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Monitored quantum dynamics reveal quantum state trajectories which exhibit a rich phenomenol-
ogy of entanglement structures, including a transition from a weakly-monitored volume law entan-
gled phase to a strongly-monitored area law phase. For one-dimensional hybrid circuits with both
random unitary dynamics and interspersed measurements, we combine analytic mappings to an
e↵ective statistical mechanics model with extensive numerical simulations on hybrid Cli↵ord cir-
cuits to demonstrate that the universal entanglement properties of the volume law phase can be
quantitatively described by a fluctuating entanglement domain wall that is equivalent to a “directed
polymer in a random environment” (DPRE). This relationship improves upon a qualitative “mean-
field” statistical mechanics of the volume-law-entangled phase [1, 2]. For the Cli↵ord circuit in
various geometries, we obtain agreement between the subleading entanglement entropies and error
correcting properties of the volume-law phase (which quantify its stability to projective measure-
ments) with predictions of the DPRE. We further demonstrate that depolarizing noise in the hybrid
dynamics near the final circuit time can drive a continuous phase transition to a non-error correcting
volume law phase that is not immune to the disentangling action of projective measurements. We
observe this transition in hybrid Cli↵ord dynamics, and obtain quantitative agreement with critical
exponents for a “pinning” phase transition of the DPRE in the presence of an attractive interface.
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I. INTRODUCTION

In monitored many-body quantum systems subject
to repeated measurements, the evolving quantum state
trajectories can exhibit an array of entanglement struc-
tures, which describe various phases and phase transi-
tions that are inaccessible when in equilibrium. Hybrid
quantum circuits with both unitary evolution and mea-
surements provide a rich playground to explore such phe-
nomena. Even in the absence of any spatial or inter-
nal symmetries, the steady state dynamics can describe
two phases, a weakly monitored volume law entangled
phase and a strongly monitored phase with short-range
entanglement [3–6]. Tuning between these two phases
reveals a novel non-equilibrium transition which in one-
dimensional hybrid circuits has an emergent conformal
symmetry [7–10]. Though extensively studied in one
dimension, this phase transition is not yet fully under-
stood. Nevertheless, the volume law phase itself exhibits
a richness of phenomenology, dynamically generating an
quantum error-correcting code (QECC) which can retain
quantum information for long times [1, 2, 11–13].
The entanglement entropy in the volume law phase of

a one-dimensional hybrid circuit can be related to the
free energy of entanglement domain walls (membranes in
higher dimension) in an emergent statistical mechanics
model [7, 8]. Similar descriptions of the entanglement
dynamics have been obtained in purely unitary quantum
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dynamics [14–16] and in random tensor networks [17, 18].
In addition to the intrinsic randomness in the measure-
ment outcomes, studies have focused on hybrid circuits
with randomness in the unitary gates and/or the mea-
surement times/locations. This necessitates employing a
replica method in analytic treatments and ensemble av-
eraging in numerical studies.

In this paper we revisit one-dimensional hybrid quan-
tum circuits, with a focus on the role of disorder and re-
latedly, the ensemble statistics of the entanglement struc-
ture within the volume law entangled phase. Using both
analytic arguments and extensive numerics of Cli↵ord
circuits we demonstrate that the universal entanglement
structures in the quantum trajectories can be quantita-
tively described by modeling the entanglement domain
wall as a “directed polymer in a random environment”
(DPRE) [19, 20]. The free energy of the DPRE is also re-
lated to the height of a stochastically-growing interface,
governed by the celebrated Kardar-Parisi-Zhang equa-
tion [20, 21], and a number of exact results for the critical
exponents are known. Additionally, a replicated descrip-
tion of the disorder-averaged free energy of the DPRE is
given by n attracting random walkers, in the replica limit
n ! 0 [22, 23].

A re-examination of the e↵ective statistical mechan-
ics model for the random Haar circuit reveals that in
the (volume-law-entangled) ordered phase, the entangle-
ment domain wall is also described by the statistical me-
chanics of n paths with an attractive interaction, in the
n ! 0 limit, thereby establishing a direct connection with
the DPRE. We note that a similar relationship between
the entanglement evolution in unitary dynamics and the
DPRE has also been identified [14, 16]. We provide
detailed numerical evidence on hybrid Cli↵ord circuits
which enable further direct comparisons with DPRE, for
both the “roughening” and “wandering” exponents, and
universal scaling functions.

In addition we relate the DPRE physics to error cor-
recting properties of the dynamical QECC, and find
quantitative agreements with Cli↵ord circuits for several
universal exponents. The DPRE picture refines a previ-
ous “mean field” description [1, 2] of the entanglement
domain walls, and highlights the role of quenched dis-
order in roughening the entanglement domain wall, and
relatedly, the importance of rare events.

A. Summary of Results

Our primary result, supported by analytic and exten-
sive numerics, is a conjecture that the von Neumann (vN)
entanglement entropies in the weakly-monitored phase
behaves like the free energy of a directed polymer in a
random environment (DPRE), for a large class of one-
dimensional hybrid quantum circuits with quenched dis-
order – due to randomness either in the choice of unitary
gates or in the locations of the projective measurements.

Consider a subregion A of qubits in the final state,

t

x

A

FIG. 1. The Hybrid Circuit Model and Minimal Cut:
In most of this paper we consider hybrid circuits as shown
in the figure. The unitary gates (gray blocks) are arranged
in a brickwork, and are sampled randomly and independently
from either the Haar unitaries or the Cli↵ord unitaries. The
measurements (white circles) are projective, performed inde-
pently at each location with probability p. Superimposed is a
“minimal cut” of the circuit geometry, that serves as a domain
wall separating the subregion A (orange) from A (blue) with
minimum energy (given by the number of unmeasured links
(red) that it crosses). Although the minimal cut provides a
heuristic picture of the “entanglement domain wall” for the
vN entropy, the two should be distinguished – see the main
text for more discussions.

living on the upper boundary of a very deep space-time
circuit (see Fig. 1). The corresponding DPRE partition
function ZA is defined in Eq. (7) as a path integral over
all “entanglement domain wall” configurations – living in
the half space (representing the circuit bulk) and directed
in the spatial direction of the circuit – that connects the
two endpoints of A and separates it from the complement
A. Our conjecture then takes the following form,

SA ⇡ FA := �T lnZA. (1)

Here SA := �Tr⇢A ln ⇢A is the vN entropy of the reduced
density matrix ⇢A for the random hybrid circuit in the
weakly monitored phase, and FA is the free energy of the
corresponding directed polymer. Both quantities are ran-
dom variables, and the “⇡” symbol indicates that they
approach the same probability distribution as the length
of A (denoted LA) approaches infinity. In this particular
geometry, the probability distribution of FA is known, as
summarized later in Eq. (8).
The boundary conditions of the DPRE can be un-

derstood by drawing an analogy with the minimal cut
through the circuit geometry (see the illustration super-
imposed on the circuit in Fig. 1). The minimal cut equals
the Hartley entanglement entropy when the unitaries are
generic [3, 14], and scales as the DPRE when the mea-
surements are at random locations [19]. However, while
the minimal cut provides a useful picture, the Hartley
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entropy and the vN entropy are quite di↵erent objects,
and a minimal cut picture is not available in all the mod-
els we consider (in particular those without randomness
in measurement locations).

We support our conjecture by a combination of nu-
merical evidence in random Cli↵ord circuits (Sec. II) and
analytic arguments for random Haar circuits (Sec. III).
We provide further analytic (Sec. IIIA) and numerical
(Appendix C) evidences that the conjecture also holds in
circuits where only one type of spacetime randomness –
in either the unitary gates or the measurement locations –
is retained [6]. These results suggest that the DPRE scal-
ing of the vN entropy is a generic outcome in the hybrid
dynamics, as long as any spacetime-dependent disorder
is present.

In Sec. II, we report quantitative agreements between
DPRE and the entanglement entropy in random Cli↵ord
circuits with both random unitaries and random mea-
surement locations, finding that

(i) The sample mean and variance of the von Neumann
entanglement entropy in the steady-state satisfy

hSAi = s0LA + bL�
A + · · · (2)

�SA ⌘
q

hS 2
Ai � hSAi

2
= cL�

A + · · · (3)

with the angular brackets denoting an average over
realizations of the monitored dynamics. Here � =
1/3 is the characteristic “roughness exponent” of
the DPRE.

(ii) Universal scaling forms for the entanglement dy-
namics, starting from a maximally-mixed initial
state quantitatively agree with those obtained for
the free energy of the DPRE confined to a finite
“strip”. From this we obtain the “wandering expo-
nent” ⇣ = 2/3.

(iii) The error correcting properties of the volume-law
phase is reflected in the rapidly decreasing mutual
information IB,A [1, 2], where B is a qudit inside

the subsystem A, and A is the complementary re-
gion. We argue that this is related to a “return
probability” of the DPRE at zero temperature. Nu-
merical simulations of the DPRE and of Cli↵ord
dynamics yield a consistent power-law decay,

hIB,Ai / L��
A (4)

where � ⇡ 1.25 and B is at the midpoint of A
embedded in an infinite system. For a geometry
where A meets the open boundary of a semi-infinite
system at qudit B, we find � ⇡ 1.00. We are un-
aware of analytic predictions for these exponents
�. For the DPRE, the mean of IB,A in Eq. (4) is
dominated by rare events, and the “typical” decay
of IB,A with LA is faster than any powerlaw (see
Eq. (23)).

A

FIG. 2. “Pinning” Phase Transition: Depolarizing chan-
nels close to the final time of the hybrid dynamics leads
to an e↵ective attractive potential for the entanglement do-
main wall. An Ising domain wall description of the entangle-
ment [1, 2], is shown above, which yields a quantitatively
inaccurate description of the transition. The numerically-
observed transition in Sec. IID is consistent with a “pinning”
phase transition of a DPRE to an attractive interface [22].

(iv) The “contiguous code distance” of the dynamically
generated quantum error correcting code, as com-
puted from a decoupling condition on the DPRE in
a finite cylinder, is found to diverge with the system
size as

dcont / L� , (5)

consistent with previous results in random Cli↵ord
circuits [2].

Furthermore, we observe a continuous phase transition
in Sec. IID between this volume-law-entangled phase,
and another non-error correcting volume-law phase which
is not robust to the disentangling action of projective
measurements. This entanglement phase transition is
driven by a tunable rate pdep of qudit depolarizing chan-
nels performed near the final time of the hybrid dynam-
ics, which evolve the system of interest into a mixed state.
The existence of this transition may be qualitatively un-
derstood in a description of the entanglement as the free
energy of an Ising domain wall in the ordered phase of
an Ising model in the half-plane [1, 2]. The Ising symme-
try exchanges a subsystem with its complement A $ A,
which leaves the entanglement entropy of a subsystem
A invariant if the entire system is in a pure state. As
a result, depolarizing channels near the final time of
the hybrid dynamics behave as a local, Ising symmetry-
breaking field near the edge of the Ising model as shown
in Fig. 2. The entanglement domain wall will become
“pinned” to this interface if su�ciently many depolar-
izing channels are performed. Equivalently, the coarse-
grained Ising domain wall in the bulk of the system may
be viewed as the imaginary-time trajectory of a quan-
tum particle restricted to the half-line which will become
exponentially bound to a su�ciently attractive potential
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well near the origin, corresponding to a pinning transi-
tion for the domain wall.

