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We explore a class of “open” quantum circuit models with local decoherence (“noise”) and local
projective measurements, each respecting a global Z2 symmetry. The model supports a spin glass
phase where the Z2 symmetry is spontaneously broken (not possible in an equilibrium 1d system), a
paramagnetic phase characterized by a divergent susceptibility, and an intermediate “trivial” phase.
All three phases are also stable to Z2-symmetric local unitary gates, and the dynamical phase
transitions between the phases are in the percolation universality class. The open circuit dynamics
can be purified by explicitly introducing a bath with its own “scrambling” dynamics, as in [Bao,
Choi, Altman, arXiv:2102.09164], which does not change any of the universal physics. Within the
spin glass phase the circuit dynamics can be interpreted as a quantum repetition code, with each
stabilizer of the code measured stochastically at a finite rate, and the decoherences as e↵ective bit-
flip errors. Motivated by the geometry of the spin glass phase, we devise a novel decoding algorithm
for recovering an arbitrary initial qubit state in the code space, assuming knowledge of the history of
the measurement outcomes, and the ability of performing local Pauli measurements and gates on the
final state. For a circuit with L

d qubits running for time T , the time needed to execute the decoder
scales as O(Ld ·T ) (with dimensionality d). With this decoder in hand, we find that the information
of the initial encoded qubit state can be retained (and then recovered) for a time logarithmic in L

for a 1d circuit, and for a time at least linear in L in 2d below a finite error threshold. For both the
repetition and toric codes, we compare and contrast our decoding algorithm with earlier algorithms
that map the error model to the random bond Ising model.
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I. INTRODUCTION

Recent theoretical progress in the dynamics of many-
body quantum systems has become increasingly laden
with ideas from quantum information theory. With no-
tions such as the entanglement entropy and the out-
of-time-ordered correlator, the process of information
spreading in a spatially extended system can be suc-
cinctly quantified. Two notable non-equilibrium phases
of closed system dynamics have emerged, namely a ther-
mal phase [1–10] where the information can spread across
the entire system, and a many-body localized (MBL)
phase (in the presence of strong quenched disorder) [11–
15] where information in the initial state is retained lo-
cally at long times. The MBL transition [16–23] between
the two is an “entanglement phase transition”, marked by
sharp changes in the temporal growth and spatial scaling
of the entanglement entropy.

A di↵erent type of entanglement phase transition oc-
curs in “hybrid circuits” [24–26], namely a random uni-
tary circuit interspersed with monitored local measure-
ments. Due to the competition between unitary gates
that increase entanglement and measurements that tend
to “disentangle”, the steady state can be in a volume
law phase of entanglement entropy at small measurement
rates, or an area law phase with more frequent measure-
ments, separated by a continuous phase transition [25–
32]. Using the language of quantum error correction [33–
36], the dynamics in the volume law phase can be viewed
as a “robust encoding” circuit [37, 38] of a quantum mem-
ory, whose information hiding properties prevent infre-
quent measurements from rapidly collapsing the wave-
function and suppressing the volume law entropy to an
area law [39–41]. The entanglement transition is then
interpreted as a transition in the code rate or channel
capacity, which is an information theoretic upper bound
of the residual information.

A crucial aspect of the measurement induced transition
is that it only occurs along quantum trajectories labelled
by the measurement results [25, 26, 42], but not in the
(Lindblad) evolution of the mixed state density matrix,
suitable for a dynamics where the “measurements” are
not monitored. As such, an experimental observation of
the transition will presumably need to make use of the
information of the measurement results. One possible
approach is to post-select on the same measurement re-
sults, so that one gets multiple copies of the same state;
and from these copies, nonlinear functions of the state
– such as the entanglement entropy or “squared corre-
lators” (see for example Eq. (4) below) – can be mea-
sured, in principle. However, the probability that the
same measurement history occurs more than once is ex-
ponentially surpressed in the system size, making this
approach impractical. A second approach is to “decode”
the circuit [27, 43], namely replicating the state by apply-
ing a “feedback unitary” based on the measurement his-
tory, so that the resultant state is the same for di↵erent
measurement histories. This is demonstrated in a recent

simulation of a hybrid stabilizer circuit on a trapped-ion
quantum computer [44], where an optimal decoding al-
gorithm (saturating the channel capacity) exists.

Another important class of monitored dynamics are
“measurement-only circuits” [45–50]. These circuits do
not have any built-in unitary gates, and the nontrivial dy-
namics is generated instead by competing local measure-
ments drawn from a finite set. In many such models, one
finds “measurement-protected phases” [48] with area law
entanglement entropies favored by di↵erent types of mea-
surements, and transitions between these area law phases
can also be transitions in the channel capacity from fi-
nite to zero. Because the measurements are prevalent,
the measurement-only circuits closely resemble the con-
ventional “decoding” dynamics of a stabilizer code [51–
54] – with competing check operator measurements and
interspersing errors – rather than an encoding circuit.
Namely, we encode one (or a few) logical qubit(s) of quan-
tum information in the initial state, and view a subset of
mutually commuting measurement operators as “check
operators” defining a certain code space, while treating
all other (incompatible) measurements as “errors” [50].
By recording the measurement results of the check op-
erators, one collects information about the errors, and
applies an appropriate decoding unitary based on this
classical information, in order to recover the quantum
information encoded in the initial state, in spite of the
errors. (See Sec. III for a clearer description of this de-
coding problem.) Here, the measurement outcomes enter
explicitly as input of the decoder. The probability of suc-
cessful decoding requires a finite channel capacity of the
circuit, but deducing a specific decoding protocol is com-
plicated by the presence of errors, details of the error
model and the possible intrinsic circuit compexity.

In this work, we study the said decoding problem
in the simplest measurement-only circuit, namely the
one with ZZ measurements on neighboring qubits and
X measurements on single qubits [45, 48, 50] (see also
Refs. [46, 47, 55]). We view the ZZ operators as check
operators defining a quantum repetition code, and the
X measurements (anticommuting with the checks) as
errors. Motivated by Bao, Choi, and Altman [56], we
also include another type of error, namely single-qubit
dephasing channels in the X direction, making the cir-
cuit an open system subject to decoherence and generally
driving the circuit into a mixed state. The two types of
X errors both become probabilistic bit-flips under check
operator measurements, whereas phase-flip errors never
occur due to the global Z2 symmetry that we impose.

We define our “baseline circuit” in Sec. II, and outline
in Sec. II A a mapping of the circuit dynamics to bond
percolation, which allows us to solve for the phase dia-
gram and for critical properties of the dynamical phase
transitions. (The details are left for Appendix A.) No-
tably, besides the “paramagnetic/non-percolating” and
the “spin glass/percolating” phases [45, 48, 50], a third
“trivial” phase with neither order is enabled by decoher-
ence, and is smoothly connected to the infinite tempera-
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ture fixed point [56]. Furthermore, we follow Ref. [56] and
introduce a “bath”, whose coupling with the “system”
replaces the decoherence (Sec. II B). When the bath dy-
namics is thermalizing, we find that the system-bath cou-
pling does act like decoherence, and the universal physics
is identical with the baseline circuit.

In Sec. III, we focus on the percolating phase [48] of the
baseline circuit, and devise a polynomial time decoding
algorithm (or simply a “decoder”) for the repetition code
based on “error-avoiding spanning paths” in the perco-
lating lattice. The performance of the decoder defines a
“decoding phase”, which coincides with the percolating
phase when the locations of the X errors are known to
the decoder. With unlocated X errors, the decoder finds
a zero error threshold for the (1+1)d repetition code, and
a finite error threshold for the (2+1)d repetition code. In
the latter case, the decoding phase is strictly within the
percolating phase, and the “decoding transition” is in a
distinct universality class than three-dimensional critical
percolation. In Sec. IIID, we confirm the robustness of
the decoder against faulty measurements. In Sec. III F,
we compare our results with previous work [53, 57], in
which the decoding problem of the repetition code in one
and two dimensions is mapped to a Minimal Weight Per-
fect Matching (MWPM) problem of Ising defects in ran-
dom bond Ising models (RBIM) in two and three dimen-
sions, respectively. Notably, for the three dimensional
RBIM, the matching problem is NP-hard, whereas our
decoder runs in polynomial time.

In Sec. IV, we discuss the general relation between de-
coding and phases of entanglement in hybrid circuits, and
possible future directions.

In Appendix A, we describe in detail the mapping of
the baseline circuit to bond percolation, and derive the
critical exponents, confirmed by numerical results.

In Appendix B, we prove the correctness of the decoder
using error-avoiding spanning paths. In Appendix B 2,
we drop the Z2 symmetry and consider the toric code
in (2+1)d, where both bit-flip and phase-flip errors are
allowed. For the toric code, the decoder can be gen-
eralized, and relies on the presence of two dimensional
“error-avoiding spanning membranes” in the percolating
phase of check operator measurements. However, with
unlocated errors, implementing our decoder by summing
over a subset of spanning membranes gives a zero error
threshold, whereas the MWPM decoder (using a map-
ping to a (2+1)d statistical mechanics model, generaliz-
ing the RBIM) does give a finite error threshold [53, 57].

In Appendix C, we move away from the decod-
able baseline circuit, and study the generic phase dia-
gram when various Z2 symmetric perturbations are in-
cluded. In particular, we consider cooling the “bath” (in
Sec. II B) by making local measurements, and observe
that the bath-system coupling ceases to act as decoher-
ence. In this case, the decoherence-induced trivial phase
is replaced by a “critically entangled phase” exhibiting
(super-)logarithmic scaling of entanglement entropy, sim-
ilar to the phase found by Sang and Hsieh [48].

II. SIMPLEST “BASELINE” OPEN QUANTUM
CIRCUIT WITH Z2 SYMMETRY IN

(1+1)-DIMENSIONS

We start with the simplest open Z2 circuit model
[Fig. 1], which contains three types of gates. This model
will subsequently be referred to as the “baseline circuit
model”. The dynamics at the t-th time step alternates
with the parity of t.
If t is odd, each of the nearest neighbor ZjZj+1 opera-

tors (Z1Z2, Z2Z3, Z3Z4, . . .) is measured independently
with probability p

M
ZZ

. The measurement outcome is ran-
dom and follows Born’s rule, and is thereafter recorded on
a classical memory. The state evolution is thus stochastic
and depends on the measurement outcome, where

⇢! M±ZjZj+1(⇢) =
P±ZjZj+1 · ⇢ · P±ZjZj+1

Tr[P±ZjZj+1 · ⇢]
(1)

with Born probabilities Tr[P±ZjZj+1 · ⇢], respectively.
Here P±ZjZj+1

:= (1± ZjZj+1)/2 are the projection op-
erators, correpsonding to the measurement outcome of
ZjZj+1 being ±1, respectively.
If t is even, for each qubit j, we have either

1. With probability p
M
X

= (1 � q)(1 � p
M
ZZ

), a pro-
jective measurement of Xj . The state evolution
M±Xj is similar to Eq. (1),

⇢! M±Xj (⇢) =
P±Xj · ⇢ · P±Xj

Tr[P±Xj · ⇢]
, (2)

but with a di↵erent set of projection operators,
namely P±Xj = (1±Xj)/2.

2. Or, with probability p
E
X

= q(1� p
M
ZZ

), a “decoher-
ence gate” – specifically a dephasing channel in the
X direction of qubit j,

⇢! EXj (⇢) =
1

2
(⇢+Xj⇢Xj). (3)

ZZ

ZZZZ ZZ

ZZZZ

X

X

X

X

t

ZZ  p�
ZZ

X  p�
X

X  p�
X

ZZ ZZ

X

1

2

3

4

5

6

FIG. 1. The “baseline” open Z2 circuit. There are three
types of gates, namely ZZ measurements at odd time steps,
and X measurements and X decoherence at even time steps,
each occuring with a finite probability. This may be obtained
from the measurement-only circuit in Ref. [45, 48, 50] by ran-
domly swapping out a fraction q of all single-qubit X mea-
surements for single-qubit X dephasing channels.



4

It is important that the projection operators of the ZZ

and X measurements, as well as the Kraus operators of
the dephasing channel in Eq. (3), all commute with the
global Z2 symmetry of the circuit, X =

Q
j=1,...,L Xj .

The circuit dynamics is therefore “strongly symmet-
ric” [58, 59].

These parameters have been chosen to satisfy p
M
ZZ

+
p
M
X

+ p
E
X

= 1. In the limit q = p
E
X

= 0, the model be-
comes the ZZ-X measurment-only circuit [45, 48, 50, 55].
For this model, the circuit dynamics can be mapped ex-
actly to a bond percolation problem on the square lattice,
where each bond (regardless of whether horizontal or ver-
tical) is present with probability p

M
ZZ

. The corresponding
percolation threshold is at pM

ZZ
= p

M
X

= 1/2 [45]. When
q > 0 and p

E
X

> 0, with this particular gate set and pa-
rameterization, the model can still be solved analytically
by a slight generalization of the above mapping to per-
colation, as we describe in Sec. IIA. The phases and the
critical properties are apparently universal and do not de-
pend on these details, as long as (strong) Z2 symmetry
is preserved by the measurements and the decoherence.
This is discussed in detail in Appendix C 1, where we
perturb the circuit with random local Z2 unitary gates
for which the dynamics cannot be exactly solved.

For concreteness, we will mostly take the initial state
a product of |+i

j
= 1p

2
(|0i

j
+ |1i

j
) on each qubit j in

our numerics. This is a “stabilizer state”, so that the
circuit can be simulated e�ciently using the Gottesman-
Knill theorem [52, 60]. This choice of initial state does
not a↵ect the phase diagram [50], and we will return to
the issue of a non-stabilizer initial state in Sec. III. We
also take periodic boundary condition in the numerics,
and focus on the steady state with times T � L, where
we have L qubits.

