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We investigate the implications of integrability for
the existence of quantum disentangled liquid (QDL)
states in the half-filled one-dimensional Hubbard
model. We argue that there exist finite energy-density
eigenstates that exhibit QDL behaviour in the sense
of Grover & Fisher (2014 J. Stat. Mech. 2014, P10010.
(doi:10.1088/1742-5468/2014/10/P10010)). These sta-
tes are atypical in the sense that their entropy density
is smaller than that of thermal states at the same
energy density. Furthermore, we show that thermal
states in a particular temperature window exhibit
a weaker form of the QDL property, in agreement
with recent results obtained by strong-coupling
expansion methods in Veness et al. (2016 (http://
arxiv.org/abs/1611.02075)).

This article is part of the themed issue ‘Breakdown
of ergodicity in quantum systems: from solids to
synthetic matter’.

1. Introduction
The question of how isolated many-particle quantum
systems relax and how to describe their steady-state
behaviour has attracted attention for a long time [1]. The
past decade has witnessed a tremendous resurgence of
interest in this problem, which was largely motivated
by ground-breaking experiments on systems of trapped
ultra-cold atoms [2–12]. It is now understood that generic
many-body systems relax towards thermal equilibrium
distributions at an effective temperature fixed by the
energy density, which is, by definition, conserved for
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isolated systems. This behaviour follows from the eigenstate thermalization hypothesis (ETH)
[13–16]. When a system thermalizes the only information about the initial state that is retained
at late times is its energy density. This does not, however, exhaust the theoretically understood
paradigms of relaxation: quantum integrable systems possess conservation laws that constrain
the system to retain information on more than just the energy density. As such, they do
not thermalize, but instead relax towards generalized Gibbs ensembles [17–22]. This can be
understood in terms of a generalized ETH [23,24]. Sufficiently strong disorder is another
mechanism that can preclude thermalization [25–30]. This can again be related to the existence
of conservation laws [30–32], although, unlike in the integrable case, no fine-tuning is required.
Moreover, in (many-body) localized systems, eigenstates at finite energy densities exhibit an area-
law scaling of the entanglement entropy (EE). This is qualitatively different from cases in which
the ETH holds, and differs dramatically from the situation encountered in integrable models.

Recently, it has been proposed that the eigenstates of certain systems may fail to thermalize
in the conventional sense. The corresponding state of matter has been dubbed the ‘quantum
disentangled liquid’ (QDL) [33]. A characteristic feature of such systems is that they comprise
both heavy and light degrees of freedom. The basic premise of the QDL concept is that, while
the heavy degrees of freedom are fully thermalized, the light ones, which are enslaved to the
heavy particles, are not independently thermalized. A convenient diagnostic for such a state of
matter is the bipartite EE after a projective measurement of the heavy particles. The possibility
of realizing a QDL in the one-dimensional Hubbard model was subsequently investigated by
exact diagonalization of small systems in [34]. Given the limitations on accessible system sizes, it
is difficult to draw definite conclusions from these results. Motivated by these studies, we have
recently explored the possibility of realizing a QDL in the half-filled Hubbard model on bipartite
lattices by analytic means [35]. Here, we provide additional details regarding the integrability-
based approach put forward in that work. The Hamiltonian of the one-dimensional Hubbard
model is

H = −t
∑

j,σ=↑,↓
(c†

j,σ cj+1,σ + c†
j+1,σ cj,σ ) + U

∑

j

(
nj,↑ − 1

2

)(
nj,↓ − 1

2

)
. (1.1)

Here, cj,σ , c†
j,σ are fermionic operators satisfying the usual anticommutation relations, nj,σ =

c†
j,σ cj,σ , t > 0 is the hopping parameter and U > 0 is the strength of the on-site repulsion. The

outline of this paper is as follows. In §2, we briefly recall necessary facts from the exact solution
of the Hubbard model. In §3, we consider typical states at finite temperature. In §§4 and 5, we
employ methods of integrability to show that it is possible to construct particular eigenstates at
finite energy densities for which the charge degrees of freedom do not contribute to the volume
term in the bipartite EE, corroborating the notion of the QDL diagnostic proposed in [33]. In §6,
we show that there exists a parametrically large regime in which thermal states support a weaker
version of QDL as proposed in [35].

