PRX QUANTUM 4, 010331 (2023)

Entanglement Domain Walls in Monitored Quantum Circuits and the Directed
Polymer in a Random Environment

Yaodong Li, Sagar Vijay®,” and Matthew P.A. Fisher
Department of Physics, University of California, Santa Barbara, California 93106, USA

® (Received 11 January 2022; revised 7 January 2023; accepted 27 February 2023; published 24 March 2023)

Monitored quantum dynamics reveal quantum state trajectories, which exhibit a rich phenomenology of
entanglement structures, including a transition from a weakly monitored volume-law-entangled phase to a
strongly monitored area-law phase. For one-dimensional hybrid circuits with both random unitary dynam-
ics and interspersed measurements, we combine analytic mappings to an effective statistical mechanics
model with extensive numerical simulations on hybrid Clifford circuits to demonstrate that the universal
entanglement properties of the volume-law phase can be quantitatively described by a fluctuating entan-
glement domain wall that is equivalent to a “directed polymer in a random environment” (DPRE). This
relationship improves upon a qualitative “mean-field” statistical mechanics of the volume-law-entangled
phase [Ruihua Fan, Sagar Vijay, Ashvin Vishwanath, and Yi-Zhuang You, Phys. Rev. B 103, 174309
(2021), Yaodong Li and Matthew P. A. Fisher, Phys. Rev. B 103, 104306 (2021)]. For the Clifford circuit
in various geometries, we obtain agreement between the subleading entanglement entropies and error-
correcting properties of the volume-law phase (which quantify its stability to projective measurements)
with predictions of the DPRE. We further demonstrate that depolarizing noise in the hybrid dynamics near
the final circuit time can drive a continuous phase transition to a non-error-correcting volume-law phase
that is not immune to the disentangling action of projective measurements. We observe this transition in
hybrid Clifford dynamics, and obtain quantitative agreement with critical exponents for a “pinning” phase
transition of the DPRE in the presence of an attractive interface.

DOI: 10.1103/PRXQuantum.4.010331

I. INTRODUCTION

In monitored many-body quantum systems subject to
repeated measurements, the evolving quantum state tra-
jectories can exhibit an array of entanglement structures,
which describe various phases and phase transitions that
are inaccessible when in equilibrium. Hybrid quantum
circuits with both unitary evolution and measurements pro-
vide a rich playground to explore such phenomena. Even
in the absence of any spatial or internal symmetries, the
steady-state dynamics can describe two phases, a weakly
monitored volume-law-entangled phase and a strongly
monitored phase with short-range entanglement [1-—4].
Tuning between these two phases reveals a novel nonequi-
librium transition, which in one-dimensional hybrid cir-
cuits has an emergent conformal symmetry [5—8]. Though
extensively studied in one dimension, this phase transition
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is not yet fully understood. Nevertheless, the volume-
law phase itself exhibits a richness of phenomenology,
dynamically generating a quantum error-correcting code
(QECC), which can retain quantum information for long
times [9—13].

The entanglement entropy in the volume-law phase of
a one-dimensional hybrid circuit can be related to the
free energy of entanglement domain walls (membranes
in higher dimension) in an emergent statistical mechan-
ics model [5,6]. Similar descriptions of the entanglement
dynamics have been obtained in purely unitary quantum
dynamics [14—16] and in random tensor networks [17,18].
In addition to the intrinsic randomness in the measurement
outcomes, studies have focused on hybrid circuits with
randomness in the unitary gates and/or the measurement
times and locations, which provide a source of “disor-
der” in the effective statistical mechanics that governs the
entanglement domain wall. This randomness necessitates
employing a replica method in analytic treatments and
ensemble averaging in numerical studies.

In this paper we revisit one-dimensional hybrid quan-
tum circuits, with a focus on the role of disorder and
relatedly, the ensemble statistics of the entanglement struc-
ture within the volume-law-entangled phase. Using both
analytic arguments and extensive numerics of Clifford
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circuits we demonstrate that the universal entanglement
structures in the quantum trajectories can be quantitatively
described by modeling the entanglement domain wall as
a “directed polymer in a random environment” (DPRE)
[19,20], which describes a directed path in a random poten-
tial landscape. We elaborate on the DPRE and its properties
in Sec. [ A. The free energy of the DPRE is also related to
the height of a stochastically growing interface, governed
by the celebrated Kardar-Parisi-Zhang equation [20,21],
and a number of exact results for the critical exponents
are known. Additionally, a description of the disorder-
averaged free energy of the DPRE is given by # attracting
random walkers, in the replica limit n — 0 [22,23].

A re-examination of the effective statistical mechan-
ics model for the random Haar circuit reveals that in the
(volume-law-entangled) ordered phase, the entanglement
domain wall is also described by the statistical mechanics
of n paths with an attractive interaction, in the n — 0 limit,
thereby establishing a direct connection with the DPRE.
We note that a similar relationship between the entangle-
ment evolution in unitary dynamics and the DPRE has
also been identified [14,16]. We provide detailed numerical
evidence on hybrid Clifford circuits, which enable direct
comparisons with the DPRE, revealing universal behaviors
of the directed polymer, which we review below.

In addition, we relate the DPRE physics to error-
correcting properties of the dynamical QECC, and find
quantitative agreements with Clifford circuits for sev-
eral universal exponents. The DPRE picture refines a
previous “mean-field” description [9,10] of the entangle-
ment domain walls, and highlights the role of disorder
in quantitatively changing the behavior of the entangle-
ment domain wall, and relatedly, the importance of rare
events. In the previous mean-field approach, the disorder
in the system is either eliminated by taking a quantitatively
incorrect approximation to the average entanglement (an
“annealed average”) [9] or completely neglected for sim-
plicity, resulting in a capillary wave theory of the domain
walls [10]. The resulting conclusions are in quantitative
disagreement with numerical results (e.g., predicting a log-
arithmic correction to the entanglement entropy, rather
than a power law), albeit qualitatively correct. Here, by
explicitly taking into account the disorder, we find that the
DPRE is fully consistent with all numerical checks that we
perform.

A. Summary of results

Our primary result, supported by analytic and exten-
sive numerics, is a conjecture that the von Neumann (vN)
entanglement entropies in the weakly monitored phase
behaves like the free energy of a DPRE, for a large class
of one-dimensional hybrid quantum circuits with quenched
disorder—due to randomness either in the choice of unitary
gates or in the locations of the projective measurements.

The DPRE is a well-studied problem in classical sta-
tistical mechanics. We briefly review this problem here.
Consider a particle on a line, whose spatial position at
“time” x is denoted y(x). The particle experiences a
space- and time-dependent potential V(y, x), which is ran-
dom, and short-range correlated in spacetime. Often, in
the literature, this potential is taken to have zero mean,
and second moment V(y,x)V(y',x') = 028(x —x)8(y —
y'), where ~-- denotes an average with respect to the
probability distribution for the potential, henceforth the
“disorder average.” For a given trajectory through a fixed
potential landscape, the energy functional for this particle
is given by E[y, V] = [i* dx [1 (dy/d0)? + V(y(x),»)].
The DPRE is the problem of studying the firee energy of
this directed path at a temperature 7, when averaged over
the random potential. That is, the quantity of interest is
given by

Fppre = —T In Zppre[V], (1)

where
Zppre[V] =/ Dy (x) e EIVT, (2)

where the path integral is taken over all trajectories y (x)
over a “time” interval 0 < x < L4. Previous studies of this
problem have found that at low temperatures, the free
energy cost of this path grows as Fpprg = foL4 + fng +
- with the universal exponent 8 = 1/3 and the ellipsis
denoting corrections, which are subleading in L. Further-
more, if the polymer is initially fixed to start at the origin
y(0) = 0, then the mean-squared displacement grows as

(L2 ~ LY, 3)

where the wandering exponent { = 2/3. This is notably
distinct from a random walk in one spatial dimension, for
which the analogous wandering exponent is 1/2.

The calculation of Eq. (1) often proceeds by employing
the so-called “replica trick,” using the fact that In Zpprg =
lim, o [(ZSPRE - 1) /n]. The quantity Zjrp describes
the statistical mechanics of # copies of the system (“repli-
cas”), which are coupled together after performing the
disorder average. Formally taking the number of replicas
to zero n — 0 defines the limit of interest, which recov-
ers the behavior of the disorder-averaged free energy. A
comparison of this “replicated” theory for the DPRE, and
an analogous replica trick, which we invoke to calculate
the von Neumann entropy in monitored quantum circuits,
forms the basis of our analytic conjecture, supported by
numerical studies, that the free energy of the DPRE is
quantitatively related to the entanglement in the steady
state of weakly monitored quantum dynamics.
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FIG. 1. The hybrid circuit model and minimal cut. In most of
this paper we consider hybrid circuits as shown in the figure.
The unitary gates (gray blocks) are arranged in a brickwork,
and are sampled randomly and independently from either the
Haar unitaries or the Clifford unitaries. The measurements (white
circles) are projective, performed independently at each loca-
tion with probability p. Superimposed is a “minimal cut” of
the circuit geometry, that serves as a domain wall separating
the subregion 4 (orange) from A (blue) with minimum energy
[given by the number of unmeasured links (red) that it crosses].
Although the minimal cut provides a heuristic picture of the
“entanglement domain wall” for the vN entropy, the two should
be distinguished—see the main text for more discussions.

Consider a subregion 4 of qubits in the final state,
living on the upper boundary of a very deep spacetime
circuit (see Fig. 1). The corresponding DPRE partition
function Z, is defined in Eq. (10) as a path integral over
all “entanglement domain wall” configurations—living in
the half-space (representing the circuit bulk) and directed
in the spatial direction of the circuit—that connects the two
endpoints of 4 and separates it from the complement 4.
Our conjecture then takes the following form:

Sy~Fy:=—-ThhZ,. (4)

Here S := —Trp, In p, is the vN entropy of the reduced
density matrix p4 for the random hybrid circuit in the
weakly monitored phase, and F4 is the free energy of the
corresponding directed polymer. Both quantities are ran-
dom variables, and the “~” symbol indicates that they
approach the same probability distribution as the length
of A (denoted L,) approaches infinity. In this particular
geometry, the probability distribution of F4 is known, as
summarized later in Eq. (11).

The boundary conditions of the DPRE can be under-
stood by drawing an analogy with the minimal cut through
the circuit geometry (see the illustration superimposed on
the circuit in Fig. 1). The minimal cut equals the Hart-
ley entanglement entropy when the unitaries are generic

[1,14], and scales as the DPRE when the measurements
are at random locations [19]. However, while the mini-
mal cut provides a useful picture, the Hartley entropy and
the vN entropy are quite different objects, and a minimal-
cut picture is not available in all the models we consider
(in particular, those without randomness in measurement
locations).

We support our conjecture by a combination of numer-
ical evidence in random Clifford circuits (Sec. II) and
analytic arguments for random Haar circuits (Sec. III).
We provide further analytic (Sec. III A) and numerical
(Appendix C) evidences that the conjecture also holds in
circuits where only one type of spacetime randomness—in
either the unitary gates or the measurement locations—is
retained [4]. These results suggest that the DPRE scal-
ing of the vN entropy is a generic outcome in the hybrid
dynamics, as long as any spacetime-dependent disorder is
present.

