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We study stabilizer quantum error correcting codes (QECC) generated under hybrid dynamics of local Clifford
unitaries and local Pauli measurements in one dimension. Building upon (1) a general formula relating the
error susceptibility of a subregion to its entanglement properties, and (2) a previously established mapping
between entanglement entropies and domain wall free energies of an underlying spin model, we propose a
statistical mechanical description of the QECC in terms of “entanglement domain walls.” Free energies of
such domain walls generically feature a leading volume law term coming from its “surface energy,” and a
subvolume law correction coming from thermodynamic entropies of its transverse fluctuations. These are most
easily accounted for by capillary-wave theory of liquid-gas interfaces, which we use as an illustrative tool. We
show that the information-theoretic decoupling criterion corresponds to a geometric decoupling of domain walls,
which further leads to the identification of the “contiguous code distance” of the QECC as the crossover length
scale at which the energy and entropy of the domain wall are comparable. The contiguous code distance thus
diverges with the system size as the subleading entropic term of the free energy, protecting a finite code rate
against local undetectable errors. We support these correspondences with numerical evidence, where we find
capillary-wave theory describes many qualitative features of the QECC; we also discuss when and why it fails to
do so.

DOI: 10.1103/PhysRevB.103.104306

I. INTRODUCTION

Quantum error correcting codes (QECC) [1,2] are impor-
tant constructions of quantum states that can be used for
protecting information from decoherence and other types of
errors. A QECC encodes quantum information nonlocally,
so that sufficiently local errors are detectable and reversible,
allowing for explicit protocols to counter the errors [3,4].
Besides concrete constructions of QECCs with an intended
use for quantum computation [3,5–9], they can also occur
naturally in physical contexts, e.g., in many-body quantum
systems as a consequence of topological orders [10,11], or in
quantum gravity as a consequence of the holographic princi-
ple [12].

Recently, in (1 + 1)-dimensional “hybrid” quantum cir-
cuits [13–15] that exhibit a “measurement-driven transi-
tion” [16–24] between a highly entangled phase and a
disentangled one (see Sec. II A), the notion of QECC also
appears, and provides an interesting perspective [17–19,23].
The idea is to view the quantum states generated by the cir-
cuit dynamics as QECCs. Indeed, in Clifford hybrid circuits,
where numerical characterizations are most accessible, the
states are “stabilizer quantum error correcting codes” in a
strict sense, for which the “code space” changes at each time
step of the circuit evolution. Local measurements in the circuit
can be correspondingly interpreted as “local errors,” which
tend to decrease the code rate, and when frequent enough, can
drive the QECC through a transition from a phase where the
QECC is resilient to local errors and thus retains a finite code
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rate, to a phase where the “error rate” is so high that a finite
code rate cannot be sustained.

A complementary approach, as firmly established in hybrid
random Haar circuits [19,20],1 translates the measurement-
driven transition into a “conventional” finite-temperature
ordering transition by mapping to an underlying statistical
mechanical (stat. mech.) model of spins in (2 + 0) dimensions
with short-range interactions, with the temporal dimension of
the circuit viewed as the second spatial dimension.2 Within
this mapping, the disorder-averaged entanglement entropy
of a subregion corresponds to the free energy cost upon a
change of boundary condition in that subregion. In the low-
temperature ordered phase, this change of boundary condition
requires the presence of sharp domain walls. This geometrical
picture raises the possibility of a stat. mech. description of
the entanglement structure, and, in turn, of QECCs in hybrid
circuits in terms of these “entanglement domain walls.” The
aim of this work is to demonstrate such a description.

We focus on error correcting properties of stabilizer codes,
as generated dynamically after running a random Clifford
circuit into the steady state, where the circuit depth scales at

1We note that Refs. [19,20] extended a mapping first obtained in
Refs. [25–28] for random Haar unitary circuits without measure-
ments, where it was first pointed out that the entanglement entropy
can be viewed as free energies of entanglement domain walls. This
mapping has been extended in various contexts of unitary quantum
dynamics [29–31], and this development is independent of hybrid
circuits.

2See also Refs. [25,32], where a similar mapping was derived for
random tensor networks.
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most polynomially in the system size. We will mostly focus
on the case with a maximally mixed initial state, and with the
measurement rate below the transition threshold p < pc (i.e.,
the mixed phase [18]; see Sec. II A), which was shown to have
a finite code rate on relevant timescales.

We start in Sec. II by introducing the model using the
stabilizer code formalism, and translate the circuit dynamics
into their actions on the code space. We then state a theorem in
Sec. II D that applies to all stabilizer codes, which equates the
number of independent, undetectable (hence uncorrectable)
errors supported on a subregion, with the mutual information
between the subregion and the environment.

In Sec. III we review the domain wall picture of free
energies as established analytically in Refs. [19,20], and nu-
merically for Clifford circuits in Refs. [21,24]. Since the
Clifford stat. mech. model is not known at this stage, we
choose to model the entanglement domain walls as the sim-
plest type, i.e., that of the liquid-gas interface (or Ising domain
walls) in the low-temperature phase, as described by what is
called “capillary-wave theory” [33–35]. This simplification
allows analytic calculations, and, as we shall see, quite gen-
erally captures qualitative features of entanglement domain
walls. Using the theorem, we translate certain algebraic prop-
erties of the QECC to geometric properties of the domain
walls. In particular, the code rate is interpreted as the sur-
face tension, and the code distance as the length scale below
which the transverse, entropic fluctuations of the domain wall
dominates over the surface energy. The “correctability” of a
subregion, as quantified by the “decoupling principle,” trans-
lates into a geometric decoupling condition of domain walls.

In Sec. IV we perform entanglement entropy calculations
for a random Clifford circuit model, and demonstrate that
capillary-wave theory gives a qualitatively accurate descrip-
tion of the results. However, quantitative deviations from
capillary-wave theory are present in our numerics, which
presumably reflects the specific nature of the entanglement
domain walls within a stat. mech. description for such Clifford
circuit dynamics.

In Sec. V we discuss implications of our result, and men-
tion several possible future directions.

II. MODEL AND SETTING

A. The random Clifford circuit

We consider “hybrid” circuit models [13–15] as shown in
Fig. 1, acting on a set of qubits Q = {1, . . . , L}, arranged in
a one-dimensional array. The circuit is composed of nearest-
neighbor unitary gates, which we restrict to the two-qubit
Clifford group;3 and sporadic single-qubit projective measure-
ments, which we restrict to be of the Pauli operators. We focus
on the quantum trajectories of the state density matrix under
circuit evolution, namely,

ρQ → UρQU †, under a Clifford unitary gate, (1)

3Recall that the Clifford group contains all unitaries that maps every
Pauli string operator to another under conjugation.

2-qubit random Clifford unitary

1-qubit Pauli measurement

FIG. 1. The hybrid circuit composed of local unitaries and lo-
cal measurements. The rectangles represent random Clifford unitary
gates, arranged alternatively in a “brickwork” fashion. Projective
measurements of single-site Pauli operators are made between uni-
tary layers, and at each site independently with probability p < pc,
represented by hollowed dots.

ρQ → PρQP
Tr[PρQP]

, under a Pauli measurement. (2)

Here the projection operator P is given by P = 1±g
2 , where

g is the Pauli operator being measured, and the plus-minus
signs are the (possibly random) outcomes of the measurement.
In the case when this outcome is indeed random, we choose
either outcome randomly with the corresponding probability
given by Born’s rule.

For concreteness, we choose to sample the unitaries uni-
formly from the two-qubit Clifford group, and perform
single-qubit measurements of probability p at each time
step, independently on each qubit (the “random Clifford cir-
cuit” [16]).

We will focus on the maximally mixed initial state with
maximal entropy S(ρQ) = |Q| ln 2 = L ln 2.4 This entropy can
be equivalently thought of as the entanglement entropy be-
tween Q and a “reference system” R, where Q and R together
holds a pure state |"QR〉, and ρQ is the reduced density matrix
after tracing out R,

ρQ = TrR|"QR〉〈"QR| = 1
2|Q|1Q. (3)

With these specifications, the circuit model is unambigu-
ously defined. Within this model, the entropy of ρQ is a
monotonically decreasing function of time T , the circuit
depth. The decrease of entropy is due to measurements
[Eq. (2)] that try to read out some information about the

4In this paper we compute the (von Neumann) entropy by taking
the natural logarithm,

S(ρ ) := −Trρ ln ρ.

This is the convention adopted in Refs. [19,20,25,32], for which the
equality between (average) entanglement entropies and free energies
can be made [see Eq. (18)]. This choice of convention accounts
for the extra factor of ln 2 here, as well as those appearing in
Eqs. (7), (13), and (23) and Appendix A.
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state, while the unitaries [Eq. (1)] “scramble/delocalize”
the information, protecting it from being read-out by local
measurements. This competition leads to a “purification tran-
sition” at p = pc ≈ 0.16 [18,24], where

(1) When p < pc, the state ρQ retains a finite density of
entropy at times T at most polynomial in |Q| (or formally T =
O[poly(|Q|)]), therefore in the “mixed phase.”5 An arbitrary
subset of Q also has a finite density of entanglement entropy,
or equivalently, the entanglement entropy has a volume law
scaling.

(2) When p > pc, the entropy density drops to zero on
those timescales, therefore in the “pure phase.” A subset of Q
thus has zero density of entanglement entropy, or equivalently,
the entanglement entropy has an area-law scaling.