2. Eigenstates of the Hubbard Hamiltonian
The Bethe ansatz method provides an exact solution of the one-dimensional Hubbard model [36].
Within the framework of the string hypothesis, eigenstates in the Hubbard model are determined
by solutions to Takahashi’s equations [36]. For a state with N electrons, M of which are spin-down,
they read

2π Ij

L
= kj + 1

L

∞∑

n=1

Mn∑

α=1

θ

( sin kj − Λn
α

nu

)
+ 1

L

∞∑

n=1

M′
n∑

α=1

θ

(
sin kj − Λ′n

α

nu

)

,

j = 1, . . . , N − 2M′,
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2π Jn

α

L
= 1

L

N−2M′∑

j=1

θ

(
Λn

α − sin kj

nu

)
− 1

L

∞∑

m=1

Mm∑

β=1

Θnm

(
Λn

α − Λm
β

u

)

, α = 1, . . . , Mn,

2π J′nα
L

= − 1
L

N−2M′∑

j=1

θ

(
Λ′n

α − sin kj

nu

)

− 1
L

∞∑

m=1

M′
m∑

β=1

Θnm

(
Λ′n

α − Λ′m
β

u

)

+ 2Re[arcsin(Λ′n
α + niu)], α = 1, . . . , M′

n,

where u = U/4t, θ (x) = 2 arctan(x),

Θnm(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

θ

(
x

|n − m|

)
+ 2θ

(
x

|n − m| + 2

)

+ · · · + 2θ

(
x

n + m − 2

)
+ θ

(
x

n + m

)
, n ̸= m

2θ
(x

2

)
+ 2θ

(x
4

)
+ · · · + 2θ

(
x

2n − 2

)
+ θ

( x
2n

)
, n = m

, (2.1)

and

M =
∞∑

n=1

n(Mn + M′
n) and M′ =

∞∑

n=1

nM′
n. (2.2)

The sets {Ij}, {Jn
α}, {J′nα} of integer or half-odd integer numbers specify the particular eigenstate

under consideration and obey the ‘selection rules’

Ij ∈

⎧
⎪⎪⎨

⎪⎪⎩

Z + 1
2

if
∑

m
(Mm + M′

m) odd,

Z if
∑

m
(Mm + M′

m) even,
−L

2
< Ij ≤ L

2
,

Jn
α ∈

⎧
⎨

⎩

Z if N − Mn odd,

Z + 1
2

if N − Mn even,
|Jn

α | ≤ 1
2

(

N − 2M′ −
∞∑

m=1

tnmMm − 1

)

,

J′nα ∈

⎧
⎨

⎩

Z if L − N + M′
n odd,

Z + 1
2

if L − N + M′
n even,

|J′nα | ≤ 1
2

(

L − N + 2M′ −
∞∑

m=1

tnmM′
m − 1

)

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

where tnm = 2 min(m, n) − δmn. Energy and momentum, measured in units of t = 1, of an
eigenstate characterized by the set of roots {kj, Λn

α , Λ′m
β } are given by

E = −2
N−2M′∑

j=1

cos kj + 4
∞∑

n=1

M′
n∑

β=1

Re
√

1 − (Λ′n
β + niu)2 + u(L − 2N) (2.4)

and

P =

⎡

⎣
N−2M′∑

j=1

kj −
∞∑

n=1

M′
n∑

β=1

(2 Re arcsin(Λ′n
β + niu) − (n + 1)π )

⎤

⎦mod 2π . (2.5)

In the framework of the string hypothesis, each set {Ij, Jn
α , J′mβ } of (half-odd) integers gives rise to

a unique eigenstate of the Hubbard Hamiltonian. In particular, the ground state for even lattice
length L, even total number of electrons NGS and odd number of down spins MGS is obtained
by the choice [36]

