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We propose entanglement negativity as a fine-grained probe of measurement-induced criticality. We
motivate this proposal in stabilizer states, where for two disjoint subregions, comparing their “mutual
negativity” and their mutual information leads to a precise distinction between bipartite and multipar-
tite entanglement. In a measurement-only stabilizer circuit that maps exactly to two-dimensional critical
percolation, we show that the mutual information and the mutual negativity are governed by boundary
conformal fields of different scaling dimensions at long distances. We then consider a class of “hybrid”
circuit models obtained by perturbing the measurement-only circuit with unitary gates of progressive lev-
els of complexity. While other critical exponents vary appreciably for different choices of unitary gate
ensembles at their respective critical points, the mutual negativity has scaling dimension 3 across remark-
ably many of the hybrid circuits, which is notably different from that in percolation. We contrast our results
with limiting cases where a geometrical minimal-cut picture is available.
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I. INTRODUCTION

Quantum dynamics involving unitary evolution inter-
spersed with measurements [1–3] has provided a wealth of
new phenomena being actively explored. When the mea-
surement rate is low, the dominant unitaries generically
lead to steady states, which have volume-law entangle-
ment but are nonetheless sharply distinct from random
Page states and exhibit novel instances of quantum error-
correcting codes [4–9]. When the measurement rate is
high, the steady state generically has area-law entangle-
ment but can harbor nontrivial long-range entanglement
[10–13].

Remarkably, the transition between the volume and
area-law phases exhibits conformal invariance and has
been actively studied with both numerical and analytic
approaches [1,14–19]. On one hand, Haar and Clifford
random circuit simulations provide abundant data on the
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scaling of entanglement and mutual information among
other quantities, revealing many new universality classes
of measurement-induced criticality (MIC) remaining to
be classified [11,12,20]. On the other hand, analytical
progress for the random Haar circuit requires taking the
limit of large local Hilbert-space dimension d, in which
the entanglement transition maps to critical percolation in
two dimensions [15]. The distinction between the percola-
tion universality class in the large d limit and the critical
data of (finite d) models accessed in numerics is still
somewhat unclear. These considerations motivate a finer
characterization of the latter.

In this work, we employ entanglement negativity as a
fruitful probe of measurement-induced criticality. Negativ-
ity was originally introduced as a measure of mixed-state
entanglement [21–24]: while von Neumann entanglement
entropy is sensitive to both quantum and classical corre-
lations in a bipartite mixed state, negativity detects only
quantum correlations. This property also makes it a useful
probe for distinguishing bipartite and multipartite quan-
tum correlations in a pure state: given a tripartite pure
state !ABC (see, for example, Fig. 1), the negativity of the
reduced density matrix ρAB—which we refer to as “mutual
negativity”—detects quantum correlations between A and
B. In contrast, mutual information IA,B is sensitive to both
quantum and “classical” correlation, which in this case
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FIG. 1. Illustration of the decomposition of a pure stabilizer
state |!Q=A∪B∪C⟩ in Eq. (11) for the tripartition (A, B, C). For
the ease of graphical presentation, we choose A, B, and C to be
contiguous segments; however, the state decomposition works
generally for an arbitrary tripartition, and we are mostly inter-
ested in the case when A and B are two contiguous, distant
segments separated by C = A ∪ B [see inset of Fig. 3(b)].

arises from tripartite correlation between A, B, and C.
For general states, it is difficult to classify multipartite
entanglement. However, as we review, for stabilizer states
there is a precisely defined separation between bipartite
and tripartite entanglement, and it is completely captured
by the difference between mutual negativity and mutual
information.

We thus use negativity as a finer diagnostic of bipartite
versus multipartite entanglement in finite d measurement-
induced critical points. We find that mutual negativity
decays as a power of the separation between A, B, which
differs from the stretched exponential decay of ground
states of (unitary) conformal field theories [25,26]. Fur-
thermore, there is a significant difference between the scal-
ing of mutual negativity and mutual information, which
contrasts sharply with that of holographic stabilizer tensor
network models and relatedly, large d hybrid circuits. We
illustrate these aspects and intuition in a measurement-only
model [10,11,13,20], in which we analytically derive the
scaling dimension for mutual negativity. For critical points
involving both measurements and unitaries, we find that
the mutual negativity appears to be remarkably “superuni-
versal”: in regimes where the mutual information scaling
dimension changes continuously, the negativity scaling
dimension is constant. Mutual negativity thus serves as
a valuable diagnostic unveiling more detailed entangle-
ment structures and potentially distinguishing different
measurement-driven critical universality classes, including
large versus small d.

The rest of this paper is organized as follows. In Sec. II
we introduce the definition of entanglement negativity,
with a focus on “mutual negativity” of stabilizer states. In
Sec. III where a measurement-only stabilizer circuit that
maps to critical percolation is considered, we show how
mutual information and mutual negativity can be mapped
to known geometrical observables on the boundary of per-
colation, and expose their different power-law decays at
long distances. In Sec. IV, we consider several “hybrid cir-
cuits,” which may be obtained from the measurement-only
circuit by introducing additional unitary gates. The uni-
taries are “relevant” and take the system to new critical

points, for which we numerically compute the scaling
dimension of the mutual negativity. In Sec. V, we dis-
cuss possible future directions that might be taken along
these lines, and mention a few questions that arise from
this work.

II. ENTANGLEMENT NEGATIVITY IN GENERAL
AND IN STABILIZER STATES

Given a state ρA∪B defined on A ∪ B, the logarithmic
entanglement negativity (or simply EN) of subsystem A is
defined as [24]

NA(ρA∪B) = ln∥ρ#A
A∪B∥1 = ln

∑

i

|λi|, (1)

where #A is the partial transpose operation of ρ with
respect to A, and λ are the eigenvalues of ρ#A

A∪B.
The EN is a quantity that is in general nontrivial to

compute, but great simplifications occur when ρA∪B is a
stabilizer state [27,28], whose density matrix takes the
form [29,30]

ρA∪B = 1
2|A∪B|

∑

g∈S
g. (2)

Here S is an Abelian subgroup of the Pauli group on A ∪ B,
known as the stabilizer group. With details in Appendix A,
we quote the result that

NA(ρA∪B) = 1
2

ln
∣∣∣∣

projA(S)

Z[projA(S)]

∣∣∣∣ . (3)

Here projA(S) is the group obtained from S by “restrict-
ing” Pauli strings in S on A, and is in general non-Abelian;
and Z[projA(S)] is the central subgroup of projA(S), i.e.,
the subgroup of elements that commutes with every ele-
ment of projA(S). This result is the basis of our numerical
computation of the EN in stabilizer circuits.

We focus on stabilizer states for the rest of this section,
and provide a detailed characterization of the EN. We
return to the general case in Sec. IV with our numerics
on hybrid circuits with Haar unitaries, and in Sec. V with
discussions.

A. Mutual negativity bounds (half) the mutual
information from below for stabilizer states

Thoughout much of this work, we take A and B to be
subsystems of a larger system (compare Fig. 1), and ρA∪B is
a reduced density matrix on A ∪ B. In this context, we find
it convenient to define the mutual negativity (MN) between
A, B as

NA,B := NA(ρA∪B) = NB(ρA∪B). (4)

We want to compare NA,B with IA,B, the von Neumann
mutual information (or simply MI) between A and B,
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defined as

IA,B := SA + SB − SA∪B, (5)

where ρA = TrBρA∪B, ρB = TrAρA∪B, and SA (and similarly
for SB and SA∪B) is the von Neumann entropy of ρA,

SA := SvN(ρA) = −Tr(ρA ln ρA). (6)

For a stabilizer state of the form in Eq. (2), the MI is related
to the stabilizer group as follows (see Appendix A):

1
2

IA,B = 1
2

ln
∣∣∣∣

projA(S)

Ker projB(S)

∣∣∣∣ . (7)

Comparing Eqs. (3), (4), (7), and noticing that

Ker projB(S) ⊆ Z[projA(S)], (8)

we have

NA,B ≤ 1
2

IA,B. (9)

This inequality holds for all stabilizer density matrices
ρA∪B; and when ρA∪B is a pure density matrix, the two sides
are equal. However, a general density matrix does not obey
this inequality; a counterexample can be found in Ref. [31].

A few more inequalities for NA,B can be obtained in a
similar way, which we collect in Appendix A.

B. Mutual negativity detects bipartite entanglement
The physical significance of MN and MI, as well as the

bound Eq. (9), is made clear by the following “structure
theorem” of pure stabilizer states.