In Sec. II, we report quantitative agreements between
DPRE and the entanglement entropy in random Clifford
circuits with both random unitaries and random measure-
ment locations, finding the following.

(1) The sample mean and variance of the von Neumann
entanglement entropy in the steady-state satisfy

(S4) = soLly + bLﬁ +e, (5)

8Ss=\(SH —(S)’ =clh+---, (6
with the angular brackets denoting an average over
realizations of the monitored dynamics. Here 8 =
1/3 is the characteristic “roughness exponent” of the
DPRE. Notice that in the previous “capillary wave
theory” approach [9,10], the mean entanglement
entropy would instead be

3
(Sayew = soLy + 7 InLy,

which is in disagreement with numerical findings
[10].

(i1) Universal scaling forms for the entanglement
dynamics, starting from a maximally mixed initial
state quantitatively agree with those obtained for the
free energy of the DPRE confined to a finite “strip.”
From this we obtain the “wandering exponent” ¢ =
2/3.

(iii)) The error-correcting properties of the volume-law
phase is reflected in the rapidly decreasing mutual
information /7 [9,10], where B is a qudit inside the

subsystem 4, and A is the complementary region.
We argue that this is related to a “return probability”
of the DPRE at zero temperature. Numerical simu-
lations of the DPRE and of Clifford dynamics yield

010331-3



LI, VIJAY, and FISHER

PRX QUANTUM 4, 010331 (2023)

a consistent powerlaw decay,
(gz) o L", (7

where A &~ 1.25 and B is at the midpoint of A
embedded in an infinite system. For a geometry
where 4 meets the open boundary of a semi-infinite
system at qudit B, we find A ~ 1.00. We are
unaware of analytic predictions for these exponents
A. For the DPRE, the mean of I, 7 in Eq. (7) is dom-
inated by rare events, and the “typical” decay of /5 3
with L4 is faster than any power law [see Eq. (26)].

(iv) The “contiguous code distance” of the dynamically
generated quantum error-correcting code, as com-
puted from a decoupling condition on the DPRE in
a finite cylinder, is found to diverge with the system
size as

deont X Lf s )

consistent with previous results in random Clifford
circuits [10].

Furthermore, we observe a continuous phase transition in
Sec. IIF between this volume-law-entangled phase, and
another non-error-correcting volume-law phase, which is
not robust to the disentangling action of projective mea-
surements. This entanglement phase transition is driven
by a tunable rate p%°P of qudit depolarizing channels per-
formed near the final time of the hybrid dynamics, which
evolve the system of interest into a mixed state. The exis-
tence of this transition may be qualitatively understood in
a description of the entanglement as the free energy of an
Ising domain wall in the ordered phase of an Ising model
in the half-plane [9,10]. The Ising symmetry exchanges
a subsystem with its complement 4 <> A, which leaves
the entanglement entropy of a subsystem A invariant if
the entire system is in a pure state. As a result, depolar-
izing channels near the final time of the hybrid dynamics
behave as a local, Ising symmetry-breaking field near the
edge of the Ising model as shown in Fig. 2. The entangle-
ment domain wall will become “pinned” to this interface
if sufficiently many depolarizing channels are performed.
Equivalently, the coarse-grained Ising domain wall in the
bulk of the system may be viewed as the imaginary-time
trajectory of a quantum particle restricted to the half-line,
which will become exponentially bound to a sufficiently
attractive potential well near the origin, corresponding to a
pinning transition for the domain wall.

Although for concreteness, we choose to focus on depo-
larizing channels, other types of “decoherence” that take
a pure state to a mixed state—thereby breaking the Ising
symmetry—seem to have a similar effect [5], and are
expected to similarly induce a pinning transition.

While qualitatively correct, the Ising domain-wall pic-
ture is inaccurate in describing the quantitative features

FIG. 2. “Pinning” phase transition. Depolarizing channels
close to the final time of the hybrid dynamics leads to an effective
attractive potential for the entanglement domain wall. An Ising
domain-wall description of the entanglement [9,10], is shown
above, which yields a quantitatively inaccurate description of
the transition. The numerically observed transition in Sec. I F
is consistent with a “pinning” phase transition of a DPRE to an
attractive interface [22].

of this entanglement phase transition. At the clean depin-
ning transition [24] a random bulk potential for the domain
wall arising from quenched disorder in the dynamics is
a relevant perturbation [22], and must be included for an
accurate understanding of the transition. Remarkably, the
true critical exponents for the DPRE in the presence of an
attractive interface are known [22,25]. The presence of the
transition, as well as the predicted critical exponents, are
both confirmed in our Clifford numerics.

In Sec. 111, we present an analytic argument for the rela-
tion between the DPRE free energy and the vN entropy in
one-dimensional, hybrid dynamics with Haar-random uni-
tary gates, and local projective measurements (i) with rank
greater than 1 and applied deterministically in space, or (if)
with rank 1 and applied randomly in space. In particular,
we argue that the vN entropy, averaged over the measure-
ment outcomes and the ensemble of unitary gates, may
be described—in the limit of a large local Hilbert-space
dimension, ¢, and a sufficiently weak rate and strength of
projective measurements. Likewise, the disorder average
of the nth replicated DPRE partition function also yields
the statistical mechanics of » mutually attracting paths,
or equivalently, the quantum mechanics of n bosons in
one dimension, with an attractive interaction [23,26]. In
a continuum description of a polymer in a Gaussian ran-
dom potential with variance o> and at temperature 7, the
energy functional for the n paths after disorder averaging
is (neglecting n-dependent constants),

N " 1 dyj 2 O'2
E,,_/dx Z;E(E) —7;6<yi—y,»> 0!

The DPRE free energy is recovered in a replica limit
n — 0 of the partition function for the n paths. This
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further supports our conjecture linking the vN entropy for
the volume-law phase of random hybrid circuits to the free
energy of the DPRE.

Our emergent statistical mechanical description differs
from those derived in studies of the entanglement phase
transition in monitored dynamics [5,6], due to the paramet-
rically smaller strength of measurements that we consider,
which places the system deep within the volume-law-
entangled phase. Furthermore, for dynamics with projec-
tive measurements that are randomly applied in space,
the emergent statistical mechanics of the entanglement
describes paths with a strongly attractive bare interac-
tion. These paths are bound together, with parametrically
smaller corrections in ¢ describing processes where the
paths “split” and recombine. From Eq. (9), we qualita-
tively interpret this to be the replicated description of the
DPRE at low temperatures, where the local Hilbert-space
dimension g is related to the inverse temperature T of the
DPRE. We note that temperature is an irrelevant perturba-
tion to the zero-temperature behavior of the DPRE (and it
is this limit, which governs the Hartley entropy for these
dynamics).

In Appendix A we provide technical details of our
derivation of the statistical mechanical model for the ran-
dom Haar circuit. In Appendix B we describe details of the
DPRE model that we use as a reference for the Clifford
numerics. Finally, in Appendix C we present numerical
results on Clifford circuits with reduced randomness as
compared to those studied in Sec. II.

II. NUMERICAL STUDY IN RANDOM CLIFFORD
CIRCUITS

A. DPRE free energies in confined geometry

Before reporting on our numerics for the entangle-
ment entropy for a hybrid Clifford circuit, we first discuss
the behavior of a DPRE when confined in a finite two-
dimensional strip of height Y, whose endpoints are fixed
on the real axis, (x;,;) = (0,0) and (x7,yr) = (L4, 0) (see
Fig. 1) [27]. Here, the directed polymer must be fully con-
tained within the strip. Thus, a wide strip (large Y) would
allow more transverse fluctuations of the polymer, whereas
in a narrow one (small Y) such fluctuations are much more
constrained. In our comparison with entanglement in the
circuit model, Y is mapped to the circuit depth, see Sec.
InC.

For a given random potential V(x,y) in the strip, the
(quenched) partition function of the directed polymer is
given by

y(x)€[0,Y]
Zy(Y) = /
¥

0)=yLN=0

_ L4 Lg)2_
Dy()e YT i dx[1+2(8xy) V(x,y)].

(10)

o LA

FIG. 3. Directed polymer in a finite strip, with heights ¥ > Li
(left) and ¥ « Lfl (right), respectively.

Here we choose V(x,y) to be the standard Gaussian
white noise, (V(x,»)V(x',y")) =c?8(x —x)8(y —y’). In
the zero temperature limit 7 — 0, this quantity is then
given by the optimal directed path with lowest energy,
i.e., the directed minimal cut [19]. Universal aspects of the
DPRE are the same at zero and finite temperatures [28].

The DPRE has a wandering exponent { = 2/3, that is,
the height of the directed polymer scales as (L4)¢. Natu-
rally, there are two regimes, when the width of the strip is
large or small compared to the height of the polymer (see
Fig. 3).

When Y > (L,)¢, the strip becomes the upper-half-
plane, and the quenched free energy F4(Y) := —TInZ4(Y)
is a known random variable [29,30]

F(Y) = soLs — s1(Lo)P&,, (1)

where 5o are nonuniversal positive constants, § = 1/3
is the “roughness exponent,” and &;, at large L, obeys
the GSE Tracy-Widom distribution F4(s), so that [31]
Prob(§ > s) = F4(s). This distribution has a negative
mean, so the average coefficient of (L,)? is positive. The
exponent 8 is exposed if we consider either the “sublead-
ing free energy,”

FS™(Y) := Foz, (V) + Fu, oY) — Fa(Y),  (12)

whose mean is

(F5™(1)) o (Lo)P; (13)

or the standard deviation of F4(Y),

SEAY) = U3 ) — () o (Lo (14)

When Y <« (L4)*, the polymer cannot fluctuate transver-
sally, and we can simply assume that the free energy is a
sum of L4 independent random variables, hence

Fu(Y) = 5'La + (L)™VE'. 15)

Here, from the central limit theorem, Brw = 1/2 and &’ is
a Gaussian random variable with zero mean and a finite
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standard deviation. Thus

(F5™(Y)) o (Ly)°,
SF4(Y) oc (Lg)PRv.

(16)
)

These limits suggest the following scaling forms of
(FS™(Y)) and 8F4(Y):

(FS(Y)) = (Ly)P - ®[Y - (L)1, (18)
B/g 0
() = {"0 > T (19)
n, n— oo
and

SF4(Y) = (Lo)P - W[Y- (Lo, (20)

(B—BrW)/¢ 0
VMOE {’70 SR @1

n, n— oo

Here, we have 8/¢ = 1/2, (B8 — Brw)/¢ = —1/4.

B. Summary of boundary conditions

Before discussing the numerical results, we summarize
relevant boundary conditions that appear in this paper. In
the case of random Haar circuits, which is the subject of
Sec. III, all of them can be derived from the mapping
to statistical mechanical models, see Refs. [5,6]. In the
case of random Clifford circuits, which is the subject of
this section, such an analytic derivation has not been per-
formed. Our summary here relies instead on numerical
results in Ref. [8], which confirms the boundary condi-
tions using numerical simulations at the critical point of
the volume law-to-area law phase transition, p = p..

We need three boundary conditions for Clifford circuits,
namely a, b, and f [8].

1. Boundary condition b, represented with orange
color in all figures. We always associate this bound-
ary condition to the subregion of interest, i.e., the
subset 4 of qubits whose entanglement entropy we
want to compute, see, e.g., Figs. 1-3.

