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Quantum disentangled liquid in the half-filled Hubbard model
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We investigate the existence of quantum-disentangled liquid (QDL) states in the half-filled Hubbard model
on bipartite lattices. In the one-dimensional case we employ a combination of integrability and strong-coupling
expansion methods to argue that there are indeed finite energy-density eigenstates that exhibit QDL behavior
in the sense of Grover and Fisher [J. Stat. Mech. (2014) P10010]. The states exhibiting the QDL property are
atypical in the sense that while their entropy density is nonzero, it is smaller than that of thermal states at the same
energy density. We argue that for U ≫ t these latter thermal states exhibit a weaker form of the QDL property,
which carries over to the higher dimensional case.
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I. INTRODUCTION

The last decade has witnessed significant advances in our
understanding of relaxation in isolated many-particle quantum
systems. Many of these were driven by advances in ultracold
atom experiments, which have made it possible to study the
real-time dynamics of almost isolated systems in exquisite
detail [1–11]. At present there are three established paradigms
for the relaxational behavior in such systems. According to
the eigenstate thermalization hypothesis [12–15] “generic”
systems relax towards thermal equilibrium distributions. In
this case the only information about the initial state that
is retained at late times is its energy density. Quantum
integrable models cannot thermalize in this way as they exhibit
additional conservation laws, but they relax to generalized
Gibbs ensembles instead [16–21]. Finally, disordered many-
body localized systems fail to thermalize as well [22–27].
This is related to the existence of conservation laws [27–29],
although in contrast to integrable models no fine-tuning of the
Hamiltonian is required.

Recently it has been proposed that certain isolated quantum
systems may exhibit behavior that is not captured by these
three known paradigms [30]. The resulting state of matter has
been termed a “quantum-disentangled liquid” (QDL). A char-
acteristic feature of such systems is that they comprise both
“heavy” and “light” degrees of freedom, which will be made
more precise below. The basic premise of the QDL concept is
that while the heavy degrees of freedom are fully thermalized,
the light degrees of freedom, which are enslaved to the heavy
degrees of freedom, are not independently thermalized. A
convenient diagnostic for such a state of matter is the bipartite
entanglement entropy (EE) after a projective measurement
of the heavy particles. Specifically, we define a QDL to be
a state in which the entanglement entropy reduces from a
volume law to an area law upon a projective measurement
of the heavy particles. The possibility of realizing a QDL
in the one-dimensional Hubbard model was subsequently
investigated by exact diagonalization of small systems in
Ref. [31]. Given the limitations on accessible system sizes
it is difficult to draw definite conclusions from these results.
Motivated by these studies we explore the possibility of

realizing a QDL in the half-filled Hubbard model on bipartite
lattices by analytic means. We employ methods of integrability
as well as strong-coupling expansion techniques [32–35] to
analyze properties of finite energy-density eigenstates of the
Hubbard Hamiltonian

H = −t
∑
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)(
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Here nj,σ = c
†
j,σ cj,σ and ⟨j,k⟩ denote nearest-neighbor links

that connect only sites from different sublattices A and B. At
half filling (one electron per site) (1) is invariant under the
η-pairing SU(2) symmetry with generators [36]
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2
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†
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In the strong interaction limit of the Hubbard model (U ≫
t), the bandwidths of the collective spin and charge degrees
of freedom are proportional to t2/U and t respectively. In
this regime the spin (charge) degrees of freedom therefore
correspond to “heavy” (“light”) particles.

The outline of our paper is as follows. In Sec. II we
employ methods of integrability to show that it is possible
to construct certain (“Heisenberg sector”) macrostates at
finite-energy densities for which the charge degrees of freedom
do not contribute to the volume term in the bipartite EE. This
strongly suggests that these states have the QDL property. In
Sec. III we then turn to strong-coupling expansion methods in
order to examine the QDL diagnostic proposed in Ref. [30].
In the one-dimensional case this analysis shows that in the
framework of a t/U expansion a projective measurement of
the spin degrees of freedom in a Heisenberg sector state indeed
leaves the system in a state that is only area-law entangled.
Our strong-coupling analysis further suggests the existence of
a weaker version of the QDL property, where a projective
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measurement of the heavy degrees of freedom leaves the
system in a state characterized by a volume-law entanglement
entropy, but with a prefactor that is exponentially small in U/t .
Section IV contains a summary and discussion of our results.
Various technical aspects of our calculations are presented in
three Appendixes.