We first introduce a purification of the stabilizer state
ρA∪B, that is, we embed A ∪ B into a larger system Q,
which supports a pure stabilizer state ρQ such that ρA∪B =
TrA∪BρQ. In general, ρA∪B is a mixed state. We may write

ρQ = |!Q⟩ ⟨!Q| , (10)

where |!Q⟩ is a stabilizer wave function. Let C :=
A ∪ B = Q − (A ∪ B). A stabilizer wave function |!Q⟩
always admits the following representation, with suitable
choices of UA, UB, and UC [32] (see Fig. 1),

|!Q⟩ = UAUBUC |GHZABC⟩⊗gABC

⊗ |EPRAB⟩⊗eAB ⊗ |EPRBC⟩⊗eBC ⊗ |EPRCA⟩⊗eCA

⊗ |↑A⟩⊗sA ⊗ |↑B⟩⊗sB ⊗ |↑C⟩⊗sC . (11)

Here UA, UB, UC are local Clifford unitaries supported on
A, B, and C, respectively; |↑A,B,C⟩ is a single-qubit “up”
state in A, B, or C that does not contribute entanglement;

|EPRAB⟩ denotes a two-qubit Einstein—Podolsky—Rosen
(EPR) pair with one qubit in A and another in B (and
similarly for |EPRBC⟩ and |EPRCA⟩); and |GHZABC⟩ is a
three-qubit Greenberger—Horne—Zeilinger (GHZ) state
with one qubit in each of A, B, and C.

Since local unitary gates do not affect entanglement
measures, we can read off the MN and the MI from the
decomposition into EPR and GHZ states on the rhs of
Eq. (11). We have

NA,B = eAB ln 2, (12)

1
2

IA,B =
(

eAB + 1
2

gABC

)
ln 2, (13)

which manifests the bound in Eq. (9). Here, the MN
receives contributions from the “bipartite” entanglement,
and filters out the GHZ “tripartite” entanglement; in con-
trast, the MI receives contributions from both. The differ-
ence between Eqs. (12) and (13) is precisely the amount of
tripartite entanglement for this tripartition (up to a constant
factor). Notice that in general the GHZ-type entanglement
cannot be captured by the “tripartite mutual information”
or the “topological entanglement entropy” [12,18,33].

Equation (12) also implies the equality between NA,B and
“distillable entanglement” [34] for stabilizer states, while
in general the negativity is an upper bound of the distillable
entanglement [24].

A related entanglement measure is the “entanglement
of purification” [35], which in general upper bounds
(1/2)IA,B, and for stabilizer states can be computed as
follows [36]:

(EP)A,B = (eAB + gABC) ln 2. (14)

Comparing (EP)A,B and (1/2)IA,B also leads to the sepa-
ration of irreducible tripartite entanglement, and can be
useful in other contexts [36,37].

III. A MEASUREMENT-ONLY STABILIZER
CIRCUIT MODEL THAT MAPS TO

PERCOLATION

In this section, we consider a stabilizer circuit model
in (1 + 1) space-time dimensions, composed of one-qubit
Xj and two-qubit Zj Zj +1 Pauli measurements [11,13]. It
belongs to a larger class of measurement-only circuits
introduced in Refs. [12,20]. Under a Jordan-Wigner trans-
formation, the dynamics is equivalently described by a
model of Majorana fermions undergoing measurements of
local fermion parity (with dimerized probabilities on even
and odd links), and the circuit dynamics is mapped to a
loop ensemble of noncrossing Majorana worldlines [10].
The critical point is in the universality class of critical per-
colation, and we map MI and MN to known boundary
correlation functions in order to illustrate the difference
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between bipartite and tripartite entanglement of the critical
wave functions.

As in previous models [1,2] that exhibit measurement-
induced criticality, we compute entanglement mea-
sures—von Neumann entanglement entropy, mutual infor-
mation, and logarithmic negativity—for each quantum
trajectory (as specified by the circuit geometry and mea-
surement outcomes), and average that quantity against the
ensemble of trajectories, weighted by their classical and
quantum (Born) probabilities. This applies to all models in
this paper. However, for the most part we consider stabi-
lizer circuits, for which the entanglement measures do not
depend on the Rényi indices or the measurement outcomes.
Thus, we need only to average over circuit geometries and
gates, and may well assume measurement outcomes all
take a fixed value (say +1) whenever nondeterministic, for
all Pauli strings measured.

A. The Majorana-loop representation and the
Jordan-Wigner transformation

For the sake of presentation, we start from the simpler
Majorana representation [see Fig. 2(a)], as introduced in
Ref. [10]. Consider an even number of Majorana fermions
in one dimension, γ1, . . . , γ2L, placed at sites 1, . . . , 2L,
and we take periodic boundary condition for the chain.
Initially, the system is prepared in a “product” state

|ψin⟩ = |n12⟩ ⊗ |n34⟩ ⊗ . . . ⊗ |n2L−1,2L⟩ , (15)

where nij = (1 + iγiγj )/2 = 0, 1 is the fermion number
operator. We say the initial state is defined by the “pairing
pattern” {(1, 2), (3, 4), . . . , (2L − 1, 2L)}, and the occupa-
tion of each pair is irrelevant for our purposes. As we see,
throughout the dynamics we are interested in, the state is
always defined by a pairing pattern of the Majoranas.

(a) (b) (c)

(d) (e) (f)

FIG. 2. (a) An instance of the measurement-only circuit (Sec. III) in the Majorana-loop representation while (b) is the same circuit
in the qubit representation. In both figures the red part represents the initial product state as defined in Eq. (15), and each rectangular
corresponds to an operation happening at that space-time location, which can either be an identity operator [see Eq. (17)] or a mea-
surement [see Eq. (18)]. The possible operations in two representations are one to one related by the Jordan-Wigner transformation,
as shown in (c). In (a), the output state can be determined by the pairing pattern of the endpoints on the upper boundary. By “fusing”
Majorana pairs on odd bonds (dashed lines), pairing arcs form several disjoint loops with disjoint supports, each of which corresponds
to a GHZ cluster in the output state in qubit representation. The Majorana loops are cluster boundaries in percolation, and we provide
several examples in (d)–(f). Each tick on the upper boundary represents a qubit. Two qubits on the boundary (highlighted A and B
here) belong to the same GHZ cluster if and only if they are connected to the same percolating cluster (colored regions) of the bulk. In
(d), A and B are disconnected, and 1

2 IA,B = NA,B = 0. In (e), A and B belong to the same GHZ cluster, which also touches the boundary
at other qubits, and 1

2 IA,B = 1
2 ln 2, NA,B = 0. In (f), A and B belong to the same GHZ cluster, which does not contain other boundary

qubits, and 1
2 IA,B = NA,B = ln 2.
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The dynamics is defined so that at the tth time step,
we consider all nearest-neighbor bonds depending on the
parity of t, and measure the fermion number operator
defined on this bond, at dimerized probability. Specifi-
cally, if t is odd, each of n12, n34, . . . , n2L−1,2L is measured
independently with probability q; and if t is even, each
of n23, n45, . . . , n2L−2,2L−1, n2L,1 is measured independently
with probability (1 − q).

This dynamics can be succinctly described in the Majo-
rana representation, in particular, using the pairing dia-
gram, for which we have the following update rule:

{. . . , (i, j ), (k, l), . . .} −−−−−−→
measure njk

{. . . , (j , k), (i, l), . . .}.

(16)

In Fig. 2(a), we introduce a graphical representation of
the evolution of the pairing pattern in the circuit spacetime.
At each space-time site, the two possible events and their
graphical notations are

identity operator I : k, (17)

measurement iγkγk+1 : k. (18)

They correspond to “rearrangement vertices” of the pair-
ing pattern for two Majoranas involved [see Fig. 2(c)].
With this mapping, the circuit dynamics now generates
an ensemble of completely packed noncrossing loops. We
have both closed loops (each with weight 1, as a result of
the stochastic process) in the bulk of the circuit, as well
as exactly L open loops [38] with endpoints at the upper
boundary of the circuit, where Majorana fermions at the
endpoints of the same arc are paired. This ensemble has the
same distribution as cluster boundaries in two-dimensional
percolation, and becomes critical at q = qc = 1/2. When
q is detuned from criticality, the loops will acquire a finite
typical size, and corresponds to the super- or subcritical
phase of percolation.

In the rest of this section, we focus on the critical point,
q = qc, where the critical loop ensemble is described by a
conformal field theory (CFT). Here, of particular interest
is the universal length distribution of the Majorana arcs. In
particular, the density of arcs of length ℓ follows an inverse
square law with a universal coefficient [10,13,39–41],

Parc(ℓ) ≈ Kℓ−2, where K =
√

3
π

≈ 0.55. (19)

We reproduce this result numerically in Fig. 3(a).
Under a Jordan-Wigner transformation, Majorana

fermions become Pauli string operators,

γ2j −1 =

⎛

⎝
∏

i<j

Xi

⎞

⎠ Zj , 1 ≤ j ≤ L, (20)

(a)

(b)

FIG. 3. Numerical simulation results for the measurement-
only circuit with periodic boundary condition. (a) The equilib-
rium length distributions of Majorana arcs and stabilizers. (b)
Mutual information and mutual negativity between two disjoint,
distant intervals A and B (separated by C = A ∪ B) as a function
of the cross ratio η = w12w34w−1

13 w−1
24 .