Ij = −NGS

2
− 1

2
+ j, j = 1, . . . , NGS (2.6)

and

J1
α = −MGS

2
− 1

2
+ α, α = 1, . . . , MGS. (2.7)
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(a) Macro-states at finite energy densities
Taking the thermodynamic limit, the Bethe ansatz allows a description of macro-states
corresponding to smooth root distributions. We now use this framework to identify a class of
macro-states that exhibits characteristic properties of a QDL. Using the string hypothesis, general
macro-states in the one-dimensional Hubbard model can be described by sets of particle and hole
densities {ρp(k), ρh(k), σp

n (Λ), σh
n (Λ), σ ′

n
p(Λ), σ ′

n
h(Λ)|n ∈ N} that are subject to the thermodynamic

limit of the Bethe ansatz equations [36]

ρp(k) + ρh(k) = 1
2π

+ cos k
∞∑

n=1

∫∞

−∞
dΛan(Λ − sin k)[σ ′

n
p(Λ) + σ

p
n (Λ)],

σh
n (Λ) = −

∞∑

m=1

∫∞

−∞
dΛ′Anm(Λ − Λ′)σp

m(Λ′) +
∫π

−π
dkan(sin k − Λ)ρp(k)

and σ ′
n

h(Λ) = 1
π

Re
1

√
1 − (Λ − inu)2

−
∞∑

m=1

∫∞

−∞
dΛ′Anm(Λ − Λ′)σ ′

m
p(Λ′)

−
∫π

−π
dkan(sin k − Λ)ρp(k),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

where we are considering expectation values only to o(1) and subleading corrections require
a more detailed analysis. These equations are obeyed for all macro-states and are a direct
implication of the quantization conditions in the thermodynamic limit. Above, u = U/4t and

an(x) = 1
2π

2nu
(nu)2 + x2

and Anm(x) = δ(x) + (1 − δm,n)a|n−m|(x) + 2a|n−m|+2(x)

+ · · · + 2a|n+m|−2(x) + an+m(x).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(2.9)

The energy and thermodynamic entropy per site are then given by

e = u +
∫π

−π
dk [−2 cos k − 2u] ρp(k) + 4

∞∑

n=1

∫
dΛ σ ′

n
p(Λ)

[
Re
√

1 − (Λ + inu)2 − 4nu
]

,

and s =
∫π

−π
dkS[ρp(k), ρh(k)] + u +

∞∑

n=1

∫∞

−∞
dΛS[σ ′

n
p(Λ), σ ′

n
h(Λ)]

+
∞∑

n=1

∫∞

−∞
dΛ S[σn

p(Λ), σn
h(Λ)],

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)
where we have defined

S[ f , g] = [ f (x) + g(x)] ln(f (x) + g(x)) − f (x) ln(f (x)) − g(x) ln(g(x)). (2.11)

The ground state of the half-filled Hubbard model in zero magnetic field is obtained by choosing

ρh(k) = 0 = σh
1 (Λ) and σ ′p

n(Λ) = 0 = σ
p
n≥2(Λ). (2.12)
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3. Typical versus atypical energy eigenstates
A characteristic property of integrable models is that, at finite energy densities relative to
the ground state, there exist thermal states and atypical finite entropy density states that have
rather different properties. The existence of such states is intimately related to the presence of
an extensive number of higher conservation laws. Their nature can be easily understood by
considering the special limit of non-interacting fermions (U = 0). Here, the half-filled ground state
is simply

|GS⟩U=0 =
∏

σ ,|kj|<π/2

c†
σ (kj)|0⟩, (3.1)

where cσ (k) = L−1/2 ∑
j eikjcj,σ . Thermal states at finite energy densities are Fock states with

momentum distribution function

ρ
p
σ (k) = 1

2π [1 + e−2 cos(k)/T]
. (3.2)

In a large, finite volume, we can construct thermal Fock states using the relation ρ
p
σ (kj) =

1/L(kj+1 − kj) + o(1). A simple atypical state at a finite energy density above the ground state is
obtained by splitting the Fermi sea

|split FS⟩ =
∏

σ ,π/4<|kj|<3π/4

c†
σ (kj)|0⟩. (3.3)

The energy eigenstate (3.3) is clearly not thermal. Moreover, the corresponding macro-state
has zero entropy density in the thermodynamic limit. However, it is easy to see that, by
considering other arrangements of the momentum quantum numbers, one can arrive at atypical
states that have finite entropy densities in the thermodynamic limit [37]. The situation in
integrable models is a straightforward generalization of this construction. The relevant quantum
numbers are the (half-odd) integer numbers that characterize the solutions of the Bethe ansatz
equations.