We will primarily restrict our attention to “intermediate”
timescales, with T = O[poly(|Q|)], since for T exponentially
large in |Q|, the circuit dynamics should fully purify the state,
even when p < pc.

As discussed below, the state ρQ at any point of the circuit
evolution can be thought of as a “stabilizer code” that can
in principle be used for quantum error correcting purposes.
When the state is viewed as a QECC, the purification tran-
sition acquires a new interpretation: it is a transition from
“good” to “bad” QECCs, where the QECC has a nonzero/zero
code rate (which is equal to the entropy density, see below) at
relevant timescales, respectively, in the two phases.

B. The stabilizer formalism

Here we summarize several basic notions of stabilizer
QECC that are necessary for stating and using the theorem
appearing towards the end of this section. We refer the reader
to Refs. [9,36] and Appendix A for details.

A “stabilizer group” S is an Abelian subgroup of the Pauli
group on Q [denoted P (Q)] generated by m ! |Q| indepen-
dent and mutually commuting Pauli string operators,

S =
{

m∏

j=1

(g j )b j

∣∣∣∣b j ∈ {0, 1}, g j ∈ P (Q), [g j, g j′ ] = 0

}

= 〈g1, . . . , gm〉
≡ 〈G〉, (4)

where G = {g1, . . . , gm} is called a “generating set” of S . The
group S is Abelian, where each element has order 2, and can
therefore be viewed as an m-dimensional vector space on F2,
the isomorphism being given explicitly above in terms of the
b vector.

We list a few more properties that follow from the notion
of a stabilizer group [9]:

(1) A stabilizer group defines a “code space,” that is, the
subspace HQ(S ) of the Hilbert space HQ on which all ele-

5In the case of a pure initial state [13,15] where this transition
was first found, p < pc corresponds to a “volume law entangled
phase,” where one should be thinking in terms of the reduced (mixed)
density matrix of a subsystem which holds a finite entropy density as
T → ∞.

ments of S acts trivially. We have

dim HQ(S ) = 2k ≡ 2|Q|−|G|, (5)

where k := |Q| − |G| = L − m is known as the number of
“logical qubits” encoded.

(2) The stabilizer group also defines its “code state,”
namely the maximally mixed state on the code space. Its
density matrix is proportional to the projection operator onto
the code space, and is explicitly given by [37]

ρQ(S ) = 1
2|Q|

∑

g∈S
g. (6)

As an example, the maximally mixed state (i.e., the initial state
of the circuit model in Fig. 1) is such a code state, for which
the stabilizer group is empty. Consequently, as we will show
below, the state at any point of the random Clifford circuit
evolution remains a code state, and therefore is a “stabilizer
QECC” in a strict sense.

Since we will mostly be concerned with codes states as in
Eq. (6), we will usually write ρQ as a shorthand notation for
ρQ(S ), where its dependence on S is implicit.

(3) A code state ρQ as in Eq. (6) has a flat spectrum, and
all its Rényi entropies are equal to [37]

(ln 2)−1S(ρQ) = |Q| − |G| = k = log2 dim HQ(S ). (7)

That is, the entropy of the code state is equal to (ln 2 times)
the number of logical qubits. It follows that the “code rate,”
defined to be the ratio between the number of logical and
physical qubits k

|Q| , is equal to the entropy density of ρQ up
to a factor of ln 2.

(4) We recall that a “logical operator” is an element in
P (Q) that commutes with all elements in S , that is, an el-
ement of the centralizer C(S ).6 A logical operator operator
is “trivial” if it is itself an element of S , and “nontrivial”
otherwise. Consequently, a nontrivial logical operator acts
within the code space, but nontrivially, and therefore is a
so-called “undetectable and uncorrectable error” of the code.
With this trivial/nontrivial distinction, it is clear that a logical
operator is defined up to gauge freedom, that is, up to arbitrary
multiplications of elements in S (which do not change its
action on the code space). Thus logical operators are most
easily thought of as “equivalence classes,” or formally, cosets
of S in C(S ). We define the “logical group” L as the following
quotient group L := C(S )/S , with |L| = 22k . We note that

6Throughout the paper, by C(S ) we really mean the Abelianized
centralizer

C(S ) = {g ∈ P (Q) | [g,S] = 0}
{±1,±i}

.

That is, we “forget about” the (uninteresting) coefficients/
commutation relations of the logical operators, and focus on their
operator contents. This way, C(S ) can be viewed as vector spaces
on F2, and group homomorphisms (e.g., those in Appendix A) can
be viewed as linear maps between vector spaces. On the other hand,
we do care about commutation relations of stabilizers (elements of
S). We always require S to be Abelian and hence identical to its
Abelianization. Thus, S is a subgroup of the Abelianized centralizer
C(S ), and the logical group L is defined by their quotient.
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L can be generated by representative “logical Pauli X and Z
operators,” conventionally denoted as {X 1···k, Z1···k}.

C. The circuit evolution in the stabilizer formalism

We briefly describe the circuit dynamics in the stabilizer
formalism, with the help of notions introduced above. We
show that the state at any point of the circuit evolution, as
governed by Eqs. (1) and (2), remains a code state as in
Eq. (6).

(1) First, we notice that the initial maximally mixed state
is a code state with S = ∅.

(2) Under a Clifford unitary gate U as in Eq. (1)

ρQ(S ) → UρQ(S )U † = ρQ(USU †), (8)

where S ′ = USU † is obtained from S by conjugating each
element of S by U . Thus S ′ is also an Abelian subgroup of
P (Q). Moreover, we have S[ρQ(S )] = S[ρQ(S ′)].

(3) Under a Pauli measurement of g ∈ P (Q) as in Eq. (2),7

one can easily verify that [38].
(i) When g anticommutes with some elements of S

(hence a detectable error), it is always possible to choose
G such that it has exactly one element that anticommutes
with g. The updated stabilizer group S ′ is generated by G ′,
where

G ′ = {g j |g j ∈ G, [g j, g] = 0} ∪ {g}. (9)

(ii) When g commutes with all elements in S and is
itself within S (a trivial logical operator/trivial error),

G ′ = G. (10)

(iii) When g commutes with all elements in S and is it-
self not within S (a nontrivial logical operator/undetectable
error),

G ′ = G ∪ {g}. (11)

Thus, if the initial state of the circuit is a code state as in
Eq. (6), then at any point of the circuit evolution the state is a
code state, which admits an efficient representation in terms of
G, and consequently efficient simulation of the circuit dynam-
ics, a result known as the Gottesman-Knill theorem [38,39].

Moreover, one sees from above that the entropy of the
state decreases by ln 2 (i.e., the state gets “purified” by one
unit) if a nontrivial logical operator (or equivalently an “unde-
tectable error”) g is measured [compare Eq. (7)], but remains
unchanged otherwise [23,40]. This observation provides a first
clue to a possible connection between the error correcting
properties of the state (when viewed as a QECC) and the
purification dynamics.

D. Code distance and the theorem

An important metric of a QECC is its “code distance”
d , defined to be the minimal weight of all nontrivial log-

7The results here holds generally for all Pauli operators g, although
we are mostly interested in single site Pauli operators that are relevant
in the context of the circuit model in Fig. 1 and in Eq. (2).

ical operators.8 In our circuit model that has locality, it is
natural to define a similar quantity, the “contiguous code
distance” [18,40] dcont as the minimal length of a contiguous
segment of qubits that supports a nontrivial logical operator.
By definition, d ! dcont.

We say that a logical operator g ∈ C(S ) is “localizable”
on a set A of qubits, if there exists g′ ∈ S such that gg′ acts
trivially on A, where A := Q − A is the complement of A in
Q. It can be verified that all logical operators localizable on a
given set A form a subgroup of C(S ). It can also be verified
that this subgroup of operators localizable on A contains S as a
subgroup, upon taking g′ = g ∈ S above. We take the quotient
between these two, and denote the corresponding quotient
group as LA, which is a subgroup of L (see Appendix A for a
detailed characterization of LA).

We have |LA| = 2#A , where #A is an integer, and has the
meaning of “the maximal number of independent and in-
equivalent logical operators (undetectable errors)” on A. The
quantity #A thus measures how susceptible the QECC is to
undetectable errors on A.

By definition, any subset (segment) A of qubits with weight
(length) smaller than d (dcont) supports no logical operators
(therefore #A = 0), or equivalently, no “undetectable errors.”
An error occurring on A must therefore be either “detectable”
(that brings states outside the code space) or “trivial” (that
leaves states within the code space unchanged). When a de-
tectable error located on A occurs, an error correcting unitary
supported on A that reverses the effect of the error can be
found, given its error syndrome [9,36].

Following the standard nomenclature, we may say that
the circuit defines a [|Q|, k, dcont] code over the course of
its time evolution, where both k and dcont are functions of
time. A central purpose of this paper is to characterize the
code dynamics, and develop an intuitive picture of its error
correcting capabilities as quantified by k and dcont. This is
partly achieved by the following relation between #A and the
entanglement structure of the state:

Theorem 1. Let ρQ be a code state [defined in Eq. (6) to be
the maximally mixed state on the code space], and |"QR〉 be
an arbitrary purification of ρQ,

ρQ = TrR|"QR〉〈"QR|. (12)

Then for any subset A of Q, A ⊆ Q we have

#A = (ln 2)−1IA,R, (13)

where the right-hand side is the mutual information between
A and R,

IA,R = S(ρA) + S(ρR) − S(ρAR) = S(ρA) + S(ρQ) − S(ρA).
(14)

Here again A := Q − A is the complement of A on Q. !
The proof of the theorem is given in Appendix A.
Several comments are in order:
(1) The quantity #A was introduced and explored in

Refs. [41,42] (see also Ref. [43]), although not explicitly

8Recall that the weight of a Pauli string operator is the number of
qubits on which its content is not the identity operator.
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cast in the form of a mutual information. From the the-
orem it follows directly that #A + #A = 2k, the “cleaning
lemma” [43,44].