2. Boundary condition a, represented with blue color
in all figures. We always associate this boundary
condition to degrees of freedom that can be entan-
gled with 4, including those in A at the final time
(Fig. 1), and those introduced to create a maximally
mixed initial state (Fig. 3). We also associate this
boundary condition to where a depolarizing chan-
nel acts, see Fig. 2, since a channel is equivalent to
first coupling an ancilla to the system, then tracing
out the ancilla, so the ancilla can also be entangled
with 4. This boundary condition represents qubits
or operations that are “traced out,” and inaccessi-
ble and unknown to a party who holds A. In the

weakly measured phase, boundary conditions @ and
b must be separated by domain walls. Such domain-
wall configurations will in general have nonzero free
energies.

3. “Free” boundary condition f, represented with the
black color. In Fig. 7(a), this corresponds to the
open-boundary condition of the quantum circuit. As
the name suggests, qubits with this boundary condi-
tion are free to be connected to either regions of a
or b, and a domain wall can terminate anywhere in
regions with 1.

C. Entanglement entropies in Clifford circuits

We now turn to the computation of entanglement
entropies, Sy, in the random Clifford circuit, focussing on
the weakly monitored phase (choosing p = 0.08 ~ p./2
[4]) (see Fig. 1). Our conjecture is that the random variable
S4(Y) obeys the same distribution as F4(Y) at large L4 and
Y. In the following, we denote this with the shorthand nota-
tion Sy(Y) =~ F4(Y), as in Eq. (4). In particular, we identify
F4(Y) with the entanglement entropy S4(Y) of a subregion
A = [0, L4] in the final state of a random circuit with depth
Y, with a maximally mixed initial state [12].

This state can be obtained by creating L Bell pairs,
so that we have L qubits at the lower boundary (circuit
input), in addition to L qubits at the upper boundary (cir-
cuit output). According to our prescription in Sec. IIB,
the lower boundary will then have boundary condition a.
With this boundary condition, the directed polymer is con-
fined between the two temporal boundaries [5,6,8,10], just
as required by the finite strip in Fig. 3. We always take
L4 < L, where L is the size of the entire system.

In Fig. 4(a), we plot the data collapse of (Sj“b(Y))
according to Eq. (19), for various values of Y and L. From
this collapse we can fit for the exponents 8 =~ 0.34 and
¢ ~ 0.63; both are consistent with the DPRE. Furthermore,
in Fig. 4(b), we plot the scaling function ® () as extracted
from (Sj“b(Y)) in the Clifford circuit and from (Fj“b(Y)) in
a direct numerical simulation of the DPRE (see Appendix
B for details), and find that they agree with each other after
an overall rescaling of the axes. We find ® (1) o 7% as
n — 0, consistent with /¢ = 1/2.

In Figs. 5(a) and 5(b), we provide collapses for 654(Y)
and 6 F 4(Y) according to Eq. (21). Here, the fits for 8 and ¢
are close to 1/3 and 2/3, respectively, with high precision.
The behavior of the scaling function W () at small 5 also
agrees well with n(#=PrRW)/¢: see Eq. (21).

We also compute the normalized skewness of the prob-
ability distribution of —S,(Y) when Y > (L,)*, and find
a small constant fi3 &~ (.12 [32]. This is in the vicinity of
ﬂg‘SE ~ 0.1655 [33], where the difference might be due to
finite size effects or the lack of sufficient samples.
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FIG. 4. (a) The mean subleading entanglement entropy
(Sfl“b(Y)) [see Eq. (12)] in the Clifford circuit for various val-
ues of Ly and Y, collapsed against the scaling function ®(n)
[defined in Eq. (19)]. (b) The scaling function ®(n) extracted
from Fj“b(Y) in a numerical simulation of directed polymers,
rescaled and plotted on top of the same scaling function extracted
from (a). In both panels, the insets are the same data, but plot-
ted on a log-log scale. The directed polymers have length Ly <
32768 and live at zero temperature [see Eq. (10)]. For the Clif-
ford circuit data we take the best fits to the exponents, § = 0.34,
¢ = 0.63; whereas for the directed polymers we find the best fits
are f = 0.37,¢ = 0.66.

D. Mean entropy drop and mutual information
1. Point-to-point (pp) polymers

Consider a small but extensive subsystem A4 of a pure
steady state, when Y > (L4)¢. The quantity S, is again
described by the DPRE with fixed endpoints, in Eq. (10).
Here we discuss the decrease of S4 when its central qubit
[denoted B, at coordinate (L4/2,0)] is measured projec-
tively [9]. This decrease, denoted ASy, is proportional to
the mutual information between B and 4, namely /, 7 at
large L, [9,10]. In particular, /57 equals the number of
logical errors that can occur on B for the dynamical code
on 4 [10]. Thus, the vanishing of 7,7 with L is directly
related to the error-correcting properties of the volume-law
phase.

We obtain /7 from the DPRE description, as follows.
Identifying Sy and Fy, Iz is related to the following

(a) 2
— -0.5
2: 10
A
w
Q
LT( 10-06
10797
10—06 10—04 10—02 1000 1002 1004 100.5
n=yL,°
(b) [
AN O Clifford
10702 Y o op
\\A ——= 0%
10704
§ -0.5
> 10
10—05
10707
N
10710 1070.5 1000 100.5 1010
n
FIG. 5. (a) The sample-to-sample deviation of entanglement

entropy 6S4(Y) [see Eq. (14)] in the Clifford circuit for various
values of L, and 7, collapsed against the scaling function W (n)
[defined in Eq. (21)]. (b) The scaling function W(n) extracted
from §F4(Y) in a numerical simulation of directed polymers,
rescaled and plotted on top of the same scaling function extracted
from (a). The directed polymers have length L, < 32768 and
live at zero temperature [see Eq. (10)]. For both the Clifford cir-
cuit and the directed polymers we take the best fits 8 = 0.33,
¢ = 0.66.

combination of free energies of directed polymers:

IB,Z = SB +SZ_ SBUZ
=8p+ 84— Su-p
~EFp+Fy

1 Tln |:e—l/T(F[o,LA/2]+F[LA/2,LA]) + e—l/T(F3+FA):|

=Tln [1 + el/T(FB_FfS‘Ub)] . (22)

Here, in calculating S,_p, it is important to sum two par-
tition functions [10], corresponding to two possible con-
figurations of directed polymers that might contribute; see
Fig. 6(a). In the limit 7 — 0, the equation simplifies to

Iz 7 ~ max{0, Fp — F3™}. (23)
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FIG. 6. (a) Two configurations of DPRE that contributes to

S4—p in Eq. (22), where A — B consists of two disjoint segments
[0,L4/2]and [L4/2, L4], highlighted in blue. The calculation fol-
lows from a general prescription in Refs. [5,6], where the directed
polymers act as “domain walls” that separate boundary regions
of different colors. (b) The mean values of several observables
for the DPRE at zero temperature, which can all be related to
(Igz7) for the geometry in (a). They show the same powerlaw
decay L;A, where A & 1.25. (¢) The mean mutual information
(I3 7) computed from the random Clifford circuit in the volume-
law phase, for the geometry in (a). Here we take Lz = 2, and
L, < 4380.

That is, /57 = 0 if the configuration in the right panel of
Fig. 6(a) has a lower energy, corresponding to a decoupling
condition [10]; and Iy 7 = Fp — Fj“b otherwise.

At zero temperature another observable of the directed
polymer [now dominated by a single optimal path y,,(x),
see Appendix B] can be related to AF4 or ASy, namely
whether the directed polymer visits the measurement posi-
tion,

AF 4 O 8yy1,4/2)0- (24)

The mean of this object is thus a “return probability” of the
DPRE.

In Fig. 6(b), we calculate (max{0,Fp — Fj“b}) and
(8yop(L4/2).0) for the zero-temperature DPRE, and compare
them to (|AFy|) when the local potential at B = (L4/2,0)
is lowered to 0 (see Appendix B for details). We find that
these three quantities are indeed proportional to each other,
so are equally good candidate proxies for ASy. They all
give a consistent exponent for the powerlaw decay

(Ig7) &< (|AF4l) oc L, A ~ 1.25. (25)

The value of A is different from that of Ising domain
walls, 3/2 [9,10]. Currently we do not have an analytic
understanding of this exponent.

We thus expect the same powerlaw decay for (/57)
(AS4) in the volume-law phase of the random Clifford
circuit. We confirm this numerically in Fig. 6(c) for two
points in the volume-law phase.

A few comments are in order.

(1) It is instructive to compare with the “typical” mutual
information, as inferred from the mean of F$* at finite
T[10]

__sub
I;y; =Tln [1 + el/T(FB Fa >:| o e~ VTLa)”, (26)

Thus, in a typical realization of the polymer/random cir-
cuit, AS, is exponentially small in (L4)? for most mea-
surements. On the other hand, the mean value (AS,) is
dominated by rare measurements—occurring with proba-
bility LZA—that decrease S, by O(1). In Clifford cir-
cuits where /7 can only take integer values, this means
that in most cases /5 7 = 0, and the probability of /7 > 0

decays as o LZA. To observe the powerlaws in Figs. 6(b)
and 6(c) numerically, 10° samples are usually taken.

(i) We note that the strong subadditivity (SSA) of the
vN entropy has an interesting practical consequence here.
For subregions 4 C A’, the SSA implies that Igz > 13’7,
so that /57 is a monotonically decreasing function of Ly
for each and every run of the circuit. Thus, when the sam-
ple size is small, the mean of /7 will appear to decay

faster than the powerlaw LZA. This is consistent with
our comparison of “typical” and “mean” behavior, above.
For this reason, in obtaining Fig. 6(c) we choose differ-
ent samples for different values of L4, in order to avoid
overestimating A.

(iii) While in our numerics the DPRE at zero tempera-
ture (see Appendix B) is indeed constrained by the SSA, it
is less clear if SSA also holds for DPRE at finite tempera-
tures. In this context, it remains to be understood which
aspects of the quantum entanglement are consequences
of the universal properties of the DPRE, and which are
dependent on the specific DPRE model.
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2. Point-to-line (pl) polymers

Here we consider pl-directed polymers with only one
endpoint fixed,

y(Lg)€[0,Y]

2(y) = /
»(0)=0

Dy(x)e "/ Thy! e[ 143000V
(27)

In parallel to Sec. II D, we show an equivalence between
the mutual information in the Clifford circuit and its
counterpart evaluated with a point-to-line DPRE.

We consider the geometry in Fig. 7(a), in which a
directed polymer starting from a point on the real axis can
terminate anywhere on the vertical boundary to the right
(colored black, to denote a “free” boundary condition, see
Sec. I1B). We take 4 = [0,L4] to be a segment on the
real axis next to the right boundary, and B the rightmost
site of 4. The mutual information /7 in the Clifford cir-
cuit is extracted from the DPRE using the relation between
entanglement entropy and DPRE free energy [compare Eq.