II. INTEGRABILITY

The one-dimensional Hubbard model is exactly solvable
by the Bethe ansatz method [37]. This provides a description
of energy eigenstates as well as the corresponding macro
states in the thermodynamic limit. We now use this framework
to identify a class of macro states that exhibit a property
that is characteristic of a QDL. In the framework of the

string hypothesis general macro states in the one-dimensional
Hubbard model are described by sets of particle and hole
densities {ρp(k),ρh(k),σ p

n ($),σ h
n ($),σ ′

n
p($),σ ′

n
h($)|n ∈ N}.

These are analogs of the well-known particle and hole densities
used to characterize macro states in the ideal Fermi gas.
The main complication in integrable models is that there are
in general (infinitely) many different species of excitations,
which interact with one another. In the case at hand the
ρp/h describe pure charge excitations, the σ

p/h
n correspond to

elementary spin excitations as well as their bound states, and
σ ′

n
p/h represent bound states between spin and charge degrees

of freedom. As a consequence of the interacting nature of the
Hubbard chain the root densities are related in a nontrivial
manner: they are subject to the thermodynamic limit of the
Bethe ansatz equations [37]

ρp(k) + ρh(k) = 1
2π

+ cos k

∞∑
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]
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σ h
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Here u = U/4t and

an(x) = 1
2π

2nu

(nu)2 + x2
,

Anm(x) = δ(x) + (1 − δm,n)a|n−m|(x) + 2a|n−m|+2(x)

+ · · · + 2a|n+m|−2(x) + an+m(x). (4)

The energy and thermodynamic entropy per site are then given
by
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where we have defined

S[f,g] = [f (x) + g(x)] ln (f (x) + g(x))

− f (x) ln (f (x)) − g(x) ln (g(x)). (6)

The ground state of the half-filled Hubbard model in zero
magnetic field is obtained by choosing

ρh(k) = 0 = σ h
1 ($), σ ′p

n ($) = 0 = σ
p
n!2($). (7)

A. “Heisenberg sector”

Motivated by Ref. [31] we now consider a particular class
of macro states, which we call Heisenberg sector states. The
principle underlying their construction is to “freeze” the charge
degrees of freedom in its ground-state configuration while
imposing a finite-energy density in the spin sector. This is
achieved by requiring

ρh(k) = 0 = σ ′p
n ($), n = 1,2, . . . . (8)

Condition (8) corresponds to the absence of bound states
between spin and charge degrees of freedom (i.e., no k-$
strings) and a completely filled “Fermi sea” of elementary
charge degrees of freedom. Importantly the thermodynamic
entropy per site of Heisenberg sector states depends only on
the spin sector

s =
∞∑

n=1

∫ ∞

−∞
d$ S

[
σn

p($),σn
h($)

]
. (9)

As shown in Appendix A the total number of Heisenberg sector
states NHS fulfills

lim
L→∞

ln(NHS)
L

= ln(2). (10)

The result (10) suggests that for large, finite L there are
approximately 2L Heisenberg sector states.

B. Entanglement entropy of Heisenberg sector states

We now make use of the relation between the volume term in
the EE and the thermodynamic entropy density for eigenstates
of short-ranged Hamiltonians. Consider a finite energy density
eigenstate |'⟩ and a large subsystem A of size |A|. Then the
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volume term in the EE of the state |'⟩ is given by

SvN,A = s|A| + o(|A|), (11)

where s is the thermodynamic entropy density of the macro
state associated with |'⟩.

Combining (9) with (11), we conclude that for Heisenberg
sector states the volume term in the entanglement entropy is
entirely due to the spin degrees of freedom, and the charge
degrees of freedom do not contribute. This is very much in
line with what one would expect for a QDL state.

C. Thermal states in the large-U limit

It is very instructive to contrast the entanglement properties
of Heisenberg sector states to those of typical states. The
maximum entropy states at a given energy density are thermal
and can be constructed by the thermodynamic Bethe ansatz
(TBA). This provides a system of coupled nonlinear integral
equations for the ratios of the hole and particle densities [37,38]

ζ (k) = ρh(k)
ρp(k)

, ηn($) = σ h
n ($)

σ
p
n ($)

, η′
n($) = σ ′

n
h($)

σ ′
n
p($)

. (12)

For the sake of completeness we present the TBA equations in
Appendix B. While in general the TBA equations can only be
solved numerically, in the limit of strong interactions analytic
results can be obtained [39–41]. For simplicity we focus on
the “spin-disordered regime”

4t2

U
≪ T ≪ U. (13)

This regime corresponds to temperatures that are small
compared to the Mott gap, but large compared to the exchange
energy. Here one has [41]