(2) Clearly, from its definition, #A ! #AB since A ⊆ AB,
which implies IA,R ! IAB,R or, equivalently,

S(ρA) + S(ρABR) ! S(ρAB) + S(ρAR), (15)

the strong subadditivity inequality.
(3) We have not specified the pure state |"QR〉. However,

since both sides of Eq. (13) can be defined from ρQ alone [see
the last line of Eq. (14)], any purification of ρQ would work
equally well.

(4) For concreteness, let us choose |R| = k, the minimal
number of qubits required, and consider the following “en-
coded state” as a purification of ρQ,

|"QR〉 = 1√
2k

∑

x

|xQ〉|xR〉, (16)

where {|xQ〉} is an orthonormal basis of the code space, and
{|xR〉} is an orthonormal basis of R. This pure state can be
obtained by starting from k Bell pairs, collecting one qubit
from each pair, and encoding this collection of k qubits in the
QECC (on Q) while labeling the other k qubits as R.

The implication of the theorem when A is a contiguous
segment and |A| < dcont is important, and perhaps familiar
from general considerations of QECCs. The left-hand side
of Eq. (13) is zero, following the definition of dcont. The
right-hand side is therefore also zero, as it must be [45]:
Since all errors on A can be detected (and hence corrected),
no observables on A can reveal any information about the
encoded state, and there should be no correlations between
A and R.9 Therefore, they must “decouple” on the level of
density matrices [46–49],

|A| < dcont ⇒ ρAR = ρA ⊗ ρR, (17)

leading to a vanishing mutual information between A and R.
On a practical level, the theorem provides a concrete re-

lationship between error correcting capabilities of the QECC
and its entanglement structure. For example, one can readily
“read-off” the code distance of the QECC, assuming a com-
plete knowledge of the entanglement structure.

III. DOMAIN WALL PICTURE OF
ENTANGLEMENT ENTROPIES

In this section we review the mapping of the circuit dy-
namics to effective stat. mech. models, as first developed for
unitary Haar circuits in Refs. [25–28,31], and later extended to
hybrid Haar circuits in Refs. [19,20]. In either case, the entan-
glement entropy can be related to a domain wall free energy
in the stat. mech. model, which can receive both “energetic”
and “entropic” contributions. We will however focus on the

9In particular, no measurements on A should be able to change the
entropy of ρQ(S ). The “decoupling condition” in Eq. (17) was argued
to hold for typical states when p < pc, thus responsible for the very
existence of a “mixed” phase [17]. We will come back to these points
in Sec. V.

FIG. 2. (a) Illustration of the underlying spin model in
Refs. [19,20] for the hybrid random Haar circuit. This figure is
adapted from Ref. [20]. Each bulk unitary maps to a bulk spin (green
square), that is “free.” Qubits at the final time t = T (solid dots)
correspond to “fixed” spins all pointing in either the a or b direction.
A Boltzmann weight is associated with each downward-pointing
triangle (shaded), and is a function of spins on its vertices. (b) Rep-
resentation of the entanglement entropy of the segment A as the
difference of two free energies (see main text). In this figure we have
chosen to “zoom in” on a small part near the upper edge of the circuit;
the upper edge corresponds to physical qubits Q at the final time
t = T of the circuit evolution. The other boundaries are far away,
and need not be specified. The illustrations on the right-hand side
represent typical configurations in the low-temperature “ferromag-
netic” phase, possibly after a sufficient number of coarse-graining
steps. In the denominator (Zcircuit), the upper edge is colored blue,
corresponding to the fixed boundary condition a; thus, the bulk spins
tend to also order along a. In the numerator (Zcircuit[A]) the segment
A is colored yellow, and the spins are aligned to have a different
value b. This will induce the alignment of proximate bulk spins along
the same direction b. A domain wall is then present where the two
domains meet.

case of hybrid circuits with a nonzero measurement strength
p, where results in Refs. [19,20] can be directly applied.

A. Mapping to a spin model

The upshot of the mapping introduced in Refs. [19,20] for
the hybrid random Haar circuit can be very roughly summa-
rized as follows [compare Fig. 2(a)], where we omit technical
details. Recall that the hybrid random Haar circuit [19,20] is
structurally identical to the circuit in Fig. 1, except with each
unitary gate sampled from the Haar measure on U(4), and
the sporadic projective measurements replaced by generalized
weak measurements of the same strength on each qubit at each
time step. This strength plays a role similar to the frequency
of sporadic projective measurements in Fig. 1.
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(1) In the bulk of the circuit there is one Potts-like spin
degree-of-freedom associated with each unitary gate, taking
values in {a, b, c, . . .}. The bulk spins form a square lattice
[see Fig. 2(a), and compare with Fig. 1]. A Boltzmann weight
is defined on each downward-pointing triangle of the lattice
[see Fig. 2(a)]. The “circuit partition function” Zcircuit is ob-
tained by contracting all free spin indices of the Boltzmann
weights.

(2) At the t = T (final time) boundary of the circuit there
is a spin associated with each physical qubit in Q. All spins
in Q are fixed to have the same value (say a), and therefore
corresponds to a ‘fixed” boundary condition (b.c.) of the spin
model.

(3) At the t = 0 (initial time) boundary of the circuit there
is also a spin associated with each physical qubit in Q, and
certain short-range entangled initial states on Q corresponds
to simple b.c. of the spin model. In particular, a pure product
initial state corresponds to a “free” b.c., where each spin can
independently take all allowed values. On the other hand, the
maximally mixed initial state corresponds to the same fixed
b.c. (a) as at the t = T boundary.

(4) When the spatial b.c. is periodic, the circuit geometry
is cylindrical, and there are no other boundaries of the circuit.
When the spatial b.c. is open, the circuit geometry is rectan-
gular, and the boundary conditions on the left and right sides
of the rectangle are also free.

(5) To compute the entanglement entropy of a segment
A = [x1, x2] in the final state (at t = T ), one needs to compute
another partition function. This partition function is defined
by the same boundary condition as Zcircuit , except with all
spins in the segment A at the upper edge of the circuit
“aligned” to another different value, say b. We call this new
partition function Zcircuit[A].

As shown in [19,20,32], the (ensemble averaged) entangle-
ment entropy follows:

S(ρA) = − ln
Zcircuit[A]

Zcircuit
, (18)

taking the form of a “free energy cost” due to the change of
b.c. [see Fig. 2(b)].

(6) The purification/entanglement transition corresponds
to an ordering transition of the spin model, where the mea-
surement strength p plays a role similar to temperature.
Within the low-temperature ordered phase of the spin model,
a well-defined domain wall with finite surface tension must
be present to account for the b.c. change [see Fig. 2(b)].10 The
free energy cost, mostly coming from the domain wall, will be
extensive, leading to volume law entanglement entropies. We
will, for brevity, call it “the entanglement domain wall.” The

10Notice that in Fig. 2(b) we have chosen to present the domain
wall in the simplest form, where a and b can meet directly (so that
there can be as few as only one domain wall) and are the only spin
values that need to be considered. The spins are therefore Ising-like.
In general, it might be energetically favorable to have yet other
different domains inserted between the a and b domains in typical
configurations subject to this b.c., resulting in multiple mutually
avoiding domain walls [20].

surface tension decreases with increasing p, and eventually
vanishes at the critical point.

As demonstrated for random Haar circuits [19,20], this
mapping requires a replica limit of the spin model (the limit
where the number of available values of the Potts spins goes
to 1), and enables certain predictions for critical properties of
the model [20] for n " 1 Rényi entropies. However, the more
general viewpoint of entanglement entropies (namely as free
energies of domain walls) [26–31] has proven useful in under-
standing the phase transition in other contexts: for the zeroth
Rényi entropy [13] (where the entanglement entropy is equal
to a “geometrical minimal cut” of the underlying lattice); and
for critical properties of the random Clifford circuit [21,24].

We will henceforth assume this general domain wall pic-
ture holds for the random Clifford circuit in the mixed phase.
Since a derivation of the underlying stat. mech. model (if it ex-
ists) is unavailable at present, the precise nature of the domain
walls is unknown. Nevertheless, as we shall see, the domain
wall picture alone, with the additional assumption that the
domain walls are of the simplest type (“Ising-like”; see Fig. 2),
captures much of the qualitative aspects of the entanglement
entropies in the Clifford circuit. We will devote the rest of this
section to capillary-wave theory of Ising domain walls and
its implications, and the next section to numerical checks of
capillary-wave theory for the Clifford circuit.