(22)]

]B,Z =8+ 57 —S8z03
=Sp+S4—S4-s

~ FY P+ Tin[en V0 4 o1+
pl, -pl _,pp
= Th [1 TR )] , (28)

and as T — 0, we have
Iy ~ max{0,F}) + F" — F7). (29)

Our reasoning in Sec. IID suggests that three
DPRE observables—namely (max{0, Fgl + F 51 — F};p b,

(Syop(Lp.0)5 and (|AF§1|) when the local potential at B =
(L4,0) is lowered—should all exhibit the same power-
law in L4, whence all three can be regarded as the mean
DPRE mutual information. We confirm this numerically
for the point-to-line directed polymer at zero temperature
in Fig. 7(b), where we find

(Iy7) o L7, AP~ 1.00, (30)

Interestingly, this is also the exponent one gets from
capillary-wave theory [10], if quenched disorder is com-
pletely ignored.

In Fig. 7(c), we compute (/5 7) in the volume-law phase
of the random Clifford circuit with open boundary con-
dition, where 4 contains the rightmost L, qubits of the
system (which is itself in a pure state), and B contains
the rightmost two qubits. Recall that the open-boundary
condition of the circuit corresponds exactly to the free

(@) pp
pl pl
F FF+ F}

A |

B — oE

b) >
( VS~ e [ ;100
10705 A
S~o kAN " Y (AFal)
-1.0 SS C’\\ S~ pl . ppl _ ppp
10 RN & (max{0,F§' +F{ — F§P})
SUsL TNg O (Bywn.o
10-15 O ony SN
10720
10725
10730
10735
10!
© ol
. .
.
.
1000
E 1070.5
1071.0
1013
1010 101.5 102.0 1025
La
FIG. 7. (a) Two configurations of DPRE that contribute to

S4—p in Eq. (28). The left plot is a point-to-point polymer that
separates 4 — B from B U 4 (as required by the assigned bound-
ary conditions), and the right plot has two point-to-line polymers
for the same boundary condition. (b) The mean values of several
observables for the DPRE at zero temperature, which can all be
related to the DPRE mutual information [see Eq. (28)] (/5) for
the geometry in (a). This confirms Eq. (30). (c) The mean mutual
information (/5 7) computed from the random Clifford circuit for
the geometry in (a), with open spatial boundary condition. Here
we take Lg = 2, and L4 < 480.

boundary condition in Fig. 7(a), see Sec. II B. We find
good agreement with Eq. (30). Here, it is important to
take open-boundary conditions, and focus on the regime
YY¢ > L > L,, where the “entanglement domain walls”
for Sy and Sp are of the point-to-line type [1,8,10], as
illustrated in Fig. 7(a).

E. Decoupling condition and contiguous code distance
from DPRE

Here we present numerical results of DPRE in a finite
cylinder with circumference L and height Y. We denote the
upper (circular) boundary of the cylinder Q, and the lower

010331-9



LI, VIJAY, and FISHER

PRX QUANTUM 4, 010331 (2023)

boundary R. As in our conjecture, directed polymers in this
geometry are expected to model entanglement entropies of
circuits with periodic boundary condition and maximally
mixed initial state in its “mixed phase” [12]. In particular,
following the consideration of boundary conditions (see
Sec. Il A and Ref. [10]), the entanglement entropy of a con-
tiguous subregion 4 € Q should be related to the following
quantity, which receives contributions from configurations
with a single polymer, as well as those with two decoupled
polymers:

(a) soo

400

300

200

100

-~ PP _1 PP periodic b —
Sy~ —TIn |:e UTFY 4+ e /T(FA o ):| . 31 (b) 1012|| @ (ap) =150 s
8 (Iap) =2.50 =g
8 (0 <3.50 P
Here 4 is the complement of 4 in O, F and F*" are f | e e
ere 4 is the complement of 4 in Q, F;" and F=" are free L laongos L
. . . - . e - s
energies of “point-to-point” polymers for 4 and 4 as in ~c}310” P
Sec. I1 A, and Fg’mdw is the free energy of a periodic, |
noncontractable directed polymer that wraps around the il M g gl el
cylinder. Similarly, we have wi| =
71/TFBp _I/T(Fpp+chriodic) .101.0 1015 1020 1025 1030
S;~—Tln|e 1 +e 4770 , (32) L
FIG. 8. (a) The mean DPRE entanglement entropy (S4) and

SQ ~ Fg:riodic' (33)

As the temperature 7 — 0,

S = min{FiP, FP 4 Fimo0e), (34)
Si =, min{F2P, F1P 4 piredey, (35)
SQ _ Fé)zeriodic’ (3 6)

where each of F’, F**, and F, periodic 1o dominated by the
“ground-state” polymer with lowest energy.

Consider the mutual information Iyp =S4+ Sk —
Sir =S4 + Sp — §7. Assuming Egs. (34)—(36), we have

PP periodic PP
0, FP 4™ < 1y
]A,R _ ) Fgenodw’ ng + Fgenodw < F};p )

F'? +F, gemdic — FAEP , otherwise
(37)

In particular, /, z vanishes when the “decoupled” config-
uration dominates in S7; and typically this is when 4 is
small. This condition translates into the correctability of
the subregion 4 [10], and a code distance can be defined as
the minimum length of a subregion that is not correctable
[12].

the mean DPRE mutual information (/4 z). The nonmonotinic-
ity in (S4) at Ly < L and the vanishing of (I, z) at small L, are
signatures of the error-correcting properties of the weakly moni-
tored phase [10]. (b) The contiguous code distance d oy extracted
from (a), namely the value of L4 when ([, z) = €, for a few differ-
ent values of €. We find that dyon o L?, a result consistent with
Clifford numerics in Ref. [10].

Here, instead, we consider the “contiguous code dis-
tance” d.one as defined in Ref. [10] from the vanishing
of the mean mutual information (/4r), so that a direct
comparison can be made.

We calculate (S,) and (/4 ) according to Eqs. (34)+37)
for the DPRE with Y/L = 2, L < 1024, and the results are
plotted in Fig. 8. We observe a nonmonotonic (S4) and
a vanishing (/4 r) below a certain length scale, consistent
with the results from the Clifford circuit reported in Ref.
[10]. We further extract dcone from the condition (I, z) < €
for several different values of small €, and find that they
consistently give don; o LP, again consistent with the Clif-
ford numerics in Ref. [10]. This calculation provides yet
another check of the DPRE picture.

F. Pinning phase transition driven by depolarizing
noise

As another nontrivial check of our conjecture, we now
discuss the effect of qubit depolarizing errors on the weakly
measured phase, and show that they can drive the DPRE
through a “pinning transition.”

Following Ref. [34], it is instructive to think of the
hybrid circuit bulk (with ¥ 3> L) as an “encoding” stage
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that generates a dynamical code living at the final time
of the circuit. We consider random qubit depolarizing
errors on the code right before the encoding terminates.
The geometry is shown in Fig. 2, where depolarizing
errors—occurring at a probability p9 on each of the
qubits—are represented by blue dots near the upper bound-
ary of the circuit, favoring the same phase as qubits in 4 on
the upper boundary. This representation is justified: a depo-
larized qubit has a maximally mixed density matrix, and in
the stat-mech model [5,6] it becomes a spin fixed in the
“identity” direction, the same as spins at the upper bound-
ary in 4. A directed polymer connecting the endpoints of
A will experience an increase in energy proportional to
the number of depolarized qubits it encloses, because a
“bubble” must be created around each depolarized qubit as
required by the fixed-spin directions. Effectively, the depo-
larized qubits act as a random attractive potential on the
directed polymer, and would eventually drive the polymer
into a pinned phase [22]. In this phase, the directed poly-
mer lives near the upper boundary and cannot vertically
fluctuate, and its free energy will behave as if in a very
thin strip [see Egs. (15) and (16)].

We confirm the presence of a pinning transition [see
Fig. 9(a)] in the Clifford circuit using the mean “half-
cut mutual information” [10,12], defined as (/,7) when
Ly = L/2. This quantity behaves similarly as (Sj“b) in our
numerics, but averages better.

We can further collapse (/,7) across the pinning transi-
tion to the following scaling form:

(L) (™) =LF - Blp™P —pi™IL"],  (38)
- __Jconst, n— —o0

Here, we expect (IA)Z)(pfep) x (IAE)(pdep <p§ep) o« LP
and v = 3, following Refs. [22,25,35]. The collapse shown
in Fig. 9(b) has a reasonable quality, and the exponents are
reasonably close to these predictions. However, due to the
relatively small pg » 22 0.10 and the rather large v, we do
not reach system sizes necessary for a convincing extrac-
tion of these exponents, or for a meaningful comparison of
the scaling function E(n) with the DPRE numerics.

We expect that the pinning transition in (/, 7) is accom-
panied by a similar transition in the “contiguous code
distance” [10], scaling as L? and L° in the depinned and
the pinned phases, respectively. Our numerical results are
consistent with this picture [36], but they suffer from the
limitations mentioned above, thus a scaling collapse near
the critical point is not displayed.
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FIG. 9. (a) The mean half-cut mutual information (/, 7) (L4 =

L/2) versus L in the random Clifford circuit for various prob-
abilities of the depolarizing channel, pdep. Here, we see clear
evidences of a pinning transition. (b) Collapse of (/, 7) according
to Egs. (38) and (39), where we choose 8 ~ 0.36, v &~ 3.00, and
&P 2 0.10. In our numerics, we take all the depolarizing chan-
nels to happen a = 5 time steps before the circuit terminates, and
again the bulk measurement rate is p = 0.08 =~ 0.5p...

III. RANDOM HAAR CIRCUITS: THE REPLICA
TRICK AND THE DPRE

We now analytically study the steady-state entangle-
ment in weakly monitored dynamics, in which the unitary
gates are each chosen independently from a uniform dis-
tribution over the unitary group (the Haar measure). The
choice of Haar-random unitary gates is a theoretical tool,
which makes tractable the study of the averaged von
Neumann entanglement entropy, where the average is per-
formed over the ensemble of unitary gates, the outcomes
of the projective measurements, as well as the locations of
the applied measurements, if these are applied randomly
during the dynamics. This tool was previously developed
in the context of random tensor networks [17,18] and
Haar circuits without measurements [15,16,37,38], and
later extended to the case with measurements [5,6]. In this
formalism, replicas of the circuit need to be introduced
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FIG. 10. (a)Performing a Haar average over each two-site uni-
tary gate in the hybrid dynamics in the calculation of the von
Neumann entanglement of a subsystem A yields an emergent lat-
tice magnet with S, “spins” residing at the sites of a honeycomb
lattice. Integrating out the spins on one sublattice yields the lat-
tice model described in the text. (b) The Haar average in Eq. (41)
yields the ratio of two partition functions that differ only in their
boundary conditions, by the “insertion” of a domain wall at the
boundaries of the 4 subsystem for the spins in the lattice magnet
located at the final time slice. The domain wall is labeled by the
cyclic element of the permutation group (12 ...n).

in order to treat the nonlinearities in the von Neumann
entropy as well as quenched randomness in the circuit
geometry and in the measurement results. An average over
the Haar measure of moments of the unitary gate (a result
of replicating the circuit) can then be performed [39,40].
This average yields a sum over a pair of “spin” degrees of
freedom that are elements of the permutation group over
the replicas, with weights involving the so-called Wein-
garten function. Averaging over measurement outcomes
can be performed similarly [5].

