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We explore a class of “open” quantum circuit models with local decoherence (“noise”) and local projective
measurements, each respecting a global Z2 symmetry. The model supports a spin-glass phase where the Z2

symmetry is spontaneously broken [not possible in an equilibrium one-dimensional (1D) system], a paramagnetic
phase characterized by a divergent susceptibility, and an intermediate “trivial” phase. All three phases are also
stable to Z2-symmetric local unitary gates, and the dynamical phase transitions between the phases are in the
percolation universality class. The open circuit dynamics can be purified by explicitly introducing a bath with its
own “scrambling” dynamics, which does not change any of the universal physics. Within the spin-glass phase
the circuit dynamics can be interpreted as a quantum repetition code, with each stabilizer of the code measured
stochastically at a finite rate, and the decoherences as effective bit-flip errors. Motivated by the geometry of
the spin-glass phase, we devise a decoding algorithm for recovering an arbitrary initial qubit state in the code
space, assuming knowledge of the history of the measurement outcomes, and the ability of performing local
Pauli measurements and gates on the final state. For a circuit with Ld qubits running for time T , the time needed
to execute the decoder scales as O(Ld T ) (with dimensionality d). With this decoder in hand, we find that the
information of the initial encoded qubit state can be retained (and then recovered) for a time logarithmic in L
for a 1D circuit, and for a time at least linear in L in two dimensions below a finite-error threshold. For both the
repetition and toric codes, we compare and contrast our decoding algorithm with earlier algorithms that map the
error model to the random bond Ising model.
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I. INTRODUCTION

Recent theoretical progress in the dynamics of many-body
quantum systems has become increasingly laden with ideas
from quantum information theory. With notions such as the
entanglement entropy and the out-of-time-ordered correlator,
the process of information spreading in a spatially extended
system can be succinctly quantified. Two notable nonequi-
librium phases of closed system dynamics have emerged,
namely, a thermal phase [1–15] where the information can
spread across the entire system, and a many-body localized
(MBL) phase (in the presence of strong quenched disorder)
[16–25] where information in the initial state is retained lo-
cally at long times. The MBL transition [26–38] between the
two is an “entanglement phase transition,” marked by sharp
changes in the temporal growth and spatial scaling of the
entanglement entropy.

A different type of entanglement phase transition occurs
in “hybrid circuits” [39–56], namely, a random unitary circuit
[11,13,14,57–62] interspersed with monitored local measure-
ments. Similar phenomena are also considered in a broader
context [63–85]. Due to the competition between unitary gates
that increase entanglement and measurements that tend to
“disentangle,” the steady state can be in a volume-law phase
of entanglement entropy at small measurement rates, or an

area-law phase with more frequent measurements, separated
by a continuous phase transition [42–44,48,49,65,86–88]. Us-
ing the language of quantum error correction [89–92], the
dynamics in the volume-law phase can be viewed as a “robust
encoding” circuit [45,47] of a quantum memory, whose in-
formation hiding properties prevent infrequent measurements
from rapidly collapsing the wave function and suppressing the
volume-law entropy to an area law [93–96]. The entanglement
transition is then interpreted as a transition in the code rate
or channel capacity, which is an information theoretic upper
bound of the residual information.

A crucial aspect of the measurement-induced transition
is that it only occurs along quantum trajectories labeled by
the measurement results [42,43,64], but not in the (Lind-
blad) evolution of the mixed state density matrix, suitable
for a dynamics where the “measurements” are not moni-
tored. As such, an experimental observation of the transition
will presumably need to make use of the information of the
measurement results. One possible approach is to postselect
on the same measurement results, so that one gets multiple
copies of the same state; and from these copies, nonlinear
functions of the state, such as the entanglement entropy or
“squared correlators” [see for example Eq. (4) below] can be
measured, in principle. However, the probability that the same
measurement history occurs more than once is exponentially
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suppressed in the system size, making this approach imprac-
tical. A second approach is to “decode” the circuit [44,50],
namely, replicating the state by applying a “feedback unitary”
based on the measurement history, so that the resultant state is
the same for different measurement histories. This is demon-
strated in a recent simulation of a hybrid stabilizer circuit
on a trapped-ion quantum computer [97], where an optimal
decoding algorithm (saturating the channel capacity) exists.

Another important class of monitored dynamics is
“measurement-only circuits” [68,98–104]. These circuits do
not have any built-in unitary gates, and the nontrivial dynam-
ics is generated instead by competing local measurements
drawn from a finite set. In many such models, one finds
“measurement-protected phases” [101] with area-law entan-
glement entropies favored by different types of measurements,
and transitions between these area-law phases can also be
transitions in the channel capacity from finite to zero. Because
the measurements are prevalent, the measurement-only cir-
cuits closely resemble the conventional “decoding” dynamics
of a stabilizer code [105–108], with competing check oper-
ator measurements and interspersing errors, rather than an
encoding circuit. Namely, we encode one (or a few) logical
qubit(s) of quantum information in the initial state, and view
a subset of mutually commuting measurement operators as
“check operators” defining a certain code space, while treating
all other (incompatible) measurements as “errors” [103]. By
recording the measurement results of the check operators, one
collects information about the errors, and applies an appro-
priate decoding unitary based on this classical information,
in order to recover the quantum information encoded in the
initial state, in spite of the errors. (See Sec. III for a clearer
description of this decoding problem.) Here, the measurement
outcomes enter explicitly as input of the decoder. The proba-
bility of successful decoding requires a finite channel capacity
of the circuit, but deducing a specific decoding protocol is
complicated by the presence of errors, details of the error
model, and the possible intrinsic circuit compexity.

In this work, we study the said decoding problem in the
simplest measurement-only circuit, namely, the one with ZZ
measurements on neighboring qubits and X measurements on
single qubits [98,101,103] (see also Refs. [99,100,109]). We
view the ZZ operators as check operators defining a quantum
repetition code, and the X measurements (anticommuting with
the checks) as errors. Motivated by Bao, Choi, and Altman
[110], we also include another type of error, namely, single-
qubit dephasing channels in the X direction, making the
circuit an open system subject to decoherence and generally
driving the circuit into a mixed state. The two types of X
errors both become probabilistic bit flips under check operator
measurements, whereas phase-flip errors never occur due to
the global Z2 symmetry that we impose.

We define our “baseline circuit” in Sec. II, and outline
in Sec. II A a mapping of the circuit dynamics to bond
percolation, which allows us to solve for the phase di-
agram and for critical properties of the dynamical phase
transitions. (The details are left for Appendix A.) Notably,
aside from the “paramagnetic/nonpercolating” and the “spin-
glass/percolating” phases [98,101,103], a third “trivial” phase
with neither order is enabled by decoherence, and is smoothly

connected to the infinite-temperature fixed point [110]. Fur-
thermore, we follow Ref. [110] and introduce a “bath”
whose coupling with the “system” replaces the decoherence
(Sec. II B). When the bath dynamics is thermalizing, we find
that the system-bath coupling does act like decoherence, and
the universal physics is identical with the baseline circuit.

In Sec. III, we focus on the percolating phase [101] of
the baseline circuit, and devise a polynomial time decoding
algorithm (or simply a “decoder”) for the repetition code
based on “error-avoiding spanning paths” in the percolating
lattice. The performance of the decoder defines a “decoding
phase,” which coincides with the percolating phase when the
locations of the X errors are known to the decoder. With
unlocated X errors, the decoder finds a zero-error threshold
for the (1 + 1)-dimensional [(1 + 1)D] repetition code, and a
finite-error threshold for the (2 + 1)-dimensional [(2 + 1)D]
repetition code. In the latter case, the decoding phase is strictly
within the percolating phase, and the “decoding transition”
is in a distinct universality class than three-dimensional crit-
ical percolation. In Sec. III D, we confirm the robustness of
the decoder against faulty measurements. In Sec. III F, we
compare our results with previous work [107,111], in which
the decoding problem of the repetition code in one and two
dimensions is mapped to a minimal weight perfect matching
(MWPM) problem of Ising defects in random bond Ising
models (RBIM) in two and three dimensions, respectively.
Notably, for the three-dimensional RBIM, the matching prob-
lem is NP hard, whereas our decoder runs in polynomial time.

In Sec. IV, we discuss the general relation between de-
coding and phases of entanglement in hybrid circuits, and
possible future directions.

In Appendix A, we describe in detail the mapping of the
baseline circuit to bond percolation, and derive the critical
exponents, confirmed by numerical results.

In Appendix B, we prove the correctness of the decoder us-
ing error-avoiding spanning paths. The formulation we adopt
here slightly generalizes the stabilizer formalism (i.e., treat-
ing Clifford circuits with a superposition of stabilizer initial
states), and may be of independent interest. In Appendix B 2,
we drop the Z2 symmetry and consider the toric code in
(2 + 1)D, where both bit-flip and phase-flip errors are al-
lowed. For the toric code, the decoder can be generalized,
and relies on the presence of two-dimensional “error-avoiding
spanning membranes” in the percolating phase of check
operator measurements. However, with unlocated errors, im-
plementing our decoder by summing over a subset of spanning
membranes gives a zero-error threshold, whereas the MWPM
decoder [using a mapping to a (2 + 1)D statistical mechanics
model, generalizing the RBIM]does give a finite-error thresh-
old [107,111].

In Appendix C, we move away from the decodable baseline
circuit, and study the generic phase diagram when various
Z2-symmetric perturbations are included. In particular, we
consider cooling the “bath” (in Sec. II B) by making local
measurements, and observe that the bath-system coupling
ceases to act as decoherence. In this case, the decoherence-
induced trivial phase is replaced by a “critically entangled
phase” exhibiting (super)logarithmic scaling of entanglement
entropy, similar to the phase found by Sang and Hsieh [101].
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FIG. 1. The “baseline” open Z2 circuit. There are three types of
gates, namely, ZZ measurements at odd time steps, and X measure-
ments and X decoherence at even time steps, each occurring with a
finite probability. This may be obtained from the measurement-only
circuit in Refs. [98,101,103] by randomly swapping out a fraction
q of all single-qubit X measurements for single-qubit X dephasing
channels.

II. SIMPLEST “BASELINE” OPEN QUANTUM CIRCUIT
WITH Z2 SYMMETRY IN (1 + 1) DIMENSIONS

We start with the simplest open Z2 circuit model (Fig. 1),
which contains three types of gates. This model will subse-
quently be referred to as the “baseline circuit model.” The
dynamics at the t th time step alternates with the parity of t .

If t is odd, each of the nearest-neighbor ZjZ j+1 opera-
tors (Z1Z2, Z2Z3, Z3Z4, . . .) is measured independently with
probability pM

ZZ . The measurement outcome is random and
follows Born’s rule, and is thereafter recorded on a classical
memory. The state evolution is thus stochastic and depends on
the measurement outcome, where

ρ → M±Z j Z j+1 (ρ) =
P±Z j Z j+1ρP±Z j Z j+1

Tr[P±Z j Z j+1ρ]
(1)

with Born probabilities Tr[P±Z j Z j+1ρ], respectively. Here
P±Z j Z j+1 := (1 ± ZjZ j+1)/2 are the projection operators, cor-
responding to the measurement outcome of ZjZ j+1 being ±1,
respectively.

If t is even, for each qubit j, we have either of the
following:

(1) With probability pM
X = (1 − q)(1 − pM

ZZ ), a projective
measurement of Xj . The state evolution M±Xj is similar to
Eq. (1),

ρ → M±Xj (ρ) =
P±Xj ρP±Xj

Tr[P±Xj ρ]
, (2)

but with a different set of projection operators, namely, P±Xj =
(1 ± Xj )/2.

(2) Or, with probability pE
X = q(1 − pM

ZZ ), a “decoherence
gate,” specifically a dephasing channel in the X direction of
qubit j,

ρ → EXj (ρ) = 1
2 (ρ + XjρXj ). (3)

It is important that the projection operators of the ZZ and X
measurements, as well as the Kraus operators of the dephasing
channel in Eq. (3), all commute with the global Z2 symmetry
of the circuit, X =

∏
j=1,...,L Xj . The circuit dynamics is there-

fore “strongly symmetric” [112,113].

These parameters have been chosen to satisfy pM
ZZ + pM

X +
pE

X = 1. In the limit q = pE
X = 0, the model becomes the

ZZ − X measurement-only circuit [98,101,103,109]. For this
model, the circuit dynamics can be mapped exactly to a bond
percolation problem on the square lattice, where each bond
(regardless of whether horizontal or vertical) is present with
probability pM

ZZ . The corresponding percolation threshold is
at pM

ZZ = pM
X = 1

2 [98]. When q > 0 and pE
X > 0, with this

particular gate set and parametrization, the model can still
be solved analytically by a slight generalization of the above
mapping to percolation, as we describe in Sec. II A. The
phases and the critical properties are apparently universal and
do not depend on these details, as long as (strong) Z2 sym-
metry is preserved by the measurements and the decoherence.
This is discussed in detail in Appendix C 1, where we perturb
the circuit with random local Z2 unitary gates for which the
dynamics cannot be exactly solved.

For concreteness, we will mostly take the initial state a
product of |+〉 j = 1√

2
(|0〉 j + |1〉 j ) on each qubit j in our

numerics. This is a “stabilizer state” so that the circuit can
be simulated efficiently using the Gottesman-Knill theorem
[106,114]. This choice of initial state does not affect the phase
diagram [103], and we will return to the issue of a nonstabi-
lizer initial state in Sec. III. We also take periodic boundary
condition in the numerics, and focus on the steady state with
times T % L, where we have L qubits.