B. Capillary-wave theory of Ising domain walls

Capillary-wave theory [33–35] was originally proposed for
describing domain walls in the low-temperature ordered phase
of the Ising model. For the example in Fig. 2, a sharp domain
wall must be present to be consistent with the assigned bound-
ary conditions. For this geometry one can further argue that it
is sufficient to consider configurations with a single domain
wall, which also admits the following parametrization as a
“height function”

y : [x1, x2] → [−T, 0], x 0→ y(x), (19)

where y(x1) = y(x2) = 0. With this parametrization we are
neglecting all “overhangs” and “bubbles” that might be
present in the relevant configurations; these have a finite typ-
ical size in the low-temperature phase, and will eventually
disappear under coarse-graining. This reasoning leads to the
following approximation for the entanglement entropy:

S(ρA=[x1,x2] )

= − ln
Zcircuit[A]

Zcircuit

≈ − ln
∫

D[y(x)] exp
[
−βσ

∫ x2

x1

dx
√

1 + (∂xy)2
]
,

(20)

where β is the “inverse temperature,” and σ the “surface ten-
sion.” This resulting capillary-wave theory partition function
is the canonical ensemble of all domain walls [i.e., height
functions y(x) defined in Eq. (19)], where the energy of each
domain wall is the product of the surface tension and its
surface area.
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After expanding the square root and dropping higher-order
irrelevant terms, Eq. (20) becomes a Gaussian theory, and can
be readily evaluated. With details in Appendix B we find

S(ρA) ≈ FCW(A)

= βσ |A| + 3
2 ln |A|, when T 1

√
L 1

√
|A|, (21)

for |A| 1 1. Here the first term is the surface energy, and
the second term is entropic, coming from transverse, thermal
fluctuations of y(x), with a universal coefficient 3/2, as found
in Ref. [23] within a quantized regularization of the Ising
model. Notice that we have reserved the notation S(ρA) for the
entanglement entropy of A, and FCW(A) for the free energy of
the domain wall due to a change of b.c. in A.

In Fig. 2 we have not specified boundary conditions on the
lower, left, and right sides of the circuit, as it is a zoomed-in
view. In this way we are assuming implicitly that |A| 2 L,
and also that the circuit depth is large compared to the vertical
extent of the domain wall T 1

√
|A|. It is within this regime

that the approximation of S(ρA) with FCW(A) in Eq. (21)
is established, and is valid regardless of the other boundary
conditions (as the domain wall is sufficiently far away from
the other boundaries).

The subleading entropic correction of S(ρA) was found to
be characteristic of the mixed phase 0 < p < pc of hybrid
circuits [16,18], and is now shown to be present generically
whenever the fluctuating domain wall picture is valid, though
its analytic form ( 3

2 ln |A|) here is special to capillary-wave
theory. Its importance will be made clear in the next subsec-
tion.

We conclude this subsection by mentioning the limit p= 0,
which corresponds to a random unitary circuit without mea-
surements. In this case, the entanglement domain walls are
directed in the temporal direction of the circuit (as opposed to
the case here with p > 0, in Fig. 2, where the domain wall is
directed in the spatial direction of the circuit). This domain
wall can now fluctuate in the transverse (spatial) direction,
and these fluctuations leads to a similar entropic term 1

2 ln t
when t 2 L [28], where the coefficient 1

2 is universal, and
also comes from the diffusion equation (see Appendix B).
However, this term will disappear as t = poly(L) 1 L, the
regime we focus on in this paper.11

C. The maximally mixed initial state

We have seen in Sec. II C that the hybrid circuit dynamics
with the maximally mixed initial state can be formulated
as the dynamics of the corresponding QECC. The entropy
of the entire system Q, S(ρQ), is monotonically decreasing,
corresponding to a monotonically decreasing code rate. On
the other hand, according to the prescriptions summarized at
the beginning of this section (for mapping to a spin model),
the corresponding circuit partition function Zcircuit is defined
by the fixed b.c. a on both the upper and lower edges of the
circuit [19,24]; whereas the entropy S(ρQ) is the change in
free energy upon changing the b.c. of the upper edge (i.e.,

11We thank Tianci Zhou and Adam Nahum for explaining to us
Ref. [28] on these points.

FIG. 3. Illustrations of boundary conditions for FCW(Q) with
open b.c. (left) and periodic b.c. (right). It is understood that both
FCW(Q) are obtained by subtracting the background free energy with
both Q and R fixed to have b.c. a (not plotted), from the free energy
of the configuration plotted (with Q in b and R in a).

qubits in Q) to a different, fixed one, b. The b.c. relevant to
this calculation is illustrated in Fig. 3. Since the maximally
mixed initial state admits a natural purification in terms of
|Q| = L Bell pairs where Q consists of one qubit from each
pair, the upper and lower edges can be naturally viewed as
Q (the system, that is acted upon by the circuit), and R (the
“reference,” consisting of the other half of the Bell pairs, that
is left unevolved by the circuit), respectively [24]. We will
henceforth adopt this labeling, for we find it intuitive to have
a concrete reference R at the far end of the circuit that Q is
trying to disentangle itself from, even if this choice of R is not
unique.

The dominant contribution to S(ρQ) comes from a single
domain wall separating the upper and lower edges, going
around the “waist” of the circuit (again compare Fig. 3):

(1) With open spatial b.c., the domain wall endpoints
are free, and can independently take any vertical coordinate
y(x = 0) ∈ [−T, 0] and y(x = L) ∈ [−T, 0].

(2) With periodic spatial b.c., the domain wall is periodic,
but otherwise free to take any position along the vertical
direction, leading to y(x = 0) = y(x = L) ∈ [−T, 0].

The free energies can then be calculated within capillary-
wave theory (Appendix B),

S(ρQ)

= − ln
Zcircuit[Q]

Zcircuit

≈ FCW(Q)

=
{
βσL − ln T, open b.c.
βσL − ln T√

L
, periodic b.c. when T 1

√
L. (22)

The − ln T term comes from the “center of mass entropy” of
the “waist domain wall,” whose form is consistent with an ex-
ponentially long purification time within the mixed phase [18]
(see Sec. III E). The ln

√
L difference between open and peri-

odic b.c. is attributed to the additional endpoint entropy with
open b.c., as mentioned above.
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FIG. 4. (a) and (b) Illustrations of boundary conditions for
FCW(A) with periodic spatial boundary conditions. The partition
function Zcircuit[A] is the sum of the two contributions Zcircuit[A] =
Z (1)

circuit[A] + Z (2)
circuit[A]. (c) The resulting entanglement entropy S(ρA)

and (half) the mutual information IA,R, as computed from capillary-
wave theory [specifically Eqs. (21), (22), and (26)]. We have taken
|Q| = L = 1024, T = 8L, and βσ = 0.1 in this plot. We emphasize
the nonmonotonicity in S(ρA) as |A| → L. Moreover, there is a lin-
early decreasing segment of the 1

2 IA,R versus |A| plot, with horizontal
extent L − 2|A|∗ and vertical extent S(ρQ). Since its slope must be
bounded between [− ln 2, ln 2], we have (ln 2)−1S(ρQ) ! L − 2|A|∗.

We see also that the quantity βσ can be identified as (ln 2
times) the code rate,

lim
|Q|→∞

k ln 2
|Q|

= lim
L→∞

S(ρQ)
L

= βσ, (23)

for T = poly(L).

D. Decoupling of domain walls

We are now ready to investigate the entropy of a contigu-
ous subregion A of Q with arbitrary length. Notice that the
previous result in Eq. (21) was obtained for |A| 2 |Q| = L,
and that Eq. (22) accounts for the limiting case |A| = |Q| = L.
These two regimes must then be interpolated by some inter-
mediate behavior. For convenience, below, we will instead
study the entropy S(ρA), defined on the complement of A.

Consider first the limit with small A, |A| 2 |Q|. In this
regime, the partition function Zcircuit[A] (defined by a on AR
and b on A) receives two possibly comparable contributions
(see Fig. 4 with periodic b.c.):

(1) A single domain wall separating A from AR as before.
There are then two domains, with spins aligned along a and

b, respectively [see Fig. 4(a)]. The corresponding partition
function is approximated within capillary-wave theory as

Z (1)
circuit[A] ≈ Zcircuit e−FCW (A). (24)

(2) Two “decoupled” domain walls, one separating A from
A, and the other, a waist domain wall, separating Q = AA
from R. There are now three domains, as shown in Fig. 4(b),
and to go from A to R two domain walls must be crossed.
The corresponding partition function is approximated within
capillary-wave theory as

Z (2)
circuit[A] ≈ Zcircuit e−FCW (A)−FCW (Q). (25)

After summing these contributions, we have, according to
Eq. (18),

S(ρA) ≈ − ln[e−FCW (A) + e−FCW (A)−FCW (Q)]. (26)

The first contribution F (1)
CW = FCW(A) is always energetically

more favorable than F (2)
CW = FCW(A) + FCW(Q), but is not nec-

essarily entropically so. The competition is only present due
to fluctuations of the domain walls.12

To illustrate this, we evaluate Eq. (26) with periodic b.c.
[using Eqs. (21) and (22)], where FCW is simply a function
of the size of the region, and plot the result in Fig. 4(c).
Notice the striking nonmonotonic behavior in S(ρA), which
has a width labeled as |A|∗. The nonmonotonicity comes from
a competition between the two contributions, which we can
readily understand for large |Q| = L,

S(ρA) ≈ − ln[e−FCW (A) + e−FCW (A)−FCW (Q)]

≈ min{FCW(A), FCW(A) + FCW(Q)}

≈
{

FCW(A), 0 ! |A| < L − |A|∗,
FCW(A) + FCW(Q), L − |A|∗ < |A| ! L.

(27)

Here |A|∗ is the length scale when the entropic and energetic
terms are comparable, and may be defined as follows:

FCW(L − |A|∗) = FCW(|A|∗) + FCW(L)

⇒ |A|∗ ≈ 1
2βσ

(
3
2

ln L + ln
T√
L

)
, (28)

to leading order for large T and L. The length scale |A|∗ is
thus inversely proportional to the code rate βσ , and grows
with both L and T logarithmically. For any circuit depth T =
O[poly(L)], |A|∗ is proportional to ln L.