Although for concreteness, we have chosen to focus on
depolarizing channels, other types of “decoherence” that
take a pure state to a mixed state – thereby breaking the
Ising symmetry – seem to have a similar e↵ect [7], and
are expected to similarly induce a pinning transition.

While qualitatively correct, the Ising domain wall pic-
ture is inaccurate in describing the quantitative features
of this entanglement phase transition. At the clean de-
pinning transition [24] a random bulk potential for the
domain wall arising from quenched disorder in the dy-
namics is a relevant perturbation [22], and must be in-
cluded for an accurate understanding of the transition.
Remarkably, the true critical exponents for the DPRE in
the presence of an attractive interface are known [22, 25].
The presence of the transition, as well as the predicted
critical exponents, are both confirmed in our Cli↵ord nu-
merics.

In Sec. III, we present an analytic argument for the
relation between the DPRE free energy and the vN en-
tropy in one-dimensional, hybrid dynamics with Haar-
random unitary gates, and local projective measurements
(i) with rank greater than 1 and applied deterministi-
cally in space, or (ii) with rank 1 and applied randomly
in space. In particular, we argue that the vN entropy,
averaged over the measurement outcomes and the en-
semble of unitary gates, may be described – in the limit
of a large local Hilbert space dimension, q, and a su�-
ciently weak rate/strength of projective measurements –
by the statistical mechanics of n attracting paths in a
“replica limit” n ! 0. Likewise, the disorder-average of
the n-th replicated DPRE partition function also yields
the statistical mechanics of n mutually-attracting paths,
or equivalently, the quantum mechanics of n bosons in
one dimension, with an attractive interaction [23, 26]. In
a continuum description of a polymer in a Gaussian ran-
dom potentialwith variance �2 and at temperature T , the
energy functional for the n paths after disorder-averaging
is (neglecting n-dependent constants),

En =

Z
d⌧

2

4
nX

j=1

1

2

✓
dyj
d⌧

◆2

� �2

T

X

i<j

�(yi � yj)

3

5 . (6)

The DPRE free energy is recovered in a replica limit n !
0 of the partition function for the n paths. This further
supports our conjecture linking the vN entropy for the
volume law phase of random hybrid circuits to the free
energy of the DPRE.

Our emergent statistical mechanical description di↵ers
from those derived in studies of the entanglement phase
transition in monitored dynamics [7, 8], due to the para-
metrically smaller strength of measurements that we con-
sider, which places the system deep within the volume-
law-entangled phase. Furthermore, for dynamics with
projective measurements that are randomly-applied in
space, the emergent statistical mechanics of the entan-
glement describes paths with a strongly-attractive bare

AA

y

 LA� �

FIG. 3. Directed polymer in a finite strip, with heights
Y � L⇣

A (left) and Y ⌧ L⇣
A (right), respectively.

interaction. These paths are bound together, with para-
metrically smaller corrections in q describing processes
where the paths “split” and recombine. From Eq. (6),
we qualitatively interpret this to be the replicated de-
scription of the DPRE at low temperatures, where the
local Hilbert space dimension q is related to the inverse
temperature T of the DPRE. We note that temperature
is an irrelevant perturbation to the zero-temperature be-
havior of the DPRE (and it is this limit which governs
the Hartley entropy for these dynamics).
In Appendix A we provide technical details of our

derivation of the statistical mechanical model for the ran-
dom Haar circuit. In Appendix B we describe details of
the DPRE model that we use as a reference for the Clif-
ford numerics. Finally, in Appendix C we present numer-
ical results on Cli↵ord circuits with reduced randomness
as compared to those studied in Sec. II.

II. NUMERICAL STUDY IN RANDOM
CLIFFORD CIRCUITS

A. DPRE free energies in confined geometry
versus entanglement entropies

Before reporting on our numerics for the entanglement
entropy for a hybrid Cli↵ord circuit, we first discuss the
behavior of a DPRE when confined in a finite two dimen-
sional strip of height Y , whose endpoints are fixed on the
real axis, (xi, yi) = (0, 0) and (xf , yf ) = (LA, 0) (see
Fig. 1).1 For a given random potential V (x, y) in the
strip, the (quenched) partition function of the directed
polymer is given by

ZA(Y )

=

Z y(x)2[0,Y ]

y(0)=y(LA)=0
Dy(x)e�

1
T

R LA
0 dx[1+ 1

2 (@xy)
2�V (x,y)]. (7)

1 For this reason, the directed polymer in Eq. (7) is of the so-called
“point-to-point” (pp) type. This type will be our main focus in
this section, where we always drop the superscript “pp”. Point-
to-line (pl) polymers, with yi fixed but yf free, are discussed in
Sec. II B 2.
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(a)

(b)

FIG. 4. (a) The mean subleading entanglement entropy
hSsub

A (Y )i (see Eq. (9)) in the Cli↵ord circuit for various val-
ues of LA and Y , collapsed against the scaling function �(⌘)
(defined in Eq. (16)). (b) The scaling function �(⌘) extracted
from F sub

A (Y ) in a numerical simulation of directed polymers,
rescaled and plotted on top of the same scaling function ex-
tracted from panel (a). In both panels, the insets are the same
data, but plotted on a log-log scale. The directed polymers
have length LA  32768 and live at zero temperature (see
Eq. (7)). For the Cli↵ord circuit data we take the best fits to
the exponents, � = 0.34, ⇣ = 0.63; whereas for the directed
polymers we find the best fits are � = 0.37, ⇣ = 0.66.

Here we choose V (x, y) to be the standard Gaussian
white noise, hV (x, y)V (x0, y0)i = �2�(x� x0)�(y� y0). In
the zero temperature limit T ! 0, this quantity is then
given by the optimal directed path with lowest energy, i.e.
the directed minimal cut [19]. Universal aspects of the
DPRE are the same at zero and finite temperatures [27].

The DPRE has a wandering exponent ⇣ = 2/3, that is,
the height of the directed polymer scales as (LA)⇣ . Nat-
urally, there are two regimes, when the width of the strip
is large or small compared to the height of the polymer
(see Fig. 3).

When Y � (LA)⇣ , the strip becomes the upper-
half plane, and the quenched free energy FA(Y ) :=
�T lnZA(Y ) is a known random variable [28, 29]

FA(Y ) = s0LA � s1(LA)
�⇠LA , (8)

where s0,1 are non-universal positive constants, � =
1/3 is the “roughness exponent”, and ⇠LA at large LA

(a)

(b)

FIG. 5. (a) The sample-to-sample deviation of entanglement
entropy �SA(Y ) (see Eq. (11)) in the Cli↵ord circuit for vari-
ous values of LA and Y , collapsed against the scaling function
 (⌘) (defined in Eq. (18)). (b) The scaling function  (⌘) ex-
tracted from �FA(Y ) in a numerical simulation of directed
polymers, rescaled and plotted on top of the same scaling
function extracted from panel (a). The directed polymers
have length LA  32768 and live at zero temperature (see
Eq. (7)). For both the Cli↵ord circuit and the directed poly-
mers we take the best fits � = 0.33, ⇣ = 0.66.

obeys the GSE Tracy-Widom distribution F4(s), so that2

Prob(⇠ > s) = F4(s). This distribution has a negative
mean, so the average coe�cient of (LA)� is positive. The
exponent � is exposed if we consider either the “sublead-
ing free energy”,

F sub
A (Y ) := F[0,LA/2](Y ) + F[LA/2,L](Y )� FA(Y ) (9)

whose mean is

hF sub
A (Y )i / (LA)

� ; (10)

or the standard deviation of FA(Y ),

�FA(Y ) :=
q
hF 2

A(Y )i � hFA(Y )i2 / (LA)
� . (11)

When Y ⌧ (LA)⇣ , the polymer cannot fluctuate
transversally, and we can simply assume that the free

2 In contrast, the sub-leading correction to the DPRE free energy
on the full real line is distributed according to the Tracy-Widom
distribution for the Gaussian unitary ensemble (GUE) [30].



6

energy is a sum of LA independent random variables,
hence

FA(Y ) = s0LA + (LA)
�RW⇠0. (12)

Here, from the central limit theorem, �RW = 1/2 and
⇠0 is a Gaussian random variable with zero mean and a
finite standard deviation. Thus

hF sub
A (Y )i / (LA)

0, (13)

�FA(Y ) / (LA)
�RW . (14)

These limits suggest the following scaling forms of
hF sub

A (Y )i and �FA(Y ),

hF sub
A (Y )i = (LA)

� · �[Y · (LA)
�⇣ ], (15)

�(⌘) =

(
⌘�/⇣ , ⌘ ! 0

⌘0, ⌘ ! 1
; (16)

and

�FA(Y ) = (LA)
� · [Y · (LA)

�⇣ ], (17)

 (⌘) =

(
⌘(���RW)/⇣ , ⌘ ! 0

⌘0, ⌘ ! 1
. (18)

Here, we have �/⇣ = 1/2, (� � �RW)/⇣ = �1/4.
We now turn to the computation of entanglement en-

tropies, SA, in the random Cli↵ord circuit, focussing
on the weakly-monitored phase (choosing p = 0.08 ⇡
pc/2 [6]) (see Fig. 1). Our conjecture is that the random
variable SA(Y ) obeys the same distribution as FA(Y ) at
large LA and Y . In the following, we denote this with
the shorthand notation SA(Y ) ⇡ FA(Y ), as in Eq. (1). In
particular, we identify FA(Y ) with the entanglement en-
tropy SA(Y ) of a subregion A = [0, LA] in the final state
of a random circuit with depth Y , with a maximally-
mixed initial state [12]. The choice of this initial state is
important, so that the directed polymer is confined be-
tween the two temporal boundaries [2, 8, 10]. We always
take LA ⌧ L, where L is the size of the entire system.

In Fig. 4(a), we plot the data collapse of hSsub
A (Y )i ac-

cording to Eq. (16), for various values of Y and LA. From
this collapse we can fit for the exponents � ⇡ 0.34 and
⇣ ⇡ 0.63; both are consistent with the DPRE. Further-
more, in Fig. 4(b), we plot the scaling function �(⌘) as
extracted from hSsub

A (Y )i in the Cli↵ord circuit and from
hF sub

A (Y )i in a direct numerical simulation of the DPRE
(see Appendix B for details), and find that they agree
with each other after an overall rescaling of the axes. We
find �(⌘) / ⌘0.55 as ⌘ ! 0, consistent with �/⇣ = 1/2.