(a) Thermal states in the Hubbard model
Thermal states are, by construction, the most likely states at a given energy density. To obtain their
description in terms of particle and hole distribution functions, we need to maximize the entropy
density s at a fixed energy density e. To that end, it is customary to extremize the free energy per
site f = e − Ts, where e and s are given in (2.10)

0 = δf =
∫π

−π
dk
[

δf
δρp(k)

δρp(k) + δf
δρh(k)

δρh(k)
]

+
∞∑

n=1

∫∞

−∞
dΛ

[
δf

δσ ′
n

p(Λ)
δσ ′

n
p(Λ) + δf

δσ ′
n

h(Λ)
δσ ′

n
h(Λ) + δf

δσ
p
n (Λ)

δσ
p
n (Λ) + δf

δσh
n (Λ)

δσh
n (Λ)

]

.

(3.4)

The relations (2.8) connect hole and particle densities and need to be taken into account as
constraints. The extremization leads to a system of non-linear integral equations that fixes the
ratios

ζ (k) = ρh(k)
ρp(k)

, ηn(Λ) = σh
n (Λ)

σ
p
n (Λ)

and η′
n(Λ) = σ ′h

n(Λ)
σ ′p

n(Λ)
. (3.5)
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For the Hubbard model in zero magnetic field, the resulting thermodynamic Bethe ansatz (TBA)
equations read [36,38]

ln ζ (k) = −2 cos k − 2u
T

+
∞∑

n=1

∫∞

−∞
dΛ ansin k − Λ ln

(
1 + 1

η′
n(Λ)

)

−
∞∑

n=1

∫∞

−∞
dΛ ansin k − Λ ln

(
1 + 1

ηn(Λ)

)
,

ln (1 + ηn(Λ)) = −
∫π

−π
dk cos(k)ansin k − Λ ln

(
1 + 1

ζ (k)

)
+

∞∑

m=1

Anm ∗ ln
(

1 + 1
ηm

)∣∣∣∣
Λ

,

and ln
(
1 + η′

n(Λ)
)
= 4Re

√
1 − (Λ − inu)2 − 4nu

T
−

∫π

−π
dk cos(k)ansin k − Λ ln

(
1 + 1

ζ (k)

)

+
∞∑

m=1

Anm ∗ ln
(

1 + 1
η′

m

)∣∣∣∣
Λ

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)
The system (3.6) can be solved numerically to calculate the energy density and other simple
thermodynamic properties of typical states at finite energy density. The free energy per site is
given in terms of the solution of (3.6) by [36]

f = −T
∫π

−π

dk
2π

ln
(

1 + 1
ζ (k)

)
+ u − T

∞∑

n=1

∫∞

−∞

dΛ

π
ln
(

1 + 1
η′

n(Λ)

)
Re

1
√

1 − (Λ − inu)2
. (3.7)

(b) Simple families of atypical finite entropy density states in the Hubbard model
It is instructive to explicitly construct families of atypical macro-states with finite entropy
densities, which allow one to obtain closed-form expressions for the energy density and double
occupancy,

d = 1
L

〈
∑

j

nj,↑nj,↓

〉

, (3.8)

in the thermodynamic limit. In terms of the Bethe ansatz, the states we consider involve ‘freezing’
the microscopic configuration of the charge sector to that of the ground state at half-filling. More
precisely, we consider the following two-parameter family of macro-states:

σ ′p
n(Λ) = 0, ρh(k) = 0, σh

1 (Λ) = xσ
p
1 (Λ) and σh

n (Λ) = yσ
p
n (Λ). (3.9)