In the regime with L − |A|∗ < |A| ! L (i.e., 0 ! |A| <
|A|∗), we recognize that the free energies FCW(A) and FCW(Q)
in Eq. (27) represent the corresponding entanglement en-
tropies S(ρA) and S(ρQ) according to Eqs. (21) and (22). The

12A similar competition between domain wall topologies is also
present in the limit p = 0 [28], which leads to an O(1) “page correc-
tion” to the entanglement entropy.
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last line in Eq. (27) can then be rewritten as

0 ! |A|
|A|∗

< 1 ⇒ S(ρA) ≈ S(ρA) + S(ρQ)

⇔ S(ρAR) ≈ S(ρA) + S(ρR)

⇔ IA,R ≈ 0. (29)

We thereby conclude that if |A|
|A|∗ < 1, the subsystems A and

R decouple. This decoupling corresponds to the regime where
the configuration in Fig. 4(b) dominates, i.e., when the domain
wall decouples, with two domain walls separating A and R.

In Fig. 4(c) we have also plotted (half) the mutual informa-
tion between A and R, IA,R, as computed from capillary-wave
theory using Eqs. (14), (21), and (26). Notice the (near) van-
ishing of IA,R for 0 ! |A| < |A|∗, consistent with Eq. (29).

A more detailed calculation shows that

IA,R ≈ ln[1 + eFCW (A)+FCW (Q)−FCW (A)]

≈ ln[1 + e−2βσ (|A|∗−|A|)]

≈
{

e−2βσ (|A|∗−|A|), 0 ! |A| < |A|∗;
2βσ (|A| − |A|∗), |A| > |A|∗. (30)

Here we have used Eq. (28), and only kept the leading linear
terms in FCW. Since |A|∗ diverges in the thermodynamic limit
[see Eq. (28)], for |A|

|A|∗ ∈ [0, 1) the mutual information IA,R

vanishes exactly. On the other hand, IA,R is strictly positive
if |A|

|A|∗ > 1.
Upon combining with Theorem 1 in Sec. II D, we conclude

that #A = 0 if and only if |A| < |A|∗. We can then make the
important identification between the code distance dcont and
|A|∗,

dcont = |A|∗. (31)

With this equality we may deduce from Fig. 4(c) (see the
figure caption) that

k = (ln 2)−1S(ρQ) ! L − 2|A|∗ = |Q| − 2dcont. (32)

This is essentially the quantum Singleton bound [4], with
d → dcont 1 1.

To summarize, capillary-wave theory predicts that the dy-
namically generated QECC has code distance that diverges
with system size on relevant timescales, while also keeping
a finite code rate. Qubit segments with length smaller than
|A|∗ = dcont are protected from undetectable errors by ther-
modynamic fluctuations of the entanglement domain walls.

E. Crossover to late times

In this subsection we deviate from our main focus on poly-
nomial timescales T = O[poly(L)], and briefly discuss how
the domain wall picture can account for the late time crossover
behavior when T is exponential in L. On these timescales,
the entropy of the code state S(ρQ) is expected to decay to
zero [18], i.e., the state is completely purified.

Previously, when computing S(ρQ) from Fig. 3 obtaining
the result in Eq. (22), we only took into account configurations
with a single waist domain wall—valid since the energy term
βσL is always dominant over the entropy term − ln T when
T = O[poly(L)], and single-domain wall configurations have

the lowest energy. This simplification eventually breaks down
when T 1 exp [βσL], and we have to consider the possi-
bility of multiple waist domain walls. In particular, Zcircuit
will now receive contributions from all configuration with
an even number of waist domain walls, and Zcircuit[Q] from
those with an odd number. Here we are again assuming the
Ising nature of these domain walls. Moreover, the vertical (i.e.,
time direction) extent of each domain wall scales as

√
L (see

Appendix B), much smaller than either L or T . These domain
walls are therefore effectively “local” along the time direction,
and the only interaction between the domain walls is on-site
repulsion (i.e., the domain walls cannot overlap/cross, but
otherwise noninteracting). We thus have a picture of a “(waist)
domain wall gas,” and can readily compute the corresponding
partition functions using Eq. (22),

S(ρQ) = − ln
Zcircuit[Q]

Zcircuit

≈ − ln
∑

n odd (1/n!) exp[−nFCW(Q)∑
n even(1/n!) exp[−nFCW(Q)]

≈ − ln tanh(e−FCW (Q) )

≈
{− ln tanh(Te−βσL ) open b.c.,
− ln tanh

( T√
L

e−βσL
)

periodic b.c.
(33)

Notice that

lim
T →∞

S(ρQ) = 0, (34)

as expected for a pure state.
The same reasoning leads to a similar modification of

S(ρA) in Eq. (26),

S(ρA) ≈ − ln[e−FCW (A) + e−FCW (A) tanh(e−FCW (Q) )], (35)

which implies

lim
T →∞

S(ρA) ≈ − ln[e−FCW (A) + e−FCW (A)]

≈ min{FCW(A), FCW(A)}, (36)

again as expected for the pure state ρQ that is dynamically
generated on exponentially long times.

Inclusion of multiple domain walls also introduces some
crossover time dependence in dcont, accounting for its even-
tual linear scaling in L when T 1 exp [βσL]. Indeed, the
decoupling conditions Eqs. (29) and (30) retain their forms
in this limit, and dcont can still be identified with |A|∗, which
approaches L/2 in the long time limit.

IV. NUMERICAL RESULTS

In this section we compare our capillary-wave theory re-
sults with numerical computations in the random Clifford
circuit (Fig. 1) for the observables explored in the previous
section. Overall we find qualitative agreement between the
two, but as we shall see, a complete quantitative agreement
is lacking. We interpret the former as support for the general
entanglement domain wall picture, and the latter as an indica-
tion of a more complex nature of these domain walls for the
random Clifford circuit.
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FIG. 5. (a) S(ρA) and 1
2 IA,R from random Clifford circuit numer-

ics, where we observe qualitative agreements with capillary-wave
theory [Fig. 4(c)]. (b) A closer look at IA,R on a log-log scale, where
we find qualitative agreement, within accessible numerical resolu-
tions, with the capillary-wave theory result (inset), computed from
Eqs. (21), (22), and (30) at βσ = 0.1. (c) The scaling of the code
distance [obtained from (a) and (b) upon setting ε = ln 2] with the
system size for p = 0.04, 0.08, 0.12, where we find dcont ∝ Lγ1 with
γ1 ≈ 0.38.

A. Code distance for Clifford QECCs

The most striking qualitative prediction of the domain wall
picture from Sec. III is the phenomenon of decoupled domain
walls as illustrated in Fig. 4. To explore this for random
Clifford circuits, we compute S(ρA) and IA,R with varying |A|,
taking a maximally mixed initial state and averaging over the
random ensemble of circuits, as well as over a time window
6L < T < 8L. Within this time window we have T 1 L1/2,
so that Eqs. (21) and (22) should apply.

Our numerical results are shown in Fig. 5(a) for L = 1024
and p = 0.08 ≈ 0.5pc. Strikingly, we observe the same non-

monotonicity in S(ρA), decreasing with A in the range L −
|A|∗ < |A| ! L, in accordance with the capillary-wave theory
results in Fig. 4. Moreover, within this range, IA,R is very
small, showing a plateau with height ≈ 0. The Clifford nu-
merical results for both S(ρA) and IA,R are thus fully consistent
with the domain wall decoupling results in Fig. 4. Evidently
the domain wall picture holds for random Clifford circuits,
being qualitatively consistent with capillary-wave theory.

Our particular choice of p = 0.08 was unimportant. In-
deed, for the Clifford circuit we find consistency with Fig. 4
for a wide range of p with 0 < p < pc (not shown). This is
as expected, since the domain wall picture should be valid at
any “temperature” p below the “critical temperature” pc of the
spin model, i.e., throughout the “ordered phase.”

We also explore finite size effects on IA,R [see Fig. 5(b)].
For a fixed |A| < |A|∗, we find that IA,R decreases with in-
creasing system size L, consistent with Eq. (30). We therefore
expect that in the thermodynamic limit IA,R = 0 if and only if
|A| < |A|∗; the identification between |A|∗ and dcont can then
be made. In a finite system we define |A|∗ as the size of A for
which IA,R ≈ ε, where ε is a small number independent of L.

With this identification we may now examine how dcont =
|A|∗ depends on the system size [as obtained from Figs. 5(a)
and 5(b)]. As shown in Fig. 5(c), we find that the code distance
dcont increases with increasing p, qualitatively consistent with
capillary-wave theory. The code distance also grows with L,
but as a power-law function dcont ∝ Lγ1 . The exponent is esti-
mated to be γ1 ≈ 0.38, in agreement with a direct computation
(from the algebraic definition of dcont) in Ref. [18]. The power-
law scaling of dcont quantitatively differs from capillary-wave
theory in Eq. (28), where a logarithmic scaling was found.

B. Clifford dynamics versus (generalized) capillary-wave theory

We next numerically compute a few more quantities that
we can compare with capillary-wave theory, as shown in
Fig. 6. Once again these results were obtained for the random
Clifford circuit with a maximally mixed initial state, upon
averaging over both circuit realizations and the time window
6L < T < 8L.