In Fig. 5(a, b), we provide collapses for �SA(Y ) and
�FA(Y ) according to Eq. (18). Here, the fits for � and ⇣
are close to 1/3 and 2/3, respectively, with high precision.
The behavior of the scaling function  (⌘) at small ⌘ also
agrees well with ⌘(���RW)/⇣ ; see Eq. (18).

We also compute the normalized skewness of the prob-
ability distribution of �SA(Y ) when Y � (LA)⇣ , and

B
A A

(a) Fpp
[0, LA/2] + Fpp

[LA/2, LA] Fpp
B + Fpp

A

B

(b)

(c)

FIG. 6. (a) Two configurations of DPRE that contributes
to SA�B in Eq. (19), where A � B consists of two disjoint
segments [0, LA/2] and [LA/2, LA], highlighted in blue. The
calculation follows from a general prescription in Refs. [7, 8],
where the directed polymers act as “domain walls” that sep-
arate boundary regions of di↵erent colors. (b) The mean val-
ues of several observables for the DPRE at zero temperature,
which can all be related to hIB,Ai for the geometry in (a).

They show the same powerlaw decay L��
A , where � ⇡ 1.25.

(c) The mean mutual information hIB,Ai computed from the
random Cli↵ord circuit in the volume law phase, for the ge-
ometry in (a). Here we take LB = 2, and LA  480.

find a small constant µ̃3 ⇡ 0.12.3 This is in the vicinity
of µ̃GSE

3 ⇡ 0.1655 [31], where the di↵erence might be due
to finite size e↵ects or the lack of su�cient samples.

3 A histogram for SA can be found in Ref. [6], where it was erro-
neously concluded that SA obeys a Gaussian distribution. The
two distributions have apparently similar density functions, and
subtle but important di↵erences in their tails.



7

B. Mean entropy drop and mutual information

1. Point-to-point (pp) polymers

Consider a small but extensive subsystem A of a pure
steady state, when Y � (LA)⇣ . The quantity SA is again
described by the DPRE with fixed endpoints, in Eq. (7).
Here we discuss the decrease of SA when its central qubit
(denoted B, at coordinate (LA/2, 0)) is measured projec-
tively [1]. This decrease, denoted �SA, is proportional to
the mutual information between B and A, namely IB,A,
at large LA [1, 2]. In particular, IB,A equals the number
of logical errors that can occur on B for the dynamical
code on A [2]. Thus, the vanishing of IB,A with LA is
directly related to the error correcting properties of the
volume-law phase.

We obtain IB,A from the DPRE description, as follows.
Identifying SA and FA, IB,A is related to the following
combination of free energies of directed polymers

IB,A := SB + SA � SB[A

= SB + SA � SA�B

⇡ FB + FA

+ T ln
h
e�

1
T (F[0,LA/2]+F[LA/2,LA]) + e�

1
T (FB+FA)

i

= T ln
h
1 + e

1
T (FB�F sub

A )
i
. (19)

Here, in calculating SA�B , it is important to sum two
partition functions [2], corresponding to two possible con-
figurations of directed polymers that might contribute;
see Fig. 6(a). In the limit T ! 0, the equation simplifies
to

IB,A ⇡ max{0, FB � F sub
A }. (20)

That is, IB,A = 0 if the configuration in the right panel
of Fig. 6(a) has a lower energy, corresponding to a de-
coupling condition [2]; and IB,A = FB � F sub

A otherwise.
At zero temperature another observable of the directed

polymer (now dominated by a single optimal path yop(x),
see Appendix B) can be related to �FA or �SA, namely
whether the directed polymer visits the measurement po-
sition,

�FA / �yop(LA/2),0. (21)

The mean of this object is thus a “return probability” of
the DPRE.

In Fig. 6(b), we calculate hmax{0, FB � F sub
A }i and

h�yop(LA/2),0i for the zero-temperature DPRE, and com-
pare them to h|�FA|i when the local potential at B =
(LA/2, 0) is lowered to 0 (see Appendix B for details). We
find that these three quantities are indeed proportional
to each other, so are equally good candidate proxies for
�SA. They all give a consistent exponent for the power-
law decay

hIB,Ai / h|�FA|i / L��
A ,� ⇡ 1.25. (22)

The value of � is di↵erent from that of Ising domain
walls, 3/2 [1, 2]. Currently we do not have an analytic
understanding of this exponent.
We thus expect the same powerlaw decay for hIB,Ai /

h�SAi in the volume law phase of the random Cli↵ord
circuit. We confirm this numerically in Fig. 6(c) for two
points in the volume-law phase.
A few comments are in order.
(i) It is instructive to compare with the “typical” mu-

tual information, as inferred from the mean of F sub
A at

finite T [2]

Ityp
B,A

:= T ln
h
1 + e

1
T hFB�F sub

A i
i
/ e�

1
T (LA)� . (23)

Thus, in a typical realization of the polymer / random cir-
cuit, �SA is exponentially small in (LA)� for most mea-
surements. On the other hand, the mean value h�SAi is
dominated by rare measurements – occuring with proba-
bility / L��

A – that decrease SA by O(1). In Cli↵ord
circuits where IB,A can only take integer values, this
means that in most cases IB,A = 0, and the probability

of IB,A > 0 decays as / L��
A . To observe the powerlaws

in Fig. 6(b,c) numerically, 105 samples are usually taken.
(ii) We note that the strong subadditivity (SSA) of the

vN entropy has an interesting practical consequence here.
For subregions A ✓ A0, the SSA implies that IB,A �
IB,A0 , so that IB,A is a monotonically decreasing function
of LA for each and every run of the circuit. Thus, when
the sample size is small, the mean of IB,A will appear to

decay faster than the powerlaw L��
A . This is consistent

with our comparison of “typical” and “mean” behavior,
above. For this reason, in obtaining Fig. 6(c) we chose
di↵erent samples for di↵erent values of LA, in order to
avoid overestimating �.
(iii) While in our numerics the DPRE at zero tempera-

ture (see Appendix B) is indeed constrained by the SSA,
it is less clear if SSA also holds for DPRE at finite tem-
peratures. In this context, it remains to be understood
which aspects of the quantum entanglement are conse-
quences of the universal properties of the DPRE, and
which are dependent on the specific DPRE model.

2. Point-to-line (pl) polymers

Here we consider point-to-line (pl) directed polymers
with only one endpoint fixed,

Zpl
A (Y )

=

Z y(LA)2[0,Y ]

y(0)=0
Dy(x)e�

1
T

R LA
0 dx[1+ 1

2 (@xy)
2�V (x,y)]. (24)

In parallel to Sec. II B, we show an equivalence between a
“point-to-line DPRE mutual information” and its coun-
terpart in the random Cli↵ord circuit.
We consider the geometry in Fig. 7(a), in which a di-

rected polymer starting from a point on the real axis can
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B B
A A

Fpp
A Fpl

A + Fpl
B

(a)

(b)

(c)

FIG. 7. (a) Two configurations of DPRE that contributes to
SA�B in Eq. (25). The left plot is a point-to-point polymer
that separates A�B from B[A (as required by the assigned
boundary conditions), and the right plot has two point-to-line
polymers for the same boundary condition. (b) The mean val-
ues of several observables for the DPRE at zero temperature,
which can all be related to hIB,Ai for the geometry in (a).
This confirms Eq. (27). (c) The mean mutual information
hIB,Ai computed from the random Cli↵ord circuit, for the
geometry in (a). Here we take LB = 2, and LA  480.

terminate anywhere on the vertical boundary to the right
(colored black, to denote a “free” boundary condition).
We take A = [0, LA] to be a segment on the real axis next
to the right boundary, and B the rightmost site of A. The
DPRE mutual information IB,A is (compare Eq. (19))

IB,A := SB + SA � SB[A

= SB + SA � SA�B

⇡ F pl
B + F pl

A + T ln
h
e�

1
T Fpp

A + e�
1
T (Fpl

B +Fpl
A )
i

= T ln
h
1 + e

1
T (F

pl
B +Fpl

A �Fpp
A )
i
, (25)

and as T ! 0, we have

IB,A ⇡ max{0, F pl
B + F pl

A � F pp
A }. (26)

Our reasoning in Sec. II B suggests that three DPRE
observables – namely hmax{0, F pl

B + F pl
A � F pp

A }i,
h�yop(LA),0i, and h|�F pl

A |i when the local potential at
B = (LA, 0) is lowered – should all exhibit the same
powerlaw in LA, whence all three can be regarded as the
mean DPRE mutual information. We confirm this nu-
merically for the point-to-line directed polymer at zero
temperature in Fig. 7(b), where we find

hIB,Ai / L��pl

A ,�pl ⇡ 1.00. (27)

Interestingly, this is also the exponent one gets from
capillary-wave theory [2], if quenched disorder is com-
pletely ignored.
In Fig. 7(c), we compute hIB,Ai in the volume law

phase of the random Cli↵ord circuit with open bound-
ary condition, where A contains the rightmost LA qubits
of the system (which is itself in a pure state), and B con-
tains the rightmost 2 qubits. We find good agreement
with Eq. (27). Here, it is important to take open bound-
ary conditions, and focus on the regime Y 1/⇣ � L � LA,
where the “entanglement domain walls” for SA and SB

are of the point-to-line type [2, 3, 10], as illustrated in
Fig. 7(a).

C. Decoupling condition and contiguous code
distance from DPRE

Here we present numerical results of DPRE in a finite
cylinder with circumference L and height Y . We denote
the upper (circular) boundary of the cylinder Q, and the
lower boundary R. As in our conjecture, directed poly-
mers in this geometry are expected to model entangle-
ment entropies of circuits with periodic boundary con-
dition and maximally mixed initial state in its “mixed
phase” [12]. In particular, following the consideration
of boundary conditions (see Sec. II A and Ref. [2]), the
entanglement entropy of a contiguous subregion A ✓ Q
should be related to the following quantity, which receives
contributions from configurations with a single polymer,
as well as those with two decoupled polymers,

SA ⇡ �T ln
h
e�

1
T Fpp

A + e�
1
T (F

pp

A
+Fperiodic

Q )
i
. (28)

Here A is the complement of A in Q, F pp
A and F pp

A
are

free energies of “point-to-point” polymers for A and A as
in Sec. II A, and F periodic

Q is the free energy of a periodic,
noncontractible directed polymer that wraps around the
cylinder. Similarly, we have

SA ⇡ � T ln
h
e�

1
T Fpp

A + e�
1
T (F

pp
A +Fperiodic

Q )
i
, (29)

SQ ⇡F periodic
Q . (30)



9

dcont

(a)

(b)

FIG. 8. (a) The mean DPRE entanglement entropy hSAi
and the mean DPRE mutual information hIA,Ri. The non-
monotinicity in hSAi at LA . L and the vanishing of hIA,Ri
at small LA are signatures of the error correcting properties
of the weakly-monitored phase [2]. (b) The contiguous code
distance dcont extracted from (a), namely the value of LA

when hIA,Ri = ✏, for a few di↵erent values of ✏. We find
that dcont / L� , a result consistent with Cli↵ord numerics in
Ref. [2].