γ2j =

⎛

⎝
∏

i<j

Xi

⎞

⎠ Yj , 1 ≤ j ≤ L. (21)

We have qubits indexed by Q = {1, . . . , L}, and the mea-
sured fermion density operators on “odd” and “even”
bonds are, respectively,

iγ2j −1γ2j = Xj , (22)

iγ2j γ2j +1 = Zj Zj +1. (23)

The circuit model thus maps to a stabilizer circuit, with
interleaving layers of single-site X measurements, and
nearest-neighbor ZZ measurements [see Fig. 2(b)]. The ini-
tial state has stabilizers {X1, . . . , XL}; and at each time step
the stabilizers are just iγiγj for each pair (i, j ) of Majoranas
connected by an arc. There is thus a one-to-one corre-
spondence between the stabilizers and the Majorana arcs.
Moreover, the stabilizers are already in the “clipped gauge”
[14,42]. We have the “stabilizer length distribution” [see
Fig. 3(b)]

Pstab(ℓ) ≈ Parc(2ℓ− 1) + Parc(2ℓ) ≈ K
2
ℓ−2. (24)
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This immediately leads to the entanglement entropy of a
contiguous segment of qubits A ⊆ Q when 1 ≪ |A| ≪ L
[14,42],

SA := SvN(ρA) ≈
(

K
2

ln 2
)

ln |A|. (25)

Here we can idenfity the coefficient of the logarithmic
entanglement entropy as twice [43] the scaling dimension
of a boundary conformal field [15,19,44], which we call
hEE in Table I

hEE =
√

3
4π

ln 2 ≈ 0.096. (26)

In the following sections it will be useful to have a
qubit representation of the dynamical states. It can be
shown—most easily by following the stabilizer evolu-
tion—that the state is alway a direct product of GHZ states
[see Fig. 2(b)], each supported on a subset of qubits, where
the subsets form a partition (which changes over time) of
Q [13]. Two qubits belong to the same GHZ cluster if
and only if they belong to the same connected component
in percolation [see more configurations in Figs. 2(d)–2(f),
where connected components are colored]; a procedure of
finding connected components is detailed in Fig. 2. For the
example in Fig. 2(b) we have

|ψfin⟩ = |↑↑↑⟩123 + |↓↓↓⟩123√
2

⊗ |↑⟩4 + |↓⟩4√
2

⊗ |↑↑⟩56 + |↓↓⟩56√
2

. (27)

This state has the following stabilizers:

{X1X2X3, Z1Z2, Z2Z3} ∪ {X4} ∪ {X5X6, Z5Z6}. (28)

Unlike the Majoranas, which are supported on the inter-
val endpoints, the stabilizers can have nontrivial contents
between the endpoints, due to the “strings attached” in the
Jordan-Wigner transformation. Since it is a stabilizer state,
it follows the general pattern in Eq. (11) for any tripartition
of Q, with appropriately chosen UA, UB, and UC.

B. Mutual information between segments
We consider the mutual information between two

disjoint subregions A, B ⊂ Q, where A = [x1, x2], B =
[x3, x4], and x1 ≤ x2 ≤ x3 ≤ x4 [see inset of Fig. 3(b)].

We first consider the case when A and B both contain
only one qubit (x12 = x34 = 1), and when they are far apart
(x13 = x24 ≫ 1). From the state decomposition in Eq. (27),
we see that IA,B is nonzero if they belong to the same clus-
ter [i.e. when they are in the same GHZ state; see Figs. 2(e)
and 2(f)], but zero otherwise [see Fig. 2(d)]. More pre-
cisely, IA,B is ln 2 if the GHZ state has more than two qubits

[Fig. 2(e)], and 2 ln 2 if the GHZ state has exactly two
qubits [Fig. 2(f)]. As we see in Sec. III C, the latter con-
tribution is subdominant, and to leading order the MI will
be proportional to the probability that A and B belong to
the same cluster (the crossing probability),

IA = [x1, x2 = x1 + 1], B = [x3, x4 = x3 + 1]

≈ (ln 2) × P(A, B belong to the same GHZ cluster)

∝ η1/3, where η = w12w34

w13w24
→ 0. (29)

Here wij := sin[(π/L)xij ] is the chord distance, as appro-
priate for a system with periodic boundary condition. The
last line follows from Cardy’s formula for crossing prob-
abilities in critical percolation [40], and we are quoting
the leading-order behavior at long distances. To compare
the MI for different models, we adopt the following more
intuitive notation, which reads “the mutual information
exponent,” shown in Table I

hMI = 1/3. (30)

This result can also be obtained from knowledge of the
loop ensemble [13]: A and B belong to the same GHZ clus-
ter if and only if no Majorana arc has one endpoint inside
the region bounded by A and B and the other endpoint
outside.

In general, A and B can have more than one qubit,
and the MI becomes the expected number of disjoint con-
nected components spanning A and B, up to a factor ln 2.
It remains a function of the cross ratio, when the endpoints
of A and B are now varied arbitrarily,

IA = [x1, x2], B = [x3, x4]

= (ln 2)

∞∑

n=1

n · P(exactly n GHZ clusters span A and B)

= FI (η), (31)

where the cross ratio η can take its value in [0, 1]. This fact
reflects the conformal invariance of critical percolation.
When A ∪ B is almost the entire system Q (or equivalently,
when η → 1), we have

IA = [x1, x2], B = [x3, x4]

≈ 2SA

≈ 4hEE ln |A|
≈ −2hEE ln(1 − η), (32)

where we use 1 − η ∝ |A|−2 and SA ≈ SB, SA∪B ≈ SQ = 0
as η → 1.
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Summarizing,

1
2

IA = [x1, x2], B = [x3, x4]

= FI (η) ∼
{
ηhMI , η → 0
−hEE ln(1 − η), η → 1

. (33)

Our numerical results for IA,B with a varying η is shown in
Fig. 3(b).

C. Mutual negativity between segments
Again, we start by focusing on the simple case when

|A| = |B| = 1. From the state decomposition in Eq. (27),
we see that A and B has MN NA,B = ln 2 if these two qubits
constitute a two-qubit GHZ state [i.e. an EPR pair; see
Fig. 2(f)] but unentangled from everything else; but zero
otherwise—either when A and B are not in the same clus-
ter [Fig. 2(d)], or they are in a cluster with at least three
qubits [Fig. 2(e)]. Thus

NA = [x1, x2 = x1 + 1], B = [x3, x4 = x3 + 1]

= (ln 2) × P(A, B form an EPR pair). (34)

Since Majorana arcs represent cluster boundaries, qubits i
and j are in an EPR pair if and only if arcs (2i − 1, 2j ) and
(2i, 2j − 1) are both present in the pairing pattern in the
Majorana representation; in other words, there is one bit
of nonzero MN if and only there is a “double arc” con-
figuration, with two Majorana arcs nested together [see
Fig. 2(f)]. This probability may be related to a bound-
ary correlation function between stress-energy tensors on
A and on B in the underlying CFT (see Appendix B) and
therefore

NA = [x1, x2 = x1 + 1], B = [x3, x4 = x3 + 1]

∝ (x13)
−4

∝ η2, where η → 0. (35)

Here the scaling dimension 2 is that of the stress-energy
tensor, which we identify as the “mutual negativity expo-
nent” in Table I,

hMN = 2. (36)

For those familiar with Ref. [1], this is the same exponent
for the decay of “first-passage mutual information” at long
distances.

It is clear from this consideration that the inequality
Eq. (9) holds for this model (as it must); consequently
hMN ≥ hMI, and here they are not equal. This reflects dif-
ferent operator contents in the leading conformal blocks of
four-point functions IA,B and NA,B.

In the more general situation where A and B can con-
tain more than one qubit, NA,B remains a function of the
cross ratio η due to conformal invariance. In particular, it
is the expected number of EPR pairs spanning A and B.
Furthermore, it has the same asymptotics as (1/2)IA,B as
η → 1, since then ρA∪B is approaching a global pure state
for which equality in Eq. (9) is saturated. Summarizing,

NA = [x1, x2], B = [x3, x4]

= FN (η) ∼
{
ηhMN, η → 0
−hEE ln(1 − η), η → 1

. (37)

Our numerical results for NA,B with a varying η is shown
in Fig. 3(b).

D. Summary of this section and a few technical
comments

The purpose of this section is to analytically demon-
strate and illustrate how MN and MI can be different.
Along the lines of the structure theorem in Sec. II, but
focusing on the percolation circuit, we see explicitly [using
Eq. (27)] how MN “filters out” multipartite entanglement
and detects only direct EPR pairs while MI does not. This
difference is reflected in different geometrical conditions in
percolation that, respectively, contributes to MN and MI,
which leads to different hMI and hMN.

Note that while in the Majorana fermion representa-
tion there seems to be only bipartite entanglement (where
Majoranas are grouped up in pairs, and an arc can be drawn
within each pair), the Jordan-Wigner transformation itself
is nonlocal and introduces multipartite entanglement into
the qubit representation. As a consequence, the MI and MN
become slightly more complicated “loop observables.” In
the next section, we see how the same observables nat-
urally defined for qubits become rather unnatural and
difficult to treat in the loop model, upon introduction of
additional “crossing” vertices.