In Fig. 6(a) we plot the difference between S(ρQ) with pe-
riodic and open boundary conditions )S(ρQ) := Spbc(ρQ) −
Sobc(ρQ). Capillary-wave theory [Eqs. (21) and (22)] predicts
cancellations of the time dependence as well as of the “sur-
face energy” term, leaving only the extra endpoint entropy
term (1/2) ln L. This logarithmic scaling is indeed observed
numerically, with the coefficient of ln L given by ≈0.56, close
in value to that of capillary-wave theory. We have also con-
firmed a very weak T dependence of )S(ρQ) on intermediate
timescales, but the data are not displayed here.

In Fig. 6(b) we plot the “half-cut mutual information” [18]
IA,A with |A| = |A| = L/2 versus L with periodic b.c. Upon
varying L, we find IA,A ∝ Lγ2 with γ2 ≈ 0.36, and the overall
amplitude having a weak dependence on p. As for the code
distance in Fig. 5(c) which grows with a similar power γ1 ≈
γ2, this power-law scaling is quantitatively different from
capillary-wave theory. The latter predicts a logarithmic scal-
ing IA,A = (7/2) ln L for T ∝ L.

To account for the power laws in Figs. 5(c) and 6(b)
we introduce a phenomenological description, which we call

104306-10



STATISTICAL MECHANICS OF QUANTUM ERROR … PHYSICAL REVIEW B 103, 104306 (2021)

FIG. 6. (a) The difference between entropies of the entire system
as computed for the random Clifford circuit with periodic and open
boundary conditions. We observe a logarithmic dependence on the
system size Spbc(ρQ) − Sobc(ρQ) = ζ ln L, with ζ ≈ 0.56. This dif-
ference has a weak time dependence, but not displayed here. (b) The
half-cut mutual information IA,A for |A| = |A| = L/2 as a function of
L, with periodic b.c., where we find IA,A ∝ Lγ2 with γ2 ≈ 0.36.

“generalized capillary wave” (GCW), with the following
(minimal) modifications of the free energies for “pinned” and
“waist” domain walls [Eqs. (21) and (22)], respectively,

FGCW(A) = βσ |A| + χ |A|γ , when T 1 Lζ 1 |A|ζ , (37)

FGCW(Q) =
{
βσL − ln T, open b.c.
βσL − ln T

Lζ , periodic b.c. when T 1 Lζ .

(38)

Here 0 ! γ < 1 is the exponent characterizing domain wall
free energies in GCW, and 0 < ζ < 1 is the exponent of ver-
tical extent of the domain walls.13 The constant χ is expected
to be independent of |A|, L, T,βσ . Capillary-wave theory thus
has γCW = 0 and ζCW = 1

2 ; compare Eqs. (21) and (22). This
generalization of capillary-wave theory remains qualitatively
consistent with Figs. 5(a) and 5(b) and Fig. 6(a), where we
found ζ ≈ 0.56.

13Notice that with 0 < ζ < 1 we still have T 1 Lζ for 6L < T < 8L,
the time window we took in the numerics. As we saw in Fig. 6(a),
the exponent ζ ≈ 0.56 falls within this range, and seems to be close
in value to ζCW = 1/2.

Equations (37) and (38), together with the definition of |A|∗
in Eq. (28),14 lead to the following scaling behaviors for the
code distance and half-cut mutual information:

dcont = |A|∗ ≈ χ

2βσ
Lγ , (39)

IA,A ∝ Lγ . (40)

These are both consistent with our Clifford numerics in
Figs. 5(c) and 6(b), provided we take γ = γ1 = γ2.

We emphasize that Eqs. (37) and (38) are phenomenologi-
cal, motivated by both capillary-wave theory and our Clifford
numerics [specifically Figs. 5(c) and 6(b)]. At this moment
we do not have a theory from which these free energies can be
derived.

We note that direct numerical computations of S(ρA) (for
|A| 2 L) and S(ρQ) are qualitatively consistent with both
capillary-wave theory [Eqs. (21) and (22)] and its generaliza-
tion in Eqs. (37) and (38), as established in Refs. [16,18]. In
particular,

(1) For the approximation S(ρA) ≈ FCW(A) when |A| 2 L,
the “linear plus log” form of FCW(A) is consistent with the
stabilizer length distribution [16].

(2) For the approximation S(ρQ) ≈ FCW(Q), the − ln T
dependence on circuit depth is consistent with an exponen-
tially long purification time [18].

On the other hand, a quantitative comparison between
capillary-wave theory and GCW is tricky, due to the difficulty
in distinguishing a logarithmic function from a small power
law in the presence of a background linear term. Thus we will
not here attempt to compare capillary-wave theory and GCW
for the quantities S(ρA) (with |A| 2 L) and S(ρQ).

V. DISCUSSION

A. Summary

In this paper we established a correspondence between
QECCs generated by random hybrid Clifford circuit dynam-
ics, and the statistical mechanics of fluctuating entanglement
domain walls. The number of encoded logical qubits k of the
QECC maps to the “surface energy” that is extensive in the
number of physical qubits |Q|, and the code distance maps to
a crossover length scale proportional to the entropy of trans-
verse fluctuations, that is subextensive in |Q|. Fluctuations of
entanglement domain walls are entirely responsible for the
diverging code distance, which protects the state against local
(undetectable/uncorrectable) errors, a characteristic property
of QECCs.

Our results rest upon two well-motivated assumptions,
namely the validity of the entanglement domain wall picture,
and the “linear plus sublinear” form of their free energies. The
former has been analytically established in the context of hy-
brid random Haar circuits [19,20], and the latter follows from

14We note that the form of Eq. (30) is identical for capillary-wave
theory and its generalization in Eqs. (37) and (38), since in its
derivation we only kept the leading linear term, which is common
for both cases. Thus the identification between |A|∗ and dcont can still
be made for GCW.
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the former within capillary-wave theory. We expect that both
assumptions are also valid for Clifford circuits, as supported
by the Clifford numerics in Refs. [16,18], as well as those in
Sec. IV.

We emphasize that the qualitative properties of the QECC
do not depend crucially on the specific form of the entropic
term, which diverges logarithmically with |Q| in capillary-
wave theory, and as a small power law in our Clifford
numerics. The latter is possibly described by a certain gen-
eralization of capillary-wave theory. In some sense one can
view capillary-wave theory as a “mean-field theory” of the
entanglement domain walls.

B. The diverging code distance as a self-consistency condition

The error correcting nature of the dynamically generated
state, as exemplified by the diverging code distance, is con-
sistent with the resilience of this finite entropy-density (and
code rate) state to repeated local measurements. Indeed, a
measurement decreases the entropy only if the measured oper-
ator is a nontrivial logical operator (see Sec. II C), and with a
diverging code distance the probability of each local measure-
ment in the circuit (Fig. 1) being a logical operator (denoted
plogical) vanishes in the thermodynamic limit (equivalently,
each qubit in Q decouples from the reference state R with
probability one). We can estimate plogical by setting |A| = 1 in
Eq. (30), giving plogical ∝ #A = IA,R ≈ exp [−2βσdcont], lead-
ing to plogical ∝ L−2 within capillary-wave theory for T ∝ L,
and plogical ∝ exp [−χLγ ] within a generalized capillary-wave
description. In either case, this leads to a vanishing rate of
purification in the mixed phase when O(L) measurements are
made in each time step [18], and subsequently to the stability
of the finite code rate.15

Our discussion above is not an explanation of the stability
of the mixed phase, but a requirement of self-consistency,
since the diverging code distance is itself computed from the
steady state within the mixed phase. The domain wall picture
itself also requires the assumption of an ordered phase.

Moreover, a quantum Hamming bound [7,50] on pc, as in
Ref. [23], cannot be inferred from our discussion. Besides the
code distance being subextensive rather than extensive, here
we are viewing the one-qubit measurements within one circuit
time step as a sequence of one-qubit errors, rather than a single
p|Q|-qubit error. With respect to these single qubit errors, the
code is highly degenerate, and the Hamming bound does not
apply.

Finally, we mention that QECCs can also be dynamically
generated for circuits with a pure initial state in the vol-
ume law entangled phase when p < pc [17,23], if we take
the “system” Q to be an extensive subsystem, R to be the
complement of Q with |R| > |Q|, and consider the decou-
pling of A ⊆ Q from R (see Fig. 7). Indeed, in this case our

15When T is allowed to be independent of and longer than L,
capillary-wave theory gives

plogical ∝ (LT )−1 ⇒ dS(ρQ)
dT

≈ −(pL)plogical ∝ T −1,

consistent with Eq. (22) and an exponentially long purification time
(see Sec. III E).

FIG. 7. The circuit, when dynamically evolving an initial pure
state, can also be incorporated in the QECC framework by taking
an extensive subsystem Q as the QECC, and the complement of Q
as the reference R, with |Q| < |R|. When A > dcont, the dominant
domain wall configuration is shown in (a), and in this regime, A and
R have nonvanishing correlation. On the other hand, when A < dcont,
the dominant domain wall configuration is the “rainbow diagram”
shown in (b), implying that A and R should fully decouple (for |Q|
large), with vanishing mutual information. In this regime, an error on
A will have no effect on S(ρQ).

Clifford numerics (not shown) demonstrate the presence of
these decoupling conditions (e.g., a vanishing IA,R for |A| <
|A|∗ = dcont), qualitatively consistent with capillary-wave the-
ory. Other results within this setup should be similar to those
obtained in Refs. [16,17,23].

