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Wave-function positivization via automatic differentiation
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We introduce a procedure to systematically search for a local unitary transformation that maps a wave function
with a nontrivial sign structure into a positive-real form. The transformation is parametrized as a quantum circuit
compiled into a set of one- and two-qubit gates. We design a cost function that maximizes the average sign of
the output state and removes its complex phases. The optimization of the gates is performed through automatic
differentiation algorithms, widely used in the machine learning community. We provide numerical evidence for
significant improvements in the average sign for a two-leg triangular Heisenberg ladder with next-to-nearest-
neighbor and ring-exchange interactions. This model exhibits phases where the sign structure can be removed
by simple local one-qubit unitaries, but also an exotic Bose-metal phase whose sign structure induces “Bose
surfaces” with a fermionic character and a higher entanglement that requires deeper circuits.
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I. INTRODUCTION

The most striking contrast between the classical and quan-
tum world is the fact that quantum wave functions contain
“probability” amplitudes that are not strictly real and positive.
This so-called sign (or phase) structure is an essential feature
of a variety of quantum phenomena with no classical counter-
part, such as the Pauli exclusion principle, entanglement, and
quantum interference. It lies at the heart of any algorithm for
quantum computing [1].

A sign structure often hinders the simulation of quantum
many-body states by means of classical resources, and it es-
sentially defines the threshold for what can be considered truly
quantum mechanical. Indeed, there is a one-to-one mapping
between a real, non-negative wave function and a classical
probability distribution, formulated explicitly by the Born
rule. However, the sign structure is not a universal feature of
a quantum state, since it strongly depends on the choice of
basis. As such, for a given state it is only natural to wonder: Is
there a local change of basis that removes the sign structure,
leading to a non-negative wave function?

Given a preferred “computational basis,” finding and ap-
plying a change of basis involves implementing a unitary
transformation. The resources required for this task can
however be nontrivial. For example, any ground state be-
comes non-negative in the energy eigenbasis, but finding the
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corresponding (nonlocal) unitary transformation is equivalent
to diagonalization, with a complexity that scales exponentially
in the number of qubits. The question becomes, can a change
of basis be discovered with a transformation represented by a
local unitary circuit of small depth?

Such transformations are typically identified based on sim-
ple physical principles related to the structure of the Hamil-
tonian and its symmetries. The most notable example is the
Marshall sign rule [2], eliminating the sign structure from
the ground states of quantum antiferromagnets on bipartite
lattices. The resulting theoretical insight means that new bases
that simplify the sign structure for a specific frustrated magnet
or fermion model are routinely discovered [3–6]. In turn,
in a few instances it has also been rigorously proven that
efficient transformations do not exist [7,8], rendering the sign
structure “intrinsic.” However, if no obvious transformation
is known, it is generally unclear whether the offending sign
structure is intrinsic or whether it only persists due to a lack
of physical insight. An automated procedure to search for
relevant transformations is therefore highly desirable.

In this Rapid Communication, we propose an algorithm
to tackle this question which combines tensor networks and
differentiable programming. We formulate the search for the
local basis as an optimization task over quantum circuits
compiled into a set of local quantum gates. By optimizing a
suitable cost function, a quantum circuit is used to positivize
a quantum state with a sign structure. We show how this
procedure can be realized in practice by adopting a tensor
network representation of the quantum circuit, and applying
automatic differentiation to obtain a “learning signal” for each
quantum gate. We present a proof-of-principle demonstration
for a two-leg triangular Heisenberg ladder with a four-spin
ring-exchange interaction, which harbors a sign structure of
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FIG. 1. Projection of the wave function on the basis state 〈σ| after
the application of the quantum circuit Ûϑ implementing the change
of basis. Here, the circuit is compiled into a set of local two-qubit
gates.

tunable complexity, including that of an exotic highly entan-
gled spin Bose-metal phase.

II. LEARNING THE SIGN STRUCTURE

We study a system composed of N qubits described by
a wave function |!〉. For a given choice of basis of the
many-body Hilbert space |σ〉 = |σ1, . . . , σN 〉, we assume that
the wave function has a sign structure, i.e., the coefficients
!(σ) = 〈σ|!〉 appear with both positive and negative signs.
We note that, while we restrict to real wave functions, the
following approach identically applies to the case where the
wave function is complex-valued.