IV. RELEVANT PERTURBATIONS TO
PERCOLATION: HYBRID CIRCUIT MODELS

In this section we consider “hybrid” quantum circuit
models, composed of both unitary gates and measure-
ments. Again, we stay in 1 + 1 space-time dimensions,
where we have L qubits arranged on a regular array with
periodic boundary condition.

A. Completely packed Majorana-loop model with
crossings

The first hybrid circuit is again a stabilizer circuit, and
is a generalization of the measurement-only circuit in
Sec. III. Again, it is simpler to start from the Majorana
representation. In addition to the measurements of one-
qubit or two-qubit Paulis that represent “swapping” events,
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we now have “crossing” events [45,46] between neigh-
boring Majorana fermions [see Figs. 2(c) and 4], which
correspond to certain unitaries from the Clifford group.
Following how Majoranas transform under crossing, we
have

UM
1 : γ2j −1 ↔ γ2j ⇔JW US

1 : Zj ↔ Yj ; (38)

UM
2 : γ2j ↔ γ2j +1 ⇔JW US

2 : Yj Ij +1 ↔ Xj Zj +1. (39)

Moreover, in the second case, we have Majoranas
γ2j −1(= Zj Ij +1) and γ2j +2(= Xj Yj +1) left unchanged by
the unitary gate. These are sufficient for uniquely speci-
fying the Clifford unitaries U1,2. The loop ensemble will
then be generated by these “swapping” and “crossing” ver-
tices, as well as the “identity” vertex, with each closed loop
assigned weight 1.

(a)

(b)

(c)

FIG. 4. (a) A circuit instance of the completely packed
Majorana-loop model with crossings, and (b) its counterpart in
the qubit representation after the Jordan-Wigner transformation.

Furthermore, we arrange the dynamics such that the
Majorana fermion loop ensemble is exactly the completely
packed loop model with crossings (CPLC) from Ref. [46].
The stochastic process that generates the CPLC is precisely
defined as follows (compare Fig. 4). At the tth time step,
we consider all nearest-neighbor bonds depending on the
parity of t. Specifically, as follows.

(a) If t is odd, each of the pairs (γ1, γ2), (γ3, γ4), . . .,
(γ2L−1, γ2L) goes through the unitary “crossing” ver-
tex with probability p , or the “swapping” vertex
(a measurement of γ2j −1γ2j ) with probability (1 −
p)(1 − q), or the “identity” vertex with probability
(1 − p)q.

(b) If t is even, each of the pairs (γ2, γ3), (γ4, γ5), . . .,
(γ2L, γ1) goes through the unitary “crossing” vertex
with probability p , or the “swapping” vertex (a mea-
surement of γ2j γ2j +1) with probability (1 − p)q,
or the “identity” vertex with probability (1 − p)
(1 − q).

Notice the dimerization of the measurement probability on
even and odd links. This model reduces to the one in Fig. 2
when p = 0.

The phase diagram of the CPLC is known from
Ref. [46], and is reproduced in Fig. 5. Away from the
boundaries of the phase diagram, the CPLC is described
by the RPn−1 sigma model in the replica limit n → 1.
Here, the loop crossings are relevant perturbations to the
percolation critical point at p = 0, q = 1/2, which broad-
ens into a critical phase when p > 0 near q = 1/2—the

FIG. 5. The phase diagram for the completely packed Majo-
rana loop model with crossings (CPLC), which is composed
of a Goldstone phase, an topological insulating phase, and a
trivial insulating phase. Red dots mark the points that we stud-
ied numerically in Sec. IV A. The way we identity Majorana
pairs into qubits breaks the full lattice translation symmetry
as well as the equivalence of the two short loop phases. Par-
ticularly, the loop configurations correspond to points (p , q) =
(0, 0) and (p , q) = (0, 1) have the same bulk pattern, while the
(p , q) = (0, 1) one has an additional large macroscopic loop
(“edge mode”) on the its boundary.
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low-temperature “Goldstone phase” of the sigma model,
wherein the spin stiffness flows to infinity in the infrared.
As we increase the dimerization of q on the two sub-
lattices, the Goldstone phase goes into two “insulating”
phases where the loops have a finite characteristic size. The
phase transitions to the insulating phases are driven by the
proliferation of Z2 vortices of the RPn−1 spins.

Reference [46] provides much analytic understanding
and numerical results of the CPLC. Here, we slightly
extend the CPLC by interpreting the endpoints of open
loops as Majorana fermions, and compute MI and MN in
the qubit representation. As a result, we obtain new critical
exponents of the CPLC, both inside the Goldstone phase
and at the phase transitions.

1. The Goldstone phase
In the Goldstone phase, we first argue for an approx-

imate scale invariance of the system, that will be useful
in extracting critical exponents. To do so, we consider the
entanglement entropy of a contiguous segment of qubits.
The general comment on clipped gauge for stabilizer states
still holds, and so is the general relation between the arc
length distribution and the stabilizer length distribution in
Eq. (24),

Pstab(ℓ) ≈ Parc(2ℓ− 1) + Parc(2ℓ). (40)

From a direct simulation of the CPLC with system size L
and depth T ≫ L, we observe [see Fig. 6(a)]

Parc(ℓ) ≈ K(ℓ)ℓ−2, when ℓ ≪ L. (41)

Different from Eq. (19) where the coefficient is a con-
stant, here K(ℓ) fits to the following function of ℓ, which
diverges as ℓ → ∞ [Fig. 6(b)]:

K(ℓ) ≈ 1
2π2 ln ℓ+ const. (42)

In particular, πK(ℓ) is the “spanning number” of the loops
in an ℓ× ℓ cylinder [46], that is proportional to the flowing
spin stiffness of the sigma model. Similarly to Eq. (25), for
a subregion A we have [10]

SA ≈ ln 2
2

(
const. × ln |A| + 1

4π2 (ln |A|)2
)

. (43)

Because of the weak (logarithmic) scale dependence of
K(ℓ) and the rather small coefficient (2π2)−1 ≈ 0.05, for
system sizes of interest (see below) we may treat K(ℓ)
as a constant, whence the loop ensemble is approximately
scale invariant. We take a step further and assume the sys-
tem has approximate conformal invariance, and use data
collapse in extracting hMI, hMN, as we did before for the

(a)

(b)

FIG. 6. (a) The arc length distribution Parc for CPLC model in
the Goldstone phase (p , q) = (0.5, 0.5). Here we fit Parc in two
ways, and notice that K(ℓ)ℓ−2 [see Eqs. (41), (42)] works slightly
better than ℓ−2 for the system size L = 215 we have here. Their
difference is made clearer in (b), where we plot the L depen-
dence of K(ℓ = L/8) at different points in the phase diagram.
Within the Goldstone phase at (p , q) = (0.5, 0.5), K(ℓ = L/8)
depends logarithmically on L. While on the critical line (p , q) =
(0.5, 0.823), K(ℓ = L/8) is a universal constant proportional to
the critical spanning number [46] [see also Eq. (44)].

measurement-only case. This approach is justified by our
numerics, below.

Before presenting results on MI or MN in the CPLC,
we briefly explain our method of computing them. While
for many observables [including K(ℓ)] one can access sys-
tem sizes of O(106) with a simulation of the CPLC [46],
the MI and MN of the qubits, as it turns out, are not sim-
ple observables in the CPLC [47]. Given an instance of
the loop ensemble, the MI and MN of two regions on the
upper boundary cannot be naively computed in O(1) time,
and this fact limits system sizes that can be accessed. We
find it most convenient to work with the Jordan-Wigner
transformed stabilizer circuit in Fig. 4(b), which allows us
to access system sizes of O(103). This turns out to work
well for our purposes.

Focusing on the symmetry axis of the Goldstone phase,
p > 0, q = 1/2, and for L = 512, T/L ≫ 1, we choose
two subregions A = [x1, x2], B = [x3, x4], and compute
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(a)

(b)

(c)

FIG. 7. Mutual information and mutual negativity between
two disjoint segments A and B for several choices of (p , q) in
the Goldstone phase of the CPLC model.

(1/2)IA,B and NA,B against the cross ratio η for varying val-
ues of xj . The results are plotted in Fig. 7, where we see
the data points form a narrow band, suggesting that the
approximate conformal symmetry is at work. We can read
off the power laws when η → 0, which we identify as hMI
and hMN [compare Eqs. (33) and (37)] [48].

We find that hMN appears nearly constant for the points
we take, all taking the value approximately equal to 3.0.
This observation holds throughout the Goldstone phase
(see Appendix C for more results) when we detune from
the q = 1/2 line. This turns out to be also the case for two
other hybrid circuits considered in Sec. IV B. On the other
hand, hMI seems to vary continuously as we move within

the Goldstone phase. From the CPLC perspective, this con-
strast is perhaps related to the observation in Ref. [47], that
MN admits a relatively simple description in terms of the
loops in the η → 0 limit whereas MI does not.