As the temperature T ! 0,

SA =min{F pp
A , F pp

A
+ F periodic

Q }, (31)

SA =min{F pp

A
, F pp

A + F periodic
Q }, (32)

SQ =F periodic
Q , (33)

where each of F pp
A , F pp

A
, and F periodic

Q is dominated by
the “ground state” polymer with lowest energy.

Consider the mutual information IA,R := SA + SR �
SAR = SA + SQ � SA. Assuming Eqs. (31, 32, 33), we
have

IA,R =

8
><

>:

0, F pp
A + F periodic

Q  F pp

A

2F periodic
Q , F pp

A
+ F periodic

Q  F pp
A

F pp
A + F periodic

Q � F pp

A
, otherwise

.

(34)

In particular, IA,R vanishes when the “decoupled” con-
figuration dominates in SA; and typically this is when A
is small. This condition translates into the correctability
of the subregion A [2], and a code distance can be de-
fined as the minimum length of a subregion that is not
correctable [12].

Here, instead, we consider the “contiguous code dis-
tance” dcont as defined in Ref. [2] from the vanishing of
the mean mutual information hIA,Ri, so that a direct
comparison can be made.

We calculate hSAi and hIA,Ri according to Eqs. (31,
32, 33, 34) for the DPRE with Y/L = 2, L  1024, and
the results are plotted in Fig. 8. We observe a nonmono-
tonic hSAi and a vanishing hIA,Ri below a certain length
scale, consistent with the results from the Cli↵ord cir-
cuit reported in Ref. [2]. We further extract dcont from
the condition hIA,Ri  ✏ for several di↵erent values of
small ✏, and find that they consistently give dcont / L� ,
again consistent with the Cli↵ord numerics in Ref. [2].
This calculation provides yet another check of the DPRE
picture.

D. Pinning phase transition driven by depolarizing
noise

As another nontrivial check of our conjecture, we now
discuss the e↵ect of qubit depolarizing errors on the
weakly-measured phase, and show that they can drive
the DPRE through a “pinning transition”.

Following Ref. [32], it is instructive to think of the hy-
brid circuit bulk (with Y � L⇣) as an “encoding” stage
that generates a dynamical code living at the final time
of the circuit. We consider random qubit depolarizing
errors on the code right before the encoding terminates.
The geometry is shown in Fig. 2, where depolarizing er-
rors – occuring at a probability pdep on each of the qubits
– are represented by blue dots near the upper bound-
ary of the circuit, favoring the same phase as qubits in
A on the upper boundary. This representation is justi-
fied: a depolarized qubit has a maximally mixed density
matrix, and in the stat-mech model [7, 8] it become a
spin fixed in the “identity” direction, the same as spins
at the upper boundary in A. A directed polymer con-
necting the endpoints of A will experience an increase in
energy proportional to the number of depolarized qubits
it encloses, because a “bubble” must be created around
each depolarized qubit as required by the fixed spin direc-
tions. E↵ectively, the depolarized qubits act as a random
attractive potential on the directed polymer, and would
eventually drive the polymer into a pinned phase [22].
In this phase, the directed polymer lives near the upper
boundary and cannot vertically fluctuate, and its free en-
ergy will behave as if in a very thin strip (see Eqs. (12,
13)).

We confirm the presence of a pinning transition (see
Fig. 9(a)) in the Cli↵ord circuit using the mean “halfcut
mutual information” [2, 12], defined as hIA,Ai when LA =

L/2. This quantity behaves similarly as hSsub
A i in our

numerics, but averages better.

We can further collapse hIA,Ai across the pinning tran-
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(a)

(b)

FIG. 9. (a) The mean halfcut mutual information hIA,Ai
(LA = L/2) versus L in the random Cli↵ord circuit for vari-
ous probabilities of the depolarizing channel, pdep. Here, we
see clear evidences of a pinning transition. (b) Collapse of
hIA,Ai according to Eqs. (35, 36), where we choose � ⇡ 0.36,

⌫ ⇡ 3.00, and pdepc ⇡ 0.10. In our numerics, we took all the
depolarizing channels to happen a = 5 time steps before the
circuit terminates, and again the bulk measurement rate is
p = 0.08 ⇡ 0.5pc.

sition to the following scaling form,

hIA,Ai(p
dep) = L� · ⌅[(pdep � pdepc )L1/⌫ ], (35)

⌅(⌘) =

(
const., ⌘ ! �1
⌘�⌫� , ⌘ ! +1

. (36)

Here, we expect hIA,Ai(pdepc ) / hIA,Ai(pdep < pdepc ) / L�

and ⌫ = 3, following Refs. [22, 25].4 The collapse shown

4 In particular, Refs. [22, 25] expects that at the critical point of
the pinning transition, the directed polymer should behave just
like in the depinned phase, with roughness exponent � = 1/3 and
wandering exponent ⇣ = 2/3. The correlation length exponent ⌫
follows from the condition ⇣⌫ = 2, as a consequence of a replica
Bethe ansatz [22]. These predictions are confirmed in a numerical
simulation of DPRE with length L = O(104).

in Fig. 9(b) has a reasonable quality, and the exponents
are reasonably close to these predictions. However, due
to the relatively small pdepc ⇡ 0.10 and the rather large
⌫, we have not reached system sizes necessary for a con-
vincing extraction of these exponents, or for a meaningful
comparison of the scaling function ⌅(⌘) with the DPRE
numerics.
We expect that the pinning transition in hIA,Ai is ac-

companied by a similar transition in the “contiguous code
distance” [2], scaling as L� and L0 in the depinned and
the pinned phases, respectively. Our numerical results
are consistent with this picture,5 but they su↵er from
the limitations mentioned above, thus a scaling collapse
near the critical point is not displayed.

III. RANDOM HAAR CIRUITS: THE REPLICA
TRICK AND THE DPRE

We now analytically study the steady-state entangle-
ment in weakly-monitored dynamics, in which the uni-
tary gates are each chosen independently from a uniform
distribution over the unitary group (the Haar measure).
The choice of Haar-random unitary gates is a theoret-
ical tool which makes tractable the study of the aver-
aged von Neumann entanglement entropy, where the av-
erage is performed over the ensemble of unitary gates,
the outcomes of the projective measurements, as well as
the locations of the applied measurements, if these are
applied randomly during the dynamics. From our anal-
ysis, we show that in the volume-law-entangled steady-
state arising from random unitary dynamics with weak
projective measurements, applied randomly or determin-
istically, the steady-state behavior of the von Neumann
entropy is related to the partition function of n random
walks with an attractive interaction, and in the limit
n ! 0, which is precisely the replicated description of
a directed polymer in a random environment (DPRE).
We therefore expect that the scaling of the von Neumann
entanglement entropy in the steady-state of these moni-
tored dynamics reproduces that of the free energy of the
DPRE, consistent with our Cli↵ord numerics.
We focus on the monitored dynamics of a one-

dimensional array of qudits, each with Hilbert space di-
mension q, which consists of two-site, local unitary gates
and rank-r projective measurements applied probabilis-
tically at each lattice site. To study the entanglement
entropy in the monitored system, it is convenient to con-
sider an alternate dynamics in which the same unitary
gates are applied, but in which no projective measure-
ments are performed. Instead, ancillary degrees of free-
dom are introduced at each timestep, which entangle

5 In the depinned phase, the scaling of the code distance is stud-
ied in Cli↵ord circuits in Ref. [2], and confirmed by a DPRE
calculation in Sec. II C.
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(a)

FIG. 10. Boundary Conditions in the Lattice Magnet:
The Haar average in Eq. (38) yields the ratio of two partition
functions that only di↵er in their boundary conditions, by
the “insertion” of a domain wall at the boundaries of the
A subsystem for the spins in the lattice magnet located at
the final time-slice. The domain wall is labeled by the cyclic
element of the permutation group (1 2 · · ·n).

with each qudit in the system so that the system of inter-
est now evolves into a mixed state [8]. Each ancilla has
Hilbert space dimension (1+(q/r)) and entangles with a
single qudit according to the quantum channel

⇢⌦ |0i h0| �! 1

1 + �

h
⇢⌦ |0i h0|

i

+
�

1 + �

q/rX

m=1

P (m)⇢P (m) ⌦ |mi hm| (37)

where ⇢ is the density matrix of the qudit, P (m) are a
complete set of rank-r orthogonal projectors6, |mi is a
state of the ancillas in the standard basis with hm0|mi =
�m0m, and � � 0 is a free parameter of the dynamics. The
ancilla-assisted dynamics involve repeated applications
of two-site unitary gates, followed by the channel in Eq.
(37) between each qudit and a new set of ancillas.

The von Neumann entanglement entropy in the ancilla-
assisted dynamics is precisely related to the entangle-
ment of the pure state in the monitored dynamics, af-
ter averaging over all monitored trajectories of the state.
In the monitored dynamics in which rank-r projective
measurements are performed randomly at each point in
spacetime with probability p = �/(1 + �), the von Neu-
mann entanglement entropy of a subsystem A, averaged
over all monitored trajectories of the pure state and de-
noted hSA(t)i, is simply given by the entanglement en-
tropies of subsystems in the ancilla-assisted dynamics as
hSA(t)i = SA[Q(t) � SQ(t), where Q denotes all of the
ancillas introduced in the ancilla-assisted dynamics, up
until time t [8].

To make progress, we now specialize to the case where
the dynamics involve the application of two-site uni-
tary gates which are each chosen independently from
the Haar measure. The entanglement of the A sub-
system in the monitored dynamics, now averaged over
both this uniform ensemble of two-site unitary gates and

6 These satisfy P
(m)

P
(m0) = �m0mP

(m),
Pq/r

m=1 P
(m) = 1q⇥q ,

and trP (m) = r.

over the monitored trajectories and denoted EU hSA(t)i,
is obtained by performing a Haar average over the en-
tanglement entropies in the ancilla-assisted dynamics
EU hSA(t)i = EU SA[Q(t) � EU SQ(t) . Equivalently, we
may write that

EU hSA(t)i = lim
n!1

1

n� 1


EU Tr ⇢A[Q(t)n

EU Tr ⇢Q(t)n
� 1

�
. (38)

Here, ⇢A[Q(t) and ⇢Q(t) are the reduced density matrices
for the A [ Q and Q subsystems, respectively, in the
ancilla-assisted dynamics.
Each Haar-average in the right-hand-side of Eq. (38)

may be interpreted as the partition function for a two-
dimensional lattice magnet with “spins” � valued in the
permutation group on n elements Sn, as demonstrated in
Appendix A. Each site in the lattice magnet corresponds
to an applied unitary gate in the dynamics; therefore, we
refer to various sites in the lattice magnet by the space-
time locations of the corresponding unitary gates. The
two partition functions only di↵er in their boundary con-
ditions for the spins at the final time of the dynamics,
by the insertion of a domain wall at the ends of the A
subsystem. The domain wall corresponds to a cyclic per-
mutation

⌧n ⌘ (1 2 · · ·n) (39)

as shown in Fig. 10. As a result, the ratio of these
partition functions is precisely the two-point correlation
function of a disorder field in the Sn magnet. Denoting
µ(x) as the disorder field at site x on the boundary of
the lattice magnet, which inserts the ⌧n domain wall, we
may write

EU Tr ⇢A[Q(t)n

EU Tr ⇢Q(t)n
= µ(LA)µ(0)

���
n

(40)

where · · ·
��
n
now denotes the expectation value in the Sn

lattice magnet, in the absence of any domain walls at
the boundary of the lattice magnet. Evaluation of Eq.
(40) is not possible for arbitrary n and q. However, a
relationship between this quantity and the replicated de-
scription of the DPRE naturally emerges in the limit that
the local Hilbert space dimension q becomes large. For
the remainder of this section, we focus on two apparently
distinct kinds of monitored dynamics.