ρh(k) = O(e−u/T ), σ ′p,h
n ($) = O(e−u/T ), (14)

where we have set t = 1 as our energy scale. Substituting this
into the general expression (5) for the thermodynamic entropy
density we obtain

s =
∞∑

n=1

∫ ∞

−∞
d$ S

[
σ p

n ($),σn
h($)

]
+ O

(
u

T
e−u/T

)
. (15)

Finally, using the relation between thermodynamic and EE
(11) we conclude that for thermal states in the spin-disordered
regime the contribution of the charge degrees of freedom to
the volume term is

SvN,A = (sspin + scharge)|A| + o(|A|),

sspin = O(1), scharge = O
(

u

T
e−u/T

)
. (16)

Here scharge includes the contributions from pure charge
degrees of freedom as well as bound states of spin and charge.
Importantly, unlike Heisenberg sector states, typical states
have a contribution from the charge degrees of freedom to
the volume term. However, this contribution is exponentially
small in u/T and therefore only visible for extremely large
subsystems. While we have focussed on the spin-disordered
regime, the behavior (16) extends to thermal states for all
0 < T ≪ U .

III. t/U EXPANSION

The analysis presented above provides a strong indication
that the Heisenberg sector states realize the QDL concept.
However, the exact solution does not presently allow one to
examine the QDL diagnostic proposed in Ref. [30], which
requires the calculation of the EE after a partial measurement.
We therefore now turn to a complementary approach, namely
a strong-coupling expansion in powers of t/U . This is most
conveniently implemented by following Ref. [33]. At a given
site j there are four possible states |0⟩j , |↑⟩j = c

†
j,↑|0⟩j ,

|↓⟩j = c
†
j,↓|0⟩j , and |2⟩j = c

†
j,↑c

†
j,↓|0⟩j . Defining Hubbard

operators by Xab
j = |a⟩j j ⟨b|, the Hamiltonian (1) can be

expressed in the form

H = UD + t(T0 + T1 + T−1), (17)

where D = 1
4

∑
j X22

j + X00
j − X

↑↑
j − X

↓↓
j and Ta =

∑
j Ta,j

are correlated hopping terms that change the number of doubly
occupied sites by a,

T0,j = −
∑

σ

(
X2σ

j Xσ2
j+1 + Xσ0

j X0σ
j+1 + H.c.

)
,

T1,j = T
†
−1,j = −

∑

σ

σ
[
X2σ̄

j X0σ
j+1 + X0σ̄

j X2σ
j+1

]
.

The t/U expansion is conveniently cast in the form of a unitary
transformation [33]

H ′ = eiSHe−iS = H + [iS,H ] + 1
2 [iS,[iS,H ]] + · · · ,

(18)

where the generator iS is chosen as a power series in t/UiS =∑∞
n=1 ( t

U
)niS[n]. The operators S[1], . . . ,S[k] can be chosen

such that the first k + 1 terms in the t/U expansion of H ′ will
not change the number of doubly occupied sites. It follows
from Ref. [33] that the unitary transformation can be written
as

e−iS =
∑

k!0

∑

[m]

(
t

U

)k

α(k)[m]T (k)[m], (19)

T (k)[m] = Tm1Tm2 . . . Tmk
, mj ∈ {−1,0,1}, (20)

where α(k)[m] are suitably chosen coefficients.

A. Heisenberg sector states in the t/U expansion

We now need to identify the Heisenberg sector states in
the framework of the t/U expansion. We propose that they
are characterized by their property that, in the framework
of the t/U expansion, they are connected by our unitary
transformation to states without any double occupancies,

|ψH ⟩|t/U = |ψ⟩ = e−iS
∑

αj =↑,↓
fα1...αL

⎡

⎣
L∏

j=1

Xαj 0

⎤

⎦|0⟩. (21)

Our identification is based on the fact that in the Bethe ansatz
solution exact eigenstates are labeled by sets of (half-odd)
integer quantum numbers, which makes it possible to follow
a particular state when changing the interaction strength U .
When sending U/t to infinity for a large but fixed system
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a1 a2 a3 a4 a5 a6 a7 a8

FIG. 1. The pairing k = {a1,a8,a2,a3,a4,a7,a5,a6} does not in-
volve crossed lines and fulfills the constraint.

size one finds that in this limit the lowest energy eigenstates
belong to the Heisenberg sector, which in turn leads to the
identification (21). In the following we will use the eigenstate
|ψH ⟩ and its t/U expansion |ψ⟩ interchangeably and leave a
discussion of contributions not captured by the t/U expansion
for our concluding remarks. The ground state of the half-filled
Hubbard model is a particular example of a Heisenberg state.
Heisenberg sector states have the important property that they
are singlets under the η-pairing SU(2) algebra. This follows
from the easily established fact that