In the case of a one-dimensional brickwork circuit, the
overall picture is particularly simple, as we summarize in
Fig. 10(a): we have lattice magnet with the spins on a hon-
eycomb lattice, and the interactions between the spins are
determined by the Weingarten functions. The von Neu-
mann entropy of a subregion A4 in the final state is mapped
to a free energy cost when the spins are forced in different
directions inside A (where the spin a cyclic permutation)
and outside of 4 (where the spin is the identity permuta-
tion), see Eq. (41) below for a detailed discussion. In the
weakly monitored phase, the boundary condition change
necessitates the insertion of a sharp domain wall, see
Fig. 10(b).

The domain wall has a complicated replica structure,
as the cyclic permutation can breakup into elementary
transpositions at finite onsite Hilbert-space dimension ¢
[5], as we discuss in detail below. The transpositions are
described by n interacting “elementary domain walls,”

where 7n is the replica index. We can analyze the inter-
actions perturbatively in the measurement strength and
1/g. From our analysis, we show that in the volume-law-
entangled steady state arising from random unitary dynam-
ics with weak projective measurements, applied randomly
or deterministically, the steady-state behavior of the von
Neumann entropy is related to the partition function of
n random walks with an attractive interaction, and in the
limit » — 0, which is precisely the replicated description
of a directed polymer in a random environment (DPRE).
We therefore expect that the scaling of the von Neumann
entanglement entropy in the steady state of these moni-
tored dynamics reproduces that of the free energy of the
DPRE, consistent with our Clifford numerics.

We focus on the monitored dynamics of a one-
dimensional array of qudits, each with Hilbert-space
dimension ¢, which consists of two-site, local unitary
gates and rank-r projective measurements applied proba-
bilistically at each lattice site. To study the entanglement
entropy in the monitored system, it is convenient to con-
sider an alternate dynamics in which the same unitary gates
are applied, but in which no projective measurements are
performed. Instead, ancillary degrees of freedom are intro-
duced at each timestep, which entangle with each qudit in
the system so that the system of interest now evolves into a
mixed state [6]. Each ancilla has Hilbert-space dimension
(1 + (¢g/r)) and entangles with a single qudit according to
the quantum channel

1
p®10) (0] —> m[m 10) (01|

A qa/r
o 2P P @ m) (ml, (40)

14+
m=1

where p is the density matrix of the qudit, P are a
complete set of rank-r orthogonal projectors [41], |m) is
a state of the ancillas in the standard basis with (m'|m) =
8mm, and A > 0 is a free parameter of the dynamics. The
ancilla-assisted dynamics involve repeated applications of
two-site unitary gates, followed by the channel in Eq. (40)
between each qudit and a new set of ancillas.

The von Neumann entanglement entropy in the ancilla-
assisted dynamics is precisely related to the entanglement
ofthe pure state in the monitored dynamics, after averaging
over all monitored trajectories of the state. In the monitored
dynamics in which rank-r projective measurements are
performed randomly at each point in spacetime with prob-
ability p = 1/(1 + 1), the von Neumann entanglement
entropy of a subsystem A, averaged over all monitored
trajectories of the pure state and denoted (S4(?)), is sim-
ply given by the entanglement entropies of subsystems
in the ancilla-assisted dynamics as (S,(¢)) = Squo(®) —
So(1), where Q denotes all of the ancillas introduced in the
ancilla-assisted dynamics, up until time 7 [6].
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To make progress, we now specialize to the case where
the dynamics involve the application of two-site unitary
gates, which are each chosen independently from the Haar
measure. The entanglement of the 4 subsystem in the mon-
itored dynamics, now averaged over both this uniform
ensemble of two-site unitary gates and over the monitored
trajectories and denoted [E(S4(?)), is obtained by perform-
ing a Haar average over the entanglement entropies in
the ancilla-assisted dynamics Ey(S,(#)) = Evy Squp() —
Ey So(t) . Equivalently, we may write that

Ey(S4()) = lim

n—1n—1

1 |:EU Tr pavp(®”

1]. 41
Ey Tr po(0)" } *0

Here, p4up(f) and pp(f) are the reduced density matri-
ces for the A U Q and Q subsystems, respectively, in the
ancilla-assisted dynamics.

Each Haar average in the right-hand side of Eq. (41)
may be interpreted as the partition function for a two-
dimensional lattice magnet with “spins” o valued in the
permutation group on n elements S,, as demonstrated in
Appendix A. Each site in the lattice magnet corresponds to
an applied unitary gate in the dynamics; therefore, we refer
to various sites in the lattice magnet by the spacetime loca-
tions of the corresponding unitary gates. The two partition
functions differ only in their boundary conditions for the
spins at the final time of the dynamics, by the insertion of
a domain wall at the ends of the 4 subsystem. The domain
wall corresponds to a cyclic permutation

L=02...n), (42)

as shown in Fig. 10(b).

As a result, the ratio of these partition functions is pre-
cisely the two-point correlation function of a disorder field
in the §,, magnet. Denoting (. (x) as the disorder field at site
x on the boundary of the lattice magnet, which inserts the
7, domain wall, we may write

Ev Tr pqup(®)"

Tty = FERO)] 43)

where _|n now denotes the expectation value in the S,
lattice magnet, in the absence of any domain walls at the
boundary of the lattice magnet. Evaluation of Eq. (43) is
not possible for arbitrary n and g. However, a relationship
between this quantity and the replicated description of the
DPRE naturally emerges in the limit that the local Hilbert-
space dimension g becomes large. For the remainder of
this section, we focus on two apparently distinct kinds of
monitored dynamics.

A. Deterministic projective measurements of
rank-r > 1

We first consider monitored dynamics in which rank-
r measurements are applied at every point in space-
time, along with two-site, Haar random unitary gates. We
emphasize that the measurement locations are determinis-
tic. Within the ancilla-assisted dynamics, this corresponds
to setting A — oo, with » > 1 a free tuning parameter of
the dynamics. While ¢/r is required to be an integer in the
monitored dynamics, we note that » may be treated as a
continuous tuning parameter in the statistical mechanics
of the lattice magnet, which emerges after performing an
average over the Haar-random unitary gates.

When n = 2, the lattice magnet describes an Ising model
and the expression in Eq. (43) is simply the two-point
correlation function of the Ising disorder field within the
ordered phase of the Ising model, as shown in Appendix
A 1. The phase transition point for this Ising model may
be determined exactly, and in the limit ¢ — oo, this tran-
sition occurs at an O(1) value of the rank of the projective
measurements. To study the entanglement deep in the
volume-law phase for general n, we now consider a limit
of large local Hilbert-space dimension, by taking g — oo
while also scaling the rank as » = g ¢* where g is an O(1)
constant, and the exponent 0 < « < 1 is a free parameter
of the large-g limit. From our analysis here, we conjecture
that this parametrically weaker strength of measurements
places the system deep within the volume-law-entangled
steady state.

In this large-g limit, we proceed to obtain a descrip-
tion of the S, lattice magnet for arbitrary n. We find in
Appendix A1 that the replicated description of the von
Neumann entanglement entropy (43) is given by a uni-
form sum over all S, domain-wall configurations, such
that the domain walls (i) end at the boundaries of the A4
subsystem and multiply to the cyclic permutation t,, and
(if) are directed along the spatial direction. An example
of such a configuration of domain walls in the Sy lattice
magnet is shown in Fig. 11. Domain walls can also meet
and split in the bulk of the lattice magnet, according to the
allowed group multiplication in the permutation group. In
the large-g limit, however, only those “splittings” in which
the total number of elementary transpositions [42] required
to describe the ingoing and outgoing domain walls is con-
served, are allowed. All other processes are parametrically
smaller in powers of ¢ and may be neglected to leading
order in the large-g limit. As an example, a pair of domain
walls oy = (2 3) and 0, = (1 3) can meet and split into
a pair o; = (1 3) and oy = (1 2) since 010, = 005 =
(1 2 3). In contrast, the splitting process in which the out-
going domain walls are given by o = o; = (1 3 2), while
allowed by the group multiplication rule oo = (1 2 3),
is forbidden in the large-g limit, since the total number of
transpositions is not conserved in this process.
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03

FIG. 11. Lattice magnet with deterministic measurements. In
the limit of large local Hilbert-space dimension with determinis-
tically applied projective measurements, the replicated descrip-
tion of the entanglement is given by a uniform sum over all S,
domain-wall configurations, which end at the boundaries of the
A subsystem, and are directed along the spatial direction. Shown
is a schematic configuration of domain walls in the n = 4 (S4)
lattice magnet. When these domain walls intersect, the total
transpositions appearing in the decomposition of the “ingoing”
and “outgoing” domains is conserved, yielding a description as a
partition function for (» — 1)-directed walkers with an attractive
interaction.

For arbitrary n, we may write the replicated description
of the von Neumann entanglement entropy more formally
to leading order in the large-¢g limit as

EuTr pavo®" _ —yri0-1)
Ey Tr po(H)"

= e 7D (I,

{I'i}

Yo

dw config.

-aFn—l): (44)

where y is an O(1) constant, independent of n. Here, the
first sum is over the allowed domain-wall configurations
in the large-q limit described previously, while the sec-
ond sum is over labeled paths I'y,...,T",_; that start and
end at the boundaries of the A4 subsystem, and which are
allowed to intersect in the bulk of the lattice magnet. The
(n — 1) paths arise from the (n — 1) transpositions that are
required to express the cyclic shift element ,. For a set of
walks {I';} that intersect only pairwise, we note that this
interaction is given by the expression

w(ly, ..., Tho1) = 27" N ({T3)), (45)
where 7y is the total number of times that pairs of paths
intersect, and Ny ({I';}) is the number of distinct, allowed
labelings of the path configurations {I';} by transposi-
tions in the permutation group S,. We note that Ngy, ({I';})
depends on how the unlabeled paths intersect, but is
independent of other details of these trajectories.

The interaction (45) between paths is attractive. We note
that this entropic interaction has also been encountered in
the replicated description of the entanglement growth dur-
ing the unitary evolution of a one-dimensional quantum
system without projective measurements [16]. To see that
the interaction is attractive, observe that for the S5 lattice
magnet, the interaction is simply given by w(I';, ;) =

(3/2)"int as has also been argued for a related lattice model
in Ref. [16]. This is due to the fact that the cyclic shift 3
may be written as a product of two noncommuting trans-
positions in three different ways. In contrast, for a pair of
labeled paths that intersect and split, the outgoing paths can
be labeled in two distinct ways. For n > 3, the interaction
in Eq. (45) cannot be written as a local interaction between
paths, due to the fact that the permutation group S, for
n > 3 contains distinct transpositions that mutually com-
mute [e.g., (1 2) and (3 4) in S4], and only noncommuting
pairs of domain walls provide the required entropy to gen-
erate an attractive interaction. Nevertheless, we believe
that the weight (45) should grow exponentially in the num-
ber of path intersections for any finite n, due to the fact
that a finite fraction of these intersections will always occur
between noncommuting transpositions in S),.

For the S4 lattice magnet, it is still possible to calcu-
late the attractive interaction for certain trajectories of the
domain walls through the lattice magnet, and show that
the weight (45) grows exponentially in the number of path
intersections. We demonstrate this to be the case for certain
trajectories in Appendix A 1.