A. Phase diagram and critical properties

The model has three phases, shown in Fig. 2(a). In the spin-
glass (SG) phase where ZZ measurements dominate, the Z2
symmetry is spontaneously broken, and we have an extensive
“susceptibility” as defined below [101]:

χSG = 1
L

∑

i∈A, j∈B

|〈ZiZ j〈|2. (4)

Here A and B are antipodal regions each of size L/8, 〈. . .〉
denotes the expectation value in the steady state, and the
overline denotes an ensemble average over circuit realizations.
The paramagnetic (PM) phase is where X measurements
dominate, and is similarly characterized by an extensive sus-
ceptiblity [110]

χPM = 1
L

∑

i∈A, j∈B

|〈XiXi+1 . . . Xj−1Xj〉|2. (5)

These two order parameters are related to each other by a
Kramers-Wannier duality. The SG and PM phases are sep-
arated by an intermediate trivial phase [110] where both
χSG and χPM vanish, which is only present with decoher-
ence, q > 0, pE

X > 0. Despite being in one dimension, the
symmetry-breaking SG phase nevertheless survives decoher-
ence (“noise”), not possible in an equilibrium system.

We provide numerical evidence for this phase diagram
along the line q = 1

2 [Fig. 2(b)], where we calculate both
susceptibilities and indeed find the above three phases. In
particular, we have the PM phase when pM

ZZ < 1
3 , the SG phase

when pM
ZZ > 1

2 , and the trivial phase in-between. Near the
PM-trivial transition at (pM

ZZ )PM
c = 1

3 , we collapse χPM(L) for
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FIG. 2. (a) The phase diagram of the baseline circuit (Fig. 1), and (b)–(d) numerical results for this model along the dashed cross section in
(a). In (b), we see nonvanishing χSG and χPM at large and small values of pM

ZZ , respectively. In-between the SG and PM phases, we see an
intermediate phase with neither order. Near the critical points, χPM and χSG for different system sizes are collapsed against the scaling forms
in Eqs. (6) and (7), as shown in (c) and (d), respectively. The boundary between the trivial and SG phases is at pM

ZZ = 1
2 , and that between the

trivial and PM phases is on the line given by pM
ZZ = pM

X . The phase transitions here are all in the critical percolation universality class, but
generally the same physical observable can map to different correlation functions for transitions marked by different colors.

different system sizes against the following scaling form:

χPM(L) = LγPM F
{[

p −
(
pM

ZZ

)PM
c

]
L1/ν

}
, (6)

where we take γPM = 1
3 and ν = νperc(d = 2) = 4

3 . Here, and
in the caption of Fig. 2, we have used the notation p ≡
pM

ZZ . Similarly, near the SG-trivial transition at (pM
ZZ )SG

c = 1
2 ,

we collapse χSG(L) for different system sizes against the
following scaling form:

χSG(L) = LγSG F̃
{[

p −
(
pM

ZZ

)SG
c

]
L1/ν

}
, (7)

where we take γSG = 1
3 and ν = νperc(d = 2) = 4

3 . From
Kramers-Wannier duality we expect F (X ) = F̃ (−X ). The re-
sults are plotted in Figs. 2(c) and 2(d), which clearly suggest
continuous phase transitions with exponents consistent with
two-dimensional critical percolation [115,116].

The phase diagram and the critical properties follow from
a mapping of the circuit dynamics to a bond percolation prob-
lem on a two-dimensional square lattice [98,101,103,109],
summarized in Fig. 3(a). In this mapping, gates at odd t
map to horizontal bonds, and gates at even t map to vertical
bonds. In particular, at odd t , a projective measurement of
ZZ maps to a connected horizontal bond, and the absence
of a ZZ measurement maps to a broken horizontal bond. At
even t , a projective measurement of X maps to a broken
vertical bond, and the absence of an X gate, either an X
measurement or an X dephasing channel, maps to a connected
vertical bond. The X dephasing channel represents a third
type of decorated bonds, which we highlight with red color
and dashed line. With details in Appendix A, we show that

the SG phase is the percolating phase of the connected bonds
alone, that is, excluding broken bonds and decorated bonds
[Fig. 3(d)], and the PM phase is the percolating phase of the
broken bonds alone, excluding connected bonds and decorated
bonds [Fig. 3(b)]. The intermediate trivial phase is where
neither type percolates [Fig. 3(c)], and is present only when
the decorated bonds (decoherence) take place (q > 0). On the
square lattice, we know exactly that the boundary between
the SG and the trivial phases is at pM

ZZ = 1
2 , and the boundary

between the PM and the trivial phases is on the line given by
pM

ZZ = pM
X .

We summarize in Table I the phases and several critical
exponents, and leave the details and further numerical results

TABLE I. A summary of the scaling of the order parameters and
entanglement properties in each of the three phases and at the phase
transitions. These results can be derived from the mapping in Fig. 3,
as we detail in Appendix A.

χSG χPM
1
4 IA=[0,L/2],A IA=[0,ε],B=[ L

2 , L
2 +ε]

PM 0 ∝ L Area law 0

Trivial 0 0 Area law 0

SG ∝ L 0 Area law 1

PM-trivial 0 ∝ L1/3
√

3 ln 2
8π

ln L L−4

SG-trivial ∝ L1/3 0
√

3 ln 2
8π

ln L L−2/3

PM-SG ∝ L1/3 ∝ L1/3
√

3 ln 2
4π

ln L L−2/3
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FIG. 3. (a) Mapping from the circuit geometry to a bond percolation problem, for the example in Fig. 1. (b)–(d) Typical configurations of
the square lattice in the PM, trivial, and SG phases, respectively. In the PM phase (b), the broken bonds percolate. In the SG phase (d), the
connected bonds (blue and black) percolate. In the trivial phase (c), the third type of decorated bonds (red, dashed) preclude the percolation of
the other two types of bonds.

to Appendix A. The system is area-law entangled inside the
phases, and logarithmically entangled on the phase bound-
aries. Note that although the phase transitions between the
phases are clearly in the universality class of two-dimensional
critical percolation, the same observable can map to different
correlation functions in the critical field theory at different
transitions.

In Appendix A 5 and Fig. 14 we discuss a generalization
of this model, where a fraction of the ZZ measurements are
replaced by ZZ dephasing channels. We find that this is an
irrelevant perturbation, which does not change the universality
class of the phase transitions.

B. Introduction of an explicit bath

We now introduce an explicit physical model of decoher-
ence by coupling the “system” (i.e. the qubit chain in Fig. 1)
unitarily to a “thermal bath.” The bath is a collection of new
degrees of freedom that has its own unitary dynamics. The
system and the bath together now form a closed system.

We posit two key conditions that must be satisfied by the
system-bath coupling:

(1) Triviality. When the bath is traced out, the coupling
can be generically captured by a local, Z2-symmetric quan-
tum channel. Thus, the coupling should be local, and should
commute with the Z2 symmetry in the system.

(2) Markovianity. The Z2 channels induced by the cou-
pling must appear short-range correlated in both the temporal

and the spatial directions, despite the internal unitary dynam-
ics of the bath. To satisfy this condition, the bath in general
needs to be extensive, and its internal dynamics needs to be
“scrambling.”

It is only when both conditions are met can the baseline
circuit capture the universal dynamics of the system, after the
bath is traced out.

An example satisfying the above conditions is a circuit
with the geometry of a two-leg ladder (having 2 × L qubits
in total), first introduced in Ref. [110]. On one leg (“sys-
tem”) of the ladder ZjZ j+1 and Xj operators are measured
with finite rates [defined as pM

ZZ and pM
X = (1 − pM

ZZ )(1 − q),
respectively], in a similar fashion as in Fig. 1. The other leg
is another one-dimensional chain undergoing random unitary
dynamics, which is thermalizing (on its own) and acts as a
“bath.” The two legs are coupled via random two-site unitary
gates commuting with X in the system, on the rungs of the
ladder, at a rate pI

X = (1 − pM
ZZ )q (this quantity is similar to

pE
X ). The phase diagram (previously found in Ref. [110], and

shown in Fig. 4) is very much like Fig. 2, up to reparametriza-
tions and/or phase boundaries.

We further confirm numerically (see Appendix A 6) that all
the critical properties in the two-leg ladder circuit model are
again fully consistent with Table I. Thus, the two-leg ladder
circuit in Ref. [110] behaves qualitatively the same as the
model in Fig. 1, and the difference between a random unitary
circuit and an infinite bath is irrelevant, as far as the phase
diagram of the system is concerned. We note that all three
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FIG. 4. (a) The “two-leg ladder” circuit model introduced in
Ref. [110], and (b) its phase diagram. The “system” chain is similar
to the baseline circuit model (Fig. 1), but with the X decoherence
replaced by Z2-symmetric coupling to a random unitary circuit,
which acts as a “bath.” The physics of the phases and the phase
transitions are identical to the baseline circuit (compare Fig. 2).

phases of Fig. 4(b) coexist with a volume-law entanglement
of the bath [110].

In Appendix C 2, we investigate an extension of the two-leg
ladder circuit, where there are also local measurements on the
bath. Upon driving the bath through a volume-law to area-law
entanglement transition, the “trivial” phase is replaced by a
“critical” phase with logarithmic entanglement.

III. THE Z2 CIRCUIT AS A PARTIALLY MONITORED
DYNAMICAL MEMORY

In this section, we take a different view on the circuit
in Fig. 1, namely, as a model of error and error correction
for the quantum repetition code. Similar problems have been
considered previously, as we discuss in Sec. III F.

Recall that the repetition code is a stabilizer code with
stabilizers {Z1Z2, Z2Z3, . . . , ZL−1ZL}, whose code space is two
dimensional (i.e., one logical qubit) and has a basis

{|0〉 = |000 . . .〉, |1〉 = |111 . . .〉}. (8)

The logical X operator can be chosen to be the Z2-symmetry
operator X = X1 . . . XL, and the logical Z operator (denoted
Z) can be chosen to be Zj for any 1 ! j ! L. In the circuit,
we take the initial state to be the encoding of an arbitrary one-
qubit state,

|ψ〉 = α|0〉 + β|1〉 encoding−−−−→ |*〉 = α|0〉 + β|1〉. (9)

This encoded logical state |*〉 is then subject to gates in
the circuit. Here, the errors are the X measurements and X
decoherences that bring the state outside the code space while
also reducing the purity of the state. These types of errors are
occurring at a finite rate (pM

X and pE
X ) in time. Meanwhile,

stabilizer measurements of each ZjZ j+1 are also made at a
finite rate pM

ZZ , that are trying to project the state back into
the code space.

As the circuit time grows, the errors will accumulate, and
the information encoded in the initial state will eventually
be lost if the errors prevail (e.g., when they are the only
processes in the dynamics). However, by making stabilizer

measurements concurrently with the errors at a finite rate
pM

ZZ < 1, one can hope to obtain clues about the history of the
errors without destroying the encoded state, thereby preserv-
ing that information. The question here is whether by making
O(T L) measurements as the circuit evolves, is it possible in
principle to reverse these errors and reliably recover the initial
state |*〉; and when this is indeed possible, what is an effi-
cient decoding algorithm (or simply a “decoder”) in practice.
Here, the decoding algorithm refers to a sequence of quantum
operations (i.e., measurements and unitaries) on the final state,
aided by the information about the circuit bulk, namely, the
ZZ measurement locations and the corresponding outcomes.

We discuss two versions of this question, depending on
whether or not we assume knowledge of the locations of the
errors (i.e., the X gates) in the decoding, in the following two
subsections, respectively. When the errors are “located” there
exists an exact decoding algorithm if and only if the infor-
mation is still encoded in the final state. As we will see, this
condition is related to a geometrical property of the underlying
circuit, and the “encoding phase” coincides with the spin-glass
phase. When the errors are “unlocated” we devise a heuristic
decoder, whose probability of success in the thermodynamic
limit defines a “decoding phase.”

A. Exact decoding algorithm with located errors in the
spin-glass “encoding” phase

The recovery problem with located X measurements (but
without X decoherences) was first discussed by Lang and
Büchler [103]. The authors showed that the initial state is
in principle recoverable from the final state provided that
the lower and upper boundaries of the circuit geometry are
connected by an “error-avoiding spanning path” consisting of
connected bonds only [Fig. 5(a)]. In particular, after measur-
ing ZjZ j+1 stabilizers for all 1 ! j < L (which is a quantum
operation denoted M) on the final state (which we denote as
E |*〉, where E represents the circuit evolution), the resultant
state takes the form

|+〉 := (M ◦ E )|*〉 = α|m〉 + β|m〉. (10)

Here, m = m1m2 . . . mL, with mj = ±1, and thus |m〉 is a state
in the computational basis. Here |m〉 = X|m〉. In this case, the
quantum information is still stored in the system, and can be
recovered given the classical information of m. On the other
hand, when such a path does not exist [Fig. 5(b)], the resultant
state is a probabilistic mixture of |m〉 + |m〉 and |m〉 − |m〉,
and the quantum information is irretrievably lost [103]. We
rederive their results using a slightly different approach in
Appendix B.

Clearly, the existence of the spanning path is related to
the geometry of the circuit. In the spin-glass phase where the
connected bonds percolate, such a path exists with probability
1, and the information can be preserved for any time T poly-
nomial in L. The “encoding phase” thus coincides with the
spin-glass phase.

We now describe an explicit algorithm for the recovery of
the state |*〉, starting from the state |+〉 = (M ◦ E )|*〉. From
the stabilizer measurement outcomes in M, we already know
the following products:

(−1)mj+mj+1 = (−1)m j+m j+1 = ZjZ j+1. (11)
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FIG. 5. (a), (b) With only X measurement errors but no X de-
phasing errors, we illustrate in (a) an error-avoiding path in the SG
phase connecting the upper and lower boundaries, and in (b) a “cut”
in the PM phase precluding an error-avoiding path. In (a), the final
state is a coherent code state containing the initial information (albeit
in encoded form), whereas in (b) the final state is a classical mixture
of |m〉 ± |m〉, and the initial information has been lost [103]. (c),
(d) Similarly, in the presence of X decoherence, we illustrate in (c) a
“path” when in the SG phase, and in (d) a “cut” when outside the
SG phase. In the SG phase (c), the final state is again a coherent
code state, while outside the SG phase (d) the final state is in general
mixed.