A. Phase diagram and critical properties

The model has three phases, shown in Fig. 2(a). In the
spin glass (SG) phase where ZZ measurements dominate,
the Z2 symmetry is spontaneously broken, and we have
an extensive “susceptibility” as defined below [48],

�SG =
1

L

X

i2A,j2B

|hZiZji|2. (4)

Here A and B are antipodal regions each of size L/8,
h. . .i denotes the expectation value in the steady state,
and the overline denotes an ensemble average over circuit
realizations. The paramagnetic (PM) phase is where X

measurements dominate, and is similarly characterized
by an extensive susceptiblity [56],

�PM =
1

L

X

i2A,j2B

|hXiXi+1 . . . Xj�1Xji|2. (5)

These two order parameters are related to each other
by a Kramers-Wannier duality. The SG and PM phases

are separated by an intermediate trivial phase [56] where
both �SG and �PM vanish, which is only present with
decoherence, q > 0, pE

X
> 0. Despite being in one-

dimension, the symmetry breaking SG phase neverthe-
less survives decoherence (“noise”), not possible in an
equilibrium system.
We provide numerical evidence for this phase diagram

along the line q = 1/2 [Fig. 2(b)], where we calculate both
susceptibilities and indeed find the above three phases.
In particular, we have the PM phase when p

M
ZZ

< 1/3,
the SG phase when p

M
ZZ

> 1/2, and the trivial phase in
between. Near the PM-Trivial transition at (pM

ZZ
)PM
c

=
1/3, we collapse �PM(L) for di↵erent system sizes against
the following scaling form,

�PM(L) = L
�PMF [

�
p� (pM

ZZ
)PM
c

�
· L1/⌫ ], (6)

where we take �PM = 1/3 and ⌫ = ⌫
perc(d = 2) = 4/3.

Here, and in the caption of Fig. 2, we have used the nota-
tion p ⌘ p

M
ZZ

. Similarly, near the SG-Trivial transition at
(pM

ZZ
)SG
c

= 1/2, we collapse �SG(L) for di↵erent system
sizes against the following scaling form,

�SG(L) = L
�SG F̃ [

�
p� (pM

ZZ
)SG
c

�
· L1/⌫ ], (7)

where we take �SG = 1/3 and ⌫ = ⌫
perc(d = 2) =

4/3. From Kramers-Wannier duality we expect F (X) =
F̃ (�X). The results are plotted in Fig. 2(c,d), which
clearly suggest continuous phase transitions with expo-
nents consistent with two-dimensional critical percola-
tion [61, 62].
The phase diagram and the critical properties fol-

low from a mapping of the circuit dynamics to a bond
percolation problem on a two dimensional square lat-
tice [45, 48, 50, 55], summarized in Fig. 3(a). In this
mapping, gates at odd t map to horizontal bonds, and
gates at even t map to vertical bonds. In particular, at
odd t, a projective measurement of ZZ maps to a con-
nected horizontal bond, and the absence of a ZZ mea-
surement maps to a broken horizontal bond. At even t,
a projective measurement of X maps to a broken verti-
cal bond, and the absence of an X gate – either an X

measurement or an X dephasing channel – maps to a
connected vertical bond. The X dephasing channel rep-
resents a third type of decorated bonds, which we high-
light with red color and dashed line. With details in Ap-
pendix A, we show that the SG phase is the percolating
phase of the connected bonds alone – that is, excluding
broken bonds and decorated bonds [Fig. 3(d)] – and, the
PM phase is the percolating phase of the broken bonds
alone, excluding connected bonds and decorated bonds
[Fig. 3(b)]. The intermediate trivial phase is where nei-
ther type percolates [Fig. 3(c)], and is present only when
the decorated bonds (decoherence) take place (q > 0).
On the square lattice, we know exactly that the boudary
between the SG and the trivial phases is at p

M
ZZ

= 1/2,
and the boudary between the PM and the trivial phases
is on the line given by p

M
ZZ

= p
M
X
.

We summarize in Table I the phases and several criti-
cal exponents, and leave the details and further numerical
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 p�
ZZ

 q
SGPM

Trivial

(a) (b)

(c) (d)

FIG. 2. (a) The phase diagram of the baseline circuit [Fig. 1], and (b,c,d) numerical results for this model along the dashed
cross section in (a). In (b), we see nonvanishing �SG and �PM at large and small values of pMZZ , respectively. In between the SG
and PM phases, we see an intermediate phase with neither order. Near the critical points, �PM and �SG for di↵erent system
sizes are collapsed against the scaling forms in Eqs. (6, 7), as shown in (c) and (d), respectively. The boundary between the
trivial and SG phases is at p

M
ZZ = 1/2, and that between the trivial and PM phases is on the line given by p

M
ZZ = p

M
X . The

phase transitions here are all in the critical percolation universality class, but generally the same physical observable can map
to di↵erent correlation functions for transitions marked by di↵erent colors.

�SG �PM
1
4IA=[0,L/2],A IA=[0,"],B=[L2 ,L2 +"]

PM 0 / L area law 0
Trivial 0 0 area law 0
SG / L 0 area law 1

PM-Trivial 0 / L
1/3

p
3 ln 2
8⇡ lnL L

�4

SG-Trivial / L
1/3 0

p
3 ln 2
8⇡ lnL L

�2/3

PM-SG / L
1/3 / L

1/3
p
3 ln 2
4⇡ lnL L

�2/3

TABLE I. A summary of the scaling of the order parameters
and entanglement properties in each of the 3 phases and at
the phase transitions. These results can be derived from the
mapping in Fig. 3, as we detail in Appendix A.

results to Appendix A. The system is area law entangled
inside the phases, and logarithmically entangled on the
phase boundaries. Note that although the phase transi-
tions between the phases are clearly in the universality
class of two dimensional critical percolation, the same
observable can map to di↵erent correlation functions in
the critical field theory at di↵erent transitions.

B. Introduction of an explicit bath

We now introduce an explicit physical model of deco-
herence by coupling the “system” (i.e. the qubit chain
in Fig. 1) unitarily to a “thermal bath”. The bath is a
collection of new degrees of freedom that has its own uni-
tary dynamics. The system and the bath together now
form a closed system.
We posit two key conditions that must be satisfied by

the system-bath coupling, namely

1. “Triviality”: when the bath is traced out, the cou-
pling can be generically captured by a local, Z2-
symmetric quantum channel. Thus, the coupling
should be local, and should commute with the Z2

symmetry in the system.

2. “Markovianity”: the Z2 channels induced by the
coupling must appear short-range correlated in
both the temporal and the spatial directions, de-
spite the internal unitary dynamics of the bath. To
satisfy this condition, the bath in general needs to
be extensive, and its internal dynamics needs to be
“scrambling”.

It is only when both conditions are met can the baseline
circuit capture the universal dynamics of the system, af-
ter the bath is traced out.
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  odd:t   even:t

1 2 3 4 5 6

1

2
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 p�
ZZ  1 � p�

ZZ  p�
X  p�

X  1 � p�
X � p�

X
(a)

PM
(b)

Trivial
(c)

SG
(d)

FIG. 3. (a) Mapping from the circuit geometry to a bond percolation problem, for the example in Fig. 1. (b,c,d) Typical
configurations of the square lattice in the PM, Trivial, and SG phases, respectively. In the PM phase (b), the broken bonds
percolate. In the SG phase (d), the connected bonds (blue and black) percolate. In the Trivial phase (c), the third type of
decorated bonds (red, dashed) preclude the percolation of the other two types of bonds.

SGPM

Trivial

 p�
ZZ

 q

(b)(a)
…“bath”

“system”

Random 
unitary gates

  
measurements
ZjZj+1

  
measurements
Xj

Random 
unitary gates 
commuting with  Xj

FIG. 4. (a) The “two-leg ladder” circuit model introduced in
Ref. [56], and (b) its phase diagram. The “system” chain is
similar to the baseline circuit model [Fig. 1], but with the X

decoherence replaced by Z2 symmetric coupling to a random
unitary circuit, which acts as a “bath”. The physics of the
phases and the phase transitions are identical to the baseline
circuit (compare Fig. 2).

An example satisfying the above conditions is a cir-
cuit with the geometry of a two-leg ladder (having 2⇥L

qubits in total), first introduced in Ref. [56]. On one
leg (“system”) of the ladder ZjZj+1 and Xj opera-

tors are measured with finite rates (defined as p
M
ZZ

and
p
M
X

= (1 � p
M
ZZ

)(1 � q), respectively), in a similar fash-
ion as in Fig. 1. The other leg is another one dimen-
sional chain undergoing random unitary dynamics, which
is thermalizing (on its own) and acts as a “bath”. The
two legs are coupled via random two-site unitary gates
commuting withX in the system, on the rungs of the lad-
der, at a rate pI

X
= (1�p

M
ZZ

)q (this quantity is similar to
p
E
X
). The phase diagram (previously found in Ref. [56],

and shown in Fig. 4) is very much like Fig. 2, up to
reparametrizations and/or phase boundaries.

We further confirm numerically (see Appendix A6)
that all the critical properties in the two-leg ladder cir-
cuit model are again fully consistent with Table I. Thus,
the two-leg ladder circuit in Ref. [56] behaves qualita-
tively the same as the model in Fig. 1, and the di↵erence
between a random unitary circuit and an infinite bath
is irrelevant, as far as the phase diagram of the system
is concerned. We note that all three phases of Fig. 4(b)
coexist with a volume law entanglement of the bath [56].

In Appendix C 2, we investigate an extension of the
two-leg ladder circuit, where there are also local mea-
surements on the bath. Upon driving the bath through
a volume law to area law entanglement transition, the
“trivial” phase is replaced by a “critical” phase with log-
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arithmic entanglement.

III. THE Z2 CIRCUIT AS A PARTIALLY
MONITORED DYNAMICAL MEMORY

In this section, we take a di↵erent view on the circuit
in Fig. 1, namely as a model of error and error-correction
for the quantum repetition code. Similar problems have
been considered previously, as we discuss in Sec. III F.

Recall that the repetition code is a stabilizer code with
stabilizers {Z1Z2, Z2Z3, . . . , ZL�1ZL}, whose code space
is two-dimensional (i.e. one logical qubit) and has a basis,

{|0i = |000 . . .i , |1i = |111 . . .i}. (8)

The logical X operator can be chosen to be the Z2 sym-
metry operator X = X1 . . . XL, and the logical Z opera-
tor (denoted Z) can be chosen to be Zj for any 1  j  L.
In the circuit, we take the initial state to be the encoding
of an arbitrary one-qubit state,

| i = ↵ |0i+ � |1i encoding�����! | i = ↵ |0i+ � |1i . (9)

This encoded logical state | i is then subject to gates
in the circuit. Here, the errors are the X measurements
and X decoherences that bring the state outside the code
space while also reducing the purity of the state. These
types of errors are occuring at a finite rate (pM

X
and

p
E
X
) in time. Meanwhile, stabilizer measurements of each

ZjZj+1 are also made at a finite rate pM
ZZ

, that are trying
to project the state back into the code space.

As the circuit time grows, the errors will accumulate,
and the information encoded in the initial state will even-
tually be lost if the errors prevail (e.g. when they are the
only processes in the dynamics). However, by making
stabilizer measurements concurrently with the errors at
a finite rate pM

ZZ
< 1, one can hope to obtain clues about

the history of the errors without destroying the encoded
state, thereby preserving that information. The question
here is whether by making O(TL) measurements as the
circuit evolves, is it possible in principle to reverse these
errors and reliably recover the initial state | i; and when
this is indeed possible, what is an e�cient decoding al-
gorithm (or simply a “decoder”) in practice. Here, the
decoding algorithm refers to a sequence of quantum op-
erations (i.e. measurements and unitaries) on the final
state, aided by the information about the circuit bulk
– namely the ZZ measurement locations and the corre-
sponding outcomes.

We discuss two versions of this question, depending
on whether or not we assume knowledge of the locations
of the errors (i.e. the X gates) in the decoding, in the
following two subsections, respectively. When the errors
are “located”, there exists an exact decoding algorithm
if and only if the information is still encoded in the final
state. As we will see, this condition is related to a geo-
metrical property of the underlying circuit, and the “en-
coding phase” coincides with the spin glass phase. When

(a) (b)

� |0� + � |1�

� |m� + � |m�

� |0� + � |1�

|m� ± |m�

(c) (d)

� |0� + � |1� � |0� + � |1�

� |m� + � |m�

FIG. 5. (a, b) With only X measurement errors but no X

dephasing errors, we illustrate in (a) an error-avoiding path in
the SG phase connecting the upper and lower boundaries, and
in (b) a “cut” in the PM phase precluding an error-avoiding
path. In (a), the final state is a coherent code state containing
the initial information (albeit in encoded form), whereas in
(b) the final state is a classical mixture of |mi± |mi, and the
initial information has been lost [50]. (c, d) Similarly, in the
presence of X decoherence, we illustrate in (c) a “path” when
in the SG phase, and in (d) a “cut” when outside the SG
phase. In the SG phase (c), the final state is again a coherent
code state, while outside the SG phase (d) the final state is
in general mixed.

the errors are “unlocated”, we devise a heuristic decoder,
whose probability of success in the thermodynamic limit
defines a “decoding phase”.

A. Exact decoding algorithm with located errors in
the spin glass “encoding” phase

The recovery problem with located X measurements
(but withoutX decoherences) was first discussed by Lang
and Büchler [50]. The authors showed that the initial
state is in principle recoverable from the final state pro-
vided that the lower and upper boundary of the circuit
geometry are connected by an “error-avoiding spanning
path” consisting of connected bonds only [Fig. 5(a)].
In particular, after measuring ZjZj+1 stabilizers for all
1  j < L (which is a quantum operation denoted M) on
the final state (which we denote as E | i, where E repre-
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sents the circuit evolution), the resultant state takes the
form,

|�i := (M � E) | i = ↵ |mi+ � |mi . (10)

Here, m = m1m2 . . .mL, with mj = ±1, and thus |mi is
a state in the computational basis. Here |mi = X |mi.
In this case, the quantum information is still stored in the
system, and can be recovered given the classical informa-
tion of m. On the other hand, when such a path does
not exist [Fig. 5(b)], the resultant state is a probabilistic
mixture of |mi + |mi and |mi � |mi, and the quantum
information is irretrievably lost [50].

Clearly, the existence of the spanning path is related
to the geometry of the circuit. In the spin glass phase
where the connected bonds percolate, such a path exists
with probability 1, and the information can be preserved
for any time T polynomial in L. The “encoding phase”
thus coincides with the spin glass phase.