Given the sign structure sign[!(σ)], how can we run an
automated search for a local unitary transformation Û gen-
erating a non-negative wave function? For this purpose, it
is natural to express the unitary as a quantum circuit, where
locality can be imposed at the level of the quantum gates
(Fig. 1). Because of their universality [1], we can restrict
to single- and two-qubit gates acting on pairs of adjacent
sites. Then, the unitary transformation is written in terms of
parameters ϑ = {ϑ[1],ϑ[2], . . . }, where ϑ[k] are a set of real
and continuous parameters characterizing each single gate.

Starting from a wave function !(σ) displaying a sign
structure, provided as input to the quantum circuit, the goal
is to discover a set of gates such that the output state is
non-negative. We choose to phrase this problem as an opti-
mization task, where the non-negativity of the output state is
enforced upon minimizing a suitable cost function C(ϑ). More
precisely, the optimal set of parameters ϑ∗ = argminϑ C(ϑ)
should satisfy !ϑ∗ (σ) ! 0 ∀|σ〉, where !ϑ∗ (σ) = 〈σ| Ûϑ∗ |!〉.
Given some initial configuration of the circuit, the optimiza-
tion is solved by iteratively updating the gates according to
the gradient of the cost function, ϑ → ϑ − η G(ϑ), where
G(ϑ) = ∇ϑC(ϑ) and η is the step size of the update (often
called learning rate). More sophisticated algorithms devel-
oped within the machine learning community can also be

implemented, such as the adaptive learning rates [9,10] or
higher-order gradients [11].

The cost function is the most crucial ingredient. On one
hand, it needs to correctly capture the objective of the op-
timization. On the other hand, the sign structure is a global
property of the quantum state, and thus the calculation of the
cost function (and its gradients) should also remain scalable
with the number of qubits. For the latter, it is prudent to
express C(ϑ) as an expectation value over the probability
distribution underlying the quantum state at the output of the
circuit,

C(ϑ) =
∑

σ

|!ϑ(σ)|2Cϑ(σ). (1)

In fact, provided one can sample the distribution pϑ(σ) =
|!ϑ(σ)|2, the expectation value of Eq. (1) can be approx-
imated with a sum over a finite number of configurations
{σ j} drawn from pϑ(σ). Now, the only task that remains is
designing an appropriate function Cϑ(σ).

Besides the sign of the wave function, an additional con-
straint that should be taken into account is that the complex
phases, necessarily accumulated by a universal gate set, are
eliminated by the end of the unitary evolution. To capture
both conditions on the imaginary part and the sign, it is
convenient to split the cost function into a convex sum of two
contributions:

Cϑ(σ) = γ |Im[!ϑ(σ)]| − (1 − γ )sign[Re[!ϑ(σ)]], (2)

where γ ∈ [0, 1]. By tuning the parameters according
to the gradient G(ϑ), the quantum circuit will try to increase
the sign of the real part of the wave function, while forcing
the imaginary part to be zero. Note that the initial average sign
can always be set to a positive value by an appropriate global
transformation.

III. DIFFERENTIABLE PROGRAMMING

Next, in order to evaluate the gradients of the cost function
we need to adopt a representation of the input quantum state
and the quantum circuit amenable to scalable simulations. To
this end, we assume that the initial state admits an efficient
matrix product state (MPS) representation, and obtain the final
state by contracting the MPS with the various gates in the
circuit. At each intermediate step, provided the circuit depth is
not too large, the quantum state can be restored into an MPS
form by means of singular value decompositions.

The calculation of the gradients is the most involved step
in the procedure, and analytical approaches would clearly be
intractable. We leverage automatic differentiation (AD) tech-
niques [12], routinely used in machine learning applications to
train neural-network architectures [13] and recently applied to
optimize tensor network states [14]. The core object in AD is
the computational graph implementing the set of elementary
computations (edges) acting on the variables (nodes). We
specifically implement reverse-accumulation AD, where a
forward pass first calculates the output of the graph, and
derivatives are calculated starting from the output, and back-
propagated through the graph using a sequence of Jacobian-
vector products.
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FIG. 2. Schematic of the computational graph for the calculation
of the cost function. The output quantum state |!ϑ〉, obtained by
contracting the circuit tensor network, is sampled to generate the
configurations {σ j}, which are used to compute the cost function.
In addition, the entanglement entropy of the output state is added
as a regularization to mitigate the growth of entanglement in deep
circuits.