Thus, we will know m, and consequently which bits one
should flip in |+〉 such that the result is |*〉, provided that we
know the value of mj for any single j. This bit of information
must be inferred from a spanning path through the circuit
history, but not from the state |+〉, for which the bit string
m looks completely random at long times. We claim that, for
any spanning path π with end points at sites (u, t = 0) and
(v, t = T ) [denoted (u, 0)

π−→ (v, T )] we have

(−1)mv = Zcum(π ) :=
∏

{( j,t ),( j+1,t )}∈π

[ZjZ j+1](t ). (12)

Here, the product is taken over all horizontal bonds on π ,
and [ZjZ j+1](t ) denotes the measurement outcome on the
bond {( j, t ), ( j + 1, t )}, of ZjZ j+1 at time t . We prove this in
Appendix B. When there are multiple spanning paths ending
at the upper boundary (as will almost always be the case in the
spin-glass phase), any one of the paths would do the job since
they will result in the same m.

With the inclusion of X decoherence, in addition to X mea-
surements, the same decoding algorithm is still correct. As in
Figs. 5(a) and 5(b), we have a similar graph, but now with

decorated bonds representing the decoherence [Figs. 5(c) and
5(d)]. Knowing where the X measurements and X decoher-
ence are in the graph, we can still find a spanning path π with
end points at sites (u, t = 0) and (v, t = T ), assuming con-
nectivity between the upper and lower edges, which is valid
in the SG phase. The path π uses only connected bonds, and
avoids all X measurements or X decoherences. When such a
spanning path exists, the resultant state (M ◦ E )|*〉 takes the
same form as |+〉 in Eq. (10), despite the X decoherences in
the circuit history (see Appendix B).1 Again, we can decode
the state knowing (−1)mv = Zcum(π ).

To summarize, with the locations of all the X errors known,
the information encoded in the initial state is decodable from
the final state if and only if the circuit is in the spin-glass
phase. Here, in addition to the knowledge of the locations
of the errors, we also assume the knowledge of the O(T L)
stabilizer ZjZ j+1 measurement outcomes in the bulk, as well
as the ability of performing reliable local quantum operations
(i.e., measurements and unitaries) on the final state.

B. Decoding with unlocated errors in (1 + 1) dimensions

When the X measurements and X decoherences are viewed
as errors, it is usually the case that these errors are not
controlled, and in particular their space-time locations are
unknown to the experimenter. In conventional quantum error
correction, the error locations need to be inferred from the sta-
bilizer measurements (i.e., the syndromes). In this subsection,
we discuss the possibility of information recovery without
knowing the locations of the errors, or trying to locate the
errors explicitly. However, we still assume locations and out-
comes of the stabilizer measurements in the bulk are known
to the experimenter, who actively performed these measure-
ments and dutifully recorded the results.

Given the circuit final state E |*〉, we can still follow the
measurements M and obtain a state as in Eq. (10). However,
to successfully decode, we need to know Zcum(π ), which is
defined on a path π that avoids all errors, but without the
knowledge of the location of the errors it is impossible to
calculate this quantity exactly. We instead try to estimate
Zcum(π ) with whatever information available, by summing
over all paths [see Eq. (13)], and will declare victory if our
method can produce the correct result most of the time (to be
defined more precisely below).

After mapping to the square lattice percolation, what re-
mains available to us is then the information of the horizontal
bonds (i.e., whether they are broken or connected, and the
measurement outcome on the bond if connected), but not of
the information of the vertical bonds. With these, we con-
struct a “backbone subgraph” G for each site (v, T ) on the

1Here, the final measurements of ZjZ j+1 for all j are necessary.
Before these measurements, the final state is either disconnected due
to the X measurements, or mixed due to the X dephasing channels.
The effects of these two types of errors are illustrated in Appendix A.
We are also assuming the final measurements are perfect, so that the
initial state can be recovered with fidelity 1, which is the condition
we use below to define the success probability. In a less idealized
situation, the output of the decoder will always have a fidelity smaller
than 1.
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FIG. 6. (a) The backbone subgraph G (highlighted in orange)
constructed out of stabilizer measurements on the horizontal bonds,
and by treating all the vertical bonds as if connected (i.e., assuming
no error occurred on the vertical bonds). (b) On G there are two types
of paths (highlighted in green). The “good” paths do not use any
errored vertical bonds, and contribute a correct sign of Zcum(π ) to
the summation in f (v, T ). The “bad” paths use one or more vertical
bonds that contain errors (denoted by a red cross), and will contribute
to the summation in f (v, T ) as “noise.”

upper boundary [Fig. 6(a)]. The vertices of G are all the sites
that can be reached from (v, T ), using connected horizontal
bonds, and any type of vertical bonds (connected, broken, or
decorated). In other words, without knowing what the vertical
bonds are, we treat all of them as if connected. For simplicity,
we require that the vertical bonds can only be traveled down-
wards, so that all paths are directed in the temporal direction.
The edges of G are the connected horizontal bonds, as well as
all vertical bonds (as if they are connected) between pairs of
vertices in G.

We define the following quantity on G for each (v, T ):

f (v, T ) =
∑

π⊆G:(u,0)
π−→(v,T )

Zcum(π ). (13)

The summation on the right-hand side is over all paths in G
directed in the temporal direction, with one end point fixed
at (v, T ), and the other end point at any site on the lower
boundary (u, 0). The quantity Zcum(π ) has the same defini-
tion as in Eq. (12), namely, as the product of horizontal ZZ
measurement results on the path π . This summation can then
be evaluated efficiently using the recursion relation

f (i, t ) = f (i, t − 1) +
∑

j -=i:( j,t )∼(i,t )

f ( j, t − 1)
∏

min{i, j}!k<max{i, j}

× [ZkZk+1](t ). (14)

Here ( j, t ) ∼ (i, t ) means that ( j, t ) and (i, t ) are connected
by an array of consecutive ZZ measurements at time t , and
the product is over all the measurement outcomes in this con-
secutive array. Provided pM

ZZ < 1, we expect a finite number
of terms on the right-hand side of Eq. (14).

In Eq. (13), there are two types of paths involved in the
summation, as we illustrate in Fig. 6(b). There are “good”
paths that avoid all errors; these will contribute the correct
value of Zcum[= (−1)mv ] to the sum, constructively. There are
also “bad” paths that pass through at least one error. They

will behave as “noise” that contribute ±Zcum at random. We
will get a correct estimate of Zcum from the sign of f (v, T )
(denoted sgn[ f (v, T )]), provided that the “signal” can beat
the “noise.”

Under what circumstances does the decoding algorithm
defined above give the correct estimate of Zcum from
sgn[ f (v, T )]? A necessary condition for the algorithm to
produce anything more than noise is that the circuit must be
in the spin-glass phase with percolating connected bonds. As
we discussed earlier, the quantum information is irretrievably
lost when the upper and lower boundaries are disconnected
(Fig. 10), that is, no algorithm can recover the initial state.
Meanwhile, the spin-glass phase certainly seems to help the
decoding. In this phase, the number of “good” directed paths
diverges exponentially in the circuit depth T , and we can
hope to discern the signal if the noise diverges more slowly,
although still exponentially in T . This naive observation does
not immediately tell us if the spin-glass phase alone is suffi-
cient for approximate decoding. Next, we turn to numerical
tests of the decoder.

Here we are only interested in the probability of success of
the approximate estimation algorithm described above (rather
than faithfully representing the time evolution of the quantum
state and access the phase transitions), which should not be too
sensitive to the input ensemble (i.e., the ensemble of backbone
graphs G as in Fig. 6, and measurement results on its hori-
zontal bonds), we initially dispense with a full simulation on
the evolution of a quantum state, and instead directly sample
the inputs from a classical dynamics, so that large system
sizes can be accessed. In Sec. III E below, we show that the
algorithm performs similarly on samples generated from the
evolution of stabilizer quantum states for accessible system
sizes. There, we will also see the percolation transition out of
the spin-glass phase, which is not accessible with the classical
dynamics discussed in this section.

The classical dynamics is defined as follows. We take an
array mj = 0 for 1 ! j ! L to start with. At odd time steps
we “measure” each (−1)mj+mj+1 with probability pM

ZZ , and at
even time steps we flip mj → 1 − mj with probability perr for
each j. The quantity perr is similar to pM

X + pE
X for the model

in Fig. 1, except that we now vary perr and pM
ZZ independently

(i.e., dropping the constraint pM
ZZ + perr = 1). At the final step,

we also “measure” (−1)mj+mj+1 for each j. We then compute
f (v, T ) using Eq. (14), and compare its sign with the correct
value of Zcum(πESP) for any error-avoiding spanning path πESP
terminating at (v, T ). In this classical model the correct value
in the final state is Zcum(πESP) = (−1)mv .

We run this classical stochastic dynamics for various sys-
tem sizes L and various circuit depths T over an ensemble of
O(105) samples. We then compute the success probability of
decoding,

Ps(L, T ) := Prob[sgn[ f (v, T )] = Zcum(π )]. (15)

The numerical results are shown in Figs. 7(a)–7(c), where
we take T ∝ L, T ∝ ln L, and T ∝ L0, respectively, and fix
pM

ZZ = 0.60. The results with a given set of (pM
ZZ , perr ) in

Figs. 7(a) and 7(b) can be summarized as follows:

lim
L→∞

Ps(L, T ∝ L) =
{

1, perr = 0

1/2, perr > 0
(16)
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FIG. 7. Results of the decoder in Eq. (14) with unlocated errors
for the repetition code in (1 + 1) space-time dimensions, for (a) T ∝
L, (b) T ∝ ln L, and (c) T ∝ L0, respectively. Here, the error model is
the classical stochastic dynamics generated by random bit flips with
probability perr . The results are summarized in Eqs. (16) and (17),
and the paragraphs below.

lim
L→∞

Ps(L, T ∝ ln L) = F (perr ), perr " 0. (17)

That is, when T ∝ ln L, the probability of successful decoding
appears to saturate to a smooth function in the thermodynamic
limit. On the other hand, as long as T grows faster than ln L,
there is not a finite-error threshold, and the probability of
successful decoding equals 1/2 with any finite-error rate.

Less clear is the case when T grows slower than ln L
[Fig. 7(c)]. The data suggest the following scenario: when the
error rate is below a threshold, the probability of successful
decoding approaches 1 with increasing L, albeit slowly.

These results for decoding with unlocated errors should
be contrasted with the case of exact decoding with located
errors, for which the decoding is successful with probability
1 for T ∝ L as long as in the spin-glass phase. Note that the

FIG. 8. Dynamics of the repetition code in (2 + 1)D. Following
the convention in Fig. 3, we represent measurements of ZZ check
operators (of rate pM

ZZ ) by blue bonds in the xy plane, X measure-
ments errors (of rate pM

X ) by broken (absent) vertical bonds, and
X dephasing errors (of rate pE

X ) by dashed red vertical bonds. We
choose to measure the check operators along x and y directions in
alternative time steps.

values we took for perr in Fig. 7 are well below the percolation
threshold.

C. Decoding with unlocated errors in (2 + 1) dimensions

In this subsection, we discuss the decoding algorithm for
the repetition code in one higher spatial dimension. For con-
creteness, we consider the circuit geometry of errors and
stabilizer measurements in Fig. 8. Each “period” of the circuit
consists of four time steps. In the first time step, we measure
the ZZ stabilizer on each bond in the x direction, with proba-
bility pM

ZZ . Similarly, in the third time step, we measure bonds
in the y direction with the same probability. At the second and
the fourth time steps, the X measurement and decoherence
errors occur on each qubit with probabilities pM

X and pE
X ,

respectively.
We briefly discuss the phase diagram. The mapping from

the circuit model to bond percolation introduced in Fig. 3 can
be directly carried over, with the ZZ measurements mapped
to bonds in the xy plane, X measurements to broken bonds
in the t direction, and X decoherence to decorated bonds in
the t direction, a convention we already adopted in Fig. 8.
As its (1 + 1)D counterpart, the spin-glass and paramagnetic
“susceptibilities” χSG and χPM can also be defined [Eqs. (4)
and (5)], and will be extensive when the connected or broken
bonds percolate, corresponding to the spin-glass and param-
agnetic phases, respectively. When the decoherence is strong,
there is similarly an intermediate phase where both suscep-
tibilities vanish. However, due to the larger dimensionality,
there is now a phase where both susceptibilities can be exten-
sive when the decoherence is weak. The transitions between
these phases should all be in the universality class of three-
dimensional percolation.
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FIG. 9. Results of the decoder in Eq. (14) with unlocated errors
for the repetition code in (2 + 1) space-time dimensions. Here, the
error model is the classical stochastic dynamics generated by random
bit flips with probability perr . The results are summarized in Eqs. (18)
and (19).

We will henceforth focus on the question of decoding the
quantum information in the initial state, in the spin-glass
phase. With located errors, the decoding follows Sec. III A,
which entails finding a spanning path πESP that avoids all
errors and calculating Zcum(πESP). Again, the spin-glass phase
is identical to the encoding phase.

With unlocated errors, we can similarly compute the sum
f (v, T ) [Eqs. (13) and (14)] for all directed paths ending at
(v, T ) on the upper boundary of the circuit, whether they have
errored vertical bonds or not, and compare sgn[ f (v, T )] with
the correct value of Zcum(π ).

As before in Sec. III B, we introduce the parameter perr =
pM

X + pE
X , and compute the probability of successful decoding

on an ensemble of input graphs generated by the classical dy-
namics with parameters pM

ZZ and perr taken to be independent.
The numerical results are shown in Fig. 9(a), where we focus
on Lx = Ly = L and T ∝ L, and take pM

ZZ = 0.6. The data
with increasing system sizes suggest a second-order phase
transition at a finite threshold perr

th ≈ 0.205, from a phase
where the decoding is successful with probability 1, to another
phase in which the decoding is no better than a coin flip. In
Fig. 9(b), we attempt the following finite-size scaling form
near perr

th and find good collapse of the data for different L,

Ps(L, T ∝ L) = F
[(

perr − perr
th

)
L1/ν

]
, (18)

where F is a scaling function with the asymptotics

F (x) =
{

1, x → −∞
1/2, x → +∞ (19)

and ν ≈ 2.0 ± 0.5 is a “correlation length exponent” obtained
from the fitting. Thus, in (2 + 1)D, we have a phase where the
information can be recovered with unlocated errors, which sits
deep within the spin-glass phase.