2. Critical lines
Here we briefly mention numerical results for the two

critical lines separating the Goldstone phase from the two
insulating phases. The bulk transitions on these two critical
lines should be the same, as they are related by a lattice
translation of one Majorana fermion. Characterization of
the bulk transition is detailed in Ref. [46]. As a consistency
check, we find the values of hEE on the two critical lines
are both consistent with the critical spanning number, up
to a constant factor [see Fig. 6(b) and Fig. 8(a), see also in
Table I],

hEE = ln 2
2

K = ln 2
2π

ncrit
s ≈ 0.225. (44)

However, the boundary critical behavior—specifically
hMI and hMN—can be different, as we see from numer-
ical results in Figs. 8(b) and 8(c). The difference might
be due to the presence or absense of an “edge mode” in
the two insulating phases (see Fig. 5): in the insulating
phase where q > 1/2, there is a Majorana loop of infinite
size running against the upper boundary, hence making the
insulator “topological”; while the other insulating phase
where q < 1/2 is “ordinary,” with only short loops near the
boundary. Moreover, the edge mode appears to introduce
long-range, multipartite entanglement, as evidenced by the
smaller value of hMI but larger value of hMN at the transi-
tion on the “topological” side. In the qubit language, this
phase corresponds to more ZZ than X measurements, thus
generating GHZ clusters and more tripartite entanglement.

The last phenomenon is reminiscent of the metal to
spin Hall insulator transition [49], where the topology of
the insulating phase can affect critical properties on the
boundary but not in the bulk.

B. The random Clifford circuit and the random Haar
circuit at local Hilbert space dimension d = 2

We next consider more familiar models of hybrid cir-
cuits, consisting of single-qubit measurements and two-
qubit unitaries, which can be either random Clifford uni-
taries [14] or random Haar unitaries [1] (see Fig. 9). In
either case, the unitary gates form a brickwork structure,
and the measurements are performed at probability pmeas.
These circuits are apparently structurally similar to the pre-
vious Majorana CPLC in that they are all “hybrid,” and
as numerical results suggest (see below and discussions in
Sec. V), the similarity might be beyond merely structural.

In Fig. 10, we plot data collapses of MI and MN at
the critical points for the two models, respectively. In
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(a)

(b)

(c)

FIG. 8. Numerical results for CPLC model on critical lines.
(a) Entanglement entropy of a contiguous segment A = [x1, x2]
within the Goldstone phase and on two critical lines. (b) Mutual
information and mutual negativity between two disjoint seg-
ments A and B on the Goldstone-trivial critical line. (c) Mutual
information and mutual negativity between two disjoint seg-
ments A and B on the Goldstone-topological critical line.

the random Clifford circuit [Fig. 10(a)], a clear separation
between these two observables is seen, and we can fit for

hClifford
MI ≈ 2.0, hClifford

MN ≈ 3.0. (45)

The latter (hClifford
MN ) agrees with that of the Majorana CPLC

inside the Goldstone phase and on one of the critical lines.
The former (hClifford

MI ) is consistent with results discussed
extensively elsewhere [14,19].

For the random Haar circuit, the data for smaller sys-
tem sizes (L ≤ 22) gives us the following fitting results

FIG. 9. An instance of the hybrid random circuits. Two-site
unitary gates (blue box) are arranged in a brick-wall pattern. On
each vertical link a single-site measurement of X (green circle)
may be applied independently with probability pmeas. The uni-
taries are either sampled uniformly from the two-qubit Clifford
at d = 2 [results in Fig. 10(a)], or from the Haar measure on the
two-qubit unitary group SU(4) [results in Fig. 10(b)].

[Fig. 10(b)]:

hHaar
MI ≈ 2.0, hHaar

MN ≈ 3.1. (46)

The value of hHaar
MI is consistent with Refs. [1,14], whereas

the value of hHaar
MN is close in value to other hybrid circuits.

Another hybrid model related to the random Clifford
circuits and the Majorana CPLC circuit is the one consid-
ered in Ref. [11], where Clifford unitaries with a global

(a)

(b)

FIG. 10. Mutual information and mutual negativity between
two disjoint segments A and B for hybrid Clifford and Haar
random unitary circuits.
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“fermion parity” Z2 symmetry are introduced on top of
the measurement-only Majorana circuit (Sec. III). These
include the “Majorana crossing” unitaries of the CPLC,
but can also represent interactions between Majorana
fermions. The system is no longer a free fermion model,
and can have a volume-law phase (like the random Clifford
circuit) as well as a critical phase (like the CPLC). On the
other hand, due to the symmetry, these unitaries are more
constrained as compared to the random Clifford unitaries.
This will be an interesting middle ground for testing gen-
eralities and perculiarities of MIC in hybrid circuits. We
include related results for this model in Appendix D.

C. Mixed phase of the random clifford circuit
In this subsection we briefly deviate from the main focus

of this paper, and discuss the scaling of entanglement neg-
ativity in the “mixed” phase [5] of the random Clifford
circuit in Fig. 9. We take a maximally mixed initial state
for the circuit, and choose pmeas < 0.16 such that the state
ρQ retains a finite entropy density for a time exponential
in L = |Q|. Given that the negativity is best known as a
mixed-state entanglement measure, it is natural to explore
this.

We first compare NA,A=Q−A and (1/2)IA,A while varying
|A|, [50] and plot the results in Fig. 11(a). We find that
they differ by at most an O(1) amount for all values of
|A|. We further consider the “half-cut mutual negativity,”
defined as NA,A when |A| = L/2 [Fig. 11(b)], and find that
this quantity scales with the system size as Lγ where γ ≈
0.36. This is the same exponent for the bipartite mutual
information IA,A when |A| = L/2 [7].

Second, we introduce a reference system (“the environ-
ment”) R that purifies Q, and consider the mutual negativ-
ity NA,R, which for stabilizer states satisfies the following
equation:

NA,R = 1
2

IA,R −
(

1
2

IA,A − NA,A

)
≥ 0, (47)

where, in particular, (see Appendix A)

1
2

IA,R ≥ 1
2

IA,A − NA,A ≥ 0. (48)

The quantity IA,R vanishes—i.e. the subsystem A and the
reference R “decouple”—when |A| ≤ dcont, where dcont is
the “contiguous code distance” of the dynamical state [7]
that also diverges with L as Lγ . The decoupling condition
(IA,R = 0) clearly implies the vanishing of bipartite entan-
glement between A and R (NA,R = 0) [see Fig. 11(c)]; but
the latter condition itself may be used to define a distance
d̃cont, where

|A| ≤ d̃cont ⇔ NA,R = 0. (49)

(a)

(b)

(c)

FIG. 11. Numerical results for the random Clifford circuit in
its mixed phase. (a) Comparison between 1

2 IA,A and NA,A for a
varying A, where we find they differ by at most an O(1) constant.
(b) The halfcut mutual negativity of NA,A for |A| = |A| = L/2 as a
function of L, where we find NA,A ∝ L0.36. (c) The quantity d̃cont,
defined as |A| where NA,R = ϵ(ln 2) [compare Eq. (49)]. We see
that d̃cont is proportional to dcont [7].

In Fig. 11(d), we see that d̃cont ∝ Lγ , and therefore propor-
tional to dcont.

Overall, we have found that in the mixed phase of
the random Clifford circuit, the MN and MI—and quan-
tities that derive from these—behave qualitatively the
same. Colloquially, one may say for the (A, A, R) tripar-
tition, most of the entanglement is EPR-like. In this sense,
the mixed phase is similar to the “unitary limit” when
pmeas = 0 [51].
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Of course, it is more interesting when MN and MI are
qualitatively different. One such instance is the MIC; other
examples may be found by considering different triparti-
tions and/or different types of dynamics [52]. It would be
also interesting if negativity can be used to identify novel
phase transitions inside the mixed phase [11].

V. DISCUSSIONS

A. Summary and discussion
In Table I, we summarize the main critical exponents in

several circuit models—some in this work, some in previ-
ous works—whenever available. We see that entanglement
negativity is a useful diagnosis that provides additional
information of measurement-induced criticality. This table
is, however, in no sense exhaustive. For example, one can
examine MN in various boundary conditions [19] for mod-
els we considered in this paper, and will likely find new
critical exponents.

It is worth noting that rows (1)–(3) of Table I are all
critical percolation, but in different guises. In each of these
guises entanglement measures can correspond to differ-
ent observables and can have different exponents, such as
hEE and hMI. This fact makes it a tricky business to com-
pare exponents between different models, and to classify
measurement-induced transitions based on this informa-
tion alone. On the other hand, unlike hEE and hMI, the
mutual negativity exponent hMN seems to exhibit a some-
what simpler pattern: it is plausible that hMN equals 2 for
all three occurences of percolation [e.g., rows (1)–(3)],
while always taking a different value for models that are
not percolation [e.g., rows (4)–(6)], thereby making it a
“fingerprint” of percolation.