[η,Tm] = 0 = [η†,Tm] = [ηz,Tm], m = 0,±1. (22)

The commutation relations (22) imply that T (k)[m] commute
with the η-pairing operators, and this in turn implies by virtue
of (19) that

[η,e−iS] = 0 = [η†,e−iS] = [ηz,e−iS]. (23)

This, together with the fact that all states with only singly
occupied sites are annihilated by both η and η† establishes that
all Heisenberg states are η-pairing singlets,

η|ψ⟩ = η†|ψ⟩ = ηz|ψ⟩ = 0. (24)

Using the results of Refs. [42,43] we may construct a basis
for the space of η-pairing singlets. Let us select a set A =
{a1, . . . ,a2q} of 2q lattice sites and denote the complementary
set by Ā. We take all Ā sites to be singly occupied by spin-σj

fermions, while we form singlet η-pairing dimers |S(a,b)⟩ =
|2⟩a|0⟩b + (−1)a+b−1|0⟩a|2⟩b on the A sites. This gives an
overcomplete set of states

|k; σ ⟩ =
q∏

i=1

|S(k2i−1,k2i)⟩
∏

j∈Ā

|σj ⟩j , (25)

where k = k1, . . . ,k2q is a permutation of {a1, . . . ,a2q}. It is
easily verified that the states (25) are η-pairing singlets. A
linearly independent set of states (25) is formed by imposing
a “noncrossing” constraint on the permitted values of k as
follows. We first impose an ordering of sites {a1, . . . ,a2q},
e.g., a1 < a2 < · · · < a2q . In one dimension this is simply the
natural order of the sites. We then connect the q pairs of sites
{(k2i−1,k2i)} by lines, cf. Fig. 1. If no lines cross, the state
corresponding to the pairing k is permitted. A basis B of all
η-pairing singlet states in the half-filled Hubbard model is
obtained by taking into account all “sectors” 0 " 2q " L and
all distinct sets {a1, . . . ,a2q} of lattice sites in a given sector.
All eigenstates in the Heisenberg sector can then be expressed
in the form

|ψ⟩ =
∑

|k;σ ⟩∈B

Ak;σ |k; σ ⟩. (26)

B. One spatial dimension

The t/U expansion allows us to determine the dependence
of the amplitudes Ak;σ on U . It is useful to define the “total
bond length” by

D

⎛

⎝
∑

|k;σ ⟩∈B

Ak;σ |k; σ ⟩

⎞

⎠ = max
|k;σ ⟩∈B
Ak;σ ̸=0

D(|k; σ ⟩), (27)

where we take D(|k; σ ⟩) =
∑q

i=1(∥k2i−1 − k2i∥ + 1). It is
a straightforward matter to show (see Appendix C) that
D(Tn|ψ⟩) " D(|ψ⟩) + n + 1 where n = 0,±1 and |ψ⟩ is
any Heisenberg sector state (26). This in turn implies that
D[T (k)[m]|ψ0⟩] " k + q, where q =

∑k
i=1 mi and |ψ0⟩ is any

state with only singly occupied sites. Applying this to the
expressions (21) and (19) for Heisenberg states, we conclude
that the expansion coefficients in Eq. (26) fulfill

Ak;σ = O
(

(t/U )
∑q

i=1 ∥k2i−k2i−1∥
)
. (28)

These results cannot be straightforwardly generalized to D >
1 because our definition of a total bond length hinges on
|k; σ ⟩ forming a basis of states, which imposes constraints
on the allowed values of k. In a typical Heisenberg sector
state we have a finite density of doubly occupied sites and
the coefficients (28) are of an extremely high order in t/U .
In order to proceed we will assume that the t/U expansion
for the wave function (26) has a finite radius of convergence.
We know this to be the case for certain quantities such as the
ground-state energy [37].

C. Quantum-disentangled diagnostic

According to Refs. [30,31] a QDL can be diagnosed by
preparing the system in a finite energy-density eigenstate with
volume-law bipartite EE, and then to carry out a projective
measurement of the z component of spin on each site of the
lattice. If the resulting state is characterized by an area-law
EE, the original state realizes a QDL.