We note that the (three-dimensional) percolation threshold
for the circuit in Fig. 9 at pM

ZZ = 0.60 is approximately perr
c ≈

0.74 (from numerics), and the correlation length exponent
is νperc(d = 3) ≈ 0.88 [117]. The percolation transition and
the “decoding transition” are well separated and, as expected,
appear to be in different universality classes.

D. Performance of the decoder with faulty measurements on the
(2 + 1)D repetition code

Here, we test the “robustness” of the decoder in Sec. III C
by allowing a finite fraction of the check operator measure-
ments in the bulk to be “faulty.”2 We focus on (2 + 1)D, where
a finite threshold was found for perfect measurements (see
Fig. 9).

To access larger system sizes, we again consider the classi-
cal bit-flip dynamics. As before, we denote the probability of
a bit flip to be perr. For simplicity, we take the probability of a
“faulty” measurement to be also perr.

The numerical results are shown in Fig. 10, where we
similarly find a finite (perr )th, and a consistent fit for ν as
compared to Fig. 9. Thus, the effect of faulty measurements
seems “irrelevant”: it reduces the error threshold, but does not
change the universality class of the “decoding transition.”

E. Comparing the classical error model with Clifford circuits

In Secs. III B and III C, we tested the performance of the
decoder by generating the measurement history by a classi-
cal dynamics (see Figs. 7 and 9). Here, we confirm that the
decoder performs similarly when the measurement history is
taken from running a fully quantum Clifford circuit.

We simulate the baseline circuit (Fig. 1), and take |0〉 to
be the initial state. The parameters are similar to those in
Fig. 1, but here we take, for simplicity, perr = pE

X , pM
X = 0,

and allow pM
ZZ and perr to vary independently (dropping the

condition pM
ZZ + perr = 1). While running the circuit, we col-

lect the results of the ZZ measurements, and place them on the
horizontal bonds of a square lattice to obtain the “backbone
subgraph,” as in Fig. 6. At the end of the time evolution, we
measure all ZZ operators, and apply a decoding unitary based
on the sign of f (v, T ), defined in Eq. (13). We then compare
the resultant state with |0〉, and declare success if they agree.

Running this simulation many times, we get an estimate
for the success probability Ps, shown in Fig. 11. We focus
on the case where T ∝ L, where we get results similar to
Figs. 7 and 9, namely, (perr )th = 0 for the (1 + 1)D repetition
code, and (perr )th > 0 for the (2 + 1)D repetition code. Re-
call that for the repetition code, limL→∞ Ps(L, T ∝ L) → 1

2We still assume the measurements on the final state are perfect;
see the previous footnote.
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FIG. 10. Numerical results for the decoder in Sec. III C, for the
(2 + 1)D repetition code with both bit-flip errors and faulty mea-
surements. Here, the error model is the classical stochastic dynamics
generated by random bit flips with probability perr , as well as random
flips of measurement results, also with probability perr . The results
are similar to those with perfect measurements (see Fig. 9), except
for a smaller (perr )th.

when perr < (perr )th, and limL→∞ Ps(L, T ∝ L) → 1/2 when
perr > (perr )th.

In addition, we also see the percolation transition at a larger
value of perr, above which the success probability becomes 0.
This is because when the check operator measurements are
nonpercolating, the final state of the circuit will always be
mixed, and thus different from the initial (pure) state.

We also tested the performance of the decoder on other
stabilizer initial states, and also on nonstabilizer initial states
for smaller system sizes, where we obtained similar results.

F. Decoding with minimal weight perfect matching (MWPM)

The dynamics of the repetition code in a time duration
proportional to the linear size of the code block was previously
considered in Refs. [107,111]. There, all of the check opera-
tors are measured at each time step, and in addition to bit-flip
errors, there are also errors due to faulty measurements. Using
a mapping of the dynamics to a random bond Ising model
(RBIM) in (d + 1) spatial dimensions, it can be shown that
there is a finite-error threshold in (1 + 1)D, given an optimal
decoding algorithm. The optimal algorithm finds the most
likely error history3 given the syndrome measurements. This

3Or more accurately, its homology class in space-time since multi-
ple error histories can belong to the same “homology class.”

FIG. 11. Performance of the decoder in Secs. III B and III C with
unlocated errors, on measurement histories generated from the base-
line circuit (Fig. 1), for the repetition code (a) in (1 + 1) dimensions
and (b) in (2 + 1) dimensions. Here the quantum time evolution takes
the form of a Clifford circuit, which we simulate using the stabilizer
formalism. They should be compared with Figs. 7 and 9, for which
the measurement histories are generated by a classical bit-flip dy-
namics. As far as the success probability of decoding Ps is concerned,
the baseline circuit dynamics and the classical bit-flip dynamics are
very similar. However, for the circuit dynamics here, we also see
evidences of the percolation transition, and when perr > (perr )c, the
initial state can never be recovered, and limL→∞ Ps(L, T ∝ L) → 0.

amounts to finding the homology class with the lowest free
energy in the statistical mechanics model, which is compu-
tationally hard. The authors instead employed a suboptimal
decoder which finds the configuration with the lowest en-
ergy or, equivalently, a “minimal weight perfect matching”
(MWPM) [118] of pointlike Ising vortices, that can be solved
in polynomial time. Despite being suboptimal, the MWPM
decoder can give a finite threshold in (1 + 1)D, as shown by
both analytical estimates [107] and numerics [111].

Below, we reproduce a numerical result in Ref. [111] of
the MWPM decoder on the repetition code in (1 + 1)D. In
addition, we adapt the MWPM decoder to our case, namely,
with check operator measurements at a rate less than 1, for
both the repetition code in (1 + 1)D and the toric code in (2 +
1)D. We find a finite-error threshold in both cases, as we next
discuss.

1. MWPM for (1 + 1)D repetition code

In this section, we compare the performance of the decoder
proposed in Secs. III B and III C with the MWPM decoder.
To start with, we briefly introduce the error model for the
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FIG. 12. The MWPM decoder. (a) A graphical representation of the error model in Ref. [107], by Dennis, Kitaev, Landahl, and Preskill
(DKLP). The square lattice is periodic in the spatial direction, and has the topology of a cylinder. The black bonds form the so-called “error
chains” which represent the actual error history. The qubits now live on each square, the vertical bonds represent faulty measurements, and
the horizontal bonds represent bit-flip errors. The end points of the error chains are Ising vortices that need to be paired up. The gray bonds
represent a possible such “perfect matching,” which is also an estimate of the error history, that will give the same syndrome as the actual
error history. Together, the black and gray bonds form closed loops, and the decoding is successful if the chains wrap the cylinder around
for an even number of times. References [107,111] showed that the algorithm that finds the perfect matching with the minimal weight has
success probability 1 when the error rate is below a finite threshold. (b) The MWPM decoder on the (1 + 1)D repetition code with pM

ZZ = 1,
where we take the bit-flip error and faulty measurements to both occur at probability p, for convenience. We also take T = L. The MWPM
gives a finite-error threshold, as expected. (c) The MWPM decoder on the (1 + 1)D repetition code with pM

ZZ < 1, where we assume the ZZ
check operator measurements are perfect, and the only errors are the bit flip errors. Taking T = L and p := 1 − pM

ZZ = perr , we find a threhold
pth ≈ 0.13. (d) The MWPM decoder on the (2 + 1)D toric code with pM

! < 1, where we assume the plaquette check operator measurements
are perfect, and the only errors are the bit-flip errors (see Appendix B 2). Taking T = Lx = Ly = L and p := 1 − pM

! = perr , we find a threhold
pth ! 0.03.

repetition code in (1 + 1)D, shown in Fig. 12(a). We refer the
reader to Refs. [107,111] for a detailed discussion. Here, it
is convenient to work on the dual lattice of the original square
lattice, and place qubits at the center of each square. Time runs
in the vertical direction, upwards. We will also take periodic
spatial boundary condition, so that the lattice has the topology
of a cylinder.

At each odd time step, each ZZ check operator on
neighboring qubits is measured, that is, pM

ZZ = 1. These mea-
surements can be thought of as performed on the vertical
bonds. These measurements can be faulty, with a probability
we take to be perr. In Fig. 12(a), faulty measurements are
highlighted with black vertical bonds. At each even time step,
each qubit can also experience a bit-flip error, which occurs
with a probability we also take to be perr. The bit-flip errors
are highlighted with black horizontal bonds in Fig. 12(a).

The black bonds form one-dimensional “error chains” on
the square lattice. Under a mapping to a 2D random bond Ising
model with spins living on the plaquettes, these error chains
correspond to negative bonds [107,111]. The end points of the

“error chains” can then be identified as Ising “vortices.” There
are always an even number of such Ising vortices.

The locations of the Ising vortices can be deduced
from the syndrome measurements of the nearest-neighbor
ZZ check operators. The collection of nontrivial syndrome
measurements with ZZ = −1 can be drawn with vertical
bonds [not depicted Fig. 12(a)] and form “syndrome chains”
running vertically. The end points of these syndrome chains
coincide with the end points of the error chains, both ending
at the Ising vortices.

The MWPM scheme finds a perfect matching between
pairs of Ising vortices with the minimum weight, where the
weight between a pair of Ising vortices is given by their lat-
tice (Manhattan) distance. In Fig. 12(a), paired Ising vortices
are connected by gray bonds. In the Ising model the “gray
bond chains” correspond to domain walls, and the MWPM
is effectively minimizing the length of the domain walls, i.e.,
minimizing the energy of the random bond Ising model.

The gray bonds alone may be understood as the algorithm’s
estimate of the error history, with horizontal gray bonds being
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bit-flip errors, and vertical ones faulty measurements, and
a decoding can be subsequently carried out based on this
estimate.

Putting the black bonds and the gray bonds together, we
obtain closed loops on the cylinder, which in the Ising model
mapping enclose opposite domains of Ising spins. The de-
coding will be successful if the number of noncontractible
loops is even. As can be shown from the mapping to the
Ising statistical mechanics model [107,111], the probability
of success of the MWPM decoder is 1 for perr below a finite
threshold. The decodable phase below threshold corresponds
to the ferromagnetic phase of the Ising model.

The MWPM is a well-known problem in graph theory that
can be solved by Edmond’s algorithm [118] in time at least
O[(LT )3 ln(LT )] [119]. Here, we run the MWPM decoder
for the (1 + 1)D repetition code, and the result is shown in
Fig. 12(b). Notice that Fig. 12(b) shows a finite perr

th ! 0.10
(the crossing point), consistent with Ref. [111].

The MWPM decoder can also be adapted for the error
model considered in this paper, with perfect measurements of
check operators at a rate pM

ZZ < 1, by simply assuming the un-
measured ZZ check operators all have the outcome +1. This
should be equivalent to having some faulty measurements, and
the MWPM should then succeed for pM

ZZ sufficiently close
to 1. We calculate the success probability numerically, where
for convenience we take p := 1 − pM

ZZ = perr and T = L. The
results are shown in Fig. 12(c), which also show a finite-error
threshold.

2. MWPM for (2 + 1)D toric code

The MWPM can also be used for decoding the toric code
[120] in (2 + 1) dimensions by matching pointlike defects,
and would similarly give a finite-error threshold [107,111]. As
for the repetition code, all of the check operators are measured
at each time step. Both bit-flip errors and phase errors are
allowed here for the toric code, as well as faulty measurements
of check operators.

Here, we test the MWPM on the toric code dynamics in
(2 + 1)D in our error model (see Appendix B 2), with per-
fect measurements of “plaquette” check operators at a rate
pM
! < 1, and with bit-flip errors only. Phase-flip errors can

be tracked by measuring the “star” operators, and they can be
considered separately from the bit-flip errors [107,120–122].
Again, we assume that the unmeasured check operators all
give the outcome +1. We similarly take p := 1 − pM

! = perr

and T = Lx = Ly = L. The results are shown in Fig. 12(d).
A finite-error threshold is found, as expected [107,111]. Note
that above the threshold, the success probability saturates to
1/4 since there are now four different homology classes on
the two-dimensional torus.

3. Comparison with the MWPM decoder

Comparing our decoder with Refs. [107,111], there are
differences in the error model, and also in the performance of
the decoding algorithms. As we have shown, the differences
in the error models are somewhat unimportant.

(a) First, faulty measurements can be included in the
dynamics we consider here, and they do not change our con-
clusions qualitatively. In particular, we have seen that there is

a finite-error threshold for the (2 + 1)D repetition code with
faulty measurements, in Sec. III D.

(b) Second, while we are only measuring a fraction pM
ZZ <

1 of all check operators at each time step, we can still apply
the MWPM to our error model, by simply assuming that the
unmeasured check operators (of fraction 1 − pM

ZZ ) all have the
outcome +1. About half of these would be faulty, but the
MWPM can nevertheless succeed in decoding for sufficiently
small rate of faulty measurements ≈ 1

2 (1 − pM
ZZ ). As we have

seen in Sec. III F, for both the repetition code in (1 + 1)D and
the toric code in (2 + 1)D, the MWPM decoder gives a finite-
error threshold, as consistent with results in Refs. [107,111].

For the (1 + 1)D repetition code, the decoder in Sec. III B
is not preferable as compared to the MWPM decoder since the
former does not give a finite-error threshold.4 A generalization
of this decoder, from “error-avoiding paths” to “error-avoiding
membranes,” can be made for the (2 + 1)D toric code, as
we explain in Appendix B 2. However, we have not found a
way of efficiently summing over sufficiently many such mem-
branes that would give a finite threshold. Thus, for the toric
code in (2 + 1)D, the decoder in Sec. III B is not preferable,
either.