A. Deterministic projective measurements of
rank-r � 1

We first consider monitored dynamics in which rank-r
measurements are applied at every point in space-time,
along with two-site, Haar random unitary gates. We em-
phasize that the measurement locations are determin-
istic. Within the ancilla-assisted dynamics, this corre-
sponds to setting � ! 1, with r � 1 a free tuning pa-
rameter of the dynamics. While q/r is required to be an
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integer in the monitored dynamics, we note that r may
be treated as a continuous tuning parameter in the sta-
tistical mechanics of the lattice magnet which emerges
after performing an average over the Haar-random uni-
tary gates.

When n = 2, the lattice magnet describes an Ising
model and the expression in Eq. (40) is simply the
two-point correlation function of the Ising disorder field
within the ordered phase of the Ising model, as shown
in Appendix A 1. The phase transition point for this
Ising model may be determined exactly, and in the limit
q ! 1, this transition occurs at an O(1) value of the
rank of the projective measurements. To study the en-
tanglement deep in the volume-law phase for general n,
we now consider a limit of large local Hilbert space di-
mension, by taking q ! 1 while also scaling the rank as
r = g q↵ where g is an O(1) constant, and the exponent
0 < ↵ < 1 is a free parameter of the large-q limit. From
our analysis here, we conjecture that this parametrically
weaker strength of measurements places the system deep
within the volume-law-entangled steady-state.

In this large-q limit, we proceed to obtain a descrip-
tion of the Sn lattice magnet for arbitrary n. We find in
Appendix A 1 that the replicated description of the von
Neumann entanglement entropy (40) is given by a uni-
form sum over all Sn domain wall configurations, such
that the domain walls (i) end at the boundaries of the A
subsystem and multiply to the cyclic permutation ⌧n, and
(ii) are directed along the spatial direction. An example
of such a configuration of domain walls in the S4 lattice
magnet is shown in Fig. 11. Domain walls can also meet
and split in the bulk of the lattice magnet, according
to the allowed group multiplication in the permutation
group. In the large-q limit, however, only those “split-
tings” in which the total number of elementary transpo-
sitions7 required to describe the in-going and out-going
domain walls is conserved, are allowed. All other pro-
cesses are parametrically smaller in powers of q and may
be neglected to leading order in the large-q limit. As an
example, a pair of domain walls �1 = (2 3) and �2 = (1 3)
can meet and split into a pair �0

1 = (1 3) and �0
2 = (1 2)

since �1�2 = �0
1�

0
2 = (1 2 3). In contrast, the splitting

process in which the outgoing domain walls are given by
�0
1 = �0

2 = (1 3 2), while allowed by the group multiplica-
tion rule �0

1�
0
2 = (1 2 3), is forbidden in the large-q limit,

since the total number of transpositions is not conserved
in this process.

For arbitrary n, we may write the replicated descrip-
tion of the von Neumann entanglement entropy more for-

7 A transposition is defined as a permutation which only exchanges
a pair of elements.

FIG. 11. Lattice Magnet with Deterministic Measure-
ments: In the limit of large local Hilbert space dimension
with deterministically-applied projective measurements, the
replicated description of the entanglement is given by a uni-
form sum over all Sn domain wall configurations which end
at the boundaries of the A subsystem, and are directed along
the spatial direction. Shown is a schematic configuration of
domain walls in the n = 4 (S4) lattice magnet. When these
domain walls intersect, the total transpositions appearing in
the decomposition of the “in-going” and “out-going” domains
is conserved, yielding a description as a partition function for
(n� 1) directed walkers with an attractive interaction.

mally to leading order in the large-q limit as

EU Tr ⇢A[Q(t)n

EU Tr ⇢Q(t)n
= e��LA(n�1)

X

dw config.

1

= e��LA(n�1)
X

{�i}

w(�1, . . . ,�n�1) (41)

where � is an O(1) constant, independent of n. Here, the
first sum is over the allowed domain-wall configurations
in the large-q limit described previously, while the second
sum is over labeled paths �1, . . . ,�n�1 that start and
end at the boundaries of the A subsystem, and which
are allowed to intersect in the bulk of the lattice magnet.
The (n � 1) paths arise from the (n � 1) transpositions
that are required to express the cyclic shift element ⌧n.
For a set of walks {�i} that only intersect pairwise, we
note that this interaction is given by the expression

w(�1, . . . ,�n�1) = 2�nintNdw({�i}) (42)

where nint is the total number of times that pairs of paths
intersect, and Ndw({�i}) is the number of distinct, al-
lowed labelings of the path configurations {�i} by trans-
positions in the permutation group Sn. We note that
Ndw({�i}) depends on how the unlabeled paths intersect,
but is independent of other details of these trajectories.
The interaction (42) between paths is attractive. We

note that this entropic interaction has also been encoun-
tered in the replicated description of the entanglement
growth during the unitary evolution of a one-dimensional
quantum system without projective measurements [16].
To see that the interaction is attractive, observe that
for the S3 lattice magnet, the interaction is simply given
by w(�1,�2) = (3/2)nint as has also been argued for a
related lattice model in Ref. [16]. This is due to the
fact that the cyclic shift ⌧3 may be written as a product
of two non-commuting transpositions in three di↵erent
ways. In contrast, for a pair of labeled paths that inter-
sect and split, the out-going paths can be labeled in two



13

distinct ways. For n > 3, the interaction in (42) cannot
be written as a local interaction between paths, due to
the fact that the permutation group Sn for n > 3 con-
tains distinct transpositions that mutually commute (e.g.
(1 2) and (3 4) in S4), and only non-commuting pairs of
domain walls provide the required entropy to generate an
attractive interaction. Nevertheless, we believe that the
weight (42) should grow exponentially in the number of
path intersections for any finite n, due to the fact that
a finite fraction of these intersections will always occur
between non-commuting transpositions in Sn.

For the S4 lattice magnet, it is still possible to calculate
the attractive interaction for certain trajectories of the
domain walls through the lattice magnet, and show that
the weight (42) grows exponentially in the number of
path intersections. We demonstrate this to be the case
for certain trajectories in Appendix A1.

From our analysis here, we have shown that in the
large-q limit, the steady-state behavior of the von Neu-
mann entanglement is described by the replica limit of
the statistical mechanics of n� 1 directed, labeled walks
with an attractive interaction and in the limit n ! 1.
We expect that this replica limit recovers a description
of the averaged von Neumann entanglement entropy as
the free energy of a DPRE.

B. Randomly-located projective measurements of
rank-1

We now consider monitored dynamics involving
randomly-located, rank-1 projective measurements. To
study the averaged entanglement dynamics of the pure
state, we consider a limit of large local Hilbert space di-
mension, which we define by taking q ! 1, while simul-
taneously scaling the measurement strength � as

�n = g qn�1�↵ (43)

Here g an O(1) constant and 0  ↵ < n � 1 a free pa-
rameter of the large-q limit. When ↵ = 0, the large-q
limit yields a description of the lattice magnet as an n!-
state Potts model, as shown in Appendix A2. Tuning g
yields an order/disorder transition in the Potts model,
which becomes a percolation transition in the replica
limit n ! 1 [3]. This transition has been previously inves-
tigated to understand the nature of the phase transition
between the volume-law and area-law-entangled phases,
in the presence of a su�ciently large rate of projective
measurements [7, 8].

The large-q limit with ↵ > 0 describes dynamics with a
parametrically smaller rate of projective measurements,
and places the system of interest “deep” within the
volume-law-entangled phase. In this limit, we may study
the behavior of the expression in Eq. (40) for various val-
ues of n. For n = 2, the lattice magnet again describes an
Ising model. The leading contribution to this correlation
function comes from summing over weighted paths taken

(a)

=)

(b) (c)

FIG. 12. S3 Lattice Magnet with Randomly-Located
Measurements: The leading contribution to the replicated
description of the von Neumann entanglement with n = 3
replicas comes from paths taken by the domain wall (1 2 3) 2
S3 through the bulk of the lattice magnet as shown in (a). In
the large-q limit considered in the text, all such paths appear
with the same weight. The leading correction to this behavior
comes from the “splitting” of this domain wall, shown in (b),
while all other processes are further parametrically suppressed
in powers of q�1. The replicated description may be thought
of as a pair of labeled paths with an attractive interaction (c).

by a single Ising domain wall that ends at the boundaries
of the A subsystem.
For n > 2, the description of the lattice magnet in-

vites further study. We first consider the case n = 3, for
which the weights in the bulk of the lattice magnet may
be calculate exactly. In this case, and within the large-
q limit that we consider (43), we show in Appendix A2
that nucleating domain walls in the bulk of the system is
parametrically suppressed in q. We find that the leading
correction to Eq. (40) comes from paths taken by the
(1 2 3) domain wall through the bulk of the system, as
shown in Fig. 12a. When 1 < ↵ < 2, the leading correc-
tion to this contribution comes from the process shown
in Fig. 12b, where the ⌧3 domain wall splits into a pair of
domain walls at an upward-facing triangle, so that each
split domain wall is labeled by an elementary transposi-
tions in the permutation group S3. All other processes
are parametrically suppressed in the limit of large local
Hilbert space dimension.
From this, we interpret the leading contributions to

µ(LA)µ(0)
��
3
, shown in Fig. 12 as the partition function

for a pair of paths that experience an attractive interac-
tion and that are constrained to end at the boundaries of
the A subsystem. The weight for a given configuration
of paths is again obtained by fixing the location of the
domain walls in the lattice magnet and summing over all
allowed labelings of the domains by elements of S3, so
that the two paths are in correspondence with the pair
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of transpositions required to represent the shift permu-
tation ⌧3 = (1 2 3). The attractive interaction is evident
from the fact that the paths are bound into a single do-
main wall to leading order in the large-q limit.

