes a collection of one-dimensional wires each hosting a

chiral boson minimally coupled to ↵
µ

whose chirality alternates from wire to wire.

3. Delocalization of the neutral composite fermion

To study H2 evaluated about the saddlepoint '̃+ �LL = 0, it is convenient to fermionize

the ' excitations by defining

 †
L

(y) ⌘ �
y

e�i'(y), for y/� 2 2Z

 †
R

(y) ⌘ �
y

ei'(y), for y/� 2 2Z+ 1. (III.22)
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in terms of which

H2 =g2
X

y/�22Z
 †
R

(y + �) 
L

(y)
h
f †
L

(y +
3�

2
)h

L

(y +
�

2
) +

⇣
L $ R

⌘i

� g2
X

y/�22Z+1

 †
L

(y + �) 
R

(y)
h
h†
L

(y +
3�

2
)f

L

(y +
�

2
) +

⇣
L $ R

⌘i
+ h.c. (III.23)

In exact analogy to our analysis ofH1, the one-loop e↵ective potential for the chiral operators

Oeven
2 ⌘ f †

L

(y+ 3�
2
)h

L

(y+ �

2
)+f †

R

(y+ 3�
2
)h

R

(y+ �

2
) for y/� 2 2Z and Oodd

2 ⌘ h†
L

(y+ 3�
2
)f

L

(y+

�

2
)+h†

R

(y+ 3�
2
)f

R

(y+ �

2
) for y/� 2 2Z+1 generated by  

L,R

favors the non-zero condensates:

hOeven
2 i 6= 0,

hOodd
2 i 6= 0. (III.24)

Invariance under the microscopic PH transformation requires hOeven
2 i = hOodd

2 i. We normal-

ize this vacuum expectation value to unity. Diagonalizing the quadratic composite fermion

e↵ective lagrangian, including the terms induced by the condensates in Eq. (III.24), we

find that f and h are lifted from the low-energy e↵ective theory. At the same time, the

replacement of the Oeven,odd
2 operators by their vacuum expectation values in H2 results in

the delocalization or “liberation” of  
R,L

across the 2D plane.

Suppose we had instead integrated out the composite fermions f and h at one-loop. Due

to H1 in Eq. (III.13) evaluated at '̃+�LL = 0, the contribution of the two-dimensional com-

posite fermions to the  †
R

 
L

e↵ective potential is proportional to the (Euclidean) momentum

carried by  †
R

 
L

and vanishes in the IR.

From this analysis, we obtain the e↵ective action

Se↵ =
X

y/�22Z

Z

t,x

h
 †
L

i(D
t

� vD
x

) 
L

i
+

X

y/�22Z+1

Z

t,x

h
 †
R

i(D
t

+ vD
x

) 
R

i

+ g2
X

y/�22Z

Z

t,x

h
 †
R

(y + �) 
L

(y) �  †
L

(y + 2�) 
R

(y + �) + h.c.
i

� 1

4⇡

Z

t,x,y

✏
µ⌫⇢

A
µ

@
⌫

↵
⇢

� 1

2
✏
µ⌫⇢

A
µ

@
⌫

A
⇢

i
. (III.25)

This is precisely the PH symmetric limit of the composite fermion action conjectured by

Son20 in which the y-direction has been discretized. In the 2D e↵ective theory, the PH

transformation acts as time-reversal  
L

7! i 
R

and  
R

7! �i 
L

, consistent with the trans-

formation rule in Eq. (III.10) and the choice of 2D �-matrices, �t = �1, �x = i�2 and

�y = i�3.
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4. The neutral composite fermion as an exciton of semions

Insertion on a boundary of a semion or single vortex of the composite Fermi liquid is

accomplished by the e⌥i�

f operator, where the sign in the exponential is determined by the

orientation of the boundary. (Recall the electron creation operator on a boundary takes the

form  †
e

= e⌥2i�
ff †.) The semion operator by itself is not physical because �

f

is charged

under the emergent gauge symmetry and so, strictly speaking, we are restricted to operators

formed from gauge-invariant combinations of �
f

and f . Similarly, in the composite hole

liquid, e±i�

h creates a semion on any boundary of the space.