For the (2 + 1)D repetition code, a natural generalization
of the MWPM decoder looks for a perfect matching between
linelike defects [“Ising vortex loops” in a random bond (2 +
1)D Ising model], connected by two-dimensional surfaces
(Ising domain walls), optimized so that they have minimal
total area [107,111]. However, this problem is computation-
ally NP hard. Interestingly, on the other hand, our decoder in
Sec. III C is straightforward to implement taking only polyno-
mial time, linear in the circuits space-time “volume” O(Ld T ),
and gives a finite threshold (see Fig. 9).

Finally, we note two differences in the physics of the
MWPM decoder and the decoder described here. (a) The
MWPM aims to optimize an “energy” by finding the ground
state in the RBIM, whereas our decoder does not involve an
optimization procedure or an explicit estimate of the error
history, but is instead highly “entropic,” in the sense that it
receives contributions from a large number of paths, whether
they are erroneous or not. Its performance might be improved
by associating weights to paths based on their geometry and
prior knowledge of the error model [123], which is itself
an interesting future direction. (b) For the (2 + 1)D toric
code, the basic objects appearing in the MWPM decoder are
one-dimensional world lines of topological defects, whereas
our decoder involves summing over two-dimensional surfaces
(see Appendix B 2). On the other hand, for the (2 + 1)D rep-
etition code, the MWPM decoder involves two-dimensional
domain walls, while our decoder sums over one-dimensional
paths. To further explore this apparent “duality,” a description
of the underlying statistical mechanics model of our decoder
will be needed.

4In this case, the decoder here might be useful in practice for code
blocks of intermediate sizes, for its rather low time complexity of
O(T L), as compared to the MWPM which has a time complexity
O[(T L)3 ln(T L)] [119].
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IV. OUTLOOK

In this work, we explored two notions of phases in the Z2
baseline circuit, namely, phases defined by their entanglement
properties (“phases of entanglement”), such as the spin glass,
the paramagnetic, and the trivial phases, and phases defined
with respect to a given decoder. Here, we comment on the
relation between the two.

The spin-glass phase has an immediate connection with the
decoding problem: it is a necessary condition for successful
decoding in the first place because of the nonzero channel
capacity, and becomes a sufficient condition when the error
locations are known.5 On the other hand, other phases in the
generic phase diagram, while rich and interesting in them-
selves, are unrelated to the decoding problem. In particular,
while X measurements and X dephasing are quite different
and favor different phases (namely, the paramagnetic phase
and the trivial phase, respectively), they appear the same to
the check operators measurements, and both become bit flips
on the repetition code.

Using the Kramers-Wannier duality, one might hope to try
some kind of decoding on the paramagnetic phase by tracking
the X measurement outcomes, in a similar fashion as for the
repetition code. As the paramagnetic phase has a zero chan-
nel capacity (thus encodes zero logical qubits), this decoding
problem is only suitable for an experimental demonstration of
the PM order.

In general, to make phases of entanglement and entangle-
ment phase transitions in monitored dynamics experimentally
relevant, some kind of decoding seems necessary.6 Depending
on details of the error model, the success of the decoder may
or may not be directly inferred from the entanglement struc-
ture. The experimental accessibility of entanglement phases
and transitions may be more severely limited by their de-
codability than their entanglement structure (e.g., channel
capacity). In this regard, stabilizer circuits are appealing not
only because they are numerically simulable, but also because
they might be decodable (in polynomial time).

Looking forward, it would be worth revisiting various
measurement-protected quantum phases [99,101] in moni-
tored stabilizer circuits, and examine their properties as a
code, including the corresponding decoding problem. Entan-
glement can be a useful guidance in these explorations, e.g.,
in providing geometrical intuition.

Finally, we return to the volume-law phase of the random
hybrid Clifford circuit, which has a finite code rate and was
shown to be a robust encoder [45,47,93,94,96]. The final state
can be decoded, provided that a classical description of all
the unitaries and the measurement locations and outcomes
is known to the decoder [97]. It is an interesting question
whether there is a robust decoder of the volume-law phase

5Strictly speaking we have only demonstrated this for the baseline
circuit, but it should also be correct for SG phases in generic Z2

circuits, e.g., the SG phases in Figs. 4, 19, 21, as long as the error-
avoiding spanning paths percolate.

6An exception would be monitored dynamics that is a space-time
dual of a unitary time evolution [124–126].

that can succeed even with errors, as in the Z2 circuit.7 An
answer to this question will help us understand its relevance
to practical fault-tolerance applications; we note a related
discussion in Ref. [129].
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APPENDIX A: MAPPING THE BASELINE CIRCUIT
TO PERCOLATION (SEC. II)

Following the loop representation in Ref. [98] in the q = 0
limit, we map the circuit model in Fig. 1 to a bond percolation
problem on the square lattice [Fig. 3(a)].

Recall that in the q = 0 limit, each X measurement (occur-
ring with probability pM

X = 1 − pM
ZZ ) corresponds to a broken

vertical bond, whereas each ZZ measurement (occurring with
probability pM

ZZ ) corresponds to an unbroken horizontal bond.
Thus, whether the bond is vertical or horizontal, it is unbroken
with probability pM

ZZ . The bond percolation transition is at
(pM

ZZ )c = 1
2 , where each bond has an equal probability of

being broken and unbroken.
With q > 0, we represent X dephasing with a new type

of vertex, with red color and also a red, dashed, vertical
decorated “incoherent” bond across it. We denote by pE

X =
q(1 − pM

ZZ ) its probability of occurring. We may also call the
unbroken and undecorated bonds “coherent.”

As we will see below, the SG phase is the percolating
phase of the coherent, unbroken bonds, whereas the PM phase
is the percolating phase of the broken bonds. Here, the new
ingredient is the presence of “decorated bonds” from dephas-
ing channels. Consequently, there can now be an intermediate
“trivial” phase where neither the coherent unbroken bonds nor
the broken bonds percolate.

7We note, however, that the two circuits can respond quite dif-
ferently to errors. Consider the role of local decoherence: for the
Z2 circuit the symmetry-respecting decoherence acts as a mere
“dilution” in the underlying percolation problem (see Sec. II and
Appendix A), but in random hybrid circuits (without any physical
symmetry) decoherence acts as a “magnetic field” that breaks an
emergent permutation symmetry [48,49,86,96,126–128], and will
destroy the entanglement transition when occurring at a finite density
in the circuit bulk.
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1. Decomposition of the dynamical state into quasi-GHZ states

We now discuss the state of the circuit in the course of its
time evolution. When q = 0, the state is always a product of
GHZ states [101,109] of the following type:

|ψ〉 =
∏

k

1√
2

(∣∣0 j1 0 j2 . . . 0 jnk

〉
+

∣∣1 j1 1 j2 . . . 1 jnk

〉)
, (A1)

where each factor is a GHZ state, and has stabilizers
{
Xj1 Xj2 . . . Xjnk

, Zj1 Zj2 , Zj2 Zj3 , . . . , Zjnk −1 Zjnk

}
. (A2)

After mapping to bond percolation, two qubits on the upper
boundary are in the same GHZ cluster if and only if they
are connected by a path of unbroken bonds in the bulk. It
thus defines an equivalence relation (denoted “∼”), and thus
a partition of all the qubits. Moreover, the bulk geometry
requires that if j1 < j2 < j3 < j4 and j1 ∼ j3, j2 ∼ j4, we
must have j1 ∼ j2 ∼ j3 ∼ j4.

The effect of a X dephasing on qubit j1 is, in terms stabi-
lizers in Eq. (A1),

{
Xj1 Xj2 . . . Xjnk

, Zj1 Zj2 , Zj2 Zj3 , . . . , Zjnk −1 Zjnk

}

→
{
Xj1 Xj2 . . . Xjnk

, Zj2 Zj3 , . . . , Zjnk −1 Zjnk

}
, (A3)

where we have “lost” the stabilizer Zj1 Zj2 to the dephasing
channel. Qubit j1 now has classical correlations with qubits
j2,...,nk via the string operator Xj1 Xj2 . . . Xjnk

, but no quantum
entanglement. We call the state in Eq. (A3), and its generaliza-
tions when more qubits are dephased, a “quasi-GHZ state”.8

For concreteness, we take the circuit initial state a prod-
uct of 1√

2
(|0〉 j + |1〉 j ) on each qubit, which has stabilizers

{X1, X2, . . . , XL}, and itself a product of quasi-GHZ states. At
any stage of the circuit when q > 0, the dynamical state of
the system is always a product of quasi-GHZ states, as can be
verified by induction.

As we have seen, the X dephasing channel does not reclus-
ter the qubits, but only makes each cluster more incoherent.
Consequently, two qubits on the boundary are in the same
quasi-GHZ cluster if and only if they are connected by path in
the bulk, where the bulk can now have both unbroken bonds
and decorated incoherent bonds.

For what we discuss below, we always take periodic bound-
ary conditions for the circuit, and focus on the steady state
T % L, from which the circuit has the geometry of a very
long cylinder.

2. Spin-glass susceptibility at SG-trivial transition

Recall that χSG(L) is a sum of |〈ZiZ j〉|2. Using the decom-
position above, we see that the latter is 1 if ZiZ j is a stabilizer
of the state, but 0 otherwise. It is tedious (but straightforward,
again by induction) to convince oneself that this happens if
and only if qubits i and j (living on the upper boundary)
are connected by a path containing only coherent (black),
unbroken (solid) bonds. To χSG, the decorated “incoherent”
bonds are effectively broken, as if an X measurement is made.

8Below, we will sometimes refer to the two types of stabilizers of a
quasi-GHZ state as the “XXXX” and the “ZZ ,” for convenience.

Indeed, as one can check in Eq. (A3), the effect of X dephas-
ing is identical to an X measurement on χSG.

It immediately follows that a phase transition in χSG(L)
occurs when the coherent unbroken bonds percolate. From
above, we see that the critical point is at pM

ZZ = 1
2 . Here

|〈ZiZ j〉|2 ∝ |i − j|−2hMI and hMI is the scaling dimension of
the boundary spin operator in critical percolation [103]. Thus,
comparing Eq. (4), we have

χSG(L) ∝ L1−2hMI , pM
ZZ = 1/2. (A4)

Finite-size scaling of this quantity near the critical point is
shown in Fig. 2(d), where we defined γSG = 1 − 2hMI = 1

3 .

3. Paramagnetic susceptibility at PM-trivial transition

Recall that χPM(L) is a sum of |〈XiXi+1 . . . Xj〉|2. Again,
this is 1 when XiXi+1 . . . Xj is a stabilizer, but 0 otherwise.
Using the quasi-GHZ decomposition, one sees that this hap-
pens if and only if no quasi-GHZ cluster has qubits inside A =
[i, j] and qubits in A at the same time (“no spanning quasi-
GHZ”). Moreover, focusing on the XXXX string stabilizer of
the quasi-GHZ cluster, one can check that this condition is
the same regardless of whether the clusters are quasi-GHZ
or GHZ. Indeed, a X dephasing never affects the value of
χPM(L). In comparison, an X measurement breaks the XXXX
string apart, and can only increase χPM(L).

The “no spanning quasi-GHZ” condition above can be
translated as follows in the percolation problem: (*) no qubits
inside A are connected to qubits inside A, through paths that
can now contain either coherent or incoherent bonds. Equiva-
lently, all qubits in A can be separated from those A by a cut
that only goes through broken bonds. Therefore, the transition
in χPM(L) corresponds to one in which the broken bonds
percolate. A vertical broken bond occurs with probability
pM

X = (1 − q)(1 − pM
ZZ ), and a horizontal broken bond occurs

with probability 1 − pM
ZZ . The critical point of this anisotropic

percolation problem is at [130]

pM
X +

(
1 − pM

ZZ

)
= 1 ⇔ pM

X = pM
ZZ ⇔ q = 1 − 2pM

ZZ

1 − pM
ZZ

.

(A5)

Moreover, at the critical point, condition (*) implies that
[103]

|〈XiXi+1 . . . Xj〉|2 ∝ |i − j|−2hMI , (A6)

hence again

χPM(L) ∝ L1−2hMI , q = 1 − 2pM
ZZ

1 − pM
ZZ

. (A7)

Finite-size scaling of this quantity near the critical point is
shown in Fig. 2(c), where we defined γPM = 1 − 2hMI = 1

3 .
At the PM critical point pM

X = pM
ZZ , the loop ensemble, de-

fined by cluster boundaries of broken bonds, becomes critical,
and can be obtained from Fig. 3(a) by rotating the red vertices
by 90◦, and treating them as if having a coherent solid bond.
The transfer matrix that generates the loop ensemble is thus
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[131–133]

eĤ =




∏

j even

{
[(1 − pMX − pEX) + pEX ] · + pMX ·

}

j



 ·




∏

j odd

{
[1 − pMZZ ] · + pMZZ ·

}

j





=




∏

j even

{
[1 − pMZZ ] · + pMZZ ·

}

j



 ·




∏

j odd

{
[1 − pMZZ ] · + pMZZ ·

}

j



 . (A8)

Thus, it is related to the usual Temperley-Lieb repesentation
of critical percolation (where pM

ZZ = 1
2 ) by a rescaling of the

“temporal” direction. Such a rescaling merely “dilutes” the
loops, without affecting any of the universal properties.

4. Scaling of mutual information

a. Between two sites

Consider the mutual information between sites i and j. One
can verify the following:

(1) When i and j are in different quasi-GHZ clusters, they
have zero mutual information.

(2) When i and j are in the same quasi-GHZ cluster with
"3 qubits, they have mutual information 1 if and only if ZiZ j
is a stabilizer.

(3) When i and j are in the same quasi-GHZ cluster with
exactly 2 qubits, they always have at least mutual information
1, but can have mutual information 2 if ZiZ j is also a stabilizer
(in which case it becomes a GHZ cluster).