We now address this proposal in the framework of the
t/U expansion. As our initial state we choose a finite-
energy density eigenstate (21) in the Heisenberg sector. These
generically have volume-law entanglement entropies as can be
seen from the fact that the corresponding macro states have
finite thermodynamic entropy densities. As the 1D Hubbard
model is integrable there also exist finite-energy density
eigenstates with area-law EE, but these are the exception rather
than the rule. Let us assume that the outcome of our projective
spin measurement is that we obtain spin zero at all sites in the
set A = {a1,a2, . . . a2q} and spin σj = ±1/2 everywhere else.
Then the state of the system after the projective measurement
can be written as

|ψproj⟩ = 1√
N

a1−1∏

j1=1

X
σj1 σj1
j1

(
X00

a1
+ X22

a1

)

×
a2−1∏

j2=a1+1

X
σj2 σj2
j2

(
X00

a2
+ X22

a2

)
· · · |ψ⟩, (29)

where N is a normalization factor. Using our results (26) for
the structure of Heisenberg states in the t/U expansion, we
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· · · · · ·
a2n−1 a2n a2n+1 a2n+2 a2n+3 a2n+4

FIG. 2. Structure of the singlet pairings in the leading nonvanish-
ing term of the projected state in the t/U expansion.

can rewrite this in the form

|ψproj⟩ =
′∑

Q∈S2q

W (Q)
q∏

i=1

∣∣S
(
kQ2i−1 ,kQ2i

)〉
|σ ⟩. (30)

Here |σ ⟩ =
∏

j /∈A |σj ⟩ is a product state fixed by the projective
measurement, and the sum

∑′
Q∈S2q

is restricted to the permu-
tations Q such that aQ1 ,aQ2 , . . . aQ2q

corresponds to singlet
states that satisfy the noncrossing condition. As a result of
(28) the amplitudes W (Q) fulfill

W (Q) ∼ O
(
(t/U )

∑q
i=1 ∥kQ2i

−kQ2i−1 ∥). (31)

In the leading order in the t/U expansion that is allowed to
be nonzero by the above considerations there is only a single

term in Eq. (30) and we are dealing with a spatially ordered
product state of singlet dimers; cf. Fig. 2. In the following we
will assume for simplicity that the numerical coefficient of this
term is indeed different from zero, which will be generically
the case. Depending on the choice of the initial Heisenberg
state and the outcome of the projective measurement it is
possible that this coefficient vanishes. Such cases can be
accommodated by relatively straightforward modifications of
the following discussion.

D. Entanglement entropy

At any finite order in the t/U expansion the projected states
(30) are only weakly entangled. Let us consider the generic
case, in which the leading nonzero term in the projected state
has the form shown in Fig. 2. In this case the leading term
in von Neumann entropy of a subsystem A is simply given
by SvN,A = ln(2) if we cut one of the singlet dimers when we
bipartition the system, and zero otherwise. At leading order it
is not possible for the bipartition to cut more than one dimer. In
order to describe the structure of the leading corrections to this
result we take the subsystem A to be the interval [1,ℓ], where
a2n+1 < ℓ < a2n+2. Here {aj } are the sites in the projected
state that are either doubly occupied or empty. We then cast
the projected state in the form

(32)

where |ψL⟩ (|ψR⟩) is the part of the leading term of the
projected state that involves the sites j < a2n−1 (j > a2n+4).
The coefficients ϵ1,2 are of order (t/U )2(a2n+3−a2n+2) and
(t/U )2(a2n+1−a2n) respectively. The von Neumann entropy for
our subsystem is then

SvN,A = ln 2 + 9
16ε2

1ε
2
2

[
1 + 2 ln

( 4
3

)
− 2 ln(ε1ε2)

]
+ · · · .

(33)

We note that the correction is positive. The physical picture
that emerges is very simple: for small t/U , the projected
state is very close to being a product of Bell pairs and the
bipartite EE takes the form shown in Fig. 3. The average double
occupancy in a Heisenberg state is O(t2/U 2), which implies
that the average distance between doubly occupied/unoccupied
sites is very large, ∼U 2/t2. Hence, if the outcome of our
spin measurement is close to its average, the sites a1, . . . ,a2q

are well separated and the leading term (2) is expected
to provide an excellent approximation as long as the t/U
expansion converges. We note that the results obtained by the
t/U expansion are fully compatible with those obtained by
integrability methods in Sec. II. This, and the fact that the
t/U expansion is known to converge for simple quantities

like the ground-state energy [37,44], provides support for its
applicability.