The computational graph implementing the positivization
is divided into three stages (Fig. 2). First, the circuit Ûϑ is
applied to the input state through a series of tensor con-
tractions. The resulting output quantum state |!ϑ〉 = Ûϑ|!〉
is then sampled to generate a set of n configurations {σ j}
approximating the sum in Eq. (1). The projections of |!ϑ〉
into these configurations are used to estimate the sample-wise
cost function

C̃(ϑ) = 1
n

n∑

j=1

Cϑ(σ j ) + αSvN(ρ̂A). (3)

Note that we have also added a term proportional to the
entanglement entropy SvN(ρ̂A) = −Tr(ρ̂A log ρ̂A), where ρ̂A is
the reduced density matrix for a equal bipartition of the qubits
and α is a small weight. We introduce this type of regulariza-
tion to the cost function to limit the growth of entanglement
generated by the application of the gates, particularly relevant
in the optimization of deep quantum circuits. Once the com-
putational graph is compiled, the reverse-accumulation step
evaluates the derivatives with respect to each gate parameter in
the circuit (see Supplemental Material [15] for more details).

IV. RESULTS

We focus on the ground-state wave functions of a two-leg
triangular ladder with the Hamiltonian

Ĥ = J1

∑

j

Ŝ j · Ŝ j+1 + J2

∑

j

Ŝ j · Ŝ j+2

+ Jr

2

∑

j

P̂ j, j+1, j+3, j+2 + P̂
†
j, j+1, j+3, j+2, (4)

where Ŝ j are spin-1/2 operators. Here, the ring-exchange
term corresponds to the cyclic exchange of spin states,
P̂i, j,k,l |Sz

i , Sz
j, Sz

k, Sz
l 〉 = |Sz

l , Sz
i , Sz

j, Sz
k〉, and the couplings are

J1 = 1, J2, Jr > 0. The model in Eq. (4) exhibits a range of
ground states with a sign structure of tunable complexity,
so it serves as a representative test bed for our experiments.
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ϑ

J2 = 0.0
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FIG. 3. Dynamics of the parameters ϑ during training for a
ladder of N = 40 spins (Jr = 0) with (a) J2 = 0.0 and (b) J2 = 2.0.
The quantum circuit contains only one-qubit rotations around the z
axis.

Whereas for J1 = Jr = 0 or J2 = Jr = 0 the sign of the
ground-state wave function can be eliminated via a unitary
transformation acting on single spins [16], for Jr/J1 ( 1
and J2/J1 ) 1 the model displays an exotic spin Bose-metal
(SBM) phase endowed with a complex sign structure associ-
ated with the presence of singular wave vectors or “Bose sur-
faces” [17]. After obtaining the ground-state MPS using stan-
dard density matrix renormalization group techniques [18,19],
we implement the AD graph using the machine learning
library TENSORFLOW [20].

We first consider the case of Jr = 0, corresponding to
the one-dimensional J1-J2 model. In the limit of J2 = 0 we
recover the Heisenberg model, where the sign structure of
the ground state !(Sz ) in the Ising basis |Sz〉 = |Sz

1, . . . , Sz
N 〉

follows the Marshall sign rule [2,16]. The transformation
removing this sign structure can be composed as a set of
N/2 rotations of angle π about the z axis, corresponding to a
depth-one quantum circuit. To check if this can be recovered
by our procedure, we construct the variational quantum circuit
Ûϑ using one layer of single-qubit rotations around the z axis.
We run the positivization procedure for a chain containing
N = 40 spins. After randomly initializing the circuit param-
eters (i.e., N = 40 angles) we train the circuit to minimize
the cost function using nS = 103 configurations sampled from
the final MPS distribution |!ϑ(Sz )|2 [21,22], and update the
parameters using the Adam optimizer [10].

We show the behavior of the positivization algorithm in
Fig. 3, where we plot the values of each single rotation angle
as a function of the training iteration. For J2 = 0 [Fig. 3(a)] we
observe that all angles corresponding to rotations on sublattice

032060-3



GIACOMO TORLAI et al. PHYSICAL REVIEW RESEARCH 2, 032060(R) (2020)

A (B) converge to the value ϑ [k] = π/2 (−π/2), equivalent to
the Marshall sign rule. We then repeat the optimization for an
initial ground state obtained by setting J2 = 2.0 [Fig. 3(b)].
Here, we observe that the angles converge to two values
separated by π , but now the rotations on sites from different
sublattices are mixed together. It is easy to see that this circuit
implements the Marshall sign rule in the limit of J1 = 0,
corresponding to two decoupled Heisenberg chains. In both
cases we measure an average sign of about 0.99.