We now describe an explicit algorithm for the recovery
of the state | i, starting from the state |�i = (M �
E) | i. From the stabilizer measurement outcomes in
M, we already know the following products,

(�1)mj+mj+1 = (�1)mj+mj+1 = ZjZj+1. (11)

Thus, we will know m – and consequently which bits one
should flip in |�i such that the result is | i – provided
that we know the value of mj for any single j. This bit
of information must be inferred from a spanning path
through the circuit history, but not from the state |�i,
for which the bitstring m looks completely random at
long times. We claim that, for any spanning path ⇡ with
endpoints at sites (u, t = 0) and (v, t = T ) (denoted
(u, 0)

⇡�! (v, T )) we have

(�1)mv = Zcum(⇡) :=
Y

{(j,t),(j+1,t)}2⇡

[ZjZj+1] (t). (12)

Here, the product is taken over all horizontal bonds on
⇡, and [ZjZj+1] (t) denotes the measurement outcome on
the bond {(j, t), (j+1, t)}, of ZjZj+1 at time t. We prove
this in Appendix B. When there are multiple spanning
paths ending at the upper boundary (as will almost al-
ways be the case in the spin glass phase), any one of the
paths would do the job, since they will result in the same
m.

With the inclusion of X decoherence – in addition to
X measurements – the same decoding algorithm is still
correct. As in Fig. 5(a,b), we have a similar graph, but
now with decorated bonds representing the decoherence
[Fig. 5(c,d)]. Knowing where theX measurements andX

decoherence are in the graph, we can still find a spanning
path ⇡ with endpoints at sites (u, t = 0) and (v, t =
T ), assuming connectivity between the upper and lower
edges, which is valid in the SG phase. The path ⇡ uses
only connected bonds, and avoids all X measurements
or X decoherences. When such a spanning path exists,
the resultant state (M � E) | i takes the same form as

|�i in Eq. (10), despite the X decoherences in the circuit
history (see Appendix B).1 Again, we can decode the
state knowing (�1)mv = Zcum(⇡).
To summarize, with the locations of all the X errors

known, the information encoded in the initial state is de-
codable from the final state if and only if the circuit is
in the spin glass phase. Here, in addition to the knowl-
edge of the locations of the errors, we also assume the
knowledge of the O(TL) stabilizer ZjZj+1 measurement
outcomes in the bulk, as well as the ability of perform-
ing reliable local quantum operations (i.e. measurements
and unitaries) on the final state.

B. Decoding with unlocated errors in
(1+1)-dimensions

When the X measurements and X decoherences are
viewed as errors, it is usually the case that these errors
are not controlled, and in particular their spacetime loca-
tions are unknown to the experimenter. In conventional
quantum error correction, the error locations need to be

(a) (b)
f(v, T) = ∑

��G:(u,0) � (v,T)
Zcum.(�)

f(u,0) = 1

 : “backbone” subgraphG

FIG. 6. (a) The backbone subgraph G (highlighed in orange)
constructed out of stabilizer measurements on the horizontal
bonds, and by treating all the vertical bonds as if connected
(i.e. assuming no error occured on the vertical bonds). (b)
On G there are two types of paths (highlighted in green). The
“good” paths do not use any errored vertical bonds, and con-
tribute a correct sign of Zcum(⇡) to the summation in f(v, T ).
The “bad” paths use one or more vertical bonds that contain
errors (denoted by a red cross), and will contribute to the
summation in f(v, T ) as “noise”.

1 Here, the final measurements of ZjZj+1 for all j are necessary.
Before these measurements, the final state is either disconnected
due to the X measurements, or mixed due to the X dephasing
channels. The e↵ects of these two types of errors are illustrated
in Appendix A. We are also assuming the final measurements are
perfect, so that the initial state can be recovered with fidelity 1,
which is the condition we use below to define the success prob-
ability. In a less idealized situation, the output of the decoder
will always have a fidelity smaller than 1.
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inferred from the stabilizer measurements (i.e. the syn-
dromes). In this subsection, we discuss the possibility
of information recovery without knowing the locations
of the errors, or trying to locate the errors explicitly.
However, we still assume locations and outcomes of the
stabilizer measurements in the bulk are known to the ex-
perimenter, who actively performed these measurements
and dutifully recorded the results.

Given the circuit final state E | i, we can still fol-
low the measurements M and obtain a state as in
Eq. (10). However, to successfully decode, we need to
know Zcum(⇡), which is defined on a path ⇡ that avoids
all errors, but without the knowledge of the location of
the errors it is impossible to calculate this quantity ex-
actly. We instead try to estimate Zcum(⇡) with what-
ever information available, and will declare victory if our
method can produce the correct result most of the time
– to be defined more precisely below.

After mapping to the square lattice percolation, what
remains available to us is then the information of the
horizontal bonds (i.e. whether they are broken or con-
nected, and the measurement outcome on the bond if
connected), but not of the information of the vertical
bonds. With these, we construct a “backbone subgraph”
G for each site (v, T ) on the upper boundary [Fig. 6(a)].
The vertices of G are all the sites that can be reached
from (v, T ), using connected horizontal bonds, and any
type of vertical bonds (connected, broken, or decorated).
In other words, without knowing what the vertical bonds
are, we treat all of them as if connected. For simplicity,
we require that the vertical bonds can only be travelled
downwards, so that all paths are directed in the temporal
direction. The edges of G are the connected horizontal
bonds, as well as all vertical bonds (as if they are con-
nected) between pairs of vertices in G.

We define the following quantity on G for each (v, T ),

f(v, T ) =
X

⇡✓G:(u,0)
⇡�!(v,T )

Zcum(⇡). (13)

The summation on the RHS is over all paths in G di-
rected in the temporal direction, with one endpoint fixed
at (v, T ), and the other endpoint at any site on the lower
boundary, (u, 0). The quantity Zcum(⇡) has the same
definition as in Eq. (12), namely as the product of hor-
izontal ZZ measurement results on the path ⇡. This
summation can then be evaluted e�ciently using the fol-
lowing recursion relation,

f(i, t)

= f(i, t� 1)

+
X

j 6=i:(j,t)⇠(i,t)

f(j, t� 1) ·
Y

min{i,j}k<max{i,j}

[ZkZk+1](t).

(14)

Here (j, t) ⇠ (i, t) means that (j, t) and (i, t) are con-
nected by an array of consecutive ZZ measurements at

time t, and the product is over all the measurement out-
comes in this consecutive array. Provided p

M
ZZ

< 1, we
expect a finite number of terms on the RHS of Eq. (14).

In Eq. (13), there are two types of paths involved in
the summation, as we illustrate in Fig. 6(b). There are
“good” paths that avoids all errors; these will contribute
the correct value of Zcum(= (�1)mv ) to the sum, con-
structively. There are also “bad” paths that pass through
at least one error. They will behave as “noise” that con-
tribute ±Zcum at random. We will get a correct estimate
of Zcum from the sign of f(v, T ) (denoted sgn[f(v, T )]),
provided that the “signal” can beat the “noise”.

Under what circumstances does the decoding algo-
rithm defined above give the correct estimate of Zcum

from sgn[f(v, T )]? A necessary condition for the algo-
rithm to produce anything more than noise is that the
circuit must be in the spin glass phase with percolating
connected bonds. As we discussed earlier, the quantum
information is irretrievably lost when the upper and lower
boundaries are disconnected [Fig. 10] – that is, no algo-
rithm can recover the initial state. Meanwhile, the spin
glass phase certainly seems to help the decoding. In this
phase, the number of “good” directed paths diverges ex-
ponentially in the circuit depth T , and we can hope to
discern the signal if the noise diverges more slowly, al-
though still exponentially in T . This naive observation
does not immediately tell us if the spin glass phase alone
is su�cient for approximate decoding. Next, we turn to
numerical tests of the decoder.

Since we are really interested in the probability of suc-
cess of the approximate estimation algorithm described
above, which should not be too sensitive to the input
ensemble (i.e. the ensemble of backbone graphs G as in
Fig. 6, and measurement results on its horizontal bonds),
we initially dispense with a full simulation on the evolu-
tion of a quantum state, and instead directly sample the
inputs from a classical dynamics, so that large system
sizes can be accessed. In Sec. III E below, we show that
the algorithm performs similarly on samples generated
from the evolution of stabilizer quantum states, for ac-
cessible system sizes.

The classical dynamics is defined as follows. We take
an array mj = 0 for 1  j  L to start with. At odd time
steps we “measure” each (�1)mj+mj+1 with probability
p
M
ZZ

, and at even time steps we flip mj ! 1 � mj with
probability p

err for each j. The quantity p
err is similar to

p
M
X

+p
E
X

for the model in Fig. 1, except that we now vary
p
err and p

M
ZZ

independently (i.e. dropping the constraint
p
M
ZZ

+ p
err = 1). At the final step, we also “measure”

(�1)mj+mj+1 for each j. We then compute f(v, T ) using
Eq. (14), and compare its sign with the correct value of
Zcum(⇡) for any error-avoiding spanning path ⇡ termi-
nating at (v, T ). In this classical model the correct value
in the final state is Zcum(⇡) = (�1)mv .

We run this classical stochastic dynamics for various
system sizes L and various circuit depths T over an en-
semble of O(105) samples. We then compute the success
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(a)

(b)

(c)

FIG. 7. Results of the decoder in Eq. (14) with unlocated
errors for the repetition code in (1+1) spacetime dimensions,
for (a) T / L, (b) T / lnL, and (c) T / L

0, respectively. The
results are summarized in Eqs. (16, 17), and the paragraphs
below.

probability of decoding,

Ps(L, T ) := Prob[sgn[f(v, T )] = Zcum(⇡)]. (15)

The numerical results are shown in Fig. 7 (a,b,c), where
we take T / L, T / lnL, and T / L

0, respectively, and
fix p

M
ZZ

= 0.60. The results with a given set of (pM
ZZ

, p
err)

in Fig. 7(a, b) can be summarized as follows,

lim
L!1

Ps(L, T / L) =

(
1, p

err = 0

1/2, p
err

> 0
; (16)

lim
L!1

Ps(L, T / lnL) = F (perr), p
err � 0. (17)

That is, when T / lnL, the probability of successful de-
coding appears to saturate to a smooth function in the

thermodynamic limit. On the other hand, as long as T

grows faster than lnL, there is not a finite error thresh-
old, and the probability of successful decoding equals 1/2
with any finite error rate.
Less clear is the case when T grows slower than lnL

[Fig. 7(c)]. The data suggest the following scenario: when
the error rate is below a threshold, the probability of suc-
cessful decoding approaches 1 with increasing L, albeit
slowly.
These result for decoding with unlocated errors should

be contrasted with the case of exact decoding with lo-
cated errors, for which the decoding is successful with
probability 1 for T / L as long as in the spin glass phase.
Note that the values we took for p

err in Fig. 7 are well
below the percolation threshold.

C. Decoding with unlocated errors in
(2+1)-dimensions

In this subsection, we discuss the decoding algorithm
for the repetition code in one higher spatial dimension.
For concreteness, we consider the circuit geometry of

errors and stabilizer measurements in Fig. 8. Each “pe-
riod” of the circuit consists of 4 time steps. In the 1st
time step, we measure the ZZ stabilizer on each bond
in the x-direction, with probability p

M
ZZ

. Similarly, in
the 3rd time step, we measure bonds in the y-direction
with the same probability. At the 2nd and the 4th time
step, the X measurement and decoherence errors occur

FIG. 8. Dynamics of the repetition code in (2+1)d. Follow-
ing the convention in Fig. 3, we represent measurements of ZZ

check operators (of rate p
M
ZZ) by blue bonds in the xy-plane,

X measurements errors (of rate p
M
X ) by broken (absent) ver-

tical bonds, and X dephasing errors (of rate p
E
X) by dashed

red vertical bonds. We choose to measure the check operators
along x- and y- directions in alternative time steps.
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on each qubit with probabilities pM
X

and p
E
X
, respectively.

We briefly discuss the phase diagram. The mapping
from the circuit model to bond percolation introduced
in Fig. 3 can be directly carried over, with the ZZ mea-
surements mapped to bonds in the xy-plane, X measure-
ments to broken bonds in the t-direction, and X decoher-
ence to decorated bonds in the t-direction – a convention
we already adopted in Fig. 8. As its (1+1)d counterpart,
the spin glass and paramagnetic “susceptibilities” �SG

and �PM can also be defined [Eqs. (4, 5)], and will be
extensive when the connected/broken bonds percolate,
corresponding to the spin glass and paramagnetic phases,
respectively. When the decoherence is strong, there is
similarly an intermediate phase where both susceptibil-
ities vanish. However, due to the larger dimensionality,
there is now a phase where both susceptibilities can be
extensive when the decoherence is weak. The transitions
between these phases should all be in the universality
class of three-dimensional percolation.

We will henceforth focus on the question of decoding
the quantum information in the initial state, in the spin
glass phase. With located errors, the decoding follows
Sec. III A, which entails finding a spanning path ⇡ that
avoids all errors and calculating Zcum(⇡). Again, the spin
glass phase is identical to the encoding phase.

With unlocated errors, we can similarly compute the
sum f(v, T ) [Eqs. (13, 14)] for all directed paths ending
at (v, T ) on the upper boundary of the circuit – whether
they have errored vertical bonds or not – and compare
sgn[f(v, T )] with the correct value of Zcum(⇡).

As before in Sec. III B, we introduce the parameter
p
err = p

M
X
+p

E
X
, and compute the probability of successful

decoding on a ensemble of input graphs generated by the
classical dynamics with parameters p

M
ZZ

and p
err taken

to be independent. The numerical results are shown in
Fig. 9(a), where we focus on Lx = Ly = L and T / L,
and take p

M
ZZ

= 0.6. The data with increasing system
sizes suggest a second order phase transition at a finite
threshold p

err
th ⇡ 0.205, from a phase where the decoding

is successful with probability 1, to another phase in which
the decoding is no better than a coin flip. In Fig. 9(b),
we attempt the following finite-size scaling form near perrth
and find good collapse of the data for di↵erent L,

Ps(L, T / L) = F

h
(perr � p

err
th ) · L1/⌫

i
, (18)

where F is a scaling function with the following asymp-
totics,

F (x) =

(
1, x ! �1
1/2, x ! +1

, (19)

and ⌫ ⇡ 2.0± 0.5 is a “correlation length exponent” ob-
tained from the fitting. Thus, in (2+1)d, we have a phase
where the information can be recovered with unlocated
errors, which sits deep within the spin glass phase.