E. Higher dimensions, D > 1

A key element of our analysis in the one-dimensional case is
the notion of a bond length, which fulfillsD(|ψ1⟩) " D(|ψ1⟩ +
|ψ2⟩) for arbitrary η-pairing singlet states |ψ1,2⟩. Our definition
of a bond length utilizes the availability of a convenient basis
of such states. It is this aspect which makes the D = 1 special.
In D > 1 we proceed by again first fixing a set A = {ai} of 2q
unoccupied or doubly occupied sites. We denote by Eij a bond
that joins sites ai and aj . We then define a dimer configuration
C as a set of q bonds Cij connecting sites ai and aj such that all
sites belong to precisely one bond. Each dimer configuration
gives rise to η-pairing singlet states of the form

|C; σ ⟩ =
∏

Cij ∈C

|S(ai,aj )⟩
∏

j /∈A

|σj ⟩j . (34)

The states (34) form an overcomplete set. In order to select a
set of linearly independent states we use the function D de-
fined by D (|C; σ ⟩)=

∑
Cij ∈C (∥ai−aj∥+1), where ∥ai − aj∥

denotes the Manhattan distance between sites ai and aj .
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FIG. 3. Form of the bipartite entanglement entropy after projec-
tive measurement of a general Heisenberg state. Deviations from
S(x) = ln 2,0 arise from higher-order terms, as seen in Eq. (33).

Among (34) we select the (2q)!
(q+1)!(q!) states that have the lowest

values under the map D: it is this criterion that allows the
inequalities in one dimension to be inherited in the higher-
dimensional case. Repeating this construction for all values
of 2q " L and all distinct sets A gives a basis B of η-pairing
singlet states. We now define our total bond distance D in the
same way as in Eq. (27) with the covering C taking the place of
the vector k. With these definitions in place it is straightforward
to show (see Appendix C) that D(Tn|ψ⟩) " D(|ψ⟩) + n + 1
where n = 0,±1 and |ψ⟩ is any Heisenberg sector state

|ψ⟩ =
∑

|C;σ ⟩∈B

AC;σ |C; σ ⟩. (35)

This in turn implies that D[T (k)[m]|ψ0⟩] " k + q, where q =∑k
i=1 mi and |ψ0⟩ is any state with only singly occupied sites.

It follows that the d-dimensional generalization of (28) is

AC;σ = O
(
(t/U )

∑
Cij ∈C ∥ai−aj ∥). (36)

The main difference to D = 1 is that now there can be several
basis states contributing to the leading-order term in t/U .
To see this we may consider a square lattice and focus on
the situation where the sites in A completely fill an m × n
rectangle (with at least one of m, n even). The leading-order
term is that generated by (T1)mn/2 produces a superposition
of all states in B that correspond to nearest-neighbor dimer
coverings of this rectangle. Nevertheless, it is apparent that to
leading order in the t/U expansion the structure of the state is
such that the entanglement entropy follows an area law.

IV. CONCLUSIONS

We have shown that there are particular “Heisenberg sector”
eigenstates in the one-dimensional half-filled Hubbard model
that realize the quantum-disentangled liquid state of matter
in the strong sense proposed in Ref. [30]. These states are
obtained by freezing the charge degrees of freedom in their
ground-state configuration in the framework of the Bethe

ansatz solution of the Hubbard model. Using methods of
integrability we have demonstrated that the charge degrees
of freedom (“light particles”) do not contribute to the volume
term of the bipartite entanglement entropy. Employing strong-
coupling expansion techniques we have shown (under the
assumption that the expansion converges) that a measurement
of the spin degrees of freedom at all sites (“heavy particles”)
leaves the system in a state that is area-law entangled, which
is the defining characteristic of a “strong QDL” [30].

In contrast to Heisenberg sector states, the entanglement
entropy for maximal entropy (thermal) states at a given energy
density at large values of U/t does have a contribution that
involves the charge degrees of freedom, but it is of the form
(16), i.e.,

SvN,A = (sspin + scharge)|A| + o(|A|),

sspin = O(1), scharge = O
(

u

T
e−u/T

)
. (37)

We expect a similar volume law to occur in the entanglement
entropy after a measurement of all spins. This suggests that
there is a weak variant of a QDL, which is characterized by a
volume term in the EE after measurement of the heavy degrees
of freedom that is exponentially small in the ratio of masses
(i.e., the ratio U/t in the Hubbard model). In this limit the
volume term is only observable in enormously (exponentially)
large systems and would be practically impossible to detect
in numerical simulations. We expect this weak scenario to be
realized quite generally in strong-coupling limits irrespective
of whether the model one is dealing with is integrable or not. In
particular, this scenario is compatible with our strong-coupling
analysis of the QDL diagnostic in D = 2.