At the SG transition pM
ZZ = 1

2 , note the following:
(1) The second probability is ∝|i − j|−2/3, as we have

discussed above.
(2) The third probability is ∝|i − j|−4 and is subleading.

Previously, this probability is related to the “mutual negativ-
ity” [109] (see also Ref. [134]) in critical percolation.

At the PM transition pM
X = pM

ZZ , note the following:
(1) The second probability decays exponentially in |i − j|

as |〈ZiZ j〉|2, hence the SG order parameter vanishes.
(2) For the third probability, its leading contribution is

given by the correlation function in the loop ensem-
ble generated by Eq. (A8), which is a boundary correlation
function of stress tensors [109]. Consequently, this probability
is still ∝|i − j|−4.

These results when applied to two antipodal sites A =
[0, ε] and B = [L/2, L/2 + ε] become

IA,B ∝






L−2/3, SG-trivial transition
(
pM

ZZ = 1/2
)

L−4, PM-trivial transition
(
pM

ZZ = pM
X

)

1, inside SG phase
0, inside PM and trivial phases
L−2/3, SG-PM transition

(
pM

ZZ = 1/2, q = 0
)
.

(A9)

The last line is a known result from Ref. [103].
At the critical point, we consider general disjoint subre-

gions A = [x1, x2] and B = [x3, x4] with arbitrary end points,
where the mutual information becomes a function of the cross
ratio η, due to the emergent conformal symmetry. With peri-
odic boundary conditions, we take η = w12w34

w13w24
, where wi j =

sin( π
L xi j ) is the chord distance.9 The numerical results for IA,B

with varying end points {x j} are shown in Fig. 13(a). The
data collapse is consistent with conformal invariance, and the
power laws of IA,B at small η are consistent with Eq. (A9).

b. Between a bipartition (A, A)

Recall that for a stabilizer state in the clipped gauge
[11,44], the bipartite mutual information IA,A is the number of
stabilizers that cross the cut between A and A. For example,
for a coherent GHZ state, a bipartition would have mutual
information 2, one from the “XXXX” string, and one from an
“ZZ” operator, both crossing the cut. For our decomposition
of the dynamical state into a product of quasi-GHZ states, the
stabilizers are already in the clipped gauge.

At the coherent critical point (pM
ZZ , q) = ( 1

2 , 0), the length
distribution of stabilizers, counting both the “XXXX” and
the “ZZ” Pauli strings, follows an inverse square law with a
universal coefficient [98,109]

P(.) ≈
√

3
2π

.−2, (A10)

which leads to the following expression of IA,A in a periodic
system, when A = [x1, x2] has two end points:

1
4

IA,A = 1
4

× 2 ×
√

3
2π

× ln 2 × ln
(

L
π

sin
πx12

L

)

= hEE ln
(

L
π

sin
πx12

L

)
. (A11)

Here, hEE =
√

3
4π

ln 2 ≈ 0.096. If we count the XXXX and
the ZZ stabilizers separately, they will each have an inverse
square-law “critical” distribution, with the same coefficient
1
2

√
3

2π
, due to Kramers-Wannier duality.

With decoherence, the picture is slightly different since the
XXXX and the ZZ stabilizers are not always critical at the
same time. Again, we consider the state decomposition into
quasi-GHZ clusters, and calculate the mutual information for
each cluster.

(1) At the SG-trivial transition, the unbroken coherent
bonds are critical, whereas the unbroken bonds plus the in-
coherent bonds are “supercritical.” As a consequence, there
will be a few (order one) extensive quasi-GHZ clusters, each

9The chord distance follows from a conformal mapping of the semi-
infinite cylinder to the upper half-plane. When A = [0, ε] and B =
[L/2, L/2 + ε], the cross ratio scale as η ∝ L−2.
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FIG. 13. Mutual information IA,B between two disjoint regions
A = [x1, x2] and B = [x3, x4] at the PM-trivial transition (red circles),
at the SG-trivial transition (blue diamonds), and at the SG-PM transi-
tion (purple pentagons). In (a), we collapse data obtained by varying
{x j} against the cross ratio η. The collapse confirms the presence of
conformal invariance. The power laws of IA,B at small η are universal
scaling dimensions of critical percolation, which we call hMI and hMN

following Ref. [109], and are summarized in Eq. (A9) and Table I.
In (b), we plot the mutual information IA,A across a bipartition (A, A),
versus the length of A = [x1, x2], namely, LA = x12. The results at the
PM-trivial and SG-trivial transitions are consistent with Eq. (A12),
with a universal coefficient that is half of that at the PM-SG transition
[see Eq. (A11)].

having a very long XXXX string. Thus, there is at most O(1)
contribution from XXXX strings to any IA,A.

On the other hand, since the incoherent bonds are no
different from broken bonds to the ZZ operators, the length
distribution of the ZZs will still be critical, having an inverse
square law with coefficient 1

2

√
3

2π
.

Thus, as compared with the coherent percolation at pM
ZZ =

1
2 , q = 0, only half the stabilizers, namely the ZZ’s, contribute
to the mutual information.

(2) At the PM-trivial transition, the broken bonds plus
the incoherent bonds are now critical, whereas the unbroken
bonds alone are “subcritical.” Therefore, now the XXXX
strings will have a critical inverse square-law length distribu-
tion with coefficient 1

2

√
3

2π
,10 whereas most of the ZZ operators

are short, of length O(1).

10Note that this coefficient is universal number of the percolation
universality class. It characterizes the critical loop ensemble, and
remains unchanged under rescaling of the temporal direction as in

Thus, as compared with the coherent percolation at pM
ZZ =

1
2 , q = 0, now the other half of the stabilizers, namely the
XXXX strings, contribute to the mutual information.

These arguments imply that the coefficients of the mutual
information at these two transitions are both half of the SG-
PM percolation transition at pM

ZZ = 1
2 , q = 0, namely,

1
4

IA,A = 1
2

hEE ln
(

L
π

sin
πx12

L

)
. (A12)

We compute IA,A at the three transitions, and plot the results
in Fig. 13(b). They are fully consistent with Eqs. (A11) and
(A12).

Inside the three phases, the bipartite mutual information
IA,A always obeys an area law (data not displayed).

5. Inclusion of ZZ decoherence

Here we briefly discuss a slight generalization of the
baseline model, where we replace a fraction of the ZZ mea-
surements by ZZ dephasings:

ρ → EZ j Z j+1 (ρ) = 1
2 [ρ + (ZjZ j+1)ρ(ZjZ j+1)]. (A13)

The parameters are now

pM
ZZ = (1 − qZZ )p, (A14)

pE
ZZ = qZZ p, (A15)

pM
X = (1 − qX )(1 − p), (A16)

pE
X = qX (1 − p). (A17)

After mapping to bond percolation, we now have both hori-
zontal and vertical incoherent bonds.

The SG transition is now when coherent, unbroken bonds
percolate, and the PM transition is still when broken bonds
percolate. We have at the SG transition

pM
ZZ +

(
1 − pM

X − pE
X

)
= 1

⇒ qZZ = 2p − 1
p

, (A18)

and at the PM transition

pM
X +

(
1 − pM

ZZ − pE
ZZ

)
= 1

⇒ qX = 1 − 2p
1 − p

. (A19)

Notice that the critical value of qX in Eq. (A19) is the same as
when qZZ = 0 [see Eq. (A5)].

The three-dimensional phase diagram is shown in Fig. 14.
There is perhaps no surprise that the two phase boundaries
have the same shape, as one would expect from Kramers-
Wannier duality. The universality classes of these transitions
are unaffected by the nonzero qZZ .

Eq. (A8). Thus, we have the same coefficient despite at a value of
pM

ZZ = pM
X (the PM critical point) different than 1

2 .
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FIG. 14. The phase diagram of the model with both decoher-
ences in X and ZZ . Here, the PM phase boundary is given by
qX = 1−2p

1−p , whereas the SG phase boundary is qZZ = 2p−1
p . The phase

transitions are still in the same universality class as when qZZ = 0.

6. Equivalence between decoherence and bath-system coupling
(Sec. II B)

Here, we provide numerical evidences for the phase di-
agram in Fig. 4(b) of the “two-leg ladder” circuit model
[Fig. 4(a)] [110]. The results are shown in Fig. 15. In partic-
ular, Figs. 15(a)–15(d) should be compared with Fig. 2, and
Figs. 15(e) and 15(f) should be compared with Fig. 13, where
we find consistency throughout.

APPENDIX B: CORRECTNESS OF THE DECODING
ALGORITHM WITH LOCATED ERRORS (SEC. III A)

In this Appendix, we prove the correctness of the decoding
algorithm in Sec. III A for the dynamical repetition code with
located errors in the spin-glass phase. To do that, we first

FIG. 15. Numerical results for the “two-leg ladder” circuit model [Fig. 4(a)] [110]. We confirm the phase diagram in Fig. 4(b), and find
the critical points are in the universality class of critical percolation. In particular, (a)–(d) are consistent with Fig. 2, and (e), (f) are consistent
with Fig. 13.
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outline a general procedure of verification for all stabilizer
codes, before focusing on this particular case. Our approach
here is perhaps not the simplest for the repetition code, but
can be easily generalized to slightly more complicated cases,
such as the toric code (see Appendix B 2).

Let the stabilizer group associated with the code be denoted
S . Recall that S is an Abelian group of mutually commuting
Pauli string operators on L qubits. The projection operator on
the code space is

PS = 2−L
∑

g∈S
g. (B1)

We have (PS )2 = PS . Let us assume the stabilizer code has
only one logical qubit (so that log2 |S| = L − 1), and denote
the logical X and Z operators by X and Z. These two operators
anticommute with each other, but commute with all stabiliz-
ers. We also define the logical Y operator as Y := −iZX.

A general density matrix inside the two-dimensional code
space may be written as a state inside the “logical Bloch
sphere”

ρ0 = 1
2PS (1 + xX + yY + zZ)PS . (B2)

Here, x, y, z are real numbers, satisfying x2 + y2 + z2 ! 1. We
will always take the initial state of the circuit in Fig. 1 to be of
this type. Notice that we are generalizing the case in Sec. III A
by also including possibly mixed initial states.

The procedure of error and error correction, as outlined in
Sec. III A, is as follows:

(1) We send the initial state through a circuit comprised
of Pauli measurements and Pauli decoherences. Among the
Pauli measurements, some are of stabilizers in S . We denote
the quantum operation of the circuit by E .

(2) After the circuit terminates, we measure all the stabi-
lizers. This quantum operation is denoted M.

(3) Based on the stabilizer measurement outcomes at the
final state, as well as the stabilizer measurements throughout
the circuit bulk, we apply a unitary gate, denoted U .

The resultant state should now be equal to the initial state
ρ0:

ρ0 = (U ◦ M ◦ E )(ρ0). (B3)

The state evolution is in general a bit complicated to track,
although possible in special cases [103]. To simplify the proof,
we rewrite ρ0 as a linear combination of stabilizer density
matrices,

ρ0 = (1 − x − y − z)ρ1 + xρX + yρY + zρZ

:= α1ρ1 + αXρX + αYρY + αZρZ, (B4)

where

ρ1 = 1
2
PS1PS = 1

2
PS , (B5)

ρX = PS
1 + X

2
PS , (B6)

ρY = PS
1 + Y

2
PS , (B7)

ρZ = PS
1 + Z

2
PS . (B8)

Each ρg (g ∈ {1, X, Y, Z}) is a normalized stabilizer state,
whose stabilizer group is Sg := S ∪ gS . Our strategy is then
to work with each summand of Eq. (B4) separately.

This is not entirely trivial since processes M and E in-
volve projective measurements on the state whose results are
subsequently recorded, and are therefore nonlinear, due to
the normalization of the state with the Born probabilities. To
treat this, we represent the evolution using M̃ and Ẽ , the
linear counterparts of M and E without normalization, and
“delay” the normalization until the very end. The condition
(B3) becomes

ρ0 = U
[

(M̃ ◦ Ẽ )(ρ0)

Tr(M̃ ◦ Ẽ )(ρ0)

]

. (B9)

Using the decomposition in Eq. (B4), this is equivalent to

ρ0 = U
[

(M̃ ◦ Ẽ )
(∑

g αgρg
)

Tr(M̃ ◦ Ẽ )(ρ0)

]

= U




∑

g

αg
Tr(M̃ ◦ Ẽ )(ρg)

Tr(M̃ ◦ Ẽ )(ρ0)

(M̃ ◦ Ẽ )(ρg)

Tr(M̃ ◦ Ẽ )(ρg)





=
∑

g

αg
Tr(M̃ ◦ Ẽ )(ρg)

Tr(M̃ ◦ Ẽ )(ρ0)
(U ◦ M ◦ E )(ρg). (B10)

Here, g ∈ {1, X, Y, Z}. The right-hand side will be equal to
ρ0, if both conditions below are met for each g:

ρg = (U ◦ M ◦ E )(ρg), (B11)

Tr(M̃ ◦ Ẽ )(ρg) = Tr(M̃ ◦ Ẽ )(ρ0). (B12)

Both conditions can be verified by tracking the evolution of
the stabilizer states ρg under M ◦ E .11 The second condition
is equivalent to the following condition which is easier to
verify12:

Tr(M̃ ◦ Ẽ )(ρ1) = Tr(M̃ ◦ Ẽ )(ρX) = Tr(M̃ ◦ Ẽ )(ρY)

= Tr(M̃ ◦ Ẽ )(ρZ). (B13)

Intuitively, the decoding algorithm is successful if it works
on each of branch of stabilizer states, and for a given history
of measurement outcomes the trajectory occurs with the same
Born probability for each of the branches, so that the ampli-
tude coherence between different branches is preserved.