We note that the (three-dimensional) percolation
threshold for the circuit in Fig. 9 at p

M
ZZ

= 0.60 is ap-

(a)

(b)

FIG. 9. Results of the decoder in Eq. (14) with unlocated
errors for the repetition code in (2+1) spacetime dimensions.
The results are summarized in Eqs. (18, 19).

proximately p
err
c

⇡ 0.74 (from numerics), and the corre-
lation length exponent is ⌫perc(d = 3) ⇡ 0.88 [63]. The
percolation transition and the “decoding transition” are
well separated and, as expected, appear to be in di↵erent
universality classes.

D. Performance of the decoder with faulty
measurements on the (2+1)d repetition code

Here, we test the “robustness” of the decoder in
Sec. III C, by allowing a finite fraction of the check oper-
ator measurements in the bulk to be “faulty”.2 We focus
on (2+1)d, where a finite threshold was found for perfect
measurements (see Fig. 9).
To access larger system sizes, we again consider the

classical bit-flip dynamics. As before, we denote the
probability of a bit-flip to be perr. For simplicity, we take
the probability of a “faulty” measurement to be also p

err.
The numerical results are shown in Fig. 10, where we

similarly find a finite (perr)th, and a consistent fit for ⌫ as
compared to Fig. 9. Thus, the e↵ect of faulty measure-
ments seems “irrelevant” – it reduces the error threshold,

2 We still assume the measurements on the final state are perfect;
see the previous footnote.
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(a)

(b)

FIG. 10. Numerical results for the decoder in Sec. III C, for
the (2+1)d repetition code with both bit-flip errors and faulty
measurements. The results are similar to those with perfect
measurements (see Fig. 9), except for a smaller (perr)th.

but does not change the universality class of the “decod-
ing transition”.

E. Comparing the classical error model with
Cli↵ord circuits

In Sec. III B and Sec. III C, we tested the performance
of the decoder by generating the measurement history
by a classical dynamics (see Figs. 7, 9). Here, we con-
firm that the decoder performs similarly when the mea-
surement history is taken from running a fully quantum
Cli↵ord circuit.

We simulate the baseline circuit [Fig. 1], and take |0i to
be the initial state. The parameters are similar to those
in Fig. 1, but here we take, for simplicity, p

err = p
E
X
,

p
M
X

= 0, and allow p
M
ZZ

and p
err to vary independently

(dropping the condition p
M
ZZ

+ p
err = 1). While run-

ning the circuit, we collect the results of the ZZ mea-
surements, and place them on the horizontal bonds of a
square lattice to obtain the “backbone subgraph”, as in
Fig. 6. At the end of the time evolution, we measure
all ZZ operators, and apply a decoding unitary based on
the sign of f(v, T ), defined in Eq. (13). We then compare
the resultant state with |0i, and declare success if they
agree.

Running this simulation many times, we get an esti-

(a)

(b)

FIG. 11. Performance of the decoder in Sec. III B and
Sec. III C with unlocated errors, on measurement histories
generated from the baseline circuit [Fig. 1], for the repeti-
tion code (a) in (1+1) dimensions and (b) in (2+1) dimen-
sions. They should be compared with Figs. 7, 9, for which
the measurement histories are generated by a classical bit-flip
dynamics. As far as the success probability of decoding Ps

is concerned, the baseline circuit dynamics and the classical
bit-flip dynamics are very similar. However, for the circuit
dynamics here, we also see evidences of the percolation tran-
sition, and when p

err
> (perr)c, the initial state can never be

recovered, and limL!1 Ps(L, T / L) ! 0.

mate for the success probability Ps, shown in Fig. 11.
We focus on the case where T / L, where we get re-
sults similar to Figs. 7, 9, namely (perr)th = 0 for the
(1+1)d repetition code, and (perr)th > 0 for the (2+1)d
repetition code. Recall that for the repetition code,
limL!1 Ps(L, T / L) ! 1 when p

err
< (perr)th, and

limL!1 Ps(L, T / L) ! 1/2 when p
err

> (perr)th.

In addition, we also see the percolation transition at
a larger value of perr, above which the success probabil-
ity becomes 0. This is because when the check operator
measurements are non-percolating, the final state of the
circuit will always be mixed, and thus di↵erent from the
initial (pure) state.

We also tested the performance of the decoder on other
stabilizer initial states, and also on non-stabilizer initial
states for smaller system sizes, where we obtained similar
results.
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(a)

tim
e

x

(b)

(c) (d)

FIG. 12. The MWPM decoder. (a) A graphical representation of the error model in Ref. [53], by Dennis, Kitaev, Landahl,
and Preskill (DKLP). The square lattice is periodic in the spatial direction, and has the topology of a cylinder. The black
bonds form the so-called “error chains”, which represent the actual error history. The qubits now live on each square, the
vertical bonds represent faulty measurements, and the horizontal bonds represent bit-flip errors. The endpoints of the error
chains are Ising vortices that need to be paired up. The gray bonds represent a possible such “perfect matching”, which is also
an estimate of the error history, that will give the same syndrome as the actual error history. Together, the black and gray
bonds form closed loops, and the decoding is successful if the chains wraps the cylinder around for an even number of times.
Refs. [53, 57] showed that the algorithm that finds the perfect matching with the minimal weight has success probability 1
when the error rate is below a finite threshold. (b) The MWPM decoder on the (1+1)d repetition code with p

M
ZZ = 1, where

we take the bit flip error and faulty measurements to both occur at probability p, for convenience. We also take T = L. The
MWPM gives a finite error threshold, as expected. (c) The MWPM decoder on the (1+1)d repetition code with p

M
ZZ < 1,

where we assume the ZZ check operator measurements are perfect, and the only errors are the bit-flip errors. Taking T = L

and p := 1� p
M
ZZ = p

err, we find a threhold pth ⇡ 0.13. (d) The MWPM decoder on the (2+1)d toric code with p
M
⇤ < 1, where

we assume the plaquet check operator measurements are perfect, and the only errors are the bit-flip errors (see Appendix B 2).
Taking T = Lx = Ly = L and p := 1� p

M
⇤ = p

err, we find a threhold pth & 0.03.

F. Decoding with Minimal Weight Perfect
Matching (MWPM)

The dynamics of the repetition code in a time dura-
tion proportional to the linear size of the code block was
previously considered in Refs. [53, 57]. There, all of the
check operators are measured at each time step, and in
addition to bit-flip errors, there are also errors due to
faulty measurements. Using a mapping of the dynamics
to a random bond Ising model (RBIM) in (d+1) spatial
dimensions, it can be shown that there is a finite error
threshold in (1+1)d dimensions, given an optimal de-
coding algorithm. The optimal algorithm finds the most

likely error history3 given the syndrome measurements.
This amounts to finding the homology class with the low-
est free energy in the statistical mechanics model, which
is computationally hard. The authors instead employed
a sub-optimal decoder which finds the configuration with
the lowest energy, or equivalently a “minimal weight per-
fect matching” (MWPM) [64] of point-like Ising vortices,
that can be solved in polynomial time. Despite being sub-
optimal, the MWPM decoder can give a finite threshold
in (1+1)d, as shown by both analytical estimates [53] and
numerics [57].
Below, we reproduce a numerical result in Ref. [57] of

the MWPM decoder on the repetition code in (1+1)d.

3 Or more accurately, its homology class in spacetime, since mul-
tiple error histories can belong to the same “homology class”.
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In addition, we adapt the MWPM decoder to our case,
namely with check operator measurements at a rate less
than 1, for both the repetition code in (1+1)d and the
toric code in (2+1)d. We find a finite error threshold in
both cases, as we next discuss.

1. MWPM for (1+1)d repetition code

In this section, we compare the performance of the
decoder proposed in Sec. III B and Sec. III C with the
MWPM decoder. To start with, we briefly introduce the
error model for the repetition code in (1+1)d, shown in
Fig. 12(a). We refer the reader to Refs. [53, 57] for a
detailed discussion. Here, it is convenient to work on
the dual lattice of the original square lattice, and place
qubits at the center of each square. Time runs in the
vertical direction, upwards. We will also take periodic
spatial boundary condition, so that the lattice has the
topology of a cylinder.

At each odd time step, each ZZ check operator on
neighboring qubits is measured; that is, pM

ZZ
= 1. These

measurements can be thought of as performed on the
vertical bonds. These measurement can be faulty, with
a probability we take to be p

err. In Fig. 12(a), faulty
measuremend are highlighted with black vertical bonds.
At each even time step, each qubit can also experience
a bit flip error, which occurs with a probability we also
take to be p

err. The bit flip errors are highlighted with
black horizontal bonds in Fig. 12(a).

The black bonds form one-dimensional “error chains”
on the square lattice. Under a mapping to a 2d random
bond Ising model with spins living on the plaquettes,
these error chains correspond to negative bonds [53, 57].
The end points of the “error chains” can then be identi-
fied as Ising “vortices”. There is always an even number
of such Ising vortices.

The locations of the Ising vortices can be deduced from
the syndrome measurements of the nearest neighbor ZZ

check operators. The collection of non-trivial syndrome
measurements with ZZ = �1 can be drawn with verti-
cal bonds (not depicted Fig. 12(a)) and form “syndrome
chains” running vertically. The end points of these syn-
drome chains coincide with the end points of the error
chains, both ending at the Ising vortices.

The MWPM scheme finds a perfect matching between
pairs of Ising vortices with the minimum weight, where
the weight between a pair of Ising vortices is given by
their lattice (Manhattan) distance. In Fig. 12(a), paired
Ising vortices are connected by gray bonds. In the
Ising model the “gray bond chains” correspond to do-
main walls, and the MWPM is e↵ectively minimizing the
length of the domain walls, i.e. minimizing the energy of
the random bond Ising model.

The gray bonds alone may be understood as the algo-
rithm’s estimate of the error history, with horizontal gray
bonds being bit-flip errors, and vertical ones faulty mea-
surements, and a decoding can be subsequently carried

out based on this estimate.

Putting the black bonds and the gray bonds together,
we obtain closed loops on the cylinder, which in the Ising
model mapping enclose opposite domains of Ising spins.
The decoding will be successful if the number of non-
contractible loops is even. As can be shown from the
mapping to the Ising statistical mechanics model [53, 57],
the probability of success of the MWPM decoder is 1 for
p
err below a finite threshold. The decodable phase below

threshold corresponds to the ferromagnetic phase of the
Ising model.

The MWPM is a well-known problem in graph theory
that can be solved by Edmond’s algorithm [64] in time
at least O((LT )3 ln(LT )) [65]. Here, we run the MWPM
decoder for the (1+1)d repetition code, and the result is
shown in Fig. 12(b). Notice that Fig. 12(b) shows a finite
p
err
th & 0.10 (the crossing point), consistent with Ref. [57].

The MWPM decoder can also be adapted for the error
model considered in this paper, with perfect measure-
ments of check operators at a rate p

M
ZZ

< 1, by simply
assuming the unmeasured ZZ check operators all have
the outcome +1. This should be equivalent to having
some faulty measurements, and the MWPM should then
succeed for pM

ZZ
su�ciently close to 1. We calculate the

success probability numerically, where for convenience
we take p := 1 � p

M
ZZ

= p
err and T = L. The results

are shown in Fig. 12(c), which also show a finite error
threshold.

2. MWPM for (2+1)d toric code

The MWPM can also be used for decoding the toric
code [66] in (2+1) dimensions by matching point-like
defects, and would similarly give a finite error thresh-
old [53, 57]. As for the repetition code, all of the check
operators are measured at each time step. Both bit-flip
errors and phase errors are allowed here for the toric code,
as well as faulty measurements of check operators.

Here, we test the MWPM on the toric code dynamics
in (2+1)d in our error model (see Appendix B 2), with
perfect measurements of “plaquette” check operators at
a rate p

M
⇤ < 1, and with bit-flip errors only . Phase-flip

errors can be tracked by measuring the “star” operators,
and they can be considered separately from the bit-flip er-
rors [53, 66–68]. Again, we assume that the unmeasured
check operators all give the outcome +1. We similarly
take p := 1 � p

M
⇤ = p

err and T = Lx = Ly = L. The
results are shown in Fig. 12(d). A finite error thresh-
old is found, as expected [53, 57]. Note that above the
threshold, the success probability saturates to 1/4, since
there are now 4 di↵erent homology classes on the two-
dimensional torus.
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3. Comparison with the MWPM decoder

Comparing our decoder with Refs. [53, 57], there are
di↵erences in the error model, and also in the perfor-
mance of the decoding algorithms. As we have shown,
the di↵erences in the error models are somewhat unim-
portant.

(a) First, faulty measurements can be included in the
dynamics we consider here, and they do not change our
conclusions qualitatively. In particular, we have seen that
there is a finite error threshold for the (2+1)d repetition
code with faulty measurements, in Sec. IIID.

(b) Second, while we are only measuring a fraction
p
M
ZZ

< 1 of all check operators at each time step, we can
still apply the MWPM to our error model, by simply as-
suming that the unmeasured check operators (of fraction
1 � p

M
ZZ

) all have the outcome +1. About half of these
would be faulty, but the MWPM can nevertheless succeed
in decoding for su�ciently small rate of faulty measure-
ments ⇡ 1

2 (1 � p
M
ZZ

). As we have seen in Sec. III F, for
both the repetition code in (1+1)d and the toric code in
(2+1)d, the MWPM decoder gives a finite error thresh-
old, as consistent with results in Refs. [53, 57].

For the (1+1)d repetition code, the decoder in
Sec. III B is not preferable as compared to the MWPM
decoder, since the former does not give a finite error
threshold.4 A generalization of this decoder – from
“error-avoiding paths” to “error-avoiding membranes” –
can be made for the (2+1)d toric code, as we explain in
Appendix B 2. However, we have not found a way of e�-
ciently summing over su�ciently many such membranes
that would give a finite threshold. Thus, for the toric
code in (2+1)d, the decoder in Sec. III B is not prefer-
able, either.

For the (2+1)d repetition code, a natural generaliza-
tion of the MWPM decoder looks for a perfect match-
ing between line-like defects (“Ising vortex loops” in a
random bond (2+1)d Ising model), connected by two
dimensional surfaces (Ising domain walls), optimized so
that they have minimal total area [53, 57]. However, this
problem is computationally NP-hard. Interestingly, on
the other hand, our decoder in Sec. III C is straightfor-
ward to implement taking only polynomial time, linear
in the circuits space-time “volume”, O(Ld

T ), and gives
a finite threshold (see Fig. 9).