From our analysis here, we have shown that in the large-
g limit, the steady-state behavior of the von Neumann
entanglement is described by the replica limit of the sta-
tistical mechanics of n — 1-directed, labeled walks with an
attractive interaction and in the limit » — 1. We expect
that this replica limit recovers a description of the averaged
von Neumann entanglement entropy as the free energy of
a DPRE.

B. Randomly located projective measurements of rank
1

We now consider monitored dynamics involving ran-
domly located, rank-1 projective measurements. To study
the averaged entanglement dynamics of the pure state, we
consider a limit of large local Hilbert-space dimension,
which we define by taking ¢ — oo, while simultaneously
scaling the measurement strength A as

M=gq (46)

Here g an O(1) constant and 0 < o < n — 1 a free param-
eter of the large-g limit. When o = 0, the large-g limit
yields a description of the lattice magnet as an n!-state
Potts model, as shown in Appendix A 2. Tuning g yields
an order or disorder transition in the Potts model, which
becomes a percolation transition in the replica limitn — 1
[1]. This transition has been previously investigated to
understand the nature of the phase transition between the
volume-law and area-law-entangled phases, in the pres-
ence of a sufficiently large rate of projective measurements
[5,6].

The large-¢g limit with & > 0 describes dynamics with
a parametrically smaller rate of projective measurements,
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FIG. 12. §; lattice magnet with randomly located measure-
ments. The leading contribution to the replicated description of
the von Neumann entanglement with n = 3 replicas comes from
paths taken by the domain wall (1 2 3) € S3 through the bulk of
the lattice magnet as shown in (a). In the large-¢g limit consid-
ered in the text, all such paths appear with the same weight. The
leading correction to this behavior comes from the “splitting” of
this domain wall, shown in (b), while all other processes are fur-
ther parametrically suppressed in powers of g~!. The replicated
description may be thought of as a pair of labeled paths with an
attractive interaction (c).

and places the system of interest “deep” within the volume-
law-entangled phase. In this limit, we may study the
behavior of the expression in Eq. (43) for various values
of n. For n = 2, the lattice magnet again describes an Ising
model. The leading contribution to this correlation func-
tion comes from summing over weighted paths taken by a
single Ising domain wall that ends at the boundaries of the
A subsystem.

For n > 2, the description of the lattice magnet invites
further study. We first consider the case n = 3, for which
the weights in the bulk of the lattice magnet may be cal-
culated exactly. In this case, and within the large-g limit
that we consider, Eq. (46), we show in Appendix A2
that nucleating domain walls in the bulk of the system
is parametrically suppressed in ¢g. We find that the lead-
ing correction to Eq. (43) comes from paths taken by the
(1 2 3) domain wall through the bulk of the system, as
shown in Fig. 12(a). When 1 < « < 2, the leading correc-
tion to this contribution comes from the process shown in
Fig. 12(b), where the 73 domain wall splits into a pair of
domain walls at an upward-facing triangle, so that each
split domain wall is labeled by an elementary transpo-
sitions in the permutation group S;. All other processes
are parametrically suppressed in the limit of large local
Hilbert-space dimension.

From this, we interpret the leading contributions to
w(La)p(0)|5, shown in Fig. 12 as the partition function
for a pair of paths that experience an attractive interac-
tion and that are constrained to end at the boundaries of
the A subsystem. The weight for a given configuration of
paths is again obtained by fixing the location of the domain
walls in the lattice magnet and summing over all allowed
labelings of the domains by elements of S3, so that the two
paths are in correspondence with the pair of transpositions
required to represent the shift permutation 73 = (1 2 3).
The attractive interaction is evident from the fact that the
paths are bound into a single domain wall to leading order
in the large-¢ limit.

When n > 3, the leading contribution to the replicated
description of the von Neumann entanglement again comes
from all configurations of the domain wall 7,,, such that the
domain wall ends at the boundaries of the 4 subsystem. To
interpret this as the bound-state formed of » — 1 walkers,
we repeat the analysis for the S3 lattice magnet. We are able
to show in Appendix A 2 that the weight of a splitting event
at a downward-facing triangle—similar to the one shown
in Fig. 12 for the S; lattice magnet—provides the domi-
nant subleading correction to the leading large-g behavior
within a specific range of «. This process is one where 7,
splits into 7,, = 0707, where o is an elementary transposi-
tion, and o7 is a permutation, which can be decomposed in
terms of (n — 2) elementary transpositions. Since this lead-
ing correction is one that conserves the number of ingoing
and outgoing transpositions, we interpret the bound state
for any n as one formed from n — 1 walkers.

Our analysis here suggests that the large-g expansion
of the lattice magnet is analogous to a low-temperature
expansion of the directed polymer in a random environ-
ment, since the strength of the bare attractive interaction
between paths grows as ¢ is increased. We then expect by
taking the replica limit n — 1 that the scaling of the aver-
aged von Neumann entanglement reproduces that of the
free energy of a DPRE.

IV. OUTLOOK

To summarize, we provide evidence for the DPRE scal-
ing of the VN entanglement entropy in two classes of
hybrid random circuits, when they are in the weakly mea-
sured phase with volume-law entanglement. For the circuit
with random Haar unitaries, in the limit of small mea-
surement rate and infinite local Hilbert-space dimension,
the result follows from the observation that the effective
statistical mechanics model coming out of the replicated
description of the vN entropy describes # attractive random
walkers, similar to the model obtained when the DPRE is
replicated. Here, the randomness in the ensemble of unitary
gates—but not in the locations of the gates or of the mea-
surements—provides an essential analytical tool. For the
circuit with random Clifford unitaries, we mostly rely on

010331-15



LI, VIJAY, and FISHER

PRX QUANTUM 4, 010331 (2023)

numerical simulations, where the DPRE scaling is borne
out when at least one type of randomness—either in the
unitary gates or in the measurement positions—is present.

The simplest picture consistent with these results is that
the DPRE scaling is the “default” outcome in the volume-
law phase of hybrid circuits with any type of randomness.
These would include, in particular, a non-Clifford circuit
with Floquet unitaries and weak measurements performed
uniformly in space and time [4], with only randomness
in the measurement outcomes. The validity of this simple
picture remains to be determined.

A partial extension of our analytic argument to random
Clifford dynamics is possible. Since the Clifford group is a
unitary three design [43], the emergent statistical mechan-
ical description of the entanglement is identical to the
Haar-random case for n < 2 replicas, leading to a con-
jecture that the averaged entanglement entropy in this
setting is also described by the DPRE as the entanglement
domain wall. Alternatively, one can possibly invoke the
mapping of the Clifford dynamics to an asymmetric sim-
ple exclusion process (ASEP) [4,14], the latter known to
be described by the KPZ equation in certain cases [44].

The DPRE scaling, when combined with the “entan-
glement-domain-wall” picture, can be used to understand
various quantitative aspects of the volume-law phase. One
such example is the pinning phase transition driven by
“decoherence,” where the DPRE gives precise predictions
of the critical exponents. Another example is the various
“error-correcting” exponents in Sec. I E. As an immedi-
ate extension of these ideas, the eventual purification of a
maximally mixed initial state—and the difference between
open and periodic boundary conditions [10]—can also be
obtained from the DPRE picture. These would involve the
consideration of “waist” domain walls, whose free energy
is given by periodic or open directed polymers of the
“line-to-line” type.

Along these lines, it would be interesting to explore
entanglement domain walls in higher-dimensional hybrid
circuits, where “random membranes” [45,46] might give
rise to qualitatively different dynamical codes.
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APPENDIX A: HAAR AVERAGE AND THE
ENTANGLEMENT IN HYBRID QUANTUM
CIRCUITS

The von Neumann entanglement entropy S(p) =
—Trp log p for the density matrix p may be written as

(AD)

S(p) = 1irr} [M} ]

1—n

In our ancilla-assisted dynamics, ancilla degrees of free-
dom are introduced at each point in spacetime to entangle
with the system of interest, as per the quantum channel
in Eq. (40). Each ancilla has a Hilbert-space dimension
1+ (g/7). Let O denote the ancilla degrees of freedom.
For any choice of unitary gates in the dynamics, the nor-
malized reduced density matrix for the system and all of
the ancillas Q is given by the expression

p@0) =1+ "M p(m;H) © jm) (m|, (A2)

where |[m) denotes a product state of all of the ancillas in
the standard basis, while p (m; ?) is the unnormalized den-
sity matrix of the system of interest, which is obtained by
applying unitary gates and forced projective measurements
on the system at different points in spacetime according to
the state of the ancillas; as an example, if the state of the
ancilla at site s and time ¢ is given by |m), then in the cor-
responding nonunitary evolution of the system, the rank-r
projection operator P™ is applied at site s at time ¢ in
the system. If m = 0, then no projector is applied at that
point in spacetime. Finally, |m| denotes the total number
of nonzero entries in m, which corresponds to the num-
ber of forced measurements performed in the nonunitary
dynamics.

The entanglement entropy (S4(¢)) of the subsystem A
of the monitored pure state, after averaging over trajec-
tories of these monitored pure states may be written as
(S4) = Squp — Sp, as described in the text. When the
unitary gates in the dynamics are Haar random, we per-
form an additional average over this ensemble of gates.
The Ey(S4(f))—where the average is over the local,
Haar-random unitary gates, and the measurement out-
comes—may be written as

1 [EyT Py
Ey(S4(1) = lim [ v Tt pavp(®)"

n—1 Ey Tr pQ(t)" 1:| - (A3
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We observe that

[m|n

A
Tr paup()" = Z TS Try pa(m; )", (A4)

where p4(m;?) is the unnormalized density matrix for the
A subsystem, after an evolution involving the applica-
tion of unitary gates and forced single-qudit projections at
various points in spacetime, as determined by m.

Let U be a g x ¢ unitary matrix drawn from a uniform
distribution over the unitary group. The average over this
distribution for products of unitary matrices may be written
as

Ey[(UU)" = ) W, 'nlo)(tl, (AS)

o,TESy

where o € S, labels an element of the permutation group
on n elements, Wg, (1) is the Weingarten function, and |o’)

labels a corresponding state in a ¢*"-dimensional Hilbert
space, which is defined as

n
. .
l_[aik,i;(k) |llalla"'alnal )a

k=1

(A6)

o)=Y

ik 4i})

with each index i,, i, € {1,...,q}. The state |o) is unnor-
malized, and the inner product of two such states is

cyc(a‘lr)

(olt) =¢q , (A7)
where cyc(o) is the number of cycles in a cycle decom-
position of the permutation o. As an example, if 0,7 €
S3, and if o = (1 2), T=(1 2 3), then cyc(o™'1r) =
cyc((2 3)) = 2. More generally, if P is a rank-r projec-
tor acting on the g-dimensional Hilbert space (tr(P) =r,
P2 = P), then (¢|P®?"|t) = r*¥*@ D) From this, we find
that

Ey Try pa(m;0)" = Z,(m; 1), (A8)
where Z,(m;?) is the partition function for an S, magnet;
each two-site unitary operator is replaced by two spins o,
T € §,, as shown in Fig. 10(a). The weight for a config-
uration of the magnet is given by taking the product of
weights over all bonds on the honeycomb lattice. For ver-
tical bonds, the weight is simply given by Wg, (o~ '1); for
diagonal bonds connecting two spins o and 7, the weight is
given by (o |7) if no forced measurement is applied at that
bond in the corresponding nonunitary dynamics of the state
of the system, and weight (o |PY)|r) = 1 if a forced mea-
surement is applied, which projects the qudit in the system
to state |j ).