An interesting question is how to access Heisenberg sector
states in the one-dimensional case. In principle this can be
achieved by means of a quantum quench [17] from a suitably
chosen initial state. At late times the system locally relaxes to
a steady state that is described by an appropriate generalized
Gibbs ensemble. The parameters of this ensemble are fixed
by the initial conditions and can in principle be tuned in such
a way that one ends up with a Heisenberg sector state. How
to do this in practice is an interesting albeit rather nontrivial
question. Fixing the energy density to be small compared to
the Mott gap is sufficient to obtain a nonequilibrium steady
state that realizes the weak form of a QDL characterized by
(16). In order to remove the scharge contribution, the expectation
values of higher conservation laws in the initial state have to be
chosen appropriately and it would be interesting to investigate
this issue further.
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APPENDIX A: COUNTING HEISENBERG
SECTOR STATES

In order to get a measure of how many Bethe ansatz
Heisenberg sector states there are we proceed as follows.
We start with the thermodynamic limit of the Bethe ansatz
equations (3) for Heisenberg sector states,

ρp(k) = 1
2π

+ cos k

∞∑

n=1

∫ ∞

−∞
d$ an($ − sin k)σ p

n ($),

σ h
n ($) = −

∞∑

m=1

∫ ∞

−∞
d$′Anm($ − $′) σ p

m($′)

+
∫ π

−π

dk an(sin k − $) ρp(k). (A1)

We then construct the maximum entropy state at a given energy
density by extremizing the free energy,

f = e − T s − B

[∫ π

−π

dk ρp(k) −
∞∑

n=1

2n

∫ ∞

−∞
d$σ p

n ($)

]

,

(A2)

where e and s are the energy and entropy densities of Heisen-
berg sector states and are given by (5) and (9) respectively.
B plays the role of a magnetic field and will eventually be
set to zero. The “temperature” T plays the role of a Lagrange
parameter that allows us to fix the energy density. Extremizing
(A2) with respect to the particle and hole densities under
the constraints (A1) fixes the ratios ηn = σ h

n

σ
p
n

for the maximal
entropy state at a given value of T via the TBA-like equations,

ln[1 + ηn($)] = g1($)
T

+
∞∑

m=1

∫ ∞

−∞
d$′

×Anm($ − $′) ln
[

1 + 1
ηn($′)

]
, (A3)

where g1($) = −4Re
√

1 − ($ − inu)2 + 4nu + 2nB. The
entropy density of this state is

s =
∞∑

n=1

∫ ∞

−∞
d$

[
g1($)
T

σ p
n ($) + g2($) ln

[
1 + η−1

n ($)
]]

,

(A4)

where g2($) = 1
π

Re 1√
1−($+inu)2

. In order to obtain a ther-

modynamic estimate of the number of Heisenberg sector
states we now consider the limit B,T → ∞ at fixed B/T .
In this limit the solution of the system of equations (A3)
is [37]

ηn =
[

sinh
( (n+1)B

T
)

sinh
(

B
T

)
]2

− 1. (A5)

Finally we take B/T to zero,

ηn = (n + 1)2 − 1. (A6)
Substituting this back into the expression (A3) for the entropy
we have

lim
T →∞

s =
∞∑

n=1

ln
[

(n + 1)2

(n + 1)2 − 1

]
= ln(2). (A7)

This tells us that the most likely macro state in the Heisenberg
sector has an entropy density of ln(2). All other macro states in
this sector are exponentially less likely, and hence we conclude
that the total number of Heisenberg sector micro states fulfills
(10).

APPENDIX B: THERMODYNAMIC
BETHE ANSATZ EQUATIONS

The Thermodynamic Bethe ansatz equations for the one-
dimensional Hubbard model in zero magnetic field are
[37,38]

ln ζ (k) = −2 cos k − µ − 2u

T
+

∞∑

n=1

∫ ∞

−∞
d$ an(sin k − $) ln

(
1 + 1

η′
n($)

)
−

∞∑

n=1

∫ ∞

−∞
d$ an(sin k − $) ln

(
1 + 1

ηn($)

)
,

(B1)

ln[1 + ηn($)] = −
∫ π

−π

dk cos(k) an(sin k − $) ln
(

1 + 1
ζ (k)

)
+

∞∑

m=1

Anm ∗ ln
(

1 + 1
ηm

)∣∣∣∣
$

, (B2)

ln[1+ η′
n($)] = 4Re

√
1− ($− inu)2 − 2nµ− 4nu

T
−

∫ π

−π

dk cos(k) an(sin k − $) ln
(

1+ 1
ζ (k)

)
+

∞∑

m=1

Anm ∗ ln
(

1+ 1
η′

m

)∣∣∣∣
$

.