The choice (3.9) enables us to solve the thermodynamic limit of the Bethe ansatz equations (2.8)
by Fourier techniques. In particular, we find that the Fourier transforms of the particle densities
in the spin sector σ̃n(ω) =

∫
dΛ eiωΛσ

p
n (Λ) fulfil

(
1 + x + e−2u|ω e−(n−1)u|ω| + e−(n+1)u|ω|

e−(n−1)u|ω| + e−(n+1)u|ω| 1 + y + 2 e−2u|ω| + · · · + 2 e−2(n−1)u|ω| + e2nu|ω|

)(
σ̃1(ω)
σ̃n(ω)

)

=
(

J0(ω)e−u|ω|

J0(ω) e−nu|ω|

)

, (3.10)

where Jn(ω) are Bessel functions of the first kind. Taking the ω → 0 limit, this gives
(

2 + x 2
2 y + 2n

)(
σ̃1(0)
σ̃n(0)

)

=
(

1
1

)

. (3.11)
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Figure 1. e versus d curves for (a) u= 1/40 and (b) u= 1, respectively, showing states occupying 1-strings and n-strings.
(Online version in colour.)

We are particularly interested in spin singlet states. By the theorem of [39,40] a sufficient condition
for obtaining a singlet is for the Sz eigenvalue to be zero, which imposes the constraint

σ̃1(0) + nσ̃n(0) = 1
2 . (3.12)

Combining this with (3.11) leads to the n-independent requirement xy = 0. As x = 0 corresponds
to the ground state, we choose y = 0. This corresponds to a finite density of holes for 1-strings and
a filled Fermi sea for n-strings. The energy density for the atypical macro-states constructed in
this way is

en(x) = −4
∫∞

0

dω

ω
J0(ω)J1(ω)

1 + e−2uω + e(2−2n)uω(−1 + x) − e−2nuω(1 + x)
(1 + e−2uω)(1 − e(4−2n)uω + e2uω(1 + x) − e(2−2n)uω(1 + x))

. (3.13)

By taking derivatives with respect to u, we can calculate the double occupancy d as a function of
x, and combining this with (3.13) we can study how d changes with e for the different families n.
The results are shown in figure 1.

(c) Double occupancy for thermal versus atypical states
It is interesting to compare the behaviour of the double occupancy in thermal states and the
particular family of atypical states as identified above in §3b. We can calculate the energy density
and double occupancy for typical states using the free energy of (3.7) as

⟨e⟩β = ∂

∂β
(βf ) and ⟨d⟩β = ∂f

∂U
+ 1

4
, (3.14)

where we have used the fact that we are working at half-filling. This determines d as an implicit
function of e for thermal states. We note that this is of experimental relevance, as recent ultra-
cold atomic experiments are able to directly measure the double occupancy in realizations of
the one-dimensional Hubbard model [41].

In figure 2, we present results for the double occupancy as a function of the energy density
for thermal states at several values of the interaction strength u. These are compared with the
corresponding results for the finite entropy density atypical states with n = 4 constructed in §3b.
We see that, as the interaction strength u is increased, the results for thermal and atypical states
track one another for an increasing range of energy densities. On the other hand, for small values
of u the double occupancies of thermal and atypical states are very different at all energy densities.
These results can be used to shed some light on the role played by finite-size effects in the exact
diagonalization results of [34]. There the double occupancy was computed on lattices of up to
L = 12 sites and a very interesting change in the behaviour of e(d) was observed as a function
of u. As shown in figure 3, for sufficiently large values of u there is a ‘band’ of eigenstates in
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Figure 3. Comparison of thermal and typical states with exact diagonalization (ED) data of [34]. Here, the points indicate
expectation values for eigenstates of the Hubbard model, in which the spin singlets are highlighted in red. (Online version
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the d–e plane that minimizes d at fixed e and is separated from the region traced out by the other
eigenstates. This is easily understood in terms of typical and atypical eigenstates. The special band
of states is seen to track the d(e) of our n = 4 family of atypical states, while for most of the states
d(e) is centred around the result for typical states in the thermodynamic limit (as the system size
in the numerical study is quite small, we expect a significant spread around the thermodynamic
limit result). At small values of u, the atypical states are no longer visible in L = 12 numerical data,
which are now all spread around the thermal thermodynamic limit result. This discrepancy has
its origin in the strength of finite-size effects, which are more pronounced in the small-u limit.