Finally, we note two di↵erences in the physics of the
MWPM decoder and the decoder described here.

(a) The MWPM aims to optimize an “energy” by find-
ing the ground state in the RBIM, whereas our decoder
does not involve an optimization procedure or an explicit
estimate of the error history, but is instead highly “en-
tropic”, in the sense that it receives contributions from

4 In this case, the decoder here might be useful in practice for code
blocks of intermediate sizes, for its rather low time complexity of
O(TL), as compared to the MWPM which has a time complexity
O((TL)3 ln(TL)) [65].

a large number of paths, whether they are erroneous or
not. Its performance might be improved by associat-
ing weights to paths based on their geometry and prior
knowledge of the error model [69], which is itself an in-
teresting future direction.
(b) For the (2+1)d toric code, the basic objects appear-

ing in the MWPM decoder are one-dimensional world-
lines of topological defects, whereas our decoder in-
volves summing over two-dimensional surfaces (see Ap-
pendix B 2). On the other hand, for the (2+1)d repetition
code, the MWPM decoder involves two-dimensional do-
main walls, while our decoder sums over one-dimensional
paths. To further explore this apparent “duality”, a de-
scription of the underlying statistical mechanics model of
our decoder will be needed.

IV. OUTLOOK

In this work, we explored two notions of phases in the
Z2 baseline circuit, namely phases defined by their entan-
glement properties (“phases of entanglement”), such as
the spin glass, the paramagnetic, and the trivial phases;
and phases defined with respect to a given decoder. Here,
we comment on the relation between the two.
The spin glass phase has an immediate connection

with the decoding problem: it is a necessary condition
for successful decoding in the first place because of the
nonzero channel capacity, and becomes a su�cient con-
dition when the error locations are known.5 On the other
hand, other phases in the generic phase diagram, while
rich and interesting in themselves, are unrelated to the
decoding problem. In particular, while X measurements
and X dephasing are quite di↵erent and favor di↵erent
phases (namely the paramagnetic phase and the trivial
phase, respectively), they appear the same to the check
operators measurements, and both become bit-flips on
the repetition code.
Using the Kramers-Wannier duality, one might hope

to try some kind of decoding on the paramagnetic phase
by tracking the X measurement outcomes, in a similar
fashion as for the repetition code. As the paramagnetic
phase has a zero channel capacity (thus encodes zero log-
ical qubits), this decoding problem is only suitable for an
experimental demonstration of the PM order.
In general, to make phases of entanglement and entan-

glement phase transitions in monitored dynamics exper-
imentally relevant, some kind of decoding seems neces-
sary.6 Depending on details of the error model, the suc-
cess of the decoder may or may not be directly inferred

5 Strictly speaking we have only demonstrated this for the baseline
circuit, but it should also be correct for SG phases in generic Z2

circuits, e.g. the SG phases in Figs. 4, 19, 21, as long as the
error-avoiding spanning paths percolate.

6 An exception would be monitored dynamics that is a spacetime
dual of a unitary time evolution [70–72].
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from the entanglement structure. The experimental ac-
cessibility of entanglement phases and transitions, may
be more severely limited by their decodability than their
entanglement structure (e.g. channel capacity). In this
regard, stabilizer circuits are appealing not only because
they are numerically simulable, but also because they
might be decodable (in polynomial time).

Looking forward, it would be worth revisiting various
measurement protected quantum phases [46, 48] in mon-
itored stabilizer circuits, and examine their properties as
a code, including the corresponding decoding problem.
Entanglement can be a useful guidance in these explo-
rations, e.g. in providing geometrical intuition.

Finally, we return to the volume law phase of the ran-
dom hybrid Cli↵ord circuit, which has a finite code rate
and was shown to be a robust encoder [37–41]. The final
state can be decoded, provided that a classical descrip-
tion of all the unitaries and the measurement locations
and outcomes is known to the decoder [44]. It is an inter-
esting question whether there is a robust decoder of the
volume law phase that can succeed even with errors, as

in the Z2 circuit.7 An answer to this question will help
us understand its relevance to practical fault tolerance
applications; we note a related discussion in Ref. [75].
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[58] Berislav Buča and Tomaž Prosen, “A note on symmetry
reductions of the Lindblad equation: transport in con-
strained open spin chains,” New Journal of Physics 14,
073007 (2012), arXiv:1203.0943 [quant-ph].

[59] Simon Lieu, Ron Belyansky, Jeremy T. Young, Rex
Lundgren, Victor V. Albert, and Alexey V. Gorshkov,
“Symmetry Breaking and Error Correction in Open
Quantum Systems,” Phys. Rev. Lett. 125, 240405 (2020),
arXiv:2008.02816 [quant-ph].

[60] Scott Aaronson and Daniel Gottesman, “Improved sim-
ulation of stabilizer circuits,” Physical Review A 70,
052328 (2004), arXiv:quant-ph/0406196 [quant-ph].

[61] J. L. Cardy, “Critical percolation in finite geometries,”
Journal of Physics A Mathematical General 25, L201–
L206 (1992), arXiv:hep-th/9111026 [hep-th].

[62] John Cardy, “Conformal Invariance and Percolation,”
arXiv e-prints , math-ph/0103018 (2001), arXiv:math-
ph/0103018 [math-ph].
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Appendix A: Mapping the baseline circuit to
percolation (Sec. II)

Following the loop representation in Ref. [45] in the
q = 0 limit, we map the circuit model in Fig. 1 to a bond
percolation problem on the square lattice [Fig. 3(a)].

Recall that in the q = 0 limit, each X measurement
(occuring with probability p

M
X

= 1 � p
M
ZZ

) corresponds
to a broken vertical bond, whereas each ZZ measurement
(occuring with probability p

M
ZZ

) corresponds to an unbro-
ken horizontal bond. Thus, whether the bond is vertical
or horizontal, it is unbroken with probability p

M
ZZ

. The
bond percolation transition is at

�
p
M
ZZ

�
c
= 1/2, where

each bond has an equal probability of being broken and
unbroken.

With q > 0, we represent X depolarization with a new
type of vertex, with red color and also a red, dashed, ver-
tical decorated “incoherent” bond across it. We denote by
p
E
X

= q(1�p
M
ZZ

) its probability of occuring. We may also
call the unbroken and undecorated bonds “coherent”.

As we will see below, the SG phase is the percolating
phase of the coherent, unbroken bonds, whereas the PM
phase is the percolating phase of the broken bonds. Here,
the new ingredient is the presence of “decorated bonds”
from dephasing channels. Consequently, there can now
be an intermediate “trivial” phase where neither the co-
herent unbroken bonds nor the broken bonds percolate.

1. Decomposition of the dynamical state into
quasi-GHZ states

We now discuss the state of the circuit in the course
of its time evolution. When q = 0, the state is always a

product of GHZ states [48, 55] of the following type

| i =
Y

k

1p
2

⇣���0j10j2 . . . 0jnk

E
+
���1j11j2 . . . 1jnk

E⌘
,

(A1)

where each factor is a GHZ state, and has stabilizers

{Xj1Xj2 . . . Xjnk
, Zj1Zj2 , Zj2Zj3 , . . . , Zjnk�1Zjnk

}.
(A2)

After mapping to bond percolation, two qubits on the
upper boundary are in the same GHZ cluster if and only
if they are connected by a path of unbroken bonds in
the bulk. It thus defines an equivalence relation (denoted
“⇠”), and thus a partition of all the qubits. Moreover,
the bulk geometry requires that if j1 < j2 < j3 < j4 and
j1 ⇠ j3, j2 ⇠ j4, we must have j1 ⇠ j2 ⇠ j3 ⇠ j4.
The e↵ect of aX depolarization on qubit j1 is, in terms

stabilizers in Eq. (A1),

{Xj1Xj2 . . . Xjnk
, Zj1Zj2 , Zj2Zj3 , . . . , Zjnk�1Zjnk

}
! {Xj1Xj2 . . . Xjnk

, Zj2Zj3 , . . . , Zjnk�1Zjnk
}, (A3)

where we have “lost” the stabilizer Zj1Zj2 to the dephas-
ing channel. Qubit j1 now has classical correlations with
qubits j2,...,nk via the string operator Xj1Xj2 . . . Xjnk

,
but no quantum entanglement. We call the state in
Eq. (A3) – and its genrealizations when more qubits are
depolarized – a “quasi-GHZ state”.8

For concreteness, we take the circuit initial state a

product of 1p
2

⇣
|0i

j
+ |1i

j

⌘
on each qubit, which has sta-

bilizers {X1, X2, . . . , XL}, and itself a product of quasi-
GHZ states. At any stage of the circuit when q > 0,
the dynamical state of the system is always a product of
quasi-GHZ states, as can be verified by induction.
As we have seen, the X dephasing channel does not

recluster the qubits, but only makes each cluster more
incoherent. Consequently, two qubits on the boundary
are in the same quasi-GHZ cluster if and only if they
are connected by path in the bulk, where the bulk can
now have both unbroken bonds and decorated incoherent
bonds.
For what we discuss below, we always take periodic

boundary conditions for the circuit, and focus on the
steady state T � L, whence the circuit has the geom-
etry of a very long cylinder.

2. The spin glass susceptibility at SG-Trivial
transition

Recall that �SG(L) is a sum of |hZiZji|2. Using the
decomposition above, we see that the latter is 1 if ZiZj is

8 Below, we will sometimes refer to the two types of stabilizers of
a quasi-GHZ state as the “XXXX” and the “ZZ”, for conve-
nience.
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a stabilizer of the state, but 0 otherwise. It is tedious (but
straightforward, again by induction) to convince oneself
that this happens if and only if qubits i and j (living on
the upper boundary) are connected by a path containing
only coherent (black), unbroken (solid) bonds. To �SG,
the decorated “incoherent” bonds are e↵ectively broken,
as if anX measurement is made. Indeed, as one can check
in Eq. (A3), the e↵ect of X depolarization is identical to
an X measurement on �SG.

It immediately follows that a phase transition in
�SG(L) occurs when the coherent unbroken bonds per-
colate. From above, we see that the critical point is at
p
M
ZZ

= 1/2. Here |hZiZji|2 / |i � j|�2hMI and hMI is
the scaling dimension of the boundary spin operator in
critical percolation [50]. Thus, compare Eq. (4), we have

�SG(L) / L
1�2hMI , p

M
ZZ

= 1/2. (A4)

Finite size scaling of this quantity near the critical point
is shown in Fig. 2(d), where we defined �SG = 1�2hMI =
1/3.

3. The paramagnetic susceptibility at PM-Trivial
transition

Recall that �PM(L) is a sum of |hXiXi+1 . . . Xji|2.
Again, this is 1 when XiXi+1 . . . Xj is a stabilizer, but 0
otherwise. Using the quasi-GHZ decomposition, one sees
that this happens if and only if no quasi-GHZ cluster
has qubits inside A = [i, j] and qubits in A at the same
time (“no spanning quasi-GHZ”). Moreover, focusing on
the XXXX string stabilizer of the quasi-GHZ cluster,
one can check that this condition is the same regardless
of whether the clusters are quasi-GHZ or GHZ. Indeed,
a X-depolarization never a↵ects the value of �PM(L).
In comparison, an X measurement breaks the XXXX

string apart, and can only increase �PM(L).

The “no spanning quasi-GHZ” condition above can be
translated as follows in the percolation problem: (*) no
qubits inside A is connected to qubits inside A, through
paths that can now contain either coherent or incoher-
ent bonds. Equivalently, all qubits in A can be sep-
arated from those A by a cut that only goes through
broken bonds. Therefore, the transition in �PM(L) cor-
responds to one in which the broken bonds percolate.
A vertical broken bond occurs with probability p

M
X

=
(1�q)(1�p

M
ZZ

), and a horizontal broken bond occurs with
probability 1� p

M
ZZ

. The critical point of this anistropic
percolation problem is at [76]

p
M
X

+
�
1� p

M
ZZ

�
= 1 , p

M
X

= p
M
ZZ

, q =
1� 2pM

ZZ

1� pM
ZZ

.

(A5)

Moreover, at the critical point, condition (*) implies
that [50]

|hXiXi+1 . . . Xji|2 / |i� j|�2hMI , (A6)

hence again

�PM(L) / L
1�2hMI , q =

1� 2pM
ZZ

1� pM
ZZ

(A7)

Finite size scaling of this quantity near the critical point
is shown in Fig. 2(c), where we defined �PM = 1�2hMI =
1/3.

At the PM critical point p
M
X

= p
M
ZZ

, the loop ensem-
ble – defined by cluster boundaries of broken bonds –
becomes critical, and can be obtained from Fig. 3(a) by
rotating the red vertices by 90�, and treating them as if
having a coherent solid bond. The transfer matrix that
generates the loop ensemble is thus [77–79]

e
Ĥ =

2

4
Y

j even

⇢
[(1� p

M
X

� p
E
X
) + p

E
X
] · + p

M
X

·
�

j

3

5 ·

2

4
Y

j odd

⇢
[1� p

M
ZZ

] · + p
M
ZZ

·
�

j

3

5

=

2

4
Y

j even

⇢
[1� p

M
ZZ

] · + p
M
ZZ

·
�

j

3

5 ·

2

4
Y

j odd

⇢
[1� p

M
ZZ

] · + p
M
ZZ

·
�

j

3

5 . (A8)

Thus, it is related to the usual Temperley-Lieb repesen-
tation of critical percolation (where p

M
ZZ

= 1/2) by a
rescaling of the “temporal” direction. Such a rescaling
merely “dilutes” the loops, without a↵ecting any of the
universal properties.

4. Scaling of mutual information

a. Between two sites

Consider the mutual information between sites i and
j. One can verify the following

(i) When i and j are in di↵erent quasi-GHZ clusters,
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(a)

(b)

FIG. 13. Mutual information IA,B between two disjoint re-
gions A = [x1, x2] and B = [x3, x4] at the PM-Trivial tran-
sition (red circles), at the SG-Trivial transition (blue dia-
monds), and at the SG-PM transition (purple pentagons).
In (a), we collapse data obtained by varying {xj} against
the cross ratio ⌘. The collapse confirms the presence of con-
formay invariance. The powerlaws of IA,B at small ⌘ are
universal scaling dimensions of critical percolation, which we
call hMI and hMN following Ref. [55], and are summarized
in Eq. (A9) and Table I. In (b), we plot the mutual infor-
mation IA,A across a bipartition (A,A), versus the length of
A = [x1, x2], namely LA = x12. The results at the PM-Trivial
and SG-Trivial transitions are consistent with Eq. (A12), with
a universal coe�cient that is half of that at the PM-SG tran-
sition (see Eq. (A11))

they have zero mutual information.