Along a line interface separating the composite Fermi and composite hole liquids, the

operator e⌥i(�
f

+�

h

) creates one semion from each of the two theories. Using the field redefi-

nitions in Eq. (III.7), we find

e⌥i(�
f

+�

h

) = e⌥i'. (III.26)

In this way, we see that the electrically neutral composite fermion  †
L/R

⇠ e⌥i' can be

viewed as an exciton of semions of the composite Fermi and composite hole theories. It is

interesting to note the similarity to the description advocated by Wang and Senthil24 of the

particle-hole symmetric composite fermion as a semion dipole.

IV. CONCLUSION

In this paper, we have provided a picture for how a particle-hole symmetric composite

fermion theory arises from the composite Fermi and composite hole liquids. The latter two

theories are conjugate to one another under a particle-hole transformation. The particle-

hole symmetric formulation was found by examining the long wavelength description of the

two-dimensional spatial plane patterned with alternating strips of the composite Fermi and

composite hole liquid.

There are a variety of problems that we plan to consider in the future.

It has recently been argued [38] that composite fermions play a role in the e↵ective

description of the field-tuned superconductor-insulator transition in thin films [39–43]. We

plan to use methods similar to those in this paper to formulate a particle-vortex symmetric

theory for the transition and the emergent metallic phase.
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An alternative possible setup in which to derive a particle-hole symmetric composite

fermion theory is to take alternating strips of the Pfa�an [44] and anti-Pfa�an theories

[45,46]. In this case, the analog of the H1 interaction leaves behind an interface theory with

chiral central charge equal to two instead of one, as we found above. It would be interesting

to better understand the resulting long wavelength limit.

The constant subleading correction in the entanglement entropy of a system with abelian

topological order can be a↵ected by interactions lying along the entanglement cut [47]. These

interactions take the form of the correlated hopping terms studied in this paper. It would

be interesting to characterize how the entanglement entropy of a gapless system is a↵ected,

or rather, determined by such interactions.

Landau level mixing is parameterized by the ratio of the cyclotron frequency to the

strength of the average Coulomb interaction. For realistic (bare) parameters, this ratio is

of order one. Nevertheless, a Hall conductivity �
xy

= 1
2
e

2

h

, consistent with particle-hole

symmery [12], is observed at half-filling [8–10]. On a more theoretical level, the Landau

level mixing corrections to the lowest Landau level Hamiltonian were calculated in [48] and

found to be numerically small for realistic values of parameters. Could these experiments

and theoretical results indicate that the particle-hole symmetric composite Fermi liquid is

an attractor of the renormalization group?

In previous work [17], it was argued that the CFL and CHL states are distinct phases

of matter analogous to the up and down spin states of an Ising system. Since the quantity

h ⌘ (⌫ � 1/2) acts as a particle-hole symmetry breaking field, its sign determines whether

the CFL or CHL is the lower energy ground state. To the extent that there exists a critical

point at which particle-hole symmetry is spontaneously broken at ⌫ = 1/2 (h = 0), it follows

that there can also exist a first-order transition between the CFL and CHL as h changes

sign. However, it was shown in [49, 50] that such first order transitions are forbidden in the

presence of dipolar or Coulomb interactions. Instead, a modulated “stripe” phase consisting

of CFL and CHL regions would be expected to have a lower energy. Thus, it is conceivable

that in this case, the choice of patterning strips of CFL and CHL phases may be more than

merely a matter of convenience: it may well be the case that broken translational symmetry

of the sort considered here in its simplest form (along the y-direction) may well describe the

physics of the half-filled Landau level in the presence of long-ranged interactions. However,

when the interactions are short-ranged, it remains quite possible that the stripe phase melts
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and there could well be a first-order transition between the composite Fermi and composite

hole liquids. We wish to explore such issues, and also to explore similar aspects of half-filled

higher Landau levels in future work.
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