When n > 3, the leading contribution to the repli-
cated description of the von Neumann entanglement
again comes from all configurations of the domain wall
⌧n, such that the domain wall ends at the boundaries of
the A subsystem. To interpret this as the bound-state
formed of n � 1 walkers, we repeat the analysis for the
S3 lattice magnet. We are able to show in Appendix A2
that the weight of a splitting event at a downward-facing
triangle – similar to the one shown in Fig. 12 for the
S3 lattice magnet – provides the dominant sub-leading
correction to the leading large-q behavior within a spe-
cific range of ↵. This process is one where ⌧n splits into
⌧n = �1�2, where �1 is an elementary transposition, and
�2 is a permutation which can be decomposed in terms of
(n�2) elementary transpositions. Since this leading cor-
rection is one that conserves the number of in-going and
out-going transpositions, we interpret the bound-state for
any n as one formed from n� 1 walkers.

Our analysis here suggests that the large-q expansion
of the lattice magnet is analogous to a low-temperature
expansion of the directed polymer in a random environ-
ment, since the strength of the bare attractive interaction
between paths grows as q is increased. We then expect
by taking the replica limit n ! 1 that the scaling of the
averaged von Neumann entanglement reproduces that of
the free energy of a DPRE.

IV. OUTLOOK

To summarize, we have provided evidence for the
DPRE scaling of the vN entanglement entropy in two
classes of hybrid random circuits, when they are in the
weakly-measured phase with volume law entanglement.
For the circuit with random Haar unitaries, in the limit
of small measurement rate and infinite local Hilbert space
dimension, the result follows from the observation that
the e↵ective statistical mechanics model coming out of
the replicated description of the vN entropy describes n
attractive random walkers, similar to the model obtained
when the DPRE is replicated. Here, the randomness in
the ensemble of unitary gates – but not in the locations of
the gates or of the measurements – provides an essential
analytical tool. For the circuit with random Cli↵ord uni-
taries, we mostly relied on numerical simulations, where
the DPRE scaling is borne out when at least one type of
randomness – either in the unitary gates or in the mea-
surement positions – is present.

The simplest picture consistent with these results is
that the DPRE scaling is the “default” outcome in the

volume law phase of hybrid circuits with any type of
randomness. These would incude, in particular, a non-
Cli↵ord circuit with Floquet unitaries and weak measure-
ments performed uniformly in space and time [6], with
the only randomness in the measurement outcomes. The
validity of this simple picture remains to be determined.
A partial extension of our analytic argument for ran-

dom Cli↵ord dynamics is possible. Since the Cli↵ord
group is a unitary three-design [33], the emergent statis-
tical mechanical description of the entanglement is iden-
tical to the Haar-random case for n  2 replicas, leading
to a conjecture that the averaged entanglement entropy
in this setting is also described by the DPRE as the en-
tanglement domain wall. Alternatively, one can possibly
invoke the mapping of the Cli↵ord dynamics to an asym-
metric simple exclusion process (ASEP) [6, 14], the latter
known to be described by the KPZ equation in certain
cases [34].
The DPRE scaling, when combined with the “entan-

glement domain wall” picture, can be used to understand
various quantitative aspects of the volume law phase.
One such example is the pinning phase transition driven
by “decoherence”, where the DPRE gives precise predic-
tions of the critical exponents. Another example is the
various “error-correcting” exponents in Sec. II C. As an
immediate extension of these ideas, the eventual purifi-
cation of a maximally mixed initial state – and the di↵er-
ence between open and periodic boundary conditions [2]
– can also be obtained from the DPRE picture. These
would involve the consideration of “waist” domain walls,
whose free energy is given by periodic or open directed
polymers of the “line-to-line” type.
Along these lines, it would be interesting to explore

entanglement domain walls in higher dimensional hybrid
circuits, where “random membranes” [35, 36] might give
rise to qualitative di↵erent dynamical codes.
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Appendix A: Haar Average and the Entanglement
in Hybrid Quantum Circuits

The von Neumann entanglement entropy S(⇢) =
�Tr⇢ log ⇢ for the density matrix ⇢ may be written as

S(⇢) = lim
n!1


Tr ⇢(t)n � 1

1� n

�
(A1)

In our ancilla-assisted dynamics, ancilla degrees of free-
dom are introduced at each point in spacetime to en-
tangle with the system of interest, as per the quantum
channel in Eq. (37). Each ancilla has a Hilbert space
dimension 1 + (q/r). Let Q denote the ancilla degrees of
freedom. For any choice of unitary gates in the dynam-
ics, the normalized reduced density matrix for the system
and all of the ancillas Q is given by the expression

⇢(t) = (1 + �)�2Nt
X

m

�|m| ⇢(m; t)⌦ |mi hm| (A2)

where |mi denotes a product state of all of the ancillas
in the standard basis, while ⇢(m; t) is the unnormalized
density matrix of the system of interest, which is ob-
tained by applying unitary gates and forced projective
measurements on the system at di↵erent points in space-
time according to the state of the ancillas; as an example,
if the state of the ancilla at site s and time t is given by
|mi, then in the corresponding non-unitary evolution of
the system, the rank-r projection operator P (m) is ap-
plied at site s at time t in the system. If m = 0, then no
projector is applied at that point in spacetime. Finally,
|m| denotes the total number of non-zero entries in m,
which corresponds to the number of forced measurements
performed in the non-unitary dynamics.

The entanglement entropy hSA(t)i of the subsystem A
of the monitored pure state, after averaging over trajec-
tories of these monitored pure states may be written as
hSAi = SA[Q � SQ, as described in the text. When the
unitary gates in the dynamics are Haar-random, we per-
form an additional average over this ensemble of gates.
The EU hSA(t)i – where the average is over the local,
Haar-random unitary gates, and the measurement out-
comes – may be written as

EU hSA(t)i = lim
n!1

1

n� 1


EU Tr ⇢A[Q(t)n

EU Tr ⇢Q(t)n
� 1

�
(A3)

We observe that

Tr ⇢A[Q(t)
n =

X

m

�|m|n

(1 + �)2nNt
TrA ⇢A(m; t)n (A4)

where ⇢A(m; t) is the unnormalized density matrix for
the A subsystem, after an evolution involving the appli-
cation of unitary gates and forced single-qudit projec-
tions at various points in spacetime, as determined by
m.

Let U be a q⇥ q unitary matrix drawn from a uniform
distribution over the unitary group. The average over

(a)

(b)

FIG. 13. Haar Average: Performing a Haar average over
each two-site unitary gate in the hybrid dynamics in the cal-
culation of the von Neumann entanglement of a subsystem A
yields (a) an emergent lattice magnet with Sn “spins” residing
at the sites of a honeycomb lattice. Integrating out the spins
on one sublattice yields the lattice model described in the
text. One set of boundary conditions for this lattice magnet
– involving the insertion of domain walls at the boundaries of
the A subsystem – are shown in (b).

this distribution for products of unitary matrices may be
written as

EU [(U ⌦ U⇤)n] =
X

�,⌧2Sn

Wgq(�
�1⌧) |�i h⌧ | (A5)

where � 2 Sn labels an element of the permutation
group on n elements, Wgq(µ) is the Weingarten function,
and |�i labels a corresponding state in a q2n-dimensional
Hilbert space, which is defined as

|�i =
X

{ik},{i0k}

 
nY

k=1

�ik,i0�(k)

!
|i1, i01, . . . , in, i0ni (A6)

with each index in, i0n 2 {1, . . . , q}. The state |�i is un-
normalized, and the inner product of two such states is

h�|⌧i = qCyc(��1⌧) (A7)

where Cyc(�) is the number of cycles in a cycle de-
composition of the permutation �. As an example, if
�,⌧ 2 S3, and if � = (1 2), ⌧ = (1 2 3), then Cyc(��1⌧) =
Cyc((2 3)) = 2. More generally, if P is a rank-r projec-
tor acting on the q-dimensional Hilbert space (tr(P ) = r,

P 2 = P ), then h�|P⌦2n|⌧i = rCyc(��1⌧). From this, we
find that

EU TrA ⇢A(m; t)n = Zn(m; t) (A8)

where Zn(m; t) is the partition function for an Sn mag-
net; each two-site unitary operator is replaced by two
spins �, ⌧ 2 Sn, as shown in Fig. 13. The weight
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for a configuration of the magnet is given by taking the
product of weights over all bonds on the honeycomb lat-
tice. For vertical bonds, the weight is simply given by
Wgq(�

�1⌧); for diagonal bonds connecting two spins �
and ⌧ , the weight is given by h�|⌧i if no forced measure-
ment was applied at that bond in the corresponding non-
unitary dynamics of the state of the system, and weight
h�|P (j)|⌧i = 1 if a forced measurement is applied which
projects the qudit in the system to state |ji.

Eq. (A4) is then interpreted as the annealed average
of this partition function over “disorder” configurations,
labeled by m. We may perform this annealed average,
as well as the sum over the ⌧ spins to obtain that

EU Tr [⇢A[Q(t)
n] = (1 + �)�2nNt Z(n)

1 (A9)

EU Tr [⇢Q(t)
n] = (1 + �)�2nNt Z(n)

0 (A10)

where Z(n)
s is a partition function for the � 2 Sn “spins”

on a triangular lattice as shown schematically in Fig. 13.

The locations of the spins correspond to di↵erent points
in spacetime where unitary gates applied during the dy-
namics. The two partition functions only di↵er in their
boundary conditions for the spins at the final time-slice.

The boundary conditions for Z(n)
1 requires that �r = 1

(the identity permutation) if r 6= A, and �r = (1 2 · · · n)
(the cyclic “shift” permutation) if r 2 A. Equivalently,
there is a single pair of domain walls, labeled by the cyclic
permutation (1 2 · · · n) at the edges of the A subsystem

at the final time-slice. The boundary conditions for Z(n)
0

requires that �r = 1 for all spins at the final time-slice.
If the initial state of the system is a product state, then
the system has open boundary conditions for all spins at
the initial time-slice. In contrast, for a maximally-mixed
initial state, the system has �r = 1 for all spins at the
initial time slice. Apart from this di↵erence in bound-
ary conditions, the two partition functions have identical
weights at each downward-facing triangle, which may be
determined using the above relations to be

J(�1,�2,�3) =
X

⌧2Sn

Wgq2(�
�1
3 ⌧)


q�n

r
rCyc(��1

1 ⌧) + qCyc(��1
1 ⌧)

� 
q�n

r
rCyc(��1

2 ⌧) + qCyc(��1
2 ⌧)

�
(A11)

where the Weingarten function Wgq2(⌧) only depends
on the cycle decomposition of ⌧ 2 Sn. As a result, the
weights in Eq. (A20) only depend on the cycle decompo-
sition of the permutations ��1

1 �2, �
�1
2 �3, �

�1
3 �1.