(ii) When i and j are in the same quasi-GHZ cluster
with � 3 qubits, they have mutual information 1 if
and only if ZiZj is a stabilizer.

(iii) When i and j are in the same quasi-GHZ cluster
with exactly 2 qubits, they always have at least
mutual information 1, but can have mutual infor-
mation 2 if ZiZj is also a stabilizer (in which case
it becomes a GHZ cluster).

At the SG transition p
M
ZZ

= 1/2,

(i) the second probability is / |i � j|�2/3, as we have
discussed above.

(ii) The third probability is / |i� j|�4 and is sublead-
ing. Previously, this probability is related to the
“mutual negativity” [55] in critical percolation.

At the PM transition p
M
X

= p
M
ZZ

,

(i) The second probability decays exponentially in |i�
j| as |hZiZji|2, whence the SG order parameter van-
ishes.

(ii) For the third probability, its leading contribution
is given by the correlation function

⌦
i j

↵
in the

loop ensemble generated by Eq. (A8), which is a
boundary correlation function of stress tensors [55].
Consequently, this probability is still / |i� j|�4.

These results when applied to two antipodal sites A =
[0, ✏] and B = [L/2, L/2 + ✏] become

IA,B /

8
>>>>><

>>>>>:

L
�2/3

, SG-Trivial transition (pM
ZZ

= 1/2)

L
�4

, PM-Trivial transition (pM
ZZ

= p
M
X
)

1, Inside SG phase

0, Inside PM and Trivial phases

L
�2/3

, SG-PM transition (pM
ZZ

= 1/2, q = 0)

.

(A9)

The last line is a known result from Ref. [50].
At the critical point, we consider general disjoint sub-

regions A = [x1, x2] and B = [x3, x4] with arbitrary end-
points, where the mutual information becomes a func-
tion of the cross ratio ⌘, due to the emergent conformal
symmetry. With periodic boundary conditions, we take
⌘ = w12w34

w13w24
, where wij = sin

�
⇡

L
xij

�
is the chord dis-

tance.9 The numerical results for IA,B with varying end-
points {xj} are shown in Fig. 13(a). The data collapse is
consistent with conformal invariance, and the powerlaws
of IA,B at small ⌘ are consistent with Eq. (A9).

b. Between a bipartition (A,A)

Recall that for a stabilizer state in the clipped gauge [8,
27], the bipartite mutual information I

A,A
is the number

of stabilizers that cross the cut between A and A. For ex-
ample, for a coherent GHZ state, a bipartition would have
mutual information 2, one from the “XXXX” string,
and one from an “ZZ” operator, both crossing the cut.
For our decomposition of the dynamical state into a prod-
uct of quasi-GHZ states, the stabilizers are already in the
clipped gauge.
At the coherent critical point (pM

ZZ
, q) = (1/2, 0), the

length distribution of stabilizers – counting both the
“XXXX” and the “ZZ” Pauli strings – follows an in-
verse square law with a universal coe�cient [45, 55],

P (`) ⇡
p
3

2⇡
`
�2

, (A10)

9 The chord distance follows from a conformal mapping of the
semi-infinite cylinder to the upper half plane. When A = [0, ✏]
and B = [L/2, L/2 + ✏], the cross ratio scale as ⌘ / L

�2.
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which leads to the following expression of I
A,A

in a peri-
odic system, when A = [x1, x2] has two endpoints:

1

4
I
A,A

=
1

4
⇥ 2⇥

p
3

2⇡
⇥ ln 2⇥ ln

✓
L

⇡
sin

⇡x12

L

◆

= hEE ln

✓
L

⇡
sin

⇡x12

L

◆
. (A11)

Here, hEE =
p
3

4⇡ ln 2 ⇡ 0.096. If we count the XXXX

and the ZZ stabilizers separately, they will each have an
inverse square law “critical” distribution, with the same

coe�cient 1
2

p
3

2⇡ , due to Kramers-Wannier duality.
With decoherence, the picture is slightly di↵erent,

since the XXXX and the ZZ stabilizers are not always
critical at the same time. Again we consider the state de-
composition into quasi-GHZ clusters, and calculate the
mutual information for each cluster.

(i) At the SG-Trivial transition, the unbroken coher-
ent bonds are critical, whereas the unbroken bonds
plus the incoherent bonds are “supercritical”. As
a consequence, there will be a few (order one) ex-
tensive quasi-GHZ clusters, each having a very long
XXXX string. Thus, there is at most O(1) contri-
bution from XXXX strings to any I

A,A
.

On the other hand, since the incoherent bonds are
no di↵erent from broken bonds to the ZZ operators,
the length distribution of the ZZs will still be crit-
ical, having an inverse square law with coe�cient
1
2

p
3

2⇡ .

Thus, as compared with the coherent percolation at
p
M
ZZ

= 1/2, q = 0, only half the stabilizers – namely
the ZZs – contribute to the mutual information.

(ii) At the PM-Trivial transition, the broken bonds plus
the incoherent bonds are now critical, whereas the
unbroken bonds alone are “subcritical”. Therefore,
now the XXXX strings will have a critical in-
verse square law length distribution with coe�cient
1
2

p
3

2⇡ ,
10 whereas most of the ZZ operators are short,

of length O(1).

Thus, as compared with the coherent percolation at
p
M
ZZ

= 1/2, q = 0, now the other half of the stabi-
lizers – namely the XXXX strings – contribute to
the mutual information.

These arguments imply that the coe�cient of the mu-
tual information at these two transitions are both half of

10 Note that this coe�cient is universal number of the percolation
universality class. It characterizes the critical loop ensemble, and
remains unchanged under rescaling of the temporal direction as
in Eq. (A8). Thus, we have the same coe�cient despite at a
value of pMZZ = p

M
X (the PM critical point) di↵erent than 1/2.

PM

SG

 p
 qX

 qZZ

FIG. 14. The phase diagram of the model with both decoher-
ences in X and ZZ. Here, the PM phase boundary is given by
qX = 1�2p

1�p , whereas the SG phase boundary is qZZ = 2p�1
p .

The phase transitions are still in the same universality class
as when qZZ = 0.

the SG-PM percolation transition at p
M
ZZ

= 1/2, q = 0,
namely

1

4
I
A,A

=
1

2
hEE ln

✓
L

⇡
sin

⇡x12

L

◆
. (A12)

We compute I
A,A

at the three transitions, and plot
the results in Fig. 13(b). They are fully consistent with
Eqs. (A11, A12).
Inside the three phases, the bipartite mutual informa-

tion I
A,A

always obeys an area law (data not displayed).

5. Inclusion of ZZ decoherence

Here we briefly discuss a slight generalization of the
baseline model, where we replace a fraction of the ZZ

measurements by ZZ depolarizations,

⇢! EZjZj+1(⇢) =
1

2
(⇢+ (ZjZj+1) · ⇢ · (ZjZj+1)) .

(A13)

The parameters are now

p
M
ZZ

= (1� qZZ)p, (A14)

p
E
ZZ

= qZZp, (A15)

p
M
X

= (1� qX)(1� p), (A16)

p
E
X

= qX(1� p). (A17)

After mapping to bond percolation, we now have both
horizontal and vertical incoherent bonds.
The SG transition is now when coherent, unbroken

bonds percolate, and the PM transition is still when bro-
ken bonds percolate. We have at the SG transition

p
M
ZZ

+ (1� p
M
X

� p
E
X
) = 1

) qZZ =
2p� 1

p
, (A18)
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SGPM

Trivial

 p�
ZZ

 q

(a) (b)

(c) (d)

(e) (f)

FIG. 15. Numerical results for the “two-leg ladder” circuit model [Fig. 4(a)] [56]. We confirm the phase diagram in Fig. 4(b),
and find the critical points are in the universality class of critical percolation. In particular, (a,b,c,d) are consistent with Fig. 2,
and (e,f) are consistent with Fig. 13.

and at the PM transition

p
M
X

+ (1� p
M
ZZ

� p
E
ZZ

) = 1

) qX =
1� 2p

1� p
. (A19)

Notice that the critical value of qX in Eq. (A19) is the
same as when qZZ = 0 (see Eq. (A5)).

The three-dimensional phase diagram is shown in
Fig. 14. There is perhaps no surprise that the two phase
boundaries have same shape, as one would expect from
Kramers-Wannier duality. The universality classes of
these transitions are una↵ected by the nonzero qZZ .

6. Equivalence between decoherence and
bath-system coupling (Sec. II B)

Here, we provide numerical evidences for the phase di-
agram in Fig. 4(b) of the “two-leg ladder” circuit model
[Fig. 4(a)] [56]. The results are shown in Fig. 15.
In particular, Fig. 15(a,b,c,d) should be compared with

Fig. 2, and Fig. 15(e,f) should be compared with Fig. 13,
where we find consistency throughout.

Appendix B: Correctness of the decoding algorithm
with located errors (Sec. IIIA)

In section, we prove the correctness of the decoding al-
gorithm in Sec. III A, for the dynamical repetition code
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with located errors in the spin glass phase. To do that,
we first outline a general procedure of verification for all
stabilizer codes, before focusing on this particular case.
Our approach here is perhaps not the simplest for the
repetition code, but can be easily generalized to slightly
more complicated cases, such as the toric code (see Ap-
pendix B 2).

Let the stabilizer group associated with the code be
denoted S. Recall that S is an abelian group of mutually-
commuting Pauli string operators on L qubits. The pro-
jection operator on the code space is

PS =
1

|S|
X

g2S
g. (B1)

We have (PS)
2 = PS . Let us assume the stabilizer code

has only one logical qubit (so that log2 |S| = L � 1),
and denote the logical X and Z operators by X and Z.
These two operators anticommute with each other, but
commute with all stabilizers. We also define the logical
Y operator as Y := �iZX.

A general density matrix inside the two-dimensional
code space may be written as a state inside the “logical
Bloch sphere”,

⇢0 =
1

2
PS (1 + xX+ yY + zZ)PS . (B2)

Here, x, y, z are real numbers, satisfying x
2+y

2+z
2  1.

We will always take the initial state of the circuit in Fig. 1
to be of this type. Notice that we are generalizing the
case in Sec. IIIA by also including possibly mixed initial
states.

The procedure of error and error correction, as outlined
in Sec. III A, are as follows.

1. We send the initial state through a circuit com-
prised of Pauli measurements and Pauli decoher-
ences. Among the Pauli measurements, some are
of stabilizers in S. We denote the quantum opera-
tion of the circuit by E .

2. After the circuit terminates, we measure all the sta-
bilizers. This quantum operation is denoted M.

3. Based on the stabilizer measurement outcomes at
the final state, as well as the stabilizer measure-
ments throughout the circuit bulk, we apply a uni-
tary gate, denoted U .

The resultant state should now be equal to the initial
state ⇢0,

⇢0 = (U �M � E)(⇢0). (B3)

The state evolution is in general a bit complicated to
track, although possible in special cases [50]. To sim-
plify the proof, we rewrite ⇢0 as a linear combination of
stabilizer density matrices,

⇢0

=(1� x� y � z)⇢1 + x⇢X + y⇢Y + z⇢Z

:=↵1⇢1 + ↵X⇢X + ↵Y⇢Y + ↵Z⇢Z, (B4)

where

⇢1 =
1

2
PS · 1 · PS =

1

2
PS , (B5)

⇢X = PS · 1 +X

2
· PS , (B6)

⇢Y = PS · 1 +Y

2
· PS , (B7)

⇢Z = PS · 1 + Z

2
· PS . (B8)

Each ⇢g (g 2 {1,X,Y,Z}) is a normalized stabilizer
state, whose stabilizer group is Sg := S [ gS. Our strat-
egy is then to work with each summand of Eq. (B4) sep-
arately.

This is not entirely trivial, since processes M and E in-
volve projective measurements on the state whose results
are subsequently recorded, and are threrefore nonlinear,
due to the normalization of the state with the Born prob-
abilities. To treat this, we represent the evolution using
fM and eE , the linear counterparts of M and E without
normalization, and “delay” the normalization until the
very end. The condition Eq. (B3) becomes

⇢0 = U
"

(fM � eE)(⇢0)
Tr(fM � eE)(⇢0)

#
. (B9)

Using the decomposition in Eq. (B4), this is equivalent
to

⇢0

= U
"
(fM � eE)(

P
g
↵g⇢g)

Tr(fM � eE)(⇢0)

#

= U
"
X

g

↵g

Tr(fM � eE)(⇢g)
Tr(fM � eE)(⇢0)

(fM � eE)(⇢g)
Tr(fM � eE)(⇢g)

#

=
X

g

↵g

Tr(fM � eE)(⇢g)
Tr(fM � eE)(⇢0)

· (U �M � E)(⇢g). (B10)

Here, g 2 {1,X,Y,Z}. The RHS will be equal to ⇢0, if
both conditions below are met for each g,

⇢g = (U �M � E)(⇢g), (B11)

Tr(fM � eE)(⇢g) = Tr(fM � eE)(⇢0). (B12)

Both conditions can be verified by tracking the evolution
of the stabilizer states ⇢g under M � E .11 The second
condition is equivalent to the following condition which

11 If not analytically, at least numerically.
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is easier to verify,12

Tr(fM � eE)(⇢1) = Tr(fM � eE)(⇢X)

= Tr(fM � eE)(⇢Y) = Tr(fM � eE)(⇢Z). (B13)

Intuitively, the decoding algorithm is successful if it
works on each of branch of stabilizer states, and for a
given history of measurement outcomes the trajactory
occurs with the same Born probability for each of the
branch, so that the amplitude coherence between di↵er-
ent branches are preserved.

1. Verification for the dynamic repetition code
with error-avoiding spanning paths

Recall that the repetition code has stabilizers ZjZj+1

for 1  j < L, and the logical operators can be chosen
to be X = X1 . . . XL, Z = Zj for any 1  j  L. Be-

low we try to describe (M � E)(⇢g) and Tr(fM � eE)(⇢g)
for g 2 {1,X,Y,Z}, and show that they satisfy the con-
ditions above, provided that an error-avoiding spanning
path exists.