C. The role of disorder

As for random Haar circuits [19,20] and random tensor
networks [32], the identification in Eq. (18) is between free
energies in the stat. mech. model and entanglement entropies
averaged over an ensemble of circuits. Thus we have been
studying the averaged entropies, and comparing them with
(generalized) capillary-wave theory. Capillary-wave theory
assumes translational symmetry by construction, with no ref-
erence to sample-to-sample fluctuations or the role of disorder.

In Fig. 8 we present the statistical sample-to-sample fluctu-
ation of S(ρA) over an ensemble of random Clifford circuits,
versus the subregion size |A|, for 0 ! |A| ! L/2. Previously
in Ref. [16], the distribution of S(ρA) was found to be
Gaussian-like. Here we find the following power-law scal-
ing for the standard deviation (square root of the variance)

FIG. 8. The sample-to-sample variance of S(ρA) as a function of
|A|, obtained from an ensemble of random Clifford circuits. We take
L = 1024 and 0 ! |A| ! L/2.
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of the entropy
√

var[S(ρA)] ∝ |A|0.33, with an amplitude that
depends weakly on p. This power-law behavior is interesting,
yet beyond any generalization of capillary-wave theory, as the
latter always describes a clean system, for which the notion of
an ensemble of disorder realizations is irrelevant. This result
suggests that disorder could dramatically modify the structure
of the domain walls, possibly accounting for the power-law
dependencies in dcont and IA,A in Sec. IV.

We remark that the exponent for the standard deviation
0.33, as well as the exponent γ ≈ 0.36, are both close to the
exponent 1/3 for subextensive corrections to free energies
of a directed polymer in random media (DPRM) [51–54]
that falls within the Kardar-Parisi-Zhang (KPZ) universality
class [55]. Such corrections are due to quenched disorder. We
note that similar scaling behaviors have been found in random
unitary circuits without measurements [26–28,31]. Without an
analytic theory, we cannot determine if the entanglement do-
main walls are indeed DPRM-like. In this context, it could be
interesting to find “clean” circuit models, for which effects of
quenched disorder are absent, so that the subleading entropic
term only receives contribution from thermal fluctuations, just
like simple Ising domain walls. These open issues are left for
future work.

D. Outlook

We have made extensive use of the random Clifford circuit
and the stabilizer formalism to establish our results. It would
be interesting to see if the entanglement domain wall picture is
valid in a broader class of models, such as hybrid random Haar
circuits [13,19,20,22,56] or other “generic” models of nonuni-
tary dynamics [57–66], or circuit models with measurements
only [40,67–69].

While a general QECC does not necessarily have “local-
ity,” spatial locality and spatial dimensionality is important
in the hybrid circuit dynamics. For this reason we have been
considering the “contiguous code distance,” rather than the

conventionally defined code distance in the QECC context.
We have also restricted our attention to (1 + 1)-dimensional
circuits, in which the domain walls are one-dimensional ob-
jects in a two-dimensional background. It would be interesting
to test this picture in higher dimensions [13], in treelike ge-
ometries [70], or even in “all-to-all” models [18,71] where
locality is entirely absent.

The dynamically generated QECCs are found to have a
finite code rate and a subextensive code distance. They are
therefore not “good codes” in the conventional sense [5],
which have a finite code rate and an extensive code distance.
For example, a good code can be obtained by running a
random unitary circuit without measurements into the steady
state, starting from a mixed state with a finite entropy den-
sity [72]. It would be interesting to see if the domain wall
picture sheds any light on these good codes, and more gen-
erally on QECCs that are not dynamically generated and/or
stabilizer based [73], e.g., those commonly used in an error
correction context (see for example Ref. [74] for a recent
survey).
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APPENDIX A: MORE ON STABILIZER CODES

1. Entanglement entropies of stabilizer codes

Let the stabilizer group S be an Abelian subgroup of P (Q) as defined in Eq. (4). Let ρQ(S ) be the corresponding stabilizer
code state as in Eq. (6) [37],

ρQ(S ) = 2−|Q|
∑

g∈S
g. (A1)

We can directly compute its Rényi entropies [37]

(ln 2)−1S(n)[ρQ(S )] = 1
1 − n

log2 Tr{[ρQ(S )]n} = 1
1 − n

log2 Tr[(2−|Q||S|)n−1ρQ(S )] = |Q| − log2 |S|. (A2)

Since this result is independent of the Rényi index n, we will suppress it henceforth. As in Sec. II, we take

|S| = 2m (A3)

and define

k := |Q| − m = (ln 2)−1S[ρQ(S )]. (A4)

Given a bipartition of the system A ⊆ Q, A = Q − A, we define the following group homomorphism:

projA : P (Q) → P (A), gA ⊗ gA 0→ gA. (A5)
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We take the following reduced density matrix on A:

ρA(S ) = TrA[ρQ(S )] = 2−|Q|
∑

g∈S
TrA(g) = 2−|A|

∑

g∈S∩Ker projA

g = 2−|A|
∑

g∈SA

g, (A6)

where we noticed that TrA(g) is nonzero only if projA(g) = 1A, and defined SA to be the following subgroup of S:

SA := S ∩ Ker projA. (A7)

Thus we have

SA
∼=

S
projA(S )

, |SA| = |S|
|projA(S )|

, (A8)

and from Eqs. (A2) and (A6),

(ln 2)−1S[ρA(S )] =|A| − log2 |SA| = |A| − log2 |S| + log2 |projA(S )|. (A9)

2. Proof of Theorem 1 in Sec. II D

Recall that C(S ) ⊆ P (Q) is the Abelianized centralizer of S in P (Q). Recall also that the group of logical operators is defined
as the quotient group L = C(S )/S (see Sec. II B). The homomorphism projA naturally induces the following homomorphism
between quotient groups:

p̃rojA : L → projA[C(S )]
projA(S )

, g · S 0→ projA(g) · projA(S ). (A10)

It can be straightforwardly verified that this homomorphism is well defined, and is in fact surjective,

p̃rojA(L) = projA[C(S )]
projA(S )

. (A11)

Recall that the group LA is defined in Sec. II B as follows:

LA :=
{g ∈ C(S ) | projA(g) ∈ projA(S )}

S
, (A12)

where projA is understood as from P (Q) to P (A), as in Eq. (A5). It follows from the definitions that

LA = Ker p̃rojA ⊆ L, (A13)

thus

|LA| =|Ker p̃rojA| = |L|
|p̃rojA(L)|

= |C(S )| · |projA(S )|
|S| · |projA[C(S )]|

. (A14)

In the following we associate these factors with entanglement entropies, using Eq. (A9).
We state without proof that an arbitrary generating set of S can be extended into one of C(S ) [8,38]:

GS = {g1, . . . , gm}, (A15)

GC(S ) =
{
g1, . . . , gm, hX

1 , . . . , hX
k , hZ

1 , . . . , hZ
k

}
. (A16)

Each of GS and GC(S ) is a set of independent operators in P (Q); thus

|S| = 2|GS | = 2m, (A17)

|C(S )| = 2|GC(S )| = 2m+2k = 2|Q|+k . (A18)

Each of {g1···m}, {hX
1···k}, {hZ

1···k} is a set of mutually commuting operators in P (Q). In addition, the g’s commute with the hX ’s as
well as with the hZ ’s; and hX

i hZ
j = (−1)δi j hZ

j hX
i . The h operators can be thought of the so-called “representative logical X and Z

operators.”
Next, we construct a purification of the state ρQ(S ). Let R be a system of k qubits, and let S̃ ⊆ P (QR) be generated by the

following set G̃, obtained from GC(S ) by “extending” its elements to QR,

G̃ = {(g j )Q ⊗ 1R| j = 1 · · · m} ∪
{(

hX
j

)
Q ⊗

(
Xj

)
R

∣∣ j = 1 · · · k
}

∪
{
(hZ

j )Q ⊗ (Zj )R
∣∣ j = 1 · · · k

}
, (A19)
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where (Xj )R is the Pauli X operator on the jth qubit of R; and similarly for (Zj )R. It is clear that G̃ is a set of independent,
mutually commuting elements of P (QR), and thus defines a physical state on QR,

ρQR(S̃ ) = 2−|QR|
∑

g∈S̃

g. (A20)

Since |G̃| = |GC(S )| = |Q| + k = |QR|, we have |S̃| = 2|QR|, and from Eq. (A2)

(ln 2)−1S[ρQR(S̃ )] = 0. (A21)

Moreover, by construction,

ρQ(S̃ ) := TrR[ρQR(S̃ )] = 2−|QR|
∑

g∈S̃

TrR(g) = 2−|Q|
∑

g∈S
g = ρQ(S ). (A22)

Therefore, ρQR(S̃ ) is a purification of ρQ(S ) on QR, as claimed.
On the other hand, let us compute the reduced density matrix on R,

ρR(S̃ ) = TrQ[ρQR(S̃ )] = 2−|QR|
∑

g∈S̃

TrQ(g) = 2−|R|1R, (A23)

i.e., the maximally mixed state on R, as expected. Thus we have

(ln 2)−1S[ρR(S̃ )] = |R| = k. (A24)

It is easy to verify that for A ⊆ Q and A := Q − A,

projA[C(S )] = projA(S̃ ), (A25)

where projA on the left-hand side is understood as from P (Q) to P (A), and that on the right-hand side from P (QR) to P (A).
Thus, using Eq. (A9), but now for AR ⊆ QR, A = Q − A = QR − AR, and S̃ , we have

(ln 2)−1S[ρAR(S̃ )] = |AR| − log2 |S̃| + log2 |projA(S̃ )| = |AR| − log2 |S̃| + log2 |projA[C(S )]|. (A26)

Combining this equation with Eqs. (A9) and (A14) we have [compare Eq. (13)]

#A = log2 |LA|
= log2 |C(S )| − log2 |S| + log2 |projA(S )| − log2 |projA[C(S )]|

= log2 |C(S )| − log2 |S| + [(ln 2)−1S[ρA(S )] − |A| + log2 |S|] − [(ln 2)−1S[ρAR(S̃ )] − |AR| + log2 |S̃|]
= [log2 |C(S )| − log2 |S̃|] + [log2 |S| − log2 |S|] + [(ln 2)−1S[ρA(S )] − |A| − (ln 2)−1S[ρAR(S̃ )] + |AR|]
= (ln 2)−1S[ρA(S )] − (ln 2)−1S[ρAR(S̃ )] + |R|
= (ln 2)−1[S[ρA(S̃ )] − S[ρAR(S̃ )] + S[ρR(S̃ )]]

= (ln 2)−1IA,R. (A27)

Thus we have proven the result stated in Sec. II D by constructing a particular purification of ρQ(S ) using a particular generating
set of C(S ). But this choice is really arbitrary, and there is no surprise that it should work. In fact, any purification of ρQ(S ) on
QR with |R| = k has a generating set of the form in Eq. (A19), and thus gives a generating set of C(S ).