To make the last point, we need to obtain hMN in row
(3), i.e., the random Haar circuit at infinite Hilbert-space
dimension. It is described by a replica spin model [15,16],
where entanglement entropies are free-energy costs subject
to a boundary condition change. As it turns out, entan-
glement negativity also corresponds to a free-energy cost

subject to a different—but known—set of boundary con-
dition change, where the relevant domain-wall operators
might also be identified similarly as in Ref. [15]. Whether
this is a viable path of reasoning and gives the value of hMN
as expected will be tested in future works.

Going away from the infinite d limit of random Haar cir-
cuits [row (3)], we obtain row (6) where d is finite. The 1/d
corrections to row (3) are known to be “two-hull” pertur-
bations to the percolation fixed point [15], and are relevant
under renormalization group (RG) transformations. Mean-
while, rows (4a)–(4c) (Majorana CPLC) are obtained from
row (1) upon introduction of loop crossings, the latter also
known to be two-hull perturbations to the percolation fixed
point [44,46]. It is thus at least suggestive that generic crit-
ical point of random Haar circuits at finite values of d may
have something in common with the CPLC, particularly on
one of the critical lines where the values of hMN are close.

In any case, in the Goldstone phase of the CPLC, the
result hMN ≈ 3.0 is interesting and might be obtained by
calculating the corresponding loop observable of the MN,
perhaps making use of the CPLC sigma model, which
becomes Gaussian in the infrared. The “metal-insulator”
transition in the CPLC with different boundary critical
behaviors is also interesting in its own right. The bulk tran-
sition belongs to a class of nonunitary CFTs that remain
to be understood, and here topology on the edge appears
important.

Having mentioned that hybrid circuits in rows (4) and
(6) are both related to percolation by a relevant pertur-
bation, we comment that row (5)—the random Clifford
circuit at finite d—also becomes percolationlike in a cer-
tain limit. Upon taking d → ∞ for a fixed L, we observe
that entanglement entropies can be well approximated by
“minimal cuts” in percolation [as in row (2)], [53] and
more importantly, the value of hMN, being approximately
3.0 at small d, approaches hMI at large d, which remains
approximately 2.0 for all values of d. Notice that this is
also the value of hMI and hMN for row (2), the first-passage
percolation description of S0 in random Haar circuits.

TABLE I. Comparison of critical exponents in several circuit models. See the main text for discussions.

hEE hMI hMN

(1) Measurement-only Majorana circuit (Sec. III)
√

3
4π ln 2 ≈ 0.096 [10] 1

3 ≈ 0.333 [13] 2

(2) First-passage percolation (S0 in random Haar circuit)
√

3
2π ln 2 ≈ 0.191 [1] 2 [1] 2a

(3) Random Haar circuit as d → ∞ 1
6 ≈ 0.166 (for Sn≥1) [15] – –

(4a) Majorana CPLC: Goldstone phase (Sec. IV A 1) – varying 3.0
(4b) Majorana CPLC: transition to trivial insulator (Sec. IV A 2) ln 2

2π ncrit
s ≈ 0.225 [46] 1.1 2.5

(4c) Majorana CPLC: transition to topological insulator (Sec. IV A 2) ln 2
2π ncrit

s ≈ 0.225 [46] 0.65 3.0
(5) Random Clifford circuit at d = 2 (Sec. IV B) 0.53 [19] 2.0 [14,19] 3.0
(6) Random Haar circuit at d = 2 (Sec. IV B) – 2.0 (for S1) [1,14] 3.1

a The mutual negativity in FPP for two single sites here is defined as the probability of IA,B = 2 [1]. This exponent is the same as
row (1).
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It is therefore conceivable that by varying d in the Clifford
circuit, one observes a crossover [1] from the percolation
fixed point at infinite d [when L ≪ ξ∗(d)] to the generic
fixed point at finite d [19] [when L ≫ ξ∗(d)], where ξ∗(d)
is a length scale that diverges with d. Details of these
results will be reported elsewhere.

B. Outlook
We mention a few other possible directions of explo-

ration where the negativity might be useful.

(a) Recent work has shown negativity is particularly
good at detecting topological order at finite temper-
atures, in particular whether “quasiparticle poison-
ing” spoils the braiding statistics [54]. In the CPLC
phase diagram, we see another example where neg-
ativity is sensitive to topology, albeit in a very
different context. It should be interesting to explore
these cases in other topological phases of matter
and/or topological phase transitions.

(b) We remark on a subtle distinction between the
ensemble averaged mutual negativity considered
in this paper and the mutual negativity of a CFT
ground state. The former, as exemplified by analytic
results in Sec. III, corresponds to boundary correla-
tion functions of a CFT and decays as a power law
of the distance, where the power is usually given by
the leading primary field in the relevant OPE. The
latter, however, is a correlation function between
twist fields in the bulk, and depends on the full spec-
trum of the CFT [25,26]. In particular, the latter
has a striking essential singularity at long distances,
in sharp contrast with the simple power laws we
obtained here. Although for some critical nonunitary
dynamics [55] the analogy between the dynamical
state and a CFT ground state can be fruitful, this
is not the case here. Understanding their distinction
will be an interesting topic for future work.

(c) We briefly describe the “purification” of a max-
imally mixed initial state under the free-fermion
dynamics in Secs. III and IV A. Here, it is believed
[56,57]—even proven in some cases [8]—that a
“mixed phase” [5] cannot be sustained as long as
the measurement rate is finite. This has a simple
heuristic explanation in the loop picture. Here, the
initial state has 2L vertical Majorana strands, and
the entropy of the system at some later circuit time
is proportional to the number of “spanning” strands
that thread through the upper and lower boundary
[58]. A measurement decreases the entropy by one
unit if and only if it is performed on two “span-
ning” strands. Assuming that the spanning strands
are distributed evenly and independently across the
system, we have the following change in the entropy

density s := L−1SvN(ρQ) under a single measure-
ment:

,s ∝ −L−1s2. (50)

This agrees well with Ref. [8]. In particular, at a
finite aspect ratio of the circuit, Ref. [8] anticipates
that the entropy can be either finite or logarithmic in
L, as exemplified by the “percolation” and “CPLC”
circuit, respectively. The breakdown of this picture
due to fermion interactions will be interesting to
understand.

(d) It may be interesting to explore various entangle-
ment measures in holographic random tensor net-
works [33,59]. As pointed out in Refs. [44,60], an
entanglement phase transition can be obtained pre-
cisely by tuning the bond dimension of the tensor
network. Similar to the MIC in some hybrid circuits,
the phase transition is described by some novel
critical point caused by a relevant perturbation to
percolation [44]. It is interesting to construct a ran-
dom stabilizer tensor network and investigate the
bipartite and multipartite entanglement at the critical
point [61].

(e) Besides the CPLC model considered in this paper,
there are many other interesting loop models, which
can also exhibit unusual critical phenomena and
exotic phases [45,46,62–67]. These models have a
close connection with random spin models and dis-
ordered free fermion systems, which are not fully
understood due to strong randomness [62,68]. It is
possible to map these systems to some quantum
dynamics models, as in this paper, and then analyze
the boundary wave function from the perspective of
quantum information.

(f) Recently in Ref. [37], the non-negative quantity
(EP)A,B − (1/2)IA,B was proposed as a measure of
irreducible tripartite entanglement for ground states
of one-dimensional spin chains, where (EP)A,B is
the entanglement of purification between A and
B. Although for stabilizer states this quantity and
(1/2)IA,B − NA,B are both proportional to the “GHZ
content” gABC of the state [see Eqs. (11)–(14)],
the latter difference (while not necessarily positive)
might serve as an independent measure of tripar-
tite entanglement for general states, while also being
easier to compute.
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APPENDIX A: ENTANGLEMENT NEGATIVITY
OF STABILIZER STATES: MORE DETAILS

1. An algorithm for computing EN
Let A and B each be a set of qubits, S be an Abelian sub-

group of the Pauli group P(A ∪ B), and G(S) be a linearly
independent generating set (or simply a “basis”) of S . We
have

G(S) = {g1, . . . g|G(S)|}, (A1)

S = ⟨G(S)⟩ , dimS = |G(S)| = log2 |S| . (A2)

Here dimS is the dimension of S when viewed as a vector
space. We henceforth denote

m := dimS = |G(S)| = log2 |S| . (A3)

The subgroup S defines the following physical density
matrix on A ∪ B:

ρA∪B = 1
2|A∪B|

∑

g∈S
g. (A4)

Given the bipartition (A, B) of A ∪ B, we define the
following mappings:

(a) The “restriction” on A:

projA : P(A ∪ B) → P(A)

gA ⊗ gB :→ gA. (A5)

(b) The “partial transpose” on A:

#A : P(A ∪ B) → P(A ∪ B)

gA ⊗ gB :→ (gA)T ⊗ gB. (A6)

Here T denotes the matrix transposition, say in the
computational basis where

X =
(

0 +1
+1 0

)
, Y =

(
0 −i
+i 0

)
,

Z =
(

+1 0
0 −1

)
. (A7)

The partial transpose of ρA∪B is as follows:

ρ
#A
A∪B = 1

2|A∪B|

∑

g∈S
g#A . (A8)

Since X T = X , ZT = Z, while YT = −Y, the partial
transpose introduces a factor xA(g) := (−1)nY(g,A) on g ∈
P(A ∪ B), where nY(g, A) counts the number of Y factors
in projA(g),

g#A = (−1)nY(g,A)g = xA(g) · g. (A9)

Define a sign function SgnA(g, h) ∈ {−1, +1}, such that

projA(g) · projA(h) = SgnA(g, h) projA(h) · projA(g).
(A10)

A key observation is the following “cocycle condition,”
which can be explicitly verified:

xA(g)xA(h)xA(gh) = SgnA(g, h). (A11)

Let us also define the following m × m “commutator
matrix”:

(KA)ij =
{

0, if projA(gi) · projA(gj ) = +projA(gj ) · projA(gi)

1, if projA(gi) · projA(gj ) = −projA(gj ) · projA(gi)
(A12)
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for 1 ≤ i, j ≤ m, where the gi’s on the rhs are elements of
G(S). It is obvious that KA is symmetric, and has 0’s on its
diagonal.