Let us first list a convenient basis of the stabilizer group
for each of ⇢g; we denote the corresponding basis G(⇢g).
Our choices are

G(⇢1) = {+ZjZj+1 : 1  j < L}, (B14)

G(⇢X) = G(⇢1) [ {X}, (B15)

G(⇢Z) = G(⇢1) [ {Z}, (B16)

G(⇢Y) = G(⇢1) [ {�iZX}. (B17)

Below, we show by induction that at all circuit time steps
t, stabilizers of the corresponding dynamical states Et(⇢g)
can be chosen so that they satisfy the following condi-
tions:

G(Et(⇢X)) = G(Et(⇢1)) [ {X}, (B18)

G(Et(⇢Z)) = G(Et(⇢1)) [ {Zcum(⇡) · Zv}, (B19)

G(Et(⇢Y)) = G(Et(⇢1)) [ {�iZcum(⇡) · Zv ·X}, (B20)

Tr[eEt(⇢1)] = Tr[eEt(⇢X)] = Tr[eEt(⇢Y)] = Tr[eEt(⇢Z)].
(B21)

Here, by assumption, there exists an error-avoiding span-
ning path (as defined in Sec. III A) (u, 0)

⇡�! (v, t), and

12 Assuming that Eq. (B13) holds, we have

Tr(fM � eE)(⇢0)

=
X

g

↵gTr(fM � eE)(⇢g)

=
X

g

↵gTr(fM � eE)(⇢1)

= Tr(fM � eE)(⇢1),

where we used that
P

g ↵g = 1.

Zcum is the product of all ZjZj+1 measurement outcomes
along ⇡ [Eq. (12)].
Conditions in Eq. (B18, B19, B20, B21) obviously hold

for the initial state. Assume they are correct at all times
before t.

1. At odd t, the circuit involves measurements of
ZjZj+1. Let us consider these one by one, and
focus on, say, g = Z1Z2.

Consider the evolution of Et(⇢1). There are two
possibilities,

(a) g commutes with all elements of G(Et(⇢1)).
There are two cases:

i. g is already be an element of the group
generated by G(Et(⇢1)),

g 2 hG(Et(⇢1))i . (B22)

The measurement outcome will then be
deterministic, fixed by G(Et(⇢1)). In this
case, G(Et(⇢1)) remains unchanged.

ii. g does not belong to the following larger
group (which contains hG(Et(⇢1))i)

g /2 hG(Et(⇢1)) [ {X, Zcum(⇡) · Zv,�iZcum(⇡) · Zv ·X}i ,
(B23)

In this case, G(Et(⇢1)) becomes
G(Et(⇢1)) [ {±g}, corresponding to
measurement outcome of g being ±1,
with equal probabilities 1/2.

Notice that it is not possible for

g /2 hG(Et(⇢1))i (B24)

but at the meantime

g 2 hG(Et(⇢1)) [ {X, Zcum(⇡) · Zv,�iZcum(⇡) · Zv ·X}i ,
(B25)

for then g must anticommute with at least one
of {X, Zcum(⇡) ·Zv,�iZcum(⇡) ·Zv ·X}, which
is not the case (with g = ZjZj+1).

(b) g anticommutes at least one element of
G(Et(⇢1)). Without loss of generality, assume
there is exaclty one such element, denoted h.
The evolution of G(Et(⇢1)) would be to replace
h with ±g, with equal probabilities 1/2.

In all cases above, the update of G(Et(⇢1)) when
combined with any of {X, Zcum(⇡) ·Zv,�iZcum(⇡) ·
Zv ·X}, are legal updates of G(Et(⇢X,Y,Z)) as well.
Here, we use again the fact that g = ZjZj+1 com-
mutes with each of {X, Zcum(⇡) · Zv,�iZcum(⇡) ·
Zv ·X}
Moreover, the measurement outcome of g obeys the
same probability distribution for all four evolutions.

We have shown that conditions Eq. (B18, B19, B20,
B21) are preserved under one ZjZj+1 measurement
– hence all of them – at odd t.
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2. After the ZjZj+1 are measured at an odd time step
t, we have the freedom of moving the upper end-
point of the error-avoding spanning path ⇡.

In particular, we can choose a di↵erent path ⇡0 end-
ing at another site (v0, t). In other words, we can
make the following replacement of the generating
set of Et(⇢Z),

G(Et(⇢Z)) = G(Et(⇢1)) [ {Zcum(⇡) · Zv}
! G(Et(⇢Z)) = G(Et(⇢1)) [ {Zcum(⇡

0) · Zv0}. (B26)

The two sets generate the same stabilizer group,
since v and v

0 are connected by a path of ZZ sta-
bilizer measurements in the bulk (e.g. by joining ⇡
and ⇡p), so that Zcum(⇡)Zcum(⇡0) · ZvZv0 is also a
stabilizer of Et(⇢1) (see Appendix A).

Thus, we have the freedom in choosing the site at
which the path ⇡ ends, and we have shown that
di↵erent choices are consistent. In particular, un-
der the assumption that an error-avoding spanning
path ⇡ exists, there always exists a choice where the
endpoint does not experience an error at the cur-
rent timestep. We can perform this “error-avoiding
gauge transformation” at each timestep throughout
the time evolution whenever needed.

3. At even t, consider the measurement of Xj . By the
asssumption of an error-avoiding spanning path,
we may assume that the path ends at a site v 6=
j. In this case, Xj also commutes with all of
{X, Zcum(⇡) · Zv,�iZcum(⇡) · Zv · X}. The rea-
soning above for g = ZjZj+1 applies equally well
here for g = Xj , verbatim.

Thus, conditions Eq. (B18, B19, B20, B21) are pre-
served under Xj measurements at even t.

4. At even t, consider g = Xj decoherence. We simi-
larly assume v 6= j.

There are two possibilities for the evolution of
Et(⇢1).

(a) g commutes with all elements of G(Et(⇢1)).
In this case, G(Et(⇢1)) remains unchanged.
The other three G(Et(⇢X,Y,Z)) also remain
unchanged, since g commutes with all of
{X, Zcum(⇡) · Zv,�iZcum(⇡) · Zv ·X} as well.

(b) g anticommutes at least one element of
G(Et(⇢1)). Again assume there is exaclty one
such element, denoted h. The evolution of
G(Et(⇢1)) would be to simply drop h. The
same applies to G(Et(⇢X,Y,Z))

Thus, conditions Eq. (B18, B19, B20) are preseved
under Xj decoherence.

Since Xj decoherence is a quantum channel that
preserves the norm of the density matrix, and does
not involve measurements, Eq. (B21) is also pre-
served.

The induction above shows that at t = T , E = ET , con-
ditions Eq. (B18, B19, B20, B21) hold. Since M is just
another layer of ZjZj+1 measurements, these conditions
also hold upon replacing E by M � E . Here, Eq. (B21)
becomes Eq. (B13).
Lastly, we verify Eq. (B11) for a particular U , con-

structed using previous measurement outcomes. For the
states (M � E)(⇢1,X,Y,Z), we have

G ((M � E)(⇢1)) = {±ZjZj+1}, (B27)

G ((M � E)(⇢X)) = G ((M � E)(⇢1)) [ {X}, (B28)

G ((M � E)(⇢Y)) = G ((M � E)(⇢1)) [ {�iZcum(⇡) · Zv ·X},
(B29)

G ((M � E)(⇢Z)) = G ((M � E)(⇢1)) [ {Zcum(⇡) · Zv}.
(B30)

The “error-correcting unitary” U will first need to cor-
rect the signs for all stabilizers ZjZj+1 = �1, while com-
muting with {X, Zcum(⇡) ·Zv,�iZcum(⇡) ·Zv ·X}. This
may be achieved by apply the so-called “destabilizers”,
or in this special case of the repetition code, by apply-
ing Xj (“spin flip”) for all j 6= v where ZjZv = �1
(see Sec. IIIA). Next, we apply X to the system if
Zcum(⇡) = �1, again described in Sec. III A. After these
steps, we have

G ((U �M � E)(⇢1)) = {+ZjZj+1}, (B31)

G ((U �M � E)(⇢X)) = {+ZjZj+1} [ {X}, (B32)

G ((U �M � E)(⇢Y)) = {+ZjZj+1} [ {�iZv ·X},
(B33)

G ((U �M � E)(⇢Z)) = {+ZjZj+1} [ {+Zv}. (B34)

Comparing with Eq. (B14, B15, B16, B17), we have

G ((U �M � E)(⇢g)) = G(⇢g)
, (U �M � E)(⇢g) = ⇢g. (B35)

Thus, we have verified Eq. (B11). Combined with
Eq. (B13), we verified Eq. (B3), the correctness of the de-
coding algorithm for a general initial state ⇢0 [Eq. (B2)]
in the code space.
To summarize, we have verified the correctness of the

decoding algorithm described in Sec. III A, for the quan-
tum repetition code with located errors. Crucial to its
correctness is the existence of an error-avoiding spanning
path, as we have emphasized throughout. From our ar-
guments, we see how the spanning path ensures the en-
coded information is never directly measured or deco-
hered, therefore preserved and recoverable in the final
state.

2. Decoding the dynamic toric code with
error-avoiding spanning membranes

Using the formalism developed above, we consider a
di↵erent example without Z2 symmetry, namely a toric
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code [53, 54, 66] undergoing Pauli measurements and
Pauli decoherence in (2+1) spacetime dimensions. Re-
call that the toric code has two types of check operators,
namey the product of Pauli Zs on each plaquette (de-
noted ⇤Z), and the product on Xs on each star (denoted
+X), see Fig. 16. On a two dimensional torus, the toric
code supports two logical qubits, and the logical opera-
tors are Pauli string operators on non-contractible loops,
as illustrated in Fig. 16.

The dynamics we consider is shown Fig. 17. Here, time
runs upwards. Each square represents a measurement of
the plaquette check operator ⇤Z , and each star repre-
sents a measurement of the star check operator +X . We
denote the measurement rates of these p

M
⇤ and p

M
+ . In

between the check operator measurements are the single
qubit errors, which can be taken to be arbitrary, with-
out any symmetry constraints. However, we will focus
on the case of bit-flip errors only, so that we can simplfy
the problem by considering only the ⇤Z measurements.
Phase errors can be tracked by the +X measurements,
and can be decoded independently. We note that a sim-
ilar model was previously considered in Ref. [49].

The analysis of the dynamics follows from what was
described above for the repetition code, with slight mod-
ifications. Here we have two logical qubits, and a four-
dimensional code space. A decomposition of a general
density matrix in the code space, similar to Eq. (B4),
would read

⇢0 =
X

g

↵g⇢g, (B36)

where g now can take all 16 logical Pauli matrices on the
two logical qubits, including the identity. Again, as in
Eq. (B18, B19, B20, B21), on each trajectory E , we can
show by induction that

G(Et(⇢g 6=1)) = G(Et(⇢1)) [ {Lg(t)}, (B37)

 Z1
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 X2

 Z2

 Z

 Z
 Z

 Z

 X X
 X  X

FIG. 16. The toric code on a two-dimensional torus. The
stabilizers of the toric code are the plaquette Z operators
(denoted ⇤Z) and the star X operators (denoted +X), shown
on the left. The code has two logical qubits, and the logical
operators (denoted Z1,2, X1,2) are strings of Xs or Zs on
noncontractible loops on the torus, as illustrated.

FIG. 17. The circuit dynamics of the toric code in (2+1)
spacetime dimensions. We measure the ⇤Z and +X operators
at alternating timesteps, with rates pM⇤ and p

M
+ , respectively.

In between the stabilizer measurements, single-qubit errors
can occur at a finite rate p

err.

where Lg is a “dynamic logical operator” (to be defined
below) for the operator g, and these satisfy

Lg1(t)Lg2(t) = Lg1·g2(t). (B38)

In the previous example of the repetition code, LX(t) =
X, and LZ(t) = Zcum(⇡)Zv. Here for the toric code, in-
stead of an error-avoiding spanning path, Lg’s are defined
on “error-avoiding spanning membranes”.
As an example, for g = Z112, such a membrane µ inter-

sects the lower boundary of the circuit at a topologically
nontrivial loop, and also does so at the upper boundary
[Fig. 18(a)]. Importantly, µ contains no errors on its ver-
tical faces (parallel to the xt- and yt- planes), and on
each of its faces parallel to the xy-plane at time t a cor-
responding measurement of the plaquette stabilizer ⇤Z

was made. The product of all Pauli Z’s on the loop at the
lower boundary of µ is the logical operator Z112 for the
toric code, and the operator LZ112(t) is defined to be the
product of Pauli Z’s on the loop at the upper boundary
of µ, whose sign (denoted ⇤cum(µ)) is determined by the
product of all plaquette stabilizers on µ. One can sim-
ilarly find L11Z2(t) [Fig. 18(b)], LX112(t), and L11X2(t)
(hence Lg(t) for all g) from their corresponding mem-
branes, when they exist.
In [Fig. 18(c,d)], we further illustrate the error-

avoiding nature of these membranes. From one timestep
to the next, we can change the dynamic logical operator
LZ1(t), by performing the error-avoiding gauge transfor-
mation, allowed by stabilizer measurements.
The decoding starts by measuring all the stabilizers,

and correcting these signs using unitaries that commute
with all Lg(t). The signs of Lg(t)s can be subsequently
corrected by applying logical operators, based on the sign
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 t

 �Z1(t)  �Z2(t)

 �Z1(0) = Z1  �Z2(0) = Z2

(a) (b)

 �Z1(t)  �Z1(t + 1)

(c) (d)

FIG. 18. (a,b) dynamic logical operators defined on the er-
ror avoiding membranes. Faces of the membrane µ parallel to
xt- or yt- planes do not contain any errors, and faces parallel
the xy- plane must each contain a plaquette stabilizer mea-
surement. In (a), the membrane µ intersects the initial and
final temporal planes at two noncontractible loops along the
y direction (highlighted with blue color), which we idenfity as
LZ1(0) and LZ1(t). In (b), the membrane µ is now along the
x direction, and defines LZ2(0) and LZ2(t). (c,d) Comparing
the cross section of µ at two consecutive time steps, t and t+1.
Single qubit errors that occur in between are denoted as pink
links. The dynamic logical operators can be “wiggled” by
measurements of plaquette operators (shaded) at time t + 1,
corresponding to a “error-avoiding gauge transformation” of
the dynamic logical operator.

calculated from error-avoiding spanning membranes, in
a fashion similar to the repetition code. For example,
if LZ112 is deemed to have a minus sign, we apply the
logical operator LX112 to the code block.