11If not analytically, at least numerically.
12Assuming that Eq. (B13) holds, we have

Tr(M̃ ◦ Ẽ )(ρ0) =
∑

g

αgTr(M̃ ◦ Ẽ )(ρg)

=
∑

g

αgTr(M̃ ◦ Ẽ )(ρ1)

= Tr(M̃ ◦ Ẽ )(ρ1),

where we used that
∑

g αg = 1.
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1. Verification for the dynamic repetition code
with error-avoiding spanning paths

Recall that the repetition code has stabilizers ZjZ j+1 for
1 ! j < L, and the logical operators can be chosen to be
X = X1 . . . XL, Z = Zj for any 1 ! j ! L. Below we try to de-
scribe (M ◦ E )(ρg) and Tr(M̃ ◦ Ẽ )(ρg) for g ∈ {1, X, Y, Z},
and show that they satisfy the conditions above, provided that
an error-avoiding spanning path exists.

Let us first list a convenient basis of the stabilizer group
for each of ρg; we denote the corresponding basis G(ρg). Our
choices are

G(ρ1) = {+ZjZ j+1 : 1 ! j < L}, (B14)

G(ρX) = G(ρ1) ∪ {X}, (B15)

G(ρZ) = G(ρ1) ∪ {Z}, (B16)

G(ρY) = G(ρ1) ∪ {−iZX}. (B17)

Below, we show by induction that at all circuit time steps t ,
stabilizers of the corresponding dynamical states Et (ρg), can
be chosen so that they satisfy the following conditions:

G(Et (ρX)) = G(Et (ρ1)) ∪ {X}, (B18)

G(Et (ρZ)) = G(Et (ρ1)) ∪ {Zcum(π )Zv}, (B19)

G(Et (ρY)) = G(Et (ρ1)) ∪ {−iZcum(π )ZvX}, (B20)

Tr[Ẽt (ρ1)] = Tr[Ẽt (ρX)] = Tr[Ẽt (ρY)] = Tr[Ẽt (ρZ)]. (B21)

Here, by assumption, there exists an error-avoiding spanning
path (as defined in Sec. III A) (u, 0)

π−→ (v, t ), and Zcum is
the product of all ZjZ j+1 measurement outcomes along π
[Eq. (12)].

Conditions in Eqs. ((B18))–((B21)) obviously hold for the
initial state. Assume they are correct at all times before t .

(1) At odd t , the circuit involves measurements of ZjZ j+1.
Let us consider these one by one, and focus on, say, g = Z1Z2.

Consider the evolution of Et (ρ1). There are two possibili-
ties:

(1) g commutes with all elements of G(Et (ρ1)). There
are two cases:

(1) g is already be an element of the group generated
by G(Et (ρ1)),

g ∈ 〈G(Et (ρ1))〉. (B22)

The measurement outcome will then be deterministic,
fixed by G(Et (ρ1)). In this case, G(Et (ρ1)) remains un-
changed.

(2) g does not belong to the following larger group
[which contains 〈G(Et (ρ1))〉]

g /∈ 〈G(Et (ρ1)) ∪ {X, Zcum(π )Zv,−iZcum(π )ZvX}〉,
(B23)

In this case, G(Et (ρ1)) becomes G(Et (ρ1)) ∪ {±g}, cor-
responding to measurement outcome of g being ±1,
with equal probabilities 1/2.

Notice that it is not possible for

g /∈ 〈G(Et (ρ1))〉 (B24)

but at the meantime

g ∈ 〈G(Et (ρ1)) ∪ {X, Zcum(π )Zv,−iZcum(π )ZvX}〉,
(B25)

for then g must anticommute with at least one of
{X, Zcum(π )Zv,−iZcum(π )ZvX}, which is not the case
(with g = ZjZ j+1).

(2) g anticommutes at least one element of G(Et (ρ1)).
Without loss of generality, assume there is exactly one such
element, denoted h. The evolution of G(Et (ρ1)) would be
to replace h with ±g, with equal probabilities 1/2.
In all cases above, the update of G(Et (ρ1)) when

combined with any of {X, Zcum(π )Zv,−iZcum(π )ZvX}, are
legal updates of G(Et (ρX,Y,Z)) as well. Here, we use
again the fact that g = ZjZ j+1 commutes with each of
{X, Zcum(π )Zv,−iZcum(π )ZvX}.

Moreover, the measurement outcome of g obeys the same
probability distribution for all four evolutions.

We have shown that conditions ((B18))–((B21)) are pre-
served under one ZjZ j+1 measurement, hence all of them. at
odd t .

(2) After the ZjZ j+1 are measured at an odd time step t ,
we have the freedom of moving the upper end point of the
error-avoiding spanning path π .

In particular, we can choose a different path π ′ ending at
another site (v′, t ). In other words, we can make the following
replacement of the generating set of Et (ρZ):

G(Et (ρZ)) = G(Et (ρ1)) ∪ {Zcum(π )Zv}
→ G(Et (ρZ)) = G(Et (ρ1)) ∪ {Zcum(π ′)Zv′}. (B26)

The two sets generate the same stabilizer group since v and v′

are connected by a path of ZZ stabilizer measurements in the
bulk (e.g., by joining π and π p), so that Zcum(π )Zcum(π ′)ZvZv′

is also a stabilizer of Et (ρ1) (see Appendix A).
Thus, we have the freedom in choosing the site at which

the path π ends, and we have shown that different choices
are consistent. In particular, under the assumption that an
error-avoiding spanning path π exists, there always exists a
choice where the end point does not experience an error at
the current time step. We can perform this “error-avoiding
gauge transformation” at each time step throughout the time
evolution whenever needed.

(3) At even t , consider the measurement of Xj . By the
assumption of an error-avoiding spanning path, we may as-
sume that the path ends at a site v -= j. In this case, Xj also
commutes with all of {X, Zcum(π )Zv,−iZcum(π )ZvX}. The
reasoning above for g = ZjZ j+1 applies equally well here for
g = Xj , verbatim.

Thus, conditions ((B18))–((B21)) are preserved under Xj
measurements at even t .

(4) At even t , consider g = Xj decoherence. We similarly
assume v -= j.

There are two possibilities for the evolution of Et (ρ1).
(a) g commutes with all elements of G(Et (ρ1)). In

this case, G(Et (ρ1)) remains unchanged. The other three
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G(Et (ρX,Y,Z)) also remain unchanged since g commutes
with all of {X, Zcum(π )Zv,−iZcum(π )ZvX} as well.

(b) g anticommutes at least one element of G(Et (ρ1)).
Again assume there is exactly one such element, denoted
h. The evolution of G(Et (ρ1)) would be to simply drop h.
The same applies to G(Et (ρX,Y,Z)).
Thus, conditions (B18)–(B20) are preserved under Xj

decoherence.
Since Xj decoherence is a quantum channel that preserves

the norm of the density matrix, and does not involve measure-
ments, Eq. ((B21)) is also preserved.

The induction above shows that at t = T , E = ET , con-
ditions ((B18))–((B21)) hold. Since M is just another layer
of ZjZ j+1 measurements, these conditions also hold upon
replacing E by M ◦ E . Here, Eq. (B21) becomes Eq. (B13).

Lastly, we verify Eq. (B11) for a particular U , constructed
using previous measurement outcomes. For the states (M ◦
E )(ρ1,X,Y,Z), we have

G((M ◦ E )(ρ1)) = {±ZjZ j+1}, (B27)

G((M ◦ E )(ρX)) = G((M ◦ E )(ρ1)) ∪ {X}, (B28)

G((M ◦ E )(ρY)) = G((M ◦ E )(ρ1)) ∪ {−iZcum(π )ZvX},
(B29)

G((M ◦ E )(ρZ)) = G((M ◦ E )(ρ1)) ∪ {Zcum(π )Zv}. (B30)

The “error-correcting unitary” U will first need to correct
the signs for all stabilizers ZjZ j+1 = −1, while commuting
with {X, Zcum(π )Zv,−iZcum(π )ZvX}. This may be achieved
by applying the so-called “destabilizers” or, in this special
case of the repetition code, by applying Xj (“spin flip”) for
all j -= v where ZjZv = −1 (see Sec. III A). Next, we apply X
to the system if Zcum(π ) = −1, again described in Sec. III A.
After these steps, we have

G((U ◦ M ◦ E )(ρ1)) = {+ZjZ j+1}, (B31)

G((U ◦ M ◦ E )(ρX)) = {+ZjZ j+1} ∪ {X}, (B32)

G((U ◦ M ◦ E )(ρY)) = {+ZjZ j+1} ∪ {−iZvX}, (B33)

G((U ◦ M ◦ E )(ρZ)) = {+ZjZ j+1} ∪ {+Zv}. (B34)

Comparing with Eqs. (B14)–(B17), we have

G((U ◦ M ◦ E )(ρg)) = G(ρg)

⇔ (U ◦ M ◦ E )(ρg) = ρg. (B35)

Thus, we have verified Eq. (B11). Combined with Eq. (B13),
we verified Eq. (B3), the correctness of the decoding algo-
rithm for a general initial state ρ0 [Eq. (B2)] in the code space.

To summarize, we have verified the correctness of the
decoding algorithm described in Sec. III A for the quantum
repetition code with located errors. Crucial to its correctness
is the existence of an error-avoiding spanning path, as we
have emphasized throughout. From our arguments, we see
how the spanning path ensures the encoded information is
never directly measured or decohered, therefore preserved and
recoverable in the final state.

FIG. 16. The toric code on a two-dimensional torus. The stabi-
lizers of the toric code are the plaquette Z operators (denoted "Z )
and the star X operators (denoted +X ), shown on the left. The code
has two logical qubits, and the logical operators (denoted Z1,2, X1,2)
are strings of X ’s or Z’s on noncontractible loops on the torus, as
illustrated.

2. Decoding the dynamic toric code with error-avoiding
spanning membranes

Using the formalism developed above, we consider a
different example without Z2 symmetry, namely, a toric
code [107,108,120] undergoing Pauli measurements and Pauli
decoherence in (2 + 1) space-time dimensions. Recall that
the toric code has two types of check operators, namely,
the product of Pauli Z’s on each plaquette (denoted "Z ), and
the product on X ’s on each star (denoted +X ) (see Fig. 16). On
a two-dimensional torus, the toric code supports two logical
qubits, and the logical operators are Pauli string operators on
noncontractible loops, as illustrated in Fig. 16.

The dynamics we consider is shown Fig. 17. Here, time
runs upwards. Each square represents a measurement of
the plaquette check operator "Z , and each star represents
a measurement of the star check operator +X . We denote

FIG. 17. The circuit dynamics of the toric code in (2 + 1) space-
time dimensions. We measure the "Z and +X operators at alternating
time steps, with rates pM

! and pM
+ , respectively. In-between the

stabilizer measurements, single-qubit errors can occur at a finite rate
perr .
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the measurement rates of these pM
! and pM

+ . In-between
the check operator measurements are the single-qubit errors,
which can be taken to be arbitrary, without any symmetry con-
straints. However, we will focus on the case of bit-flip errors
only, so that we can simplify the problem by considering only
the "Z measurements. Phase errors can be tracked by the +X
measurements, and can be decoded independently. We note
that a similar model was previously considered in Ref. [102].

The analysis of the dynamics follows from what was
described above for the repetition code, with slight modifica-
tions. Here we have two logical qubits, and a four-dimensional
code space. A decomposition of a general density matrix in the
code space, similar to Eq. (B4), would read as

ρ0 =
∑

g

αgρg, (B36)

where g now can take all 16 logical Pauli matrices on
the 2 logical qubits, including the identity. Again, as in
Eqs. ((B18))–((B21)), on each trajectory E , we can show by
induction that

G(Et (ρg-=1)) = G(Et (ρ1)) ∪ {Lg(t )}, (B37)

where Lg is a “dynamic logical operator” (to be defined be-
low) for the operator g, and these satisfy

Lg1 (t )Lg2 (t ) = Lg1·g2 (t ). (B38)

In the previous example of the repetition code, LX(t ) = X,
and LZ(t ) = Zcum(π )Zv . Here for the toric code, instead of
an error-avoiding spanning path, Lg’s are defined on “error-
avoiding spanning membranes.”

As an example, for g = Z112, such a membrane µ in-
tersects the lower boundary of the circuit at a topologically
nontrivial loop, and also does so at the upper boundary
[Fig. 18(a)]. Importantly, µ contains no errors on its vertical
faces (parallel to the xt and yt planes), and on each of its faces
parallel to the xy plane at time t a corresponding measurement
of the plaquette stabilizer "Z was made. The product of all
Pauli Z’s on the loop at the lower boundary of µ is the logical
operator Z112 for the toric code, and the operator LZ112 (t ) is
defined to be the product of Pauli Z’s on the loop at the upper
boundary of µ, whose sign [denoted "cum(µ)] is determined
by the product of all plaquette stabilizers on µ. One can
similarly find L11Z2 (t ) [Fig. 18(b)], LX112 (t ), and L11X2 (t )
[hence Lg(t ) for all g] from their corresponding membranes,
when they exist.

In Figs. 18(c) and 18(d), we further illustrate the error-
avoiding nature of these membranes. From one time step to
the next, we can change the dynamic logical operator LZ1 (t )
by performing the error-avoiding gauge transformation, al-
lowed by stabilizer measurements.

The decoding starts by measuring all the stabilizers, and
correcting these signs using unitaries that commute with all
Lg(t ). The signs of Lg(t )’s can be subsequently corrected by
applying logical operators, based on the sign calculated from
error-avoiding spanning membranes, in a fashion similar to
the repetition code. For example, if LZ112 is deemed to have
a minus sign, we apply the logical operator LX112 to the code
block.

FIG. 18. (a), (b) Dynamic logical operators defined on the error-
avoiding membranes. Faces of the membrane µ parallel to xt or yt
planes do not contain any errors, and faces parallel to the xy plane
must each contain a plaquette stabilizer measurement. In (a), the
membrane µ intersects the initial and final temporal planes at two
noncontractible loops along the y direction (highlighted with blue
color), which we identify as LZ1 (0) and LZ1 (t ). In (b), the membrane
µ is now along the x direction, and defines LZ2 (0) and LZ2 (t ). (c),
(d) Comparing the cross section of µ at two consecutive time steps
t and t + 1. Single-qubit errors that occur in-between are denoted
as pink links. The dynamic logical operators can be “wiggled” by
measurements of plaquette operators (shaded) at time t + 1, corre-
sponding to a “error-avoiding gauge transformation” of the dynamic
logical operator.