4. Particular atypical energy eigenstates: the ‘Heisenberg sector’
In [34], it was suggested that a particular class of eigenstates of the Hubbard Hamiltonian possess
the QDL property. These states were identified for short chains by considering the strong-coupling
regime t ≪ U. In this regime, the spectrum breaks up into a sequence of narrow ‘bands’ of
states, which can be characterized by the expectation value of the double occupancy number
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operator. The states of interest constitute the lowest such band and are adiabatically connected
to eigenstates without any doubly occupied sites in the limit t/U → 0. As we are interested in
the limit L → ∞ at fixed U, our first task is to identify such states in terms of the Bethe ansatz
solution. This can be done either at the level of micro-states in a (large) finite volume, or in terms
of macro-states in the thermodynamic limit [35].

(a) Micro-states
An important property of the exact solution of the Hubbard model is that it makes it possible to
follow the evolution of particular eigenstates with the interaction parameter u. In the framework
of the string hypothesis [36], there is a one-to-one correspondence between energy eigenstates and
solutions to the Bethe ansatz equations (2.1), which, in turn, are uniquely characterized by sets of
(half-odd) integers Ij, Jn

α , J′nα . Fixing a particular set {Ij, Jn
α , J′nα}, we may follow the corresponding

solution of (2.1) as a function of u. This allows us to identify the special states considered in [34]
as follows. In the limit U → ∞ at fixed L and half-filling, the lowest energy states are obtained
by setting

M′ = 0, (4.1)

i.e. considering only states that do not contain any k-Λ strings. This is because the latter contribute
O(u) to the total energy (cf. (2.4)). These states are characterized by the quantum numbers Jn

α ,
which have ranges

|Jn
α | ≤ 1

2

(
L
2

−
∞∑

m=1

tnmMm − 1

)

, α = 1, . . . , Mn. (4.2)

There is no freedom in choosing the Ij: they are given by

Ij =

⎧
⎪⎨

⎪⎩

−L
2

+ j if
∑

m Mm is even,

−L + 1
2

+ j if
∑

m Mm is odd,
j = 1, . . . , L. (4.3)

Importantly, the Ij form a completely filled Fermi sea, just as they do in the ground state of the
half-filled Hubbard model. It follows from the results of [42] that the total number of such states
is 2L. We call these states Heisenberg sector states.

(b) Macro-states
At the level of macro-states, the Heisenberg sector corresponds to the requirement

ρh(k) = 0 = σ ′p
n(Λ), n = 1, 2, . . . . (4.4)

We note that the correspondence between (4.4) and the microscopic definition of §4a is to be
understood in a thermodynamic fashion. There clearly will be eigenstates that are captured by
(4.4), but go beyond the narrow specification we used in §4a. For example, adding a finite number
of k-Λ strings will not change the macro-state (4.4), as this affects the densities only to order
O(L−1).

Importantly, the ‘freezing’ of the charge degrees of freedom that characterizes the Heisenberg
sector implies that the thermodynamic entropy density for these macro-states depends only on
the spin degrees of freedom,

s =
∞∑

n=1

∫∞

−∞
dΛS[σp

n (Λ), σh
n (Λ)]. (4.5)

(i) Maximal entropy states in the Heisenberg sector
The next question we address is which macro-states in the Heisenberg sector maximize the
entropy at a given energy density. These states would be selected with probability 1 if one
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randomly picked an eigenstate at a given energy density in an asymptotically large system. We
start from the thermodynamic limit of the Takahashi equations (2.8) for Heisenberg sector states,

ρp(k) = 1
2π

+ cos k
∞∑

n=1

∫∞

−∞
dΛan(Λ − sin k)σp

n (Λ)

and σh
n (Λ) = −

∞∑

m=1

∫∞

−∞
dΛ′Anm(Λ − Λ′)σp

m(Λ′) +
∫π

−π
dkan(sin k − Λ)ρp(k).