(B3)

APPENDIX C: SOME INEQUALITIES FOR THE TOTAL
BOND LENGTH OF HEISENBERG STATES

Here we show that

D(Tn|ψ⟩) " D(|ψ⟩) + n + 1, n = 0,±1. (C1)

We consider the one- and higher-dimensional cases separately.

1. One dimension

Any Heisenberg state can be written in the form (26)

|ψ⟩ =
∑

|k;σ ⟩∈B

Ak;σ |k; σ ⟩. (C2)
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To establish (C1) it therefore suffices to show that

D(Tn|k; σ ⟩) " D(|k; σ ⟩) + n + 1. (C3)

We next consider the three cases n = 0,±1 in turn.

a. Inequality for T1

Due to the definition of the bond distance, it is clear that

D

⎛

⎝
∑

j

Tm,j |k; σ ⟩

⎞

⎠ " supj D(Tm,j |k; σ ⟩), (C4)

and therefore for m = ±1,0, we simply need to find the case
which yields the largest value in order to prove the inequality.
T1,j creates an η singlet on two adjacent sites and D counts the
total number of sites spanned by the singlet bonds; applying
T1,j increases this by at most that in the case of a system with
no doubly occupied sites. We can view the result graphically:

(C5)

b. Inequality for T0

T0,j neither creates nor destroys any η-singlet pairs.
Instead, for a given singlet pair, it moves one of the doubly
occupied/empty sites in the pair either left or right one site,
i.e., it extends the bond distance of the pair by ±1. The case
where the distance increases, i.e., saturates the inequality, can
be represented graphically as

(C6)

c. Inequality for T−1

It is simple to show that T−1,j “fuses” the ends of singlet
pairs together to create a new singlet pair between the
unaffected sites. Using this, we can consider the two possible
distinct cases graphically. Explicit calculation shows that this
intuition holds. The cases are (i) a2n−1 = a2n − 1, i.e., they are
adjacent,

(C7)

(ii) a2n = a2n+1 − 1, i.e., two singlets are nested,

(C8)

2. Higher dimensions

Any Heisenberg state can be written in the form (35),

|ψ⟩ =
∑

|C;σ ⟩∈B

AC;σ |C; σ ⟩, (C9)

so that in order to establish (C1) it suffices to show that

D(Tn|C; σ ⟩) " D(|C; σ ⟩) + n + 1. (C10)

for all basis states |C; σ ⟩ ∈ B. We consider the three cases
n = 0,±1 in turn.

a. Inequality for T0

We note that by construction we have for all basis states

D(|C; σ ⟩) = D(|C; σ ⟩), |C; σ ⟩ ∈ B. (C11)

Following through the same steps as in the one-dimensional
case we see that T0 can increase the Manhattan distance
between any pair in the configuration by at most 1, i.e.,

D(T0|C; σ ⟩) " D(T0|C; σ ⟩),
" D(|C; σ ⟩) + 1 = D(|C; σ ⟩), (C12)

where in the last step we used (C11).

b. Inequality for T1

Similarly, acting with T1 creates a new configuration with
an additional edge,

D(T1|C; σ ⟩) " D(T1|C; σ ⟩),
" D(|C; σ ⟩) + 2 = D(|C; σ ⟩) + 2, (C13)

where in the last step we used (C11).

c. Inequality for T−1

Finally, acting with T−1 always removes a pair of “adjacent”
unoccupied/doubly occupied sites. Thinking in terms of
configurations, this then either removes a paired bond, or fuses
two bonds into one. If we explicitly write the points defining
the configuration C, the first case corresponds to

T−1 : {{k1,k2},{k3,k4}, . . . ,{k2q−1,k2q}}
→ {{k3,k4}, . . . ,{k2q−1,k2q}}. (C14)

This implies that

D(T−1|C; σ ⟩) " D(|C; σ ⟩) − (∥k1 − k2∥ + 1). (C15)

The second case corresponds to

T−1 : {{k1,k2},{k3,k4}, . . . ,{k2q−1,k2q}}
→ {{k1,k4}, . . . ,{k2q−1,k2q}}, (C16)
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which implies that

D(T−1|C; σ ⟩) " D(|C; σ ⟩) + (∥k1 − k4∥ + 1)

− (∥k1 − k2∥ + 1) − (∥k3 − k4∥ + 1).

(C17)

By construction k2 and k3 are “adjacent,” so that

(∥k1 − k4∥ + 1) − (∥k1 − k2∥ + 1) − (∥k3 − k4∥ + 1) " 0.

(C18)

Putting everything together we have

D(T−1|C; σ ⟩) " D(|C; σ ⟩), |C; σ ⟩ ∈ B. (C19)
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