APPENDIX B: CAPILLARY-WAVE THEORY CALCULATIONS

We compute within capillary-wave theory the free energies of two types of domain walls: those with pinned endpoints, as in
Fig. 2(b); and those with free endpoints that wrap around the “waist” of the circuit, as in Fig. 3.

1. Domain walls with pinned endpoints

For the case in Fig. 2(b) we have [compare Eq. (20)]

FCW(A) (B1)

= − ln
∫

D[y(x)] exp
[
−βσ

∫ x2

x1

dx
√

1 + (∂xy)2
]
, (B2)

where the functional integral over y(x) is over the following class of “height functions,”

y : [x1, x2] → [−T, 0], x 0→ y(x), (B3)
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with the additional constraint that the endpoints are “pinned,” y(x1) = y(x2) = 0. To regularize the path integral, we will however
take y(x1) = y(x2) = ε to be a small constant, which can be understood as the lattice spacing.

We first expand the square root,
√

1 + (∂xy)2 = 1 + 1
2 (∂xy)2 + O[(∂xy)4], (B4)

and neglect quartic and higher order terms in (∂xy); these are irrelevant under a renormalization group transformation. Thus we
have a Gaussian theory

FCW(A) = − ln
∫

D[y(x)] exp
[
−βσ

∫ x2

x1

dx
(

1 + 1
2

(∂xy)2
)]

= βσ |A| − ln
∫

D[y(x)] exp
[
−βσ

2

∫ x2

x1

dx(∂xy)2
]
. (B5)

The second term in this equation is the summation over all admissible configurations of paths/height functions y(x), and can
be viewed as a “random walk” with “diffusion constant” (βσ )−1. It is thus regarded as the “thermal entropy” of transverse
fluctuations of the domain walls. The magnitude of the fluctuation scales with x12 identically to that of a random walker, and
can, for example, be quantified by the following quantity:

√〈
[y(x) − y(x1)]2〉 ∝

√
|A|
βσ

, (B6)

where x := (x1 + x2)/2.
In the following we will, for convenience, treat the path integral in Eq. (B5) as a quantum mechanical transition amplitude,

from which Eq. (B6) can also be deduced. However, we note that there are other ways to evaluate this integral, e.g., by solving
the diffusion equation subject to the constraint y(x) ∈ [−T, 0].

We now “quantize” the path integral, with the spatial direction x viewed as “imaginary time.” We then have an imaginary
time path integral of a free quantum particle with mass βσ , confined within a potential well y ∈ [−T, 0],

exp[−FCW(A) + βσ |A|] =
∫

y(x)∈[−T,0],y(x1 )=y(x2 )=ε

D[y(x)] exp
[
−βσ

2

∫ x2

x1

dx(∂xy)2
]

= 〈y(x2)| exp[−Ĥx12]|y(x1)〉, (B7)

where the Hamiltonian is that of a “particle in box” problem,

Ĥ =
p̂2

y

2M
+ V (ŷ), where V (y) =

{
0, −T ! y ! 0;
∞, otherwise. (B8)

The eigenstates and their corresponding energies are

φn(y) =〈y|n〉 =
√

2
T

sin
(

nπy
T

)
, y ∈ [−T, 0], En = 1

2βσ

(
nπ

T

)2

, n = 1, 2, 3, . . . (B9)

We expand Eq. (B7) in the eigenbasis,

exp [−FCW(A) + βσ |A|] =
∞∑

n=1

〈y(x2)|n〉〈n|y(x1)〉 exp [−Enx12] = 2
T

∞∑

n=1

sin2
(

nπε

T

)
exp

[
− 1

2βσ

(
nπ

√
x12

T

)2]
. (B10)

When π
√

x12/T 2 1, we may approximate the summation with the following integral over u = nπ
√

x12

T ,

exp [−FCW(A) + βσ |A|] ≈ 2
T

∫ ∞

π
√

x12/T

T du
π

√
x12

sin2
(

uε
√

x12

)
exp

(
− u2

2βσ

)

≈ 2
π

√
x12

∫ ∞

0
du sin2

(
uε

√
x12

)
exp

(
− u2

2βσ

)

≈ 2ε2

π (x12)3/2

∫ ∞

0
du u2 exp

(
− u2

2βσ

)

= 2ε2

π |A|3/2

∫ ∞

0
du u2 exp

(
− u2

2βσ

)

=
√

2
π

ε2(βσ )3/2|A|−3/2, (B11)

and thus [compare Eq. (21)]

FCW(A) = βσ |A| + 3
2 ln |A| + const., when

√
|A| 2 T . (B12)
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In arriving at this result, we made the following replacement in the integrand:

sin2
(

uε
√

x12

)
exp

(
− u2

2βσ

)
→

(
uε

√
x12

)2

exp
(

− u2

2βσ

)
; (B13)

this is valid when

ε
√

βσ
√

x12
2 1 ⇔ ε 2

√
|A|
βσ

. (B14)

Physically it means that the temperature cannot be too low, so that the transverse fluctuation of the domain wall is large compared
to the “lattice spacing” ε. This is consistent with the p = 0 limit of the circuit (now without measurements), corresponding to
the zero-temperature limit of capillary-wave theory, where the subleading logarithmic term is absent in the entanglement entropy
(see discussions near footnote 11).

2. Waist domain walls

As shown in Fig. 3, the waist domain wall for open b.c. has two independent free endpoints; whereas for periodic b.c. the two
endpoints must coincide, but otherwise free.

In the case of open b.c., let y1 = y(x1 = 0) and y2 = y(x2 = L). The analog to Eq. (B7) reads

exp [−FCW(Q) + βσ |Q|] =
∫

y(x)∈[−T,0]
D[y(x)] exp

[
−βσ

2

∫ L

0
dx(∂xy)2

]

=
∫ 0

−T
dy1

∫ 0

−T
dy2〈y2| exp[−ĤL]|y1〉

=
∫ 0

−T
dy1

∫ 0

−T
dy2

∞∑

n=1

〈y2|n〉〈n|y1〉 exp [−EnL]

= 2
T

∫ 0

−T
dy1

∫ 0

−T
dy2

∞∑

n=1

sin
(

nπy1

T

)
sin

(
nπy2

T

)
exp

[

− 1
2βσ

(
nπ

√
L

T

)2]

=
∑

n odd

8T
n2π2

exp

[

− 1
2βσ

(
nπ

√
L

T

)2]

≈ 1
2

∫ ∞

π
√

L/T

T du

π
√

L

8L
Tu2

exp
[
− u2

2βσ

]

= 4
√

L
π

∫ ∞

π
√

L/T
du u−2 exp

[
− u2

2βσ

]

= 4
√

L
π

{[
−u−1 exp

(
− u2

2βσ

)]∣∣∣∣∣

∞

π
√

L/T

−
∫ ∞

π
√

L/T
du (−u−1)

(
− u

βσ

)
exp

[
− u2

2βσ

]}

≈ 4
π2

T, (B15)

where we assumed T 1
√

L throughout.
For periodic b.c., letting y = y(x1 = 0) = y(x2 = L), we have

exp [−FCW(Q) + βσ |Q|] =
∫

y(x)∈[−T,0],y(0)=y(L)
D[y(x)] exp

[
−βσ

2

∫ L

0
dx(∂xy)2

]

=
∫ 0

−T
dy〈y| exp[−ĤL]|y〉

=
∫ 0

−T
dy

∞∑

n=1

〈y|n〉〈n|y〉 exp [−EnL]

=
∞∑

n=1

exp

[

− 1
2βσ

(
nπ

√
L

T

)2]
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≈
∫ ∞

π
√

L/T

T du

π
√

L
exp

[
− u2

2βσ

]

≈ T

π
√

L

∫ ∞

0
du exp

[
− u2

2βσ

]

=
√

βσ

2π

T√
L

, (B16)

where we again assumed T 1
√

L throughout.
Summarizing, we have [compare Eq. (22)]

FCW(Q) =
{
βσL − ln T + const., open b.c.
βσL − ln T√

L
+ const., periodic b.c. when T 1

√
L. (B17)

Similarly to domain walls with pinned endpoints, the subleading logarithmic term can again be understood as coming from
thermal entropies of transverse fluctuations. The ln

√
L difference is the extra endpoint entropy in open b.c.
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