1. Deterministically-Applied, Weak Projective
Measurements

In this case, we consider ancilla-assisted dynamics with
� ! 1, and r � 1, which describes monitored dynamics
with rank-r projective measurements applied determinis-
tically, at every lattice site. The bulk, three-spin weights
in the lattice magnet are given by

J(�1,�2,�3) =
q2

r2

X

⌧2Sn

Wgq2(�
�1
3 ⌧) rCyc(��1

1 ⌧)+Cyc(��1
2 ⌧)

When n = 2, we may determine these weights exactly, by
using the Weingarten functions Wgq2([2]) = (q4 � 1)�1,
Wgq2([11]) = �q�2(q4 � 1)�1. In this case, the three-
spin weights may be rewritten as a Boltzmann weight for
an Ising model with nearest-neighbor interactions along
the bonds of the triangular lattice. The spin interactions
along the horizontal (Kx) and diagonal (Ky) bonds of

the lattice are given by

Kx =
1

4
ln


J(+,+,+)J(+,+,�)

J(+,�,�)2

�
(A12)

Ky =
1

4
ln


J(+,+,+)

J(+,+,�)

�
(A13)

And the bulk phase transition for this Ising model is ob-
tained when �2Kx = ln sinh(2Ky). We observe that in
the limit q ! 1, the transition still occurs at a finite
value of r = r⇤ = 1 +

p
2.

To study the lattice magnet deep in the volume-law
phase, we now take a large-q limit q ! 1, while scaling
the rank of the projective measurements as

r = g q↵ (A14)

with 0 < ↵ < 1, and g an O(1) constant. For convenience
of presentation, we re-scale all of the weights by a factor
J �! J ⇥ (q/r)2n�2. After this re-scaling, we find that
the weights at the downward-facing triangles are given,
in our large-q limit, by

J(�1,�2,�3) =(g q↵)�|��1
1 �3|�|��1

2 �3|

⇥
⇥
1 +O(q�2+2↵)

⇤
(A15)

where |�| = n�Cyc(�) denotes the number of elementary
transpositions required to represent the permutation �.
The leading term in Eq. (A15) comes from setting ⌧ = �3

in the expression for the three-spin weights, while the
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sub-leading correction comes from terms where ⌧ = �3µ
where µ is an elementary transposition.

These three-spin weights may be used to determine

the leading contributions to the ratio Z(n)
1 /Z(n)

0 . First,
the dominant three-spin weight is given by one with
no domain walls at a downward-facing triangle, so that
J(�,�,�) = 1+O(q�2+2↵). All of other weights are para-
metrically smaller in powers of q�1, so that domain wall
creation is suppressed in the bulk of the lattice magnet.
Furthermore, the weights in Eq. (A15) only depend on
the total number of transpositions in the permutations
��1
1 �3 and ��1

2 �3, so that domain-wall ⌧ is permitted to
“split” into domain walls �, �0 in the bulk of the system,
as long as |⌧ | = |�| + |�0|. As a result, the leading con-

tribution to the partition function Z(n)
1 involves a sum

over domain wall configurations such as the one shown
in Fig. 11, in which the domain wall ⌧n = (1 2 3 · · ·n)
– which is nucleated at one end of the A subsystem –
passes through the bulk of the system, and splits into
domain walls. The number of transpositions required to
represent a permutation is conserved during the splitting
process. All of these allowed domain wall configurations
appear with the same weight.

Without evaluating the three-spin weights at higher or-
der in q�1, we may identify an O(1) attractive interaction

that arises when re-writing Z(n)
1 as a partition function

for n � 1 random walkers, each of which corresponds to
a transposition in the decomposition of the shift permu-
tation (1 2 3 · · ·n). We may write

Z(n)
1

Z(n)
0

/
X

dw config.

=
X

�1,...,�n�1

w(�1, . . . ,�n�1) (A16)

where the first sum is over the allowed domain-wall con-
figurations that respect the boundary conditions, while
the second sum is over labeled paths �1, . . . ,�n�1 that
start and end at the boundaries of the A subsystem, and
which are allowed to intersect in the “bulk” of the sys-
tem. For a set of walks {�i} that only intersect pairwise,
this interaction is given by the expression

w(�1, . . . ,�n�1) = 2�nintNdw({�i}) (A17)

where nint is the total number of times that pairs of walk-
ers intersect, and Ndw({�i}) is the number of distinct, al-
lowed labelings of the path configurations given by {�i}
by transpositions in the permutation group Sn. We note
that this kind of interaction has been previous identified
in a di↵erent lattice magnet that arises in the study of
the entanglement dynamics in random unitary evolution
without projective measurements [16].

This rewriting (A16) introduces an attractive interac-
tion between the walkers. For the S3 lattice magnet,
this interaction between walks �1, �2 may be written
as a local interaction, due to the fact that the (1 2 3)
domain wall may be written as a product of a pair
of elementary transpositions in three di↵erent ways as
(1 2 3) = (1 3)(1 2) = (1 2)(2 3) = (2 3)(1 3). In contrast,

FIG. 14. A configuration of intersecting paths, corresponding
to a configuration of domain walls in the S4 lattice magnet
is shown. Here, �1�2�3 = (1 2 3 4), and each domain wall �i

is an elementary transposition. The intersection points alter-
nate between either the top or the bottom path intersecting
the middle path at the points labeled in blue.

when a pair of paths �1, �2 meet and split, there are two
di↵erent ways that the out-going paths can be labeled.
This results in an interaction w(�1,�2) = (3/2)n12 where
n12 is the number of times that the paths �1 and �2 meet
in the bulk of the lattice magnet. For n > 3, this inter-
action cannot be written as a local interaction between
walkers, since not all decompositions of the cyclic per-
mutation ⌧n involve non-commuting transpositions. For
example, ⌧4 = (1 2 3 4) = (1 4)(1 3)(1 2) = (2 4)(2 3)(1 4);
none of the transpositions commute in the first decompo-
sition, while in the second, the transpositions (2 3) and
(1 4) do commute. Furthermore, while any pair of non-
commuting transpositions can meet and split into any
one of three distinct pairs of transpositions, commuting
transpositions can only be exchanged. The entropic fac-
tor therefore depends on the algebra between the trans-
positions. Nevertheless, the quantity (A17) should grow
exponentially in the number of times that the paths {�i}
meet for any finite n, due to the existence of a finite num-
ber of non-commuting transpositions that appear in the
decomposition of ⌧n for any n.
It is illustrative to see the nature of this interaction in

the S4 lattice magnet. In this case, we observe that ⌧4
may be written as a product of three distinct transposi-
tions ⌧4 = �1�2�3 in 16 distinct ways. These decomposi-
tions share the following properties.

• If �2 and �3 commute, then both transpositions are
non-commuting with �1.

• If �2 and �3 do not commute, then their product
may be decomposed into a product of transposi-
tions in three di↵erent ways �2�3 = ⌧2⌧3 = ⇢2⇢3.
Exactly two of these decompositions are such that
the “middle” transposition (labeled with the sub-
script “2”) does not commute with �1, while the
remaining decomposition has a middle transposi-
tion that commutes with �1

8.

8 As an example, consider the decomposition ⌧4 = (1 4)(1 3)(1 2).
The product of the second pair of transpositions satisfies
(1 3)(1 2) = (1 2)(2 3) = (2 3)(1 3). While (1 4) commutes with
(2 3), it does not commute with (1 2) or with (1 3).
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• Exactly 8 of the 16 decompositions of ⌧4 into a
product of three transpositions ⌧4 = �1�2�3 are
such that both �1 and �2 do not commute and �2

and �3 do not commute. We refer to these as “fully
non-commuting” decompositions of ⌧4.

Because of these properties, for any configuration of do-
main walls which intersect pairwise, there are always
more ways to label the domain as valid transpositions,
than there are ways to label the domain walls as dis-
tinct paths. This gives rise to an attractive interaction
between the paths. We observe this to be the case as fol-
lows. From the second property (above), it is clear that
for any configuration of domain walls which intersect and
split pairwise, and a total of s times, there are 2s label-
ings of the domain walls as fully non-commuting trans-
positions; this is also precisely the number of ways that
these domain walls could be labeled as distinguishable
paths. Since the fully non-commuting decompositions
only account for half of the possible decompositions of
⌧4, there are potentially many other ways to label the
domain walls, so that the weight w(�1,�2,�3) > 1.

For certain configurations of paths, we may explicitly
calculate the weight w(�1,�2,�3). Consider the num-
ber of domain wall labelings that are consistent with the
meeting and splitting of domain walls shown in Fig. 14.
Here, three domain walls meet and split pairwise, and
in an alternating fashion, with the domain wall in the
middle alternately intersecting with the one “below” and
“above”. We note that Fig. 14 is only meant to show
the topology of these intersecting paths, and that the ex-
act locations of the intersection points within the lattice
magnet is unimportant for determining the correspond-
ing weight w(�1,�2,�3).

We wish to determine the total number of distinct la-
belings by transpositions in S4, after nint = 2s pairwise
intersections of the paths, which are labeled in blue in
Fig. 14. Let N1(s) denote the number of distinct label-
ings of these paths, such that the outgoing paths from
the last intersection point can be labeled by transposi-
tions for which �1 and �2 do not commute and �2 and �3

do not commute. In addition, let N2(s) (N3(s)) denote
the number of distinct labelings of these paths, such that
the outgoing paths from the last intersection point can
be labeled by transpositions for which �1 and �2 com-
mute (do not commute) and �2 and �3 do not commute
(commute). From the allowed decompositions of ⌧4, we
observe that these quantities satisfy a coupled di↵erence
equation

0

@
N1(s+ 1)
N2(s+ 1)
N3(s+ 1)

1

A =

0

@
4 4 4
2 2 0
2 2 2

1

A

0

@
N1(s)
N2(s)
N3(s)

1

A (A18)

When s � 1, the total number of ways in which these
intersecting paths may be labeled by transpositions then
grows as Ntot ⇠ 2s(2 +

p
2)s. In contrast, the number of

ways that these paths can be labeled as distinguishable
walks �1, �2, �3 is 22s. The weight w(0) for these paths

appearing in the partition function for the random walks
then goes as

w(0) ⇠
"
1 +

p
2

2

#nint/2

(A19)

when nint � 1, and therefore grows exponentially in the
number of path intersections nint.

2. Randomly-Applied, Strong Projective
Measurements

We now consider monitored dynamics in which rank-1
projective measurements are randomly applied at each
site with probability p = �/(1 + �). This corresponds to
repeated application of the quantum channel (37) with
� � 0, r = 1. In this case, the bulk weights in the lattice
magnet are given by

J(�1,�2,�3) =
X

⌧2Sn

Wgq2(�
�1
3 ⌧)

h
q�n + qCyc(��1

1 ⌧)
i

⇥
h
q�n + qCyc(��1

2 ⌧)
i

(A20)

The limit of large local Hilbert space dimension yields
some simplifications in the evaluation of the three-spin
weights, and in our analysis of the Sn magnet. We define
this “large-q” limit by taking q ! 1 and letting the
measurement strength � scale with q as

�n = g qn�1�↵ (A21)

with g an O(1) constant, and ↵ a free parameter of the
large-q limit. When ↵ = 0, the three spin weights simply
become

J(�1,�2,�3) = (g + ��1,�3)(g + ��2,�3) +O(q�1) (A22)

so that the statistical mechanics of the lattice magnet
becomes that of an n!-state Potts model on a triangu-
lar lattice. This Potts model exhibits a phase transition
that can be accessed by tuning g [7, 8]. As � is related
to the strength of the measurements performed in the
dynamics, we now study the large-q limit with ↵ > 0,
which describes a dynamics with parametrically smaller
measurement strength in the large-q limit, to access the
properties of the volume-law entangled phase.