For an arbitrary element g ∈ S , we have the following
representation:

g := gu =
m∏

j =1

guj
j , where u ∈ {0, 1}m = (F2)

m , gj ∈ G(S).

(A13)

We then have

SgnA(gu, gv) = (−1)⟨u,KAv⟩. (A14)

With these, we want to show that
(
ρ
#A
A∪B

)2
∝

(
ρ
#A
A∪B

)4
.

(
ρ
#A
A∪B

)2
= 1

22|A∪B|

∑

g,h∈S
g#Ah#A

= 1
22|A∪B|

∑

g,h∈S
xA(g)xA(h) · gh

= 1
22|A∪B|

∑

g,h∈S
xA(g)xA(gh) · h

= 1
22|A∪B|

∑

g,h∈S
SgnA(g, h)xA(h) · h

= 1
22|A∪B|

∑

u,v∈(F2)m

SgnA(gu, gv)xA(gv) · gv

= 1
22|A∪B|

∑

v∈(F2)m

⎛

⎝
∑

u∈(F2)m

(−1)⟨u,KAv⟩

⎞

⎠ xA(gv) · gv

= 1
22|A∪B|

∑

v∈(F2)m

2m · δ(KAv, 0) · xA(gv) · gv

= 1
22|A∪B|−m

∑

v∈Ker(KA)

xA(gv) · gv , (A15)

(
ρ
#A
A∪B

)4
=

⎡

⎣ 1
22|A∪B|−m

∑

v∈Ker(KA)

xA(gv) · gv

⎤

⎦
2

= 1
24|A∪B|−2m

∑

u,v∈Ker(KA)

xA(gu)xA(gv) · gugv

= 1
24|A∪B|−2m

∑

u,v∈Ker(KA)

(−1)⟨u,KA(v)⟩xA(gu+v)

· gu+v

= 1
24|A∪B|−2m |Ker(KA)|

∑

v∈Ker(KA)

xA(gv) · gv

= 1
22|A∪B|−m |Ker(KA)|

(
ρ
#A
A∪B

)2
. (A16)

Thus,

(ln 2)−1NA(ρA∪B)

= lim
n→ 1

2

log2 Tr
(
ρ
#A
A∪B

)2n

= lim
n→ 1

2

log2

{(
1

22|A∪B|−m |Ker(KA)|
)n−1

Tr
(
ρ
#A
A∪B

)2
}

= lim
n→ 1

2

log2

{(
1

22|A∪B|−m |Ker(KA)|
)n−1 1

2|A∪B|−m

}

= log2

(
2m

|Ker(KA)|

)1/2

= 1
2

[m − dim Ker(KA)]

= 1
2

dim Im(KA). (A17)

It is perhaps obvious that

NA(ρA∪B) = NB(ρA∪B), (A18)

since KA = KB. This is indeed consistent with

(
ρ
#A
A∪B

)T
= ρ

#A∪B
A∪B . (A19)

We henceforth adopt the notation in Eq. (4), and denote the
negativity NA(ρA∪B) = NB(ρA∪B) by NA,B.

2. EN from the stabilizer group
Define

mA := dim projA(S) ≤ m. (A20)

Without loss of generality, we assume

projA(S) =
〈
G[projA(S)]

〉

=
〈
{projA(g1), projA(g2), . . . , projA(gmA)}

〉
,

where gj ∈ G(S). (A21)

We have ∀mA < i ≤ m, ∃u ∈ (F2)
mA such that

projA(gi) =
mA∏

j =1

[
projA(gj )

]uj (A22)
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for which

(KA)ik =
mA∑

j =1

uj (KA)jk , (KA)ki =
mA∑

j =1

uj (KA)kj . (A23)

Using these, we can always perform a change of basis, and
assume without loss of generality that

∀mA < i ≤ m, projA(gi) = 1A. (A24)

We define the following mA × mA matrix:

(
K̃A

)
ij =

{
0, if projA(gi) · projA(gj ) = +projA(gj ) · projA(gi)

1, if projA(gi) · projA(gj ) = −projA(gj ) · projA(gi)
(A25)

for 1 ≤ i, j ≤ mA. It is the upperleft mA × mA submatrix
of KA. As shown above, rows mA + 1 . . . m and columns
mA + 1 . . . m of KA are linearly dependent on rows 1 . . . mA
and columns 1 . . . mA, and can be eliminated, without
changing the rank. We thus have

dim Im(KA) = dim Im(K̃A). (A26)

Next, consider the center subgroup of projA(S),

Z[projA(S)] := {g ∈ projA(S) | gh

= hg for all h ∈ projA(S)}. (A27)

Without loss of generality, let

Z[projA(S)] =
〈
{projA(g1), . . . , projA(gµA)}

〉
where

µA ≤ mA, gj ∈ G(S). (A28)

By definition, the first µA columns and rows of K̃A are zero,
thus do not contribute to dim Im(K̃A). By induction one can
show that K̃A can be brought into the following “canonical
form” with congruence transformations [70]:

K̃A =

⎛

⎝
0µA×µA 0µA×kA 0µA×kA
0kA×µA 0kA×kA 1kA×kA
0kA×µA 1kA×kA 0kA×kA

⎞

⎠ , (A29)

where kA is an integer, and dim Im(K̃A) = 2kA. We then
have

mA = µA + 2kA

⇔ dim projA(S) = dim Z[projA(S)] + dim Im(KA),
(A30)

and

NA,B = kA ln 2 = ln 2
2

dim Im(KA) = 1
2

ln
∣∣∣∣

projA(S)

Z[projA(S)]

∣∣∣∣ .

(A31)

3. Bounding the EN with entanglement entropies
It is now clear that in the canonical basis of Eq. (A30),

{projA(g1), . . . , projA(gµA)}
∪ {projA(gµA+1), . . . , projA(gµA+kA)} (A32)

is a linearly independent, mutually commuting set of Pauli
strings on A. Thus we have

µA + kA ≤ |A|, (A33)

thus

(ln 2)−1NA,B = kA = mA − (µA + kA) ≥ mA − |A|

= (ln 2)−1 (SB − SA∪B) . (A34)

Here, we recall that [30] SB = |B| − (m − mA), and SA∪B =
|A ∪ B| − m. On the other hand, consider the following set
of Pauli strings on B:

{projB(gmA+1), projB(gmA+2), . . . , projB(gm)}
∪ {projB(gµA+1), . . . , projB(gµA+kA)}. (A35)

Using Eq. (A24), one can see that it is a linearly indepen-
dent, mutually commuting set of Pauli strings on B [71].
Thus

m − mA + kA ≤ |B| = |A ∪ B| − |A|, (A36)

or equivalently

(ln 2)−1NA,B = kA ≤ mA + |A ∪ B| − |A| − m = (ln 2)−1SB.
(A37)

Therefore,

SB − SA∪B ≤ NA,B ≤ SB. (A38)
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Since NA,B = NB,A, we have

max{SB, SA} − SA∪B ≤ NA,B ≤ min{SB, SA}. (A39)

In the case of a global pure state, SA∪B = 0, and

NA,B = SB = SA. (A40)

This result can be also obtained from the general equality
between NA,B and S1/2(ρA) [i.e., the (1/2)th Rényi entropy
of ρA] when ρA∪B is pure, and the fact that stabilizer states
have flat entanglement spectra. The identification between
the negativity and entanglement entropy does not hold for
mixed states in general, for in general

SB ̸= SA. (A41)

4. Bounding the EN with mutual information
We compute the mutual information between A and B,

(ln 2)−1IA,B = SA + SB − SA∪B

= [|A| − dim Ker projB(S)]

+ [|B| − dim Ker projA(S)]

− (|A ∪ B| − m)

= dimS − dim Ker projB(S)

− dim Ker projA(S)

= dim projA(S) − dim Ker projB(S), (A42)

thus, using Ker projB(S) ⊆ Z[projA(S)],

(ln 2)−1 (
2NA,B

)
= dim projA(S) − dim Z[projA(S)]

≤ dim projA(S) − dim Ker projB(S) = (ln 2)−1IA,B,
(A43)

or

NA,B ≤ 1
2

IA,B. (A44)

We may upper bound their difference using the follow-
ing observation [7]:

Z[projA(S)]
Ker projB(S)

⊆ LA :=
{
g ∈ C(S) | projB(g) ∈ projB(S)

}

S ,

(A45)

so that

0 ≤ dim Z[projA(S)] − dim Ker projB(S)

≤ dimLA = (ln 2)−1IA,C, (A46)

where C is a purification of A ∪ B, and

IA,C = SA + SC − SA∪C = SA + SA∪B − SB. (A47)

Thus [72]

0 ≤ 1
2

IA,B − NA,B ≤ 1
2

IA,C. (A48)

In particular, it implies that (1/2)IA,B = NA,B when the
subsystem A decouples from the environment (IA,C = 0).