Given the stabilizer measurements in the bulk and lo-
cations of the errors, error-avoiding spanning membranes
can be found in polynomial time. Such two-dimensional
membranes are present with probability 1 in the “perco-
lating” phase of the membranes, which is equivalent to
the “non-percolating” phase of one-dimensional paths of
errors that intersect the membrane. Thus, the decodabil-
ity of the encoded information with located errors for the
dynamical toric code model is again related to the physics
of percolation, this time in three spatial dimensions.

More intriguing is the decodability of the quantum in-
formation with unlocated errors. For concreteness, we

consider the membrane whose boundaries are LZ112(0)
and LZ112(t). Naively, one can generalize the sum over
paths to a sum over membranes

f(�T ) =
X

�0

X

µ(t=0)=�0 and µ(t=T )=�T

⇤cum(µ). (B39)

Here, �0,T specify the noncontratible loops corresponding
to LZ112(0) and LZ112(t), and the summation is over all
membranes with these boundary conditions (which might
or might not contain errors). However, the number of
possible choices of �0,T and of µ are exponential in L, T ,
and it is not clear how to sum over all these paths.
We may consider restricting the summation to mem-

branes that can be parametrized as a height function
x(y, t). These membranes can be thought of as a general-
ization of the directed paths in Eq. (13) to “directed sur-
faces”, e↵ectively neglecting all surfaces with overhangs.
This sum can be evaluated using a similar recursion in
Eq. (14). However, upon carrying out such a summa-
tion, we do not find a finite error threshold. Evidently,
the directed membranes are not good enough at avoiding
errors. It would be interesting if there exists an e�cient
summation that can decode with probability 1 below a
finite error threshold.

Appendix C: Phases of generic Z2 circuits

In this Appendix we introduce a few variations of the
baseline circuit model [Fig. 1], and focus on the physics
of the phases these models can host, without worrying
too much whether these phases can be decoded.
In Appendix C 1, we consider perturbing the circuit

with random local (Cli↵ord) unitaries of Z2 symmetry,
and find that the response of the system to the unitaries
depends on whether or not the decoherences are present.
In Appendix C 2, we introduce projective measure-

ments in the bath, on top of the two-leg ladder circuit
model (Sec. II B). As the meausurements drive the bath
into a nonthermalizing phase, the strength of decoherence
diminishes, and the e↵ects of the bath-system coupling
is comparable to that of local Z2 unitaries within the
system, as in Appendix C 1.

1. Introduction of Z2 symmetric unitaries

We consider the following variation [Fig. 19(a)] of the
baseline circuit. At each spacetime location of the cir-
cuit, we apply with probability p

U a random 1-qubit or
2-qubit Cli↵ord unitary that commute with X (i.e. Z2

symmetric), depending on the parity of t. We only apply
the other three types of gates (Z2 symmetric measure-
ments and decoherences) when such a unitary gate is not
applied. Using parameters in Sec. II, the current model
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can be parametrized as follows,

p
U1 = p

U2 = p
U
, (C1)

p
M
ZZ

= (1� p
U )p, (C2)

p
M
X

= (1� p
U )(1� q)(1� p), (C3)

p
E
X

= (1� p
U )q(1� p). (C4)

The case where q = p
E
X

= 0 was previously studied in
Refs. [48, 55]. We reproduce the two-dimensional phase
diagram (in the p

M
ZZ

� p
U plane) in Fig. 19(b). The SG

and PM phases are still present for small pU . A volume
law entangled phase appears when p

U is large, regard-
less of the value of pM

ZZ
. In between the SG, PM and the

volume law phase is a “critical” phase which exhibits log-
arithmic scaling of entanglement entropy [48]. Except at
the solvable point (pM

ZZ
, p

U ) = (1/2, 0), the phase tran-
sitions appear to be in universality classes di↵erent from
2d critical percolation, and their exact nature remains
unclear.

The phase diagram is suprisingly simple when deco-
herence is present, q > 0 (hence p

E
X

> 0), as we depict in
Fig. 19(c). Here, the trivial phase between PM and SG
at p

U = 0 [Fig. 2] is enabled by unitaries, which even-
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FIG. 19. (a) The circuit model obtained by introducing Z2

symmetric unitary gates into the baseline cicuit [Fig. 1]. (b)
The phase diagram in the absence of X decoherence [48]. We
see a “critical” phase and a volume-law entangled phase with
increasing p

U . (c) The phase diagram in the presence of X de-
coherence, which is much simpler than (b). The three phases
and critical properties of phase transitions are the same as in
the baseline circuit (see Fig. 2).

tually takes over at large p
U . The transitions between

this phase and PM and SG are again in the universal-
ity class of critical percolation, with critical exponents
summarized in Appendix A and Table I.
Below, we numerically confirm the phase diagram in

Fig. 19(c). We choose q = 1/2, and take two cuts of the
phase diagram, at p

M
ZZ

= 0.25 and at p
M
ZZ

= 0.75, as
shown in Fig. 20(a).
In Fig. 20(b), we numerically compute the order pa-

rameters �PM and �SG. These are clearly consistent with
the phase diagram in Fig. 20(a). We also find the mutual
information between two distant regions is 0 in the PM
and Trivial phases, and is 1 is the SG phase, as consistent
with Table I and Eq. (A9). Evidence for long range cor-
relations are found at the PM-Trivial transition (in the
form of a peak in mutual information).
In Fig. 20(c,d), we collaspe the �PM and �SG near the

transitions for di↵erent system sizes against the scaling
forms in Eqs. (6, 7), and find consistency with �PM =
�SG = 1/3, ⌫ = 4/3 (compare Fig. 2(c,d)).
In Fig. 20(e,f), we focus on the scaling of entangle-

ment properties at the two critical points. The results
are consistent with Fig. 13.
Thus, in the presense of decoherence the unitary gates

apparently do not modify any of the qualitative or quan-
titative universal physics. At a microscopic level, their
e↵ects can be accounted for by generalizing the (exactly
soluble) gate set in the baseline circuit to a generic gate
set with Z2 symmetry, which (evidently) moves the phase
boundaries around, but does not change any of the uni-
versal (critical) data. It follows that the phase diagram
in Fig. 19(c) and Fig. 2 are generic for Z2 circuits with
decoherence. In contrast, without decoherence, pE

X
= 0,

inclusion of the unitary gates evidently modify much of
the qualitative physics [48].

2. Entanglement transition of the bath, and its
ramifications on the Z2 symmetric chain

We have seen in Sec II B that a random unitary circuit
can act as a bath, when satisfying both “Triviality” and
“Markovianity” conditions. In this section, we explore
circumstances where the bath becomes nonthermal.
Starting from the two-leg ladder circuit model [56],

we introduce single-qubit measurements13 at a finite rate
p
M
bath in the “bath” chain, as depicted in Fig. 21(a). The

measurements will drive the bath through a phase tran-
sition in entanglement scaling from volume law (at small
p
M
bath) to area law (at large pMbath) [25, 26]. The transition

occurs at a finite measurement strength,
�
p
M
bath

�
c
> 0. It

is plausible that in the volume law phase, the bath is still

13 Since the bath dynamics do not have a physical symmetry, and
the gates are random, we may take the projective measurements
to be single qubit measurements of, say, Zj .
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Phase diagram at  q = 1/2
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FIG. 20. Numerical results for the model in Fig. 19(a), where we introduce Z2 symmetric unitaries into the baseline circuit.
Focusing on q = 1/2, we find the phase diagram in (a), and confirm that the phase transitions are in the universality class of
critical percolation, whose critical exponents are summarized Table I.

at “finite temperature” with a finite density of entangle-
ment entropy, and the two conditions above are still sat-
isfied; whereas in the area law phase, the bath looks as
if it is at “zero temperature”, and fails to behave like a
good thermal bath. Instead, in the area law phase most
qubits in the bath are measured at each time step, so
that after the bath is traced out, the system-bath cou-
pling will e↵ectively induce (additional) local unitaries
and local measurements into the system. Thus, when
the bath passes through the transition, the system’s in-
termediate phase induced by the system-bath coupling
might also exhibit a transition, from the decoherence-
dominated “trivial” phase (compare Fig. 19(c), where
q > 0) to the unitary-dominated “critical” phase (com-
pare Fig. 19(b), where q = 0).

The schematic phase diagram that follows from this

reasoning is shown in Fig. 21(b). Here, we vary p
M
ZZ

and
p
M
bath, and parametrize other rates as follows,

p
M
X

= (1� q)(1� p
M
ZZ

), (C5)

p
I
X

= q(1� p
M
ZZ

), (C6)

p
U = 0. (C7)

The last equation says that we do not introduce any
unitary gates into the system explicitly, as in Sec. II B.
Within the phase diagram, we study three cross sections,
as highlighted with dashed lines.
We confirm the phase diagram with numerical results

in Fig. 21(c,d,e), where we take q = 0.80. First, we choose
two values of pMbath(= 0.10, 0.40), and calculate the order
parameters �SG and �PM for varying pM

ZZ
. The results for

a finite system size L = 256 are shown in Fig. 21(c).In
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Phase diagram at  q > 0, p� = 0
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FIG. 21. (a) The circuit model obtained by introducing local measurements of the bath into the two-leg ladder circuit [Fig. 4],
and (b) its phase diagram. The model has four phases, as we detail in the main text. (c) Numerical results on the two horizontal
cross sections of the phase diagram in (b), at p

M
bath = 0.1 and 0.4. In both cases we see the SG and PM phases, separated by

an intermediate phase where both order parameters vanish. (d,e) Numerical results on the vertical cross section of the phase
diagram in (b), for an intermediate value of pMZZ with neither SG nor PM order. The half-cut mutual information (d) of the
“bath” indicates a volume law to area law transition of the bath driven by measurements. The half-cut mutual information (e)
of the “system” indicates a phase transition from a trivial, area law entangled phase, to a “critically entangled” phase akin to
the one in Fig. 19(b).

both cases, there is an intermediate phase where both
order parameters vanish. We note that the width of the
intermediate phase decreases with increasing p

M
bath, but

remains finite for pMbath = 1.0 (see Fig. 22 below).

Next, we take p
M
ZZ

= 0.32, which sits in the interme-
diate phase for all values of pMbath 2 [0, 1] (see Fig. 22),
and compare the scaling of the entanglement for varying
values of pMbath. To filter out the entanglement between
the bath and the system, and focus instead on the inter-
nal entanglement of the bath, we consider the “half-cut
mutual information” I

bath
A,A

for an equal-size bipartition

(A,A) of the bath, each of L/2 qubits. The results for
di↵erent values of pMbath are shown in Fig. 21(d). On a log-
log scale, we see a clear transition between a phase where
I
bath
A,A

/ L, and another phase where I
bath
A,A

/ L
0. Thus,

the bath itself goes through a volume law to area law
transition in its internal entanglement under projective
measurements. The critical point is at

�
p
M
bath

�
c
⇡ 0.22.

Similarly, we compute the half-cut mutual informa-
tion for an equal-size bipartition of the system, de-
noted I

system

A,A
, and plot the results in Fig. 21(e). When

p
M
bath <

�
p
M
bath

�
c
, Isystem

A,A
obeys an area law, as consistent

with the trivial phase. When p
M
bath >

�
p
M
bath

�
c
, Isystem

A,A

grows with the system size, and appears proportional
to lnL as p

M
bath >

�
p
M
bath

�
c
approaches 1. This scaling

behavior is consistent with the critical phase with loga-
rithmic entropy [48] (see also Fig. 19(b)). We note an
interesting regime when p

M
bath is slightly above the crit-

ical point, where the entropy grows faster than lnL for
the system sizes accessed.

In Fig. 22, we present further numerical results of the
phase diagram in Fig. 21 at q = 0.8. We take three
values of pM

ZZ
(= 0.32, 0.20, 0.40), and take four values of

p
M
bath(= 0.1, 0.2, 0.4, 1.0) along these lines.

Along the line pM
ZZ

= 0.32 [Fig. 22(a)], the system goes
from the Trivial phase to the Critical phase with increas-
ing p

M
bath (see Fig. 21(c,d,e)). Both phases should have

vanishing order parameter �SG and �PM. This is con-
firmed by the numerics, where we found that for pMbath <

(pMbath)c ⇡ 0.22, both �SG and �PM decays quickly with
increasing system sizes L, and for p

M
bath > (pMbath)c, the

two order parameters are also decaying with increasing
L, albeit slowly. This is perhaps due to the fact that the
Critical phase becomes narrower with larger p

M
bath. In

any case, it is clear that these phases are quite di↵erent
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FIG. 22. Further numerical results on the circuit model in
Fig. 21(a), where the bath undergoes single-qubit projective
measurements at rate pMbath. These results further corroborate
the phase diagram [Fig. 21(b)].

from the SG and PM phases.

In contrary, when we take pM
ZZ

= 0.2, 0.4 (Fig. 22(b,c)),
we see a clear transition from the trivial phase to the PM
and SG phases, respectively, where the corresponding or-
der parameter scales linearly in L.

Thus, we have confirmed the picture outlined above
and in Fig. 21(b). That is, the measurement-driven en-
tanglement transition in the bath is accompanied by a
phase transition for intermediate values of p

M
ZZ

in the
system, as reflected in the entanglement scaling.

We also find that at the Critical-PM and the Critical-
SG transitions, the critical exponents are di↵erent from
those in Table I, as expected. These results are not dis-
played.

3. Comments

In this Appendix, we have focused on the generic phase
diagram in (1+1)-dimensions. It would be nice to un-
derstand the critical properties, and the di↵erences be-
tween the (super-)logarithmically entangled phase and
other “critical” phases found in the context of monitored
dynamics [80–84]. It would also be interesting to put
all these phases under the classification framework in
Ref. [56].

In higher dimensions, the phase diagram can be much
richer, as we discussed briefly in Sec. III C for the case
without Z2 unitaries. With Z2 unitaries, a volume law
phase can coexist with the spin glass order, even without
a bath [48]. The ensuing phase diagram will be worth
exploring in future works.