3. n = 3

For n = 3, there are eight distinct weights at each
downward-facing triangle. These weights are summa-
rized in Fig. 15; each line in the figure denotes an el-
ementary transposition – the elements (1 2), (2 3), or
(1, 3) – appearing in the decomposition of the S3 do-
main wall at each bond. Two lines in a weight de-
note any pair of distinct transpositions. By symmetry,
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FIG. 15. Weights in the calculation of Tr ⇢3A: The red
line denotes one of three elementary transpositions in the per-
mutation group S3. Two lines denote any distinct pair of
transpositions.

J(�1,�2,�3) = J(�2,�1,�3), so that the weights in Fig.
15 are identical to those obtained by a left-right “reflec-
tion” of the indicated configurations.

We may evaluate these weights explicitly, using the
fact that

Wgq2([1 1 1]) =
q4 � 2

q2(q4 � 1)(q4 � 4)
(A23)

Wgq2([2 1]) =
�q2

q2(q4 � 1)(q4 � 4)
(A24)

Wgq2([3]) =
2

q2(q4 � 1)(q4 � 4)
(A25)

where the argument of the Weingarten function denotes
the cycle lengths in an element of S3. For any ↵ > 0,
the largest weight at an upward-facing triangle is given
by one for which all of the spins are aligned (denoted J8
in Fig. 15), so that there is no domain wall

= 1 + 2g q�↵ + · · · (A26)

where the ellipsis contributions that are sub-leading in
q. As a result, domain wall creation in the bulk of the
system is suppressed. We may also quote the large-q
behavior of the other weights. For concreteness, we let
1 < ↵ < 2 in order to precisely quote the sub-leading

corrections to each weight. We find that

= g q�↵ + q�2 + · · · (A27)

= g2 q�2↵ + 2g q�2�↵ + · · · (A28)

= q�1 + g q�↵ + · · · (A29)

= 2g q�1�↵ + g2q�2↵ + · · · (A30)

The remaining weights involve the splitting of a domain
wall at an upward facing triangle. These processes are
parametrically suppressed in the large-q limit, and do
not enter in the leading contributions to the partition
function. These weights are given in the large-q limit, by

= q�2 + 2g q�1�↵ + · · · (A31)

= g q�1�↵ + g2q�2↵ + · · · (A32)

= g2 q�2↵ + 2g q�2�↵ + · · · (A33)

From these weights, we observe that leading behav-

ior of the partition function Z(3)
1 comes from a sum over

paths taken by the (1 2 3) domain wall through the bulk of
the lattice magnet. All of these paths are weighted iden-
tically to leading order in the large-q limit. We note that
the leading correction to this contribution comes from
processes where the (1 2 3) domain wall splits into a pair
of transpositions at a downward-facing triangle, when
moving horizontally, as shown in Fig. 15a. The process
shown there carries a weight, relative to the weight for the
composite domain of J6J2

5/(J2J
2
8 ) = 2g�1q�3+↵ + · · · .

The remaining processes are parametrically smaller than
this correction in the large-q limit. Some of these pro-
cesses, such as ones involving the splitting and creation
of domain walls in the bulk of the system are shown in
Fig. 15b- 15d. As a result, to this order in q�1, when

1 < ↵ < 2 the ratio Z(3)
1 /Z(3)

0 is given by all possible
paths taken by the (1 2 3) domain wall, with a sub-leading
correction involving processes shown in Fig. 16a.
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(a) (b)

(c) (d)

FIG. 16. Splitting of an S3 Domain Wall: The lead-
ing correction to the behavior is given by the process shown
in (a). The remaining processes are parametrically smaller
than this leading correction. As an example, the weights
of processes (b)-(d), relative to the weight of a composite
(1 2 3) domain passing through the region are given by (b)
J2
1/J

2
8 = g2q�2↵+ · · · , (c) J6J

2
5/(J1J

2
8 ) = 2q�3+ · · · , and (d)

J1J2/J
2
8 = g3q�3↵ + · · · .

4. Large-q limit, n > 3

We may calculate certain weights in the lattice magnet
when n > 3 in the large-q limit. In the absence of any
measurements � = 0, certain weights are known exactly
for arbitrary q [16]:

= 1 = 0 (A34)

=
q

q2 + 1
(A35)

Here, the second weight involves the creation of a domain
wall that is a product of m elementary transpositions. In
addition, the weight for a domain wall composed of m
transpositions to move downward at a triangle is given,
when � = 0 and in the large-q limit by [16]:

= q�m�k +O(q�m�k�1) (A36)

Here, k and m denote the number of elementary transpo-
sitions required to represent the domain walls along the
corresponding diagonal bonds.

These weights may be used, along with the expression
Eq. (A20), to derive the corresponding weights in the lat-
tice magnet in the presence of projective measurements,

FIG. 17. Splitting of an Sn Domain Wall: In the
large-q limit with randomly-located measurements, and with
n � 2 < ↵ < n � 1, we evaluate the dominant splitting pro-
cess at downward-facing triangle, with ⌧n = (1 2 · · ·n). We
find that this process is one where the number of transposi-
tions in the decomposition of the permutations �1 and �2 is
given by |�1| = 1, |�2| = n� 1. Other splitting processes are
parametrically smaller in q�1.

and in the large-q limit (A21) that we consider. Using
the fact that the Weingarten function in the limit q ! 1
is given by

Wgq2(�) = Möb(�) q�2Cyc(�) +O(q�2Cyc(�)�4) (A37)

where Möb(�) is the Möbius number with Möb(1) = 1,
and Möb(µ) = �1 when µ is a transposition [37], we
determine that

= 1 + 2gq�↵ + · · ·

= 2gq�↵�m + g2q�2↵ + · · ·

= q�k�m + g(q�↵�k + q�↵�m)

+ g2q�2↵ + · · ·

to leading order in the large-q limit. The ellipsis denotes
corrections that are sub-leading in q.
From these weights we observe that the leading con-

tribution to Z(n)
1 /Z(n)

0 is proportional to a sum of paths
taken by the ⌧n = (1 2 · · · n) domain wall through the
bulk of the lattice magnet, and restricted to end at the
boundaries of the A subsystem. As before, we may com-
pute certain corrections to this leading-order contribu-
tion in the large-q limit. For concreteness, we take the
exponent ↵ 2 [n� 2, n� 1]. Consider the process shown
in Fig. 17, which involves ⌧n splitting into two domain
walls �1 and �2 with |�1| = 1 and |�2| = n � 2. The
weight for this process, relative to the that of the do-
main wall which does not split is given by 2g�1q�↵+n to
leading order, while processes where |�1| > 1 are further
parametrically suppressed in the large-q limit.
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Appendix B: Details on DPRE numerics

There are various lattice models for the DPRE [19, 27].
In this paper, we used the model in Ref. [19], namely
ground state domain walls in a random bond Ising model
(i.e. a DPRE at zero temperature). We checked numer-
ically that its universal behaviors agree with DPRE at
finite temperatures, as computed from a direct lattice
discretization of Eq. (7) [27]. We also checked that it
agrees with minimal cuts in supercritical bond percola-
tion, as computed from Ford-Fulkerson methods.

Consider a two dimensional square lattice in a finite
rectangle, where x = 0, 1, . . . , LA and y = 0, 1, . . . , Y .
A domain wall is a directed path y(x), whose energy is
given by [19]

H =
X

x

[Jy|y(x)� y(x+ 1)|+�Jx(x, y(x))] . (B1)

Here Jy is not random, and �Jx are quenched ran-
dom variables with no correlations between di↵erent lo-
cations. Ground states are then “optimal” directed
paths yop(x) of minimum energies, and can be found
rather e�ciently [25], for either the point-to-point type
(y(0) = y(LA) = 0) or the point-to-line type (y(0) = 0).
In the main text, we have denoted the ground state en-
ergy FA.

In all our DPRE calculations in this paper, we take
Jy = 1.0 and �Jx sampled from the uniform distribution
on [0.0, 3.0]. In Figs. 6, 7, �FA is the change in FA when
�Jx(x = LA/2, y = 0) is reduced to 0, with �Jx at all
other locations unchanged.

Appendix C: DPRE scaling in less random Cli↵ord
circuits

Here we test the DPRE scaling of entanglement en-
tropies in two classes of hybrid Cli↵ord circuits with re-
duced randomness, as introduced in Ref. [6].

• Model A: Cli↵ord circuits with periodic unitary
gates in both the temporal and the spatial di-
rection, but randomly placed single-site measure-
ments.

Here in particular, we first generate random unitary
gates inside a spacetime block of the circuit with 8
qubits in space and 4 steps in time; then we arrange
this block in a brickwork throughout the circuit.
The measurements can occur at a probability p =
0.10, independently at each spacetime location of
the circuit, either inside the blocks or in between
the blocks.

• Model B: Cli↵ord circuits with uncorrelated ran-
dom unitary gates, but measurements placed on a
regular “superlattice”.

Here, we take the spacing between measurements
to be 4 qubits in the spatial direction, and 4 steps
in the temporal direction.

(a)

(b)

FIG. 18. Universal scaling functions �(⌘) and  (⌘) extracted
from models A and B (see text) and compared to those from
a DPRE simulation (same data in Figs. 4, 5). In fitting to
Eqs. (16, 18), we take � = 0.33 and ⇣ = 0.66 for both models
A and B. These plots should be compared with Figs. 4, 5.

Since for Cli↵ord circuits measurement results do not af-
fect the entanglement entropy, in models A and B the
statistical ensemble is generated solely by randomness in
the locations of measurements (A) or by randomness in
the unitary gates (B).
As in Sec. II A for the fully random Cli↵ord circuit,

here we calculate hSsub
A i and �SA in finite depth circuits

for models A and B, and collapse the data according to
Eqs. (16, 18). We then compare the universal scaling
functions �(⌘) and  (⌘) extracted from these calcula-
tions with those from the DPRE numerics that appeared
previously in Fig. 4(b) and Fig. 5(b). The results are
shown Fig. 18, and reasonable agreements with DPRE
are found. In particular, the extracted �(⌘) and  (⌘)
have asymptotic behaviors as predicted in Eqs. (16, 18).
Results in Fig. 18 suggest that the DPRE scaling is

generic as long as any quenched randomness is present,
as we have also illustrated elsewhere in this paper. On
the other hand, it is unclear whether a entanglement do-
main wall picture exists at all [16, 38] for “deterministic”
Cli↵ord circuits (without either type of disorder in mod-
els A and B) in its weakly-monitored phase [6].