5. A motivating example of the structure theorem
We illustrate our reasoning so far with an example,

shown in Fig. 12. This simple example represents a gen-
eral pattern: with local Clifford unitaries on A and B, we
can always obtain the following “canonical” basis of the
stabilizer group:

G(S) = {2kA stabilizers contributing to kA

EPR pairs across A and B}
∪ {γ = µA − dim Ker projB(S) = µB

− dim Ker projA(S) “classical” stabilizers

across A and B}
∪ {dim Ker projB(S) local stabilizers on A}
∪ {dim Ker projA(S) local stabilizers on B}. (A49)

Here, the following can be stated.

(a) The first set of 2kA stabilizers are those contribut-
ing to the nonzero entries of KA (they pairwise
anticommute when restricted to A or B).

(b) The second set of γ “classical” stabilizers and
the third set of dim Ker projB(S) local stabilizers
together generate Z[projA(S)].

(c) The first three sets altogether generate projA(S).

The “classical” stabilizers take the form of ZiZj , with i ∈
A and j ∈ B, for which a stabilizer of the form XiXj —that
anticommutes with it when restricted to either A or B—is
absent. They introduce classical correlations, and con-
tribute to the mutual information but not the negativity,

1
2

IA,B =
(

kA + γ

2

)
ln 2, (A50)

NA,B = kA ln 2. (A51)

Upon the introduction of a “reference system” C that puri-
fies A ∪ B, each of the γ classical stabilizers extends to
a tripartite GHZ state on A, B, and C. With further con-
siderations along these lines, one can obtain the “structure
theorem” in Eq. (11), with the following identifications:

kA = kB → eAB, γ → gABC. (A52)

The structure theorem can be used to check the inequalities
derived above.
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FIG. 12. An example of a bipartite mixed stabilizer state. Here we have |A ∪ B| = 13 lattice sites, where |A| = 7 and |B| = 6. There
are m = 9 stabilizers in the basis of the stabilizer group, represented by each row of |A ∪ B| squares. Blue squares represent local Pauli
Z operators, red squares represent local Pauli X operators, and white or gray squares represent identity operators. Stabilizers in this
basis can be classified into four sets, as detailed in Eq. (A50). When a stabilizer is supported nontrivially only on A or B, they are called
“local,” and we can disregard their (trivial) content on the other subsystem (represented with gray color).

APPENDIX B: CALCULATING THE MUTUAL
NEGATIVITY IN THE LOOP REPRESENTATION

OF CRITICAL PERCOLATION

Here we compute hMN in the measurement-only circuit
in Sec. III, making use of the loop representation of per-
colation. For an introduction to these methods, see, for
example, Refs. [41,73].

We represent the loop ensemble at time T as a wave
function, which is a linear superposition of all possible
pairing patterns [compare Eq. (16)] weighted by their
probabilities

|.(T)⟩ =
∑

w

λw |w⟩ , λw > 0. (B1)

This wave function has the following “transfer matrix”
representation:

|.(T)⟩ =
(

eĤ
)T

|.(0)⟩ , (B2)

where

eĤ =

⎡

⎣
∏

j even

( +
2

)

j

⎤

⎦ ·

⎡

⎣
∏

j odd

( +
2

)

j

⎤

⎦ . (B3)

Thus, j can be viewed as a “Hamiltonian density”
at site j . Formally, j (1 ≤ j ≤ L) are generators of a
Temperley-Lieb algebra [73–75], and j is the identity

element of the algebra. We have, in particular,

(
j
)2 =

√
Q j , (B4)

j · j +1 · j = j , (B5)

j · j −1 · j = j , (B6)

j · i = i · j , if |j − i| ̸= 1. (B7)

This loop ensemble is that of the critical Q-states Potts
model, where each closed loop is assigned weight

√
Q due

to Eq. (B4). The Q = 1 case is critical percolation.
Next, we relate the desired “double arc” probability to

boundary correlation functions. Denote by ⟨·⟩ the expec-
tation value against the statistical ensemble encoded in
|.(T)⟩ when the inserted operator is applied at the final
time step. For example, we have

〈
i

〉
=

∑
w λw

(√
Q

) number of new loops generated upon applying i

∑
w λw

.

(B8)

Using Eq. (B8) and a bit of combinatorics, we can show
that

P(a double arc connects qubits i, j )

∝
∑

w: a double arc connects qubits i,j in |w⟩
λw

∝ d
d
√

Q

∣∣∣∣√
Q=1

[〈
i j

〉
−

〈
i

〉
−

〈
j

〉]
. (B9)
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The last two terms are constants and do not depend on xij ,
whereas the first is a correlation function between Ham-
litonian densities or stress-energy tensors thus decays as(
xij

)−4 in a two-dimensional conformal field theory. We
have the same power law for 1 ≤ Q ≤ 4, thus

P(a double arc connects qubits i, j ) ∝
(
xij

)−4 , (B10)

or equivalently,

N[xi,xi+1],[xj ,xj +1] ∝ ηhMN, where η ∝
(
xij

)−2 , hMN = 2.
(B11)

APPENDIX C: ADDITIONAL NUMERICAL
RESULTS IN THE CPLC GOLDSTONE PHASE

In Fig. 13 we show numerical results for MI and MN
at a few more points in the CPLC Goldstone phase. These
plots supplement those in Fig. 7. We see a varying hMI, but
a rather robust hMN.

Moreover, we notice that as the crossing probability
p approaches 1, the exponents become close to those in
random Clifford and Haar circuits (compare Fig. 10).

APPENDIX D: NUMERICAL RESULTS FOR
HYBRID CIRCUIT WITH Z2 SYMMETRY

In this Appendix we show numerical results for MI and
MN for two hybrid circuit models that preserves the Z2
global Ising symmetry: P =

∏
i Xi.

The first model is the stabilizer circuit introduced in
Ref. [11] [see Fig. 14(a)]. The circuit is composed of ran-
domly chosen two-site operations organized in a brick-wall
pattern in space time. Each operation can be either a Z2-
symmetric random Clifford unitary gate with probability p
or a measurement with probability 1 − p . Given that the
operation is a measurement, it can be done in either XI
or ZZ basis, with probabilities q and 1 − q, respectively.
The phase diagram of this model is shown in Fig. 14(b).
The diagram is similar to the CPLC’s (Fig. 5) as both con-
tain a topological and a trivial insulating phase, as well as
a critical phase. The difference is the Z2 circuit can have
a volume-law phase when p is large, because it contains
interacting fermion gates.

We compute MN and MI in this model at the volume-
to-trivial and volume-to-topological transition points, and
plot the results in Figs. 14(c) and 14(d). At the volume-to-
trivial transition we have hMI ≈ 0.7 and hMN ≈ 3.0, while
on the volume-to-topological one we have hMI ≈ 1.4 and
hMN ≈ 2.5. The values of hMI are consistent with previous
results [11].

The second model is similar to the hybrid random Haar
circuit in Sec. IV B, except the unitaries are now required
to be Z2 symmetric, but otherwise random, and measure-
ments are all in single-site X basis. We plot the results of
MI and MN at the critical point of this model in Fig. 14(e),
whose fitting gives hMI ≈ 0.9 and hMN ≈ 1.9. We note
that these exponents are smaller than their counterparts in
the Haar circuits without symmetry shown in Fig. 10(b),

(a) (b)

(c) (d)

FIG. 13. Numerical results for MI and MN at a few more points in the CPLC Goldstone phase; compare Figs. 5, 7.
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(a) (b)

(c)

(e)

(d)

FIG. 14. Graphical illustration, phase diagram, and numerical results for the Z2 hybrid circuit model.

indicating a stronger correlation with the presence of Z2
symmetry. However, due to extremely small system size
limits, the values of the exponent may not be taken for
a serious quantitative analysis, when comparing with the
data for Clifford circuits.

By using the Jordan-Wigner transformation, both mod-
els can be represented in the Majorana picture, composed
of Majorana parity measurements and four-Majorana uni-
tary gates. Here the Z2 symmetry guarantees that unitary
gates are spatially local in both qubit and Majorana picture.
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