Equation (A4) is then interpreted as the annealed aver-
age of this partition function over “disorder” configu-
rations, labeled by m. We may perform this annealed
average, as well as the sum over the t spins to obtain that

Eu Tr [pap(®"] = (14172 2},
Ey Tr[oo@)"] = (147" 237,

(A9)
(A10)

where Z™ is a partition function for the o € S, “spins” on
a triangular lattice as shown schematically in Fig. 10(a).
The locations of the spins correspond to different points in
spacetime where unitary gates applied during the dynam-
ics. The two partition functions differ only in their bound-
ary conditions for the spins at the final time slice. The
boundary conditions for Zl(") requires that o, =1 (the
identity permutation) if r # 4, and o, = (1 2 ... n) (the
cyclic “shift” permutation) if r € 4. Equivalently, there is
a single pair of domain walls, labeled by the cyclic per-
mutation (1 2 ... n) at the edges of the 4 subsystem
at the final time-slice. The boundary conditions for Zé")
requires that o, = 1 for all spins at the final time slice. If
the initial state of the system is a product state, then the
system has open-boundary conditions for all spins at the
initial time slice. In contrast, for a maximally mixed ini-
tial state, the system has o, = 1 for all spins at the initial
time slice. Apart from this difference in boundary condi-
tions, the two partition functions have identical weights at
each downward-facing triangle, which may be determined
using the above relations to be

J(01,02,03) = Zquz(a;%)

TeS,

n
% |:q}‘ rcyc(aflt) 4 qcyc(allr)i|
r

% [Q_Mrcyc(az_lt) 4 qcyc(az_lr)i| , (Al11)
r

where the Weingarten function Wg,»(7) depends only on
the cycle decomposition of T € S,,. As a result, the weights
in Eq. (A20) depend only on the cycle decomposition of
the permutations o los, 02_10"3, 03_101.

1. Deterministically applied, weak projective
measurements

In this case, we consider ancilla-assisted dynamics with
A — 00, and » > 1, which describes monitored dynamics
with rank-7 projective measurements applied deterministi-
cally, at every lattice site. The bulk, three-spin weights in
the lattice magnet are given by

2
q —1 -1 -1
J(01,07,03) = E E quz (0;'7) oye(oy T)+eye(oy T)

TesS,
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When n = 2, we may determine these weights exactly, by
using the Weingarten functions Wg2([2]) = (¢* — )7,
Wg 2 ([11]) = —g~*(¢* — 1)™". In this case, the three-spin
weights may be rewritten as a Boltzmann weight for an
Ising model with nearest-neighbor interactions along the
bonds of the triangular lattice. The spin interactions along
the horizontal (K,) and diagonal (X, ) bonds of the lattice
are given by

K — T [J(—I—,—i-, +)J (+, +, —)]’ (A12)
4 J(+a T _)2
4 J(+’ +9 _)

And the bulk phase transition for this Ising model is
obtained when —2K, = Insinh(2K)). We observe that in
the limit ¢ — oo, the transition still occurs at a finite value
ofr=r,=1+2.

To study the lattice magnet deep in the volume-law
phase, we now take a large-g limit ¢ — oo, while scaling
the rank of the projective measurements as

r=gq°, (Al14)
with 0 < @ < 1, and g an O(1) constant. For convenience
of presentation, we rescale all of the weights by a factor
J — J x (q/r)*"~2. After this rescaling, we find that the
weights at the downward-facing triangles are given, in our
large-¢ limit, by

-1 -1
J(01,02,03) = (g ¢*) 7171 #l7l2 sl

x [14 0], (A15)
where |o| = n — Cyc(o) denotes the number of elemen-
tary transpositions required to represent the permutation o.
The leading term in Eq. (A15) comes from setting 7 = o3
in the expression for the three-spin weights, while the
subleading correction comes from terms where 7 = o3
where u is an elementary transposition.

These three-spin weights may be used to determine the
leading contributions to the ratio Z\" / Z\". First, the dom-
inant three-spin weight is given by one with no domain
walls at a downward-facing triangle, so that J(o,0,0) =
1 + O(g=2¥). All of other weights are parametrically
smaller in powers of ¢!, so that domain-wall creation
is suppressed in the bulk of the lattice magnet. Further-
more, the weights in Eq. (A15) depend only on the total
number of transpositions in the permutations o, o3 and
o, 13, so that domain-wall 7 is permitted to “split” into
domain walls o, ¢’ in the bulk of the system, as long as
|t| = |o| + |o’|. As a result, the leading contribution to
the partition function Zl(") involves a sum over domain-
wall configurations such as the one shown in Fig. 11, in

which the domain wall 7, = (1 2 3 - - - n)—which is nucle-
ated at one end of the 4 subsystem—ypasses through the
bulk of the system, and splits into domain walls. The num-
ber of transpositions required to represent a permutation is
conserved during the splitting process. All of these allowed
domain-wall configurations appear with the same weight.

Without evaluating the three-spin weights at higher
order in ¢~!, we may identify an O(1) attractive interac-
tion that arises when re-writing Zl(") as a partition function
for n — 1 random walkers, each of which corresponds to a
transposition in the decomposition of the shift permutation
(123---n). We may write

z"
S & Y= > wlh.....T,)  (Al6)
0 dw config. | AT

where the first sum is over the allowed domain-wall con-
figurations that respect the boundary conditions, while
the second sum is over labeled paths I'y,...,[",_; that
start and end at the boundaries of the A subsystem, and
which are allowed to intersect in the “bulk” of the system.
For a set of walks {I";} that intersect only pairwise, this
interaction is given by the expression

w(l, ..., Tuy) = 27" Ny ({T4), (A17)
where niy, is the total number of times that pairs of walkers
intersect, and Ny, ({I';}) is the number of distinct, allowed
labelings of the path configurations given by {I';} by trans-
positions in the permutation group S,. We note that this
kind of interaction has been previously identified in a
different lattice magnet that arises in the study of the entan-
glement dynamics in random unitary evolution without
projective measurements [16].

This rewriting, Eq. (A16), introduces an attractive inter-
action between the walkers. For the S; lattice magnet, this
interaction between walks I'}, I, may be written as a local
interaction, due to the fact that the (1 2 3) domain wall
may be written as a product of a pair of elementary trans-
positions in three different ways as (12 3) = (13)(12) =
(12)(23)=(23)( 3). In contrast, when a pair of paths
I'1, I'; meet and split, there are two different ways that the
outgoing paths can be labeled. This results in an interaction
w(l'y,T,) = (3/2)"2 where n;;, is the number of times that
the paths I'; and I'; meet in the bulk of the lattice mag-
net. For n > 3, this interaction cannot be written as a local
interaction between walkers, since not all decompositions
of the cyclic permutation 7, involve noncommuting trans-
positions. For example, 74 = (1234) = (14)(13)(12) =
(2 4)(2 3)(1 4); none of the transpositions commute in
the first decomposition, while in the second, the transposi-
tions (2 3) and (1 4) do commute. Furthermore, while any
pair of noncommuting transpositions can meet and split
into any one of three distinct pairs of transpositions, com-
muting transpositions can only be exchanged. The entropic
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factor therefore depends on the algebra between the trans-
positions. Nevertheless, the quantity, Eq. (A17), should
grow exponentially in the number of times that the paths
{I';} meet for any finite n, due to the existence of a finite
number of noncommuting transpositions that appear in the
decomposition of t, for any n.

It is illustrative to see the nature of this interaction in
the Sy4 lattice magnet. In this case, we observe that 74 may
be written as a product of three distinct transpositions 74 =
010303 in 16 distinct ways. These decompositions share
the following properties.

(a) If 0, and o3 commute, then both transpositions are
noncommuting with o.

(b) If 0, and o3 do not commute, then their product
may be decomposed into a product of transposi-
tions in three different ways 0,03 = 1,13 = p203.
Exactly two of these decompositions are such that
the “middle” transposition (labeled with the sub-
script “2”) does not commute with o, while the
remaining decomposition has a middle transposition
that commutes with o [47].

(c) Exactly 8 of the 16 decompositions of 74 into a
product of three transpositions t4 = 00,073 are such
that both o7 and o, do not commute and o, and
o3 do not commute. We refer to these as “fully
noncommuting” decompositions of 4.

Because of these properties, for any configuration of
domain walls, which intersect pairwise, there are always
more ways to label the domain as valid transpositions,
than there are ways to label the domain walls as distinct
paths. This gives rise to an attractive interaction between
the paths. We observe this to be the case as follows. From
the second property (above), it is clear that for any config-
uration of domain walls, which intersect and split pairwise,
and a total of s times, there are 2° labelings of the domain
walls as fully noncommuting transpositions; this is also
precisely the number of ways that these domain walls
could be labeled as distinguishable paths. Since the fully
noncommuting decompositions only account for half of the
possible decompositions of 74, there are potentially many
other ways to label the domain walls, so that the weight
W(F],Fz, F3) > 1.

For certain configurations of paths, we may explicitly
calculate the weight w(I"(, I, I'3). Consider the number of
domain-wall labelings that are consistent with the meeting
and splitting of domain walls shown in Fig. 13. Here, three
domain walls meet and split pairwise, and in an alternat-
ing fashion, with the domain wall in the middle alternately
intersecting with the one “below” and “above.” We note
that Fig. 13 is only meant to show the topology of these
intersecting paths, and that the exact locations of the inter-
section points within the lattice magnet is unimportant for
determining the corresponding weight w(I'y, ', I'3).

01

1 3
72 o . P »
oy 2 4

FIG. 13. A configuration of intersecting paths, corresponding
to a configuration of domain walls in the S; lattice magnet is
shown. Here, 010,03 = (1 2 3 4), and each domain wall o; is
an elementary transposition. The intersection points alternate
between either the top or the bottom path intersecting the middle
path at the points labeled in blue.

We wish to determine the total number of distinct
labelings by transpositions in Sy, after ny = 2s pairwise
intersections of the paths, which are labeled in blue in
Fig. 13. Let N;(s) denote the number of distinct label-
ings of these paths, such that the outgoing paths from the
last intersection point can be labeled by transpositions for
which o7 and o, do not commute and o, and o3 do not
commute. In addition, let N, (s) (N3(s)) denote the number
of distinct labelings of these paths, such that the outgo-
ing paths from the last intersection point can be labeled by
transpositions for which ¢, and ¢, commute (do not com-
mute) and 0, and o3 do not commute (commute). From
the allowed decompositions of t4, we observe that these
quantities satisfy a coupled difference equation

Ni(s+1) 4 4 4\ [Ni(s)
MNis+D)=12 2 0] |M@) (A18)
N3(s+1) 2 2 2) \Ns(s)

When s > 1, the total number of ways in which these
intersecting paths may be labeled by transpositions then
grows as Nyt ~ 2°(2 + V2)*. In contrast, the number of
ways that these paths can be labeled as distinguishable
walks T'y, Ty, T'3 is 2%°. The weight w® for these paths
appearing in the partition function for the random walks
then goes as

(A19)

\/z Rint/2
2 }

W<o>~[1+_

when nj, > 1, and therefore grows exponentially in the
number of path intersections 7.