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(4.6)

We then define an analogue of the free energy density by

f = e − T s, (4.7)

where e and s are the energy and entropy densities of Heisenberg sector states and are given by
(2.10) and (4.5), respectively. The ‘temperature’ T is understood simply as a Lagrange parameter
that allows us to fix the energy density. We now extremize the free energy with respect to
the particle and hole densities, subject to (4.6). This fixes the ratios ηn(Λ) = σh

n (Λ)/σp
n (Λ) to be

solutions to the system of TBA-like equations

ln(1 + ηn(Λ)) = g1(Λ)
T

+
∞∑

m=1

∫∞

−∞
dΛ′Anm(Λ − Λ′) ln

[
1 + 1

ηm(Λ′)

]
, (4.8)

where g1(Λ) = −4Re
√

1 − (Λ − inu)2 + 4nu. The entropy density for these macro-states is given
by

s =
∞∑

n=1

∫∞

−∞
dΛ

[
g1(Λ)
T

σ
p
n (Λ) + g2(Λ) ln(1 + η−1

n (Λ))
]

, (4.9)

where g2(Λ) = (1/π ) Re
(

1/
√

1 − (Λ + inu)2
)

.

5. Entanglement entropy of Heisenberg sector states
As we have seen above, the Bethe ansatz solution of the Hubbard model provides us with a
means to compute the thermodynamic entropy density for any macro-state. On the other hand,
the notion of a QDL involves entanglement properties after a partial measurement. Implementing
such partial measurements in the Bethe ansatz framework is beyond the currently available
methods. However, some information about entanglement properties of energy eigenstates
can be inferred as follows. For short-ranged Hamiltonians, there is a relation between the
thermodynamic and entanglement entropies: if we consider a large subsystem A of size |A| in
the thermodynamic limit, the volume term in the EE of an eigenstate |Ψ ⟩ is given by

SvN,A = s|A| + o(|A|), (5.1)

where s is the thermodynamic entropy density. As we have seen in (4.5), the thermodynamic
entropy density of Heisenberg sector states depends only on the spin degrees of freedom. This
then implies that the volume term in the EE is independent of the charge degrees of freedom,
and depends on the spin sector only. In particular, as (5.1) is based only on the properties of
the macro-state under consideration, we know that microscopic rearrangements in the charge
sector, such as introducing k-Λ strings, will not affect (5.1). The emerging picture is consistent
with expectations for a QDL state: the spin degrees of freedom exhibit a volume law EE, while
the charge degrees of freedom are only weakly entangled. The spin degrees of freedom will be
‘heavy’ in the terminology of [33] at large values of U, because their bandwidth is proportional
to t2/U. The bandwidth of the charge degrees of freedom remains O(t) and they are, therefore,
‘light’ in comparison. We stress that Heisenberg states obey (5.1) for any value of u, and the heavy
versus light separation is not required. This is presumably a consequence of integrability.

Considerations based on the von Neumann EE fall short of the full QDL diagnostic proposed in
[33], which requires carrying out a partial measurement of the spin degrees of freedom. Evidence
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based on a strong-coupling analysis that supports the view that Heisenberg sector states pass the
full QDL diagnostic has been put forward in [35].

6. Thermal states in the large-U limit
We have constructed an exponential (in the system size) number of eigenstates, which exhibit
QDL behaviour in the thermodynamic limit. However, these states are atypical in the sense
introduced above: the most probable states at a given energy density are thermal. It is therefore
instructive to contrast the entanglement properties of Heisenberg sector states with those of
typical states. The latter are given as solutions of the systems (3.6) and (2.8) of coupled integral
equations. While it is not possible to solve these analytically in general, in the limit of strong
interactions analytic results can be obtained [43–45]. This is also the most interesting in the QDL
context, as it provides a natural notion of light (charge) and heavy (spin) degrees of freedom. It is
instructive to focus on the ‘spin-disordered regime’