Although the relationship is not fully understood, the sign
structure of a quantum state is related to its entanglement.
For example, a typical random positive wave function exhibits
a constant law for Renyi entanglement entropies with Renyi
index n > 1, while states with Renyi entropy scaling as a vol-
ume law will have a complex sign structure [23], suggesting
a nonlocal positivization transformation. It therefore stands to
reason that circuits of large depths may be required to remove
the sign structure when the entanglement needs significant
modification.

In order to increase the entanglement of the starting state,
we turn to the exotic spin Bose-metal (SBM) phase which
contains significant entanglement due to the presence of a
Bose surface [17]. We set J2 = 0 and examine different initial
ground-state MPSs obtained for Jr ∈ [0, 1], which spans the
phase transition into the SBM phase. We optimize circuits
with different depths, where a single layer consists of a set
of simultaneous commuting two-qubit gates (Fig. 1). In all
simulations, the truncation error in the singular value decom-
positions performed to restore the MPS representation of the
quantum state was kept below 10−6.

We first examine a spin ladder with N = 20 sites, and
optimize circuits of increasing depth for initial ground states
obtained at different values of Jr . We plot the average sign (cir-
cles) and imaginary part (triangles) in Fig. 4(a). As expected,
a larger depth systematically increases the effectiveness of
the positivization, which becomes significantly harder as the
system is driven into the SBM phase (Jr ≈ 0.6). The transition
in complexity is highlighted in Fig. 4(b), where we show the
scalings with the system size for different values of Jr near
the critical point for a circuit of fixed depth. In the Bethe
phase (small Jr), the sign remains sufficiently high as the
system size is increased, while the positivization becomes
ineffective for larger N in the SBM phase. Finally, we show
the scaling against the circuit depth for several sizes N in the
two phases of the spin ladder [Figs. 4(c) and 4(d)]. The results
confirm that in the SBM phase, in contrast to the Bethe phase,
the depth required to achieve a given average sign increases
with the number of spins N . In all instances, the optimization
succeeds in producing quantum states with real coefficients to
a good approximation.

V. CONCLUSIONS

We have introduced a procedure to systematically search
for a local unitary transformation that maps a wave function
with a sign structure into a non-negative form. The transfor-
mation is parametrized as a universal quantum circuit, and
the gates are optimized through automatic differentiation al-
gorithms, widely adopted in the machine learning community
and implemented with TENSORFLOW [20]. We demonstrated
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depth-8
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FIG. 4. Optimization performance for the two-leg triangular
Heisenberg chain with (a) different depths as a function of Jr ,
(b) different values of Jr as a function of the number of spins, and
different system sizes as a function of the depth for (c) Jr = 0.25 and
(d) Jr = 0.75. The transition into the SBM phase occurs at Jr ≈ 0.6.

this technique for ground states of a triangular spin ladder with
Heisenberg interactions. For the limit of the J1-J2 model, we
have shown that the optimization is capable of removing the
sign structure, recovering the well-known Marshall sign rule.
In the presence of a ring-exchange interaction, we observed
that the SBM phase demands circuits where the depths scale
with the size of the ladders.

The ability to discover a local basis where the average
sign of a quantum state becomes substantially higher is par-
ticularly relevant for the alleviation of the sign problem in
quantum Monte Carlo simulations [24–27]. In this context,
our positivization algorithm could be repurposed to increase
the “stoquasticity” of a target Hamiltonian [28]. This would
require the optimization of a suitably modified cost function,
where the input is a matrix product operator representation
of the Hamiltonian. This opens interesting prospects for path
integrals and projective quantum Monte Carlo simulations,
which should be explored in future studies.

The non-negativity of a wave function in a local basis also
has direct implications for the data-driven reconstruction of
quantum states, which is becoming increasingly important for
validating noisy-intermediate-scale quantum hardware [29].
In fact, for wave functions with positive amplitudes, experi-
mental data from a single measurement basis is sufficient for
the quantum reconstruction of the state, with a particularly
favorable scaling with both the system size and the number of
measurements [30,31].
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Finally, our procedure provides a universal, automated
method of assessing the complexity associated with the sign
problem of a given wave function. Ultimately, by performing
a systematic finite-size scaling analysis of the resources re-
quired to achieve a given average sign, this procedure could be
used to determine the complexity class associated with remov-
ing the sign structure in various cases, including gapped, criti-
cal, or fermionic wave functions. In the future, automated nu-
merical methods based on machine learning technology may
be the most promising route to determining the relative “diffi-
culty” of various sign structures, and will play a crucial role in
formulating a complete theory relating a wave function’s sign
to its entanglement structure and simulation complexity.
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