2. Randomly applied, strong projective measurements

We now consider monitored dynamics in which rank-
1 projective measurements are randomly applied at each
site with probability p = A/(1 + X). This corresponds to
repeated application of the quantum channel, Eq. (40), with
A >0, r= 1. In this case, the bulk weights in the lattice
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magnet are given by

-1
J(o1,07,03) = Z qu2(0'3_11') [q)\.n + qCYC(al r)]

TS,

x [qk” + geer 1,>] . (A20)
The limit of large local Hilbert-space dimension yields
some simplifications in the evaluation of the three-spin
weights, and in our analysis of the S, magnet. We define
this “large-¢” limit by taking ¢ — oo and letting the
measurement strength A scale with ¢ as

M=gqme, (A21)

with g an O(1) constant, and « a free parameter of the
large-g limit. When o = 0, the three-spin weights simply
become

J(01,02,03) = (8 + 86,.03)(& + 80p.05) + O™ ") (A22)

so that the statistical mechanics of the lattice magnet
becomes that of an n!-state Potts model on a triangular
lattice. This Potts model exhibits a phase transition that
can be accessed by tuning g [5,6]. As A is related to the
strength of the measurements performed in the dynam-
ics, we now study the large-g limit with & > 0, which
describes a dynamics with parametrically smaller measure-
ment strength in the large-q limit, to access the properties
of the volume-law entangled phase.

3.n=3

For n =3, there are eight distinct weights at each
downward-facing triangle. These weights are summa-
rized in Fig. 14; each line in the figure denotes an
elementary transposition—the elements (1 2), (2 3), or
(1,3)—appearing in the decomposition of the S3 domain
wall at each bond. Two lines in a weight denote any pair
of distinct transpositions. By symmetry, J (o1, 07,03) =
J (03,01, 03), so that the weights in Fig. 14 are identical to
those obtained by a left-right “reflection” of the indicated
configurations.

We may evaluate these weights explicitly, using the fact
that

42
Wealll 1) = e, (A2
2
B —q
2
We,([3]) = (A25)

@t —D(g* —4)’

where the argument of the Weingarten function denotes
the cycle lengths in an element of S5. For any « > 0, the

¥
W Y ¥

\

J7 J8

FIG. 14. Weights in the calculation of Tr p3. The red line
denotes one of three elementary transpositions in the permutation
group S3. Two lines denote any distinct pair of transpositions.

largest weight at an upward-facing triangle is given by
one for which all of the spins are aligned (denoted Jg in
Fig. 14), so that there is no domain wall

=1+29qg %+
(A26)

where the ellipsis contributions that are subleading in g.
As a result, domain-wall creation in the bulk of the system
is suppressed. We may also quote the large-g behavior of
the other weights. For concreteness, we let 1 < o < 2 in
order to precisely quote the subleading corrections to each
weight. We find that

=g9q " +q P+
(A27)

:g2q—2o¢+2gq—2—a+_“
(A28)

=q¢ g+
(A29)
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_ 2gq—1—a+g2q—2a 4+
(A30)

The remaining weights involve the splitting of a domain
wall at an upward-facing triangle. These processes are
parametrically suppressed in the large-g limit, and do not
enter in the leading contributions to the partition function.
These weights are given in the large-g limit, by

(A31)
W - gq*lia + g2q72a + -

(A32)

(A33)

From these weights, we observe that leading behavior of
the partition function 21(3) comes from a sum over paths
taken by the (1 2 3) domain wall through the bulk of the lat-
tice magnet. All of these paths are weighted identically to
leading order in the large-g limit. We note that the leading
correction to this contribution comes from processes where
the (1 2 3) domain wall splits into a pair of transpositions
at a downward-facing triangle, when moving horizontally,
as shown in Fig. 14(a). The process shown there carries a
weight, relative to the weight for the composite domain
of J6J§/(J2J§) =2g'¢g3*t* 4 ... The remaining pro-
cesses are parametrically smaller than this correction in the
large-q limit. Some of these processes, such as ones involv-
ing the splitting and creation of domain walls in the bulk
of the system are shown in Figs. 14(b)-14(d). As a result,
to this order in ¢!, when 1 < & < 2 the ratio Zl(3)/Z(§3) is
given by all possible paths taken by the (1 2 3) domain
wall, with a subleading correction involving processes
shown in Fig. 15(a).

4. Large-q limit, n > 3

We may calculate certain weights in the lattice magnet
when n > 3 in the large-q limit. In the absence of any mea-
surements A = 0, certain weights are known exactly for

(@) w‘w‘w (b) ¢ a (123) A

VaRVaaV,
N

(12)

d
@ (123)

\

FIG. 15. Splitting of an S35 domain wall. The leading correc-
tion to the behavior is given by the process shown in (a). The
remaining processes are parametrically smaller than this lead-
ing correction. As an example, the weights of processes (b)—d),
relative to the weight of a composite (1 2 3) domain passing
through the region are given by (b) J2/J¢ =g?¢ > +---, (¢)
JeJ2 /(I3 =273 + -+, and (d) J1h/J¢ = &g + - - .

arbitrary ¢ [16]:

(A34)

?+1
(A35)

Here, the second weight involves the creation of a domain
wall that is a product of m elementary transpositions. In
addition, the weight for a domain wall composed of m
transpositions to move downward at a triangle is given,
when A = 0 and in the large-¢ limit by [16]

f fm

(A36)

Here, k and m denote the number of elementary transpo-
sitions required to represent the domain walls along the
corresponding diagonal bonds.

These weights may be used, along with the expression
Eq. (A20), to derive the corresponding weights in the lat-
tice magnet in the presence of projective measurements,
and in the large-g limit, Eq. (A21), that we consider. Using
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the fact that the Weingarten function in the limit ¢ — oo is
given by

Weg,2(0) = Mdb(o) g2 ¥ + O(g 2@ ~%), (A37)

where Mob(o) is the Mdbius number with Mob(1) = 1,
and Mob(u) = —1 when w is a transposition [39], we
determine that

:1_~_2gq_a+.
} :2gq7a m_|_92q72a_|_
k{ } :q—k—m+g(q—a—k +q—a—m)
_’_g2q72a+.“

(A38)

to leading order in the large-g limit. The ellipsis denotes
corrections that are subleading in g.

From these weights we observe that the leading con-
tribution to Z\"”’/Z" is proportional to a sum of paths
taken by the 7, = (1 2 ... n) domain wall through the
bulk of the lattice magnet, and restricted to the end at
the boundaries of the A subsystem. As before, we may
compute certain corrections to this leading-order contri-
bution in the large-¢g limit. For concreteness, we take the
exponent « € [n — 2,n — 1]. Consider the process shown
in Fig. 16, which involves t, splitting into two domain
walls o and o, with |o7| = 1 and |o,| = n — 2. The weight
for this process, relative to that of the domain wall, which
does not split is given by 2g7'¢™**" to leading order,
while processes where |o]| > 1 are further parametrically
suppressed in the large-q limit.

APPENDIX B: DETAILS ON DPRE NUMERICS

There are various lattice models for the DPRE [19,28].
In this paper, we use the model in Ref. [19], namely
ground-state domain walls in a random bond Ising model
(i.e., a DPRE at zero temperature). We check numerically
that its universal behaviors agree with DPRE at finite tem-
peratures, as computed from a direct lattice discretization
of Eq. (10) [28]. We also check that it agrees with minimal
cuts in supercritical bond percolation, as computed from
Ford-Fulkerson methods.

Consider a two-dimensional square lattice in a finite
rectangle, where x =0,1,...,L, and y =0,1,...,7. A
domain wall is a directed path y (x), whose energy is given

02

01

FIG. 16. Splitting of an S, domain wall. In the large-g limit
with randomly located measurements, and with n —2 < o <
n — 1, we evaluate the dominant splitting process at downward-
facing triangle, with t, = (1 2 ...n). We find that this process
is one where the number of transpositions in the decomposition

of the permutations o and o, is given by |oy| = 1, |oz| =n — 1.

Other splitting processes are parametrically smaller in g~

by [19]

H=Y[Ale) =y + DI+ Ad(e,y@)]. (B

Here J, is not random, and AJ, are quenched random
variables with no correlations between different locations.
Ground states are then “optimal” directed paths yo,(x) of
minimum energies, and can be found rather efficiently [19,
25,48], for either the point-to-point type (y(0) = y(Ly) =
0) or the point-to-line type (y(0) = 0). In the main text, we
have denoted the ground-state energy F.

In all our DPRE calculations in this paper, we take
Jy = 1.0 and AJ; sampled from the uniform distribution
on [0.0,3.0]. In Figs. 6 and 7, AF, is the change in F,
when AJ,(x = Ly/2,y = 0) is reduced to 0, with AJ, at
all other locations unchanged.

APPENDIX C: DPRE SCALING IN LESS RANDOM
CLIFFORD CIRCUITS

Here we test the DPRE scaling of entanglement
entropies in two classes of hybrid Clifford circuits with
reduced randomness, as introduced in Ref. [4].

(a) Model A4: Clifford circuits with periodic unitary
gates in both the temporal and the spatial direction,
but randomly placed single-site measurements.
Here in particular, we first generate random unitary
gates inside a spacetime block of the circuit with
eight qubits in space and four steps in time; then
we arrange this block in a brickwork throughout the
circuit. The measurements can occur at a probability
p = 0.10, independently at each spacetime location
of the circuit, either inside the blocks or in between
the blocks.

(b) Model B: Clifford circuits with uncorrelated random
unitary gates, but measurements placed on a regular
“superlattice.”
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FIG. 17. Universal scaling functions ® () and W () extracted

from models 4 and B (see text) and compared to those from a
DPRE simulation (same data in Figs. 4 and 5). In fitting to Egs.
(19) and (21), we take 8 = 0.33 and ¢ = 0.66 for both models 4
and B. These plots should be compared with Figs. 4 and 5.

Here, we take the spacing between measurements to
be four qubits in the spatial direction, and four steps
in the temporal direction.

Since for Clifford circuit measurement results do not affect
the entanglement entropy, in models 4 and B the statistical
ensemble is generated solely by randomness in the loca-
tions of measurements (4) or by randomness in the unitary
gates (B).

As in Sec. IT A for the fully random Clifford circuit,
here we calculate (Sj“b> and 6S4 in finite depth circuits
for models 4 and B, and collapse the data according to
Egs. (19) and (21). We then compare the universal scaling
functions ®(n) and W(n) extracted from these calcula-
tions with those from the DPRE numerics that appeared
previously in Figs. 4(b) and 5(b). The results are shown
Fig. 17, and reasonable agreements with DPRE are found.
In particular, the extracted ®(n) and W (1) have asymptotic
behaviors as predicted in Egs. (19) and (21).

Results in Fig. 17 suggest that the DPRE scaling is
generic as long as any quenched randomness is present,
as we have also illustrated elsewhere in this paper. On the
other hand, it is unclear whether a entanglement domain-
wall picture exists at all [16,38] for “deterministic” Clifford
circuits (without either type of disorder in models 4 and B)
in its weakly monitored phase [4].
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