4t2

U
≪ T ≪ U. (6.1)

This corresponds to temperatures that are small compared with the Mott gap, but large compared
with the exchange energy. This is a natural regime in which one may expect the proposed physics
to be realized. Here one has [45]

ρh(k) =O(e−u/T) and σ ′p,h
n (Λ) =O(e−u/T). (6.2)

Substituting this into the general expression (2.10) for the thermodynamic entropy density, we
obtain

s =
∞∑

n=1

∫∞

−∞
dΛ S[σn

p(Λ), σn
h(Λ)] + O

( u
T

e−u/T
)

. (6.3)

Finally, using the relation between thermodynamic and EE (5.1) we conclude that for thermal
states in the spin-disordered regime the contribution of the charge degrees of freedom to the
volume term is

SvN,A = (sspin + scharge)|A| + o(|A|)

and sspin =O(1), scharge =O
( u

T
e−u/T

)
.

⎫
⎬

⎭ (6.4)

Here, scharge includes the contributions from pure charge degrees of freedom as well as bound
states of spin and charge. Importantly, unlike Heisenberg sector states, typical states have a
contribution from the charge degrees of freedom to the volume term. However, this contribution
is exponentially small in u/T and therefore only visible for extremely large subsystems. While
we have focused on the spin-disordered regime, the behaviour (6.4) extends to thermal states
for all 0 < T ≪ U. In [35], behaviour of the kind (6.4) (for the EE after a partial measurement)
was proposed as a ‘weak’ form of a QDL, which one may expect to occur quite generically in
strong-coupling limits.

7. Conclusion
We have presented evidence that the QDL state of matter is realized in the strong sense proposed
in [33] for a particular class of eigenstates of the one-dimensional half-filled Hubbard model. We
have defined the states constituting this class in the framework of the Bethe ansatz by freezing
the charge degrees of freedom in the configuration corresponding to the half-filled ground state.
For such states, we have explicity shown that the charge degrees of freedom (light particles)
do not contribute to the volume term of the bipartite EE.

The Heisenberg sector states are unusual in a precise sense: the EE for typical (thermal) states at
a finite energy density has a volume-law contribution that involves the charge degrees of freedom
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even for large U/t. We have shown that in a particular regime at strong coupling the contribution
is of the form (6.4), i.e.

SvN,A = (sspin + scharge)|A| + o(|A|)

and sspin =O(1), scharge =O
( u

T
e−u/T

)
,

⎫
⎬

⎭ (7.1)

and we have argued that for U ≫ t this form is obtained quite generally at energy densities that are
small compared with U. We expect a similar volume law to occur in the EE after a measurement
of all spins. This suggests the notion of a ‘weak’ variant of a QDL, which is characterized by a
volume term in the EE after measurement of the heavy degrees of freedom that is parametrically
small, and practically unobservable except in extremely large systems. We expect that this weak
scenario is not tied to integrability, and should be realized quite generally in strong-coupling
regimes. This is supported by the strong-coupling expansion results of [35], which do not rely on
integrability.

Given that Heisenberg sector states are atypical and hence rare, a natural question is how they
can be accessed in practice. In principle, this can be achieved by means of a quantum quench [19]
from a suitably chosen initial state. As the Hubbard model is integrable, the expectation values of
its infinite number of conservation laws are fixed by the initial state. At late times after the quench,
the system relaxes locally to an atypical state that is characterized by these expectation values.
This provides a general mechanism for realizing atypical states. In order to access a Heisenberg
sector state, the initial conditions need to be fine tuned. It would be interesting to investigate what
class of initial states will give rise to Heisenberg sector steady states. Realizing the weak variant
(6.4) of a QDL is a much simpler matter. Fixing the energy density to be small compared with
the Mott gap is sufficient to obtain a non-equilibrium steady state that realizes the weak form of
a QDL. In the Hubbard model, this corresponds to the spin-incoherent Mott insulating regime.
Dynamical properties in this regime can be analysed by numerical and strong-coupling methods
[46].
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