Given the stabilizer measurements in the bulk and loca-
tions of the errors, error-avoiding spanning membranes can be
found in polynomial time. Such two-dimensional membranes
are present with probability 1 in the “percolating” phase of
the membranes, which is equivalent to the “nonpercolating”
phase of one-dimensional paths of errors that intersect the
membrane. Thus, the decodability of the encoded information
with located errors for the dynamical toric code model is again
related to the physics of percolation, this time in three spatial
dimensions.

More intriguing is the decodability of the quantum infor-
mation with unlocated errors. For concreteness, we consider
the membrane whose boundaries are LZ112 (0) and LZ112 (t ).
Naively, one can generalize the sum over paths to a sum over
membranes

f (γT ) =
∑

γ0

∑

µ(t=0)=γ0 and µ(t=T )=γT

"cum(µ). (B39)

Here, γ0,T specify the noncontractible loops corresponding
to LZ112 (0) and LZ112 (t ), and the summation is over all
membranes with these boundary conditions (which might or
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might not contain errors). However, the number of possible
choices of γ0,T and of µ are exponential in L, T , and it is not
clear how to sum over all these paths.

We may consider restricting the summation to membranes
that can be parametrized as a height function x(y, t ). These
membranes can be thought of as a generalization of the di-
rected paths in Eq. (13) to “directed surfaces,” effectively
neglecting all surfaces with overhangs. This sum can be eval-
uated using a similar recursion in Eq. (14). However, upon
carrying out such a summation, we do not find a finite-error
threshold. Evidently, the directed membranes are not good
enough at avoiding errors. It would be interesting if there
exists an efficient summation that can decode with probability
1 below a finite-error threshold.

APPENDIX C: PHASES OF GENERIC Z2 CIRCUITS

In this Appendix we introduce a few variations of the
baseline circuit model (Fig. 1), and focus on the physics of
the phases these models can host, without worrying too much
whether these phases can be decoded.

In Appendix C 1, we consider perturbing the circuit with
random local (Clifford) unitaries of Z2 symmetry, and find
that the response of the system to the unitaries depends on
whether or not the decoherences are present.

In Appendix C 2, we introduce projective measurements in
the bath, on top of the two-leg ladder circuit model (Sec. II B).
As the measurements drive the bath into a nonthermalizing
phase, the strength of decoherence diminishes, and the effects
of the bath-system coupling are comparable to that of local Z2
unitaries within the system, as in Appendix C 1.

1. Introduction of Z2-symmetric unitaries

We consider the following variation [Fig. 19(a)] of the
baseline circuit. At each space-time location of the circuit, we
apply with probability pU a random 1-qubit or 2-qubit Clifford
unitary that commutes with X (i.e., Z2 symmetric), depending
on the parity of t . We only apply the other three types of gates
(Z2-symmetric measurements and decoherences) when such
a unitary gate is not applied. Using parameters in Sec. II, the
current model can be parametrized as follows:

pU1 = pU2 = pU , (C1)

pM
ZZ = (1 − pU )p, (C2)

pM
X = (1 − pU )(1 − q)(1 − p), (C3)

pE
X = (1 − pU )q(1 − p). (C4)

The case where q = pE
X = 0 was previously studied in

Refs. [101,109]. We reproduce the two-dimensional phase
diagram (in the pM

ZZ -pU plane) in Fig. 19(b). The SG and
PM phases are still present for small pU . A volume-law en-
tangled phase appears when pU is large, regardless of the
value of pM

ZZ . In-between the SG, PM, and the volume-law
phase is a “critical” phase which exhibits logarithmic scal-
ing of entanglement entropy [101]. Except at the solvable
point (pM

ZZ , pU ) = ( 1
2 , 0), the phase transitions appear to be in

universality classes different from 2D critical percolation, and
their exact nature remains unclear.

FIG. 19. (a) The circuit model obtained by introducing Z2-
symmetric unitary gates into the baseline circuit (Fig. 1). (b) The
phase diagram in the absence of X decoherence [101]. We see a
“critical” phase and a volume-law entangled phase with increasing
pU . (c) The phase diagram in the presence of X decoherence, which
is much simpler than (b). The three phases and critical properties of
phase transitions are the same as in the baseline circuit (see Fig. 2).

The phase diagram is surprisingly simple when deco-
herence is present, q > 0 (hence pE

X > 0), as we depict in
Fig. 19(c). Here, the trivial phase between PM and SG at
pU = 0 (Fig. 2) is enabled by unitaries, which eventually
takes over at large pU . The transitions between this phase and
PM and SG are again in the universality class of critical per-
colation, with critical exponents summarized in Appendix A
and Table I.

Below, we numerically confirm the phase diagram in
Fig. 19(c). We choose q = 1

2 , and take two cuts of the phase
diagram, at pM

ZZ = 0.25 and at pM
ZZ = 0.75, as shown in

Fig. 20(a).
In Fig. 20(b), we numerically compute the order parame-

ters χPM and χSG. These are clearly consistent with the phase
diagram in Fig. 20(a). We also find the mutual information be-
tween two distant regions is 0 in the PM and trivial phases, and
is 1 is the SG phase, as consistent with Table I and Eq. (A9).
Evidence for long-range correlations is found at the PM-trivial
transition (in the form of a peak in mutual information).

In Figs. 20(c) and 20(d), we collapse the χPM and χSG near
the transitions for different system sizes against the scaling
forms in Eqs. (6) and (7), and find consistency with γPM =
γSG = 1

3 , ν = 4
3 [compare Figs. 2(c) and 2(d)].

In Figs. 20(e) and 20(f), we focus on the scaling of entan-
glement properties at the two critical points. The results are
consistent with Fig. 13.
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FIG. 20. Numerical results for the model in Fig. 19(a), where we introduce Z2 symmetric unitaries into the baseline circuit. Focusing on
q = 1/2, we find the phase diagram in (a), and confirm that the phase transitions are in the universality class of critical percolation, whose
critical exponents are summarized Table I.

Thus, in the presence of decoherence the unitary gates
apparently do not modify any of the qualitative or quantitative
universal physics. At a microscopic level, their effects can be
accounted for by generalizing the (exactly soluble) gate set in
the baseline circuit to a generic gate set with Z2 symmetry,
which (evidently) moves the phase boundaries around, but
does not change any of the universal (critical) data. It follows
that the phase diagram in Fig. 19(c) and Fig. 2 are generic for
Z2 circuits with decoherence. In contrast, without decoher-
ence, pE

X = 0, inclusion of the unitary gates evidently modify
much of the qualitative physics [101].

2. Entanglement transition of the bath, and its ramifications
on the Z2-symmetric chain

We have seen in Sec. II B that a random unitary circuit can
act as a bath, when satisfying both “triviality” and “Marko-

vianity” conditions. In this section, we explore circumstances
where the bath becomes nonthermal.

Starting from the two-leg ladder circuit model [110], we
introduce single-qubit measurements13 at a finite rate pM

bath in
the “bath” chain, as depicted in Fig. 21(a). The measurements
will drive the bath through a phase transition in entanglement
scaling from volume law (at small pM

bath) to area law (at large
pM

bath) [42,43]. The transition occurs at a finite measurement
strength, (pM

bath )c > 0. It is plausible that in the volume law
phase, the bath is still at “finite temperature” with a finite
density of entanglement entropy, and the two conditions above
are still satisfied; whereas in the area law phase, the bath

13Since the bath dynamics do not have a physical symmetry, and
the gates are random, we may take the projective measurements to
be single-qubit measurements of, say, Zj .
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FIG. 21. (a) The circuit model obtained by introducing local measurements of the bath into the two-leg ladder circuit (Fig. 4), and (b) its
phase diagram. The model has four phases, as we detail in the main text. (c) Numerical results on the two horizontal cross sections of the
phase diagram in (b), at pM

bath = 0.1 and 0.4. In both cases we see the SG and PM phases, separated by an intermediate phase where both order
parameters vanish. (d), (e) Numerical results on the vertical cross section of the phase diagram in (b), for an intermediate value of pM

ZZ with
neither SG nor PM order. The half-cut mutual information (d) of the “bath” indicates a volume-law to area-law transition of the bath driven by
measurements. The half-cut mutual information (e) of the “system” indicates a phase transition from a trivial, area-law entangled phase, to a
“critically entangled” phase akin to the one in Fig. 19(b).

looks as if it is at “zero temperature”, and fails to behave
like a good thermal bath. Instead, in the area law phase most
qubits in the bath are measured at each time step, so that
after the bath is traced out, the system-bath coupling will
effectively induce (additional) local unitaries and local mea-
surements into the system. Thus, when the bath passes through
the transition, the system’s intermediate phase induced by the
system-bath coupling might also exhibit a transition, from the
decoherence-dominated “trivial” phase [compare Fig. 19(c),
where q > 0] to the unitary-dominated “critical” phase [com-
pare Fig. 19(b), where q = 0].

The schematic phase diagram that follows from this rea-
soning is shown in Fig. 21(b). Here, we vary pM

ZZ and pM
bath,

and parametrize other rates as follows:

pM
X =(1 − q)

(
1 − pM

ZZ

)
, (C5)

pI
X = q

(
1 − pM

ZZ

)
, (C6)

pU = 0. (C7)

The last equation says that we do not introduce any unitary
gates into the system explicitly, as in Sec. II B. Within the
phase diagram, we study three cross sections, as highlighted
with dashed lines.

We confirm the phase diagram with numerical results in
Figs. 21(c)–21(e), where we take q = 0.80. First, we choose

two values of pM
bath(= 0.10, 0.40), and calculate the order pa-

rameters χSG and χPM for varying pM
ZZ . The results for a finite

system size L = 256 are shown in Fig. 21(c). In both cases,
there is an intermediate phase where both order parameters
vanish. We note that the width of the intermediate phase de-
creases with increasing pM

bath, but remains finite for pM
bath = 1.0

(see Fig. 22 below).
Next, we take pM

ZZ = 0.32, which sits in the intermediate
phase for all values of pM

bath ∈ [0, 1] (see Fig. 22), and com-
pare the scaling of the entanglement for varying values of
pM

bath. To filter out the entanglement between the bath and
the system, and focus instead on the internal entanglement
of the bath, we consider the “half-cut mutual information”
Ibath
A,A

for an equal-size bipartition (A, A) of the bath, each of

L/2 qubits. The results for different values of pM
bath are shown

in Fig. 21(d). On a log-log scale, we see a clear transition
between a phase where Ibath

A,A
∝ L, and another phase where

Ibath
A,A

∝ L0. Thus, the bath itself goes through a volume-law to
area-law transition in its internal entanglement under projec-
tive measurements. The critical point is at (pM

bath )c ≈ 0.22.
Similarly, we compute the half-cut mutual information

for an equal-size bipartition of the system, denoted Isystem
A,A

,

and plot the results in Fig. 21(e). When pM
bath < (pM

bath )c,
Isystem
A,A

obeys an area law, as consistent with the trivial phase.

When pM
bath > (pM

bath )c, Isystem
A,A

grows with the system size, and
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FIG. 22. Further numerical results on the circuit model in
Fig. 21(a), where the bath undergoes single-qubit projective mea-
surements at rate pM

bath. These results further corroborate the phase
diagram [Fig. 21(b)].

appears proportional to ln L as pM
bath > (pM

bath )c approaches 1.
This scaling behavior is consistent with the critical phase with
logarithmic entropy [101] [see also Fig. 19(b)]. We note an

interesting regime when pM
bath is slightly above the critical

point, where the entropy grows faster than ln L for the system
sizes accessed.

In Fig. 22, we present further numerical results of the
phase diagram in Fig. 21 at q = 0.8. We take three values
of pM

ZZ (= 0.32, 0.20, 0.40), and take four values of pM
bath(=

0.1, 0.2, 0.4, 1.0) along these lines.
Along the line pM

ZZ = 0.32 [Fig. 22(a)], the system goes
from the trivial phase to the critical phase with increasing pM

bath
[see Figs. 21(c)–21(e)]. Both phases should have vanishing
order parameter χSG and χPM. This is confirmed by the numer-
ics, where we found that for pM

bath < (pM
bath )c ≈ 0.22, both χSG

and χPM decay quickly with increasing system sizes L, and for
pM

bath > (pM
bath )c, the two order parameters are also decaying

with increasing L, albeit slowly. This is perhaps due to the
fact that the critical phase becomes narrower with larger pM

bath.
In any case, it is clear that these phases are quite different from
the SG and PM phases.

In contrary, when we take pM
ZZ = 0.2, 0.4 [Figs. 22(b) and

22(c)], we see a clear transition from the trivial phase to the
PM and SG phases, respectively, where the corresponding
order parameter scales linearly in L.

Thus, we have confirmed the picture outlined above and
in Fig. 21(b). That is, the measurement-driven entanglement
transition in the bath is accompanied by a phase transition for
intermediate values of pM

ZZ in the system, as reflected in the
entanglement scaling.

We also find that at the critical-PM and the critical-SG
transitions, the critical exponents are different from those in
Table I, as expected. These results are not displayed.

3. Comments

In this Appendix, we have focused on the generic phase
diagram in (1 + 1) dimensions. It would be nice to under-
stand the critical properties, and the differences between
the (super)logarithmically entangled phase and other “crit-
ical” phases found in the context of monitored dynamics
[67–69,81–83]. It would also be interesting to put all these
phases under the classification framework in Ref. [110].

In higher dimensions, the phase diagram can be much
richer, as we discussed briefly in Sec. III C for the case with-
out Z2 unitaries. With Z2 unitaries, a volume-law phase can
coexist with the spin-glass order, even without a bath [101].
The ensuing phase diagram will be worth exploring in future
works.
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