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We study entanglement transitions in Clifford (stabilizer) random tensor networks (RTNs) and monitored
quantum circuits, by introducing an exact mapping onto a (replica) statistical mechanics model. For RTNs and
monitored quantum circuits with random Haar unitary gates, entanglement properties can be computed using
statistical mechanics models whose fundamental degrees of freedom (“spins”) are permutations, because all
operators commuting with the action of the unitaries on a tensor product Hilbert space are (linear combinations
of) permutations of the tensor factors (“Schur-Weyl duality”). When the unitary gates are restricted to the smaller
group of Clifford unitaries, the set of all operators commuting with this action, called the commutant, will be
larger, and no longer form a group. We use the recent full characterization of this commutant by Gross et al.
[Commun. Math. Phys. 385, 1325 (2021)] to construct statistical mechanics models for both Clifford RTNs
and monitored quantum circuits, for on-site Hilbert-space dimensions which are powers of a prime number
p. The elements of the commutant form the spin degrees of freedom of these statistical mechanics models,
and we show that the Boltzmann weights are invariant under a symmetry group involving orthogonal matrices
with entries in the finite number field Fp (“Galois field”) with p elements. This implies that the symmetry
group and consequently all universal properties of entanglement transitions in Clifford circuits and RTNs will,
respectively, in general depend on and only on the prime p. We show that Clifford monitored circuits with on-site
Hilbert-space dimension d = pM are described by percolation in the limits d → ∞ at (a) p = fixed but M → ∞,
and at (b) M = 1 but p → ∞. In the limit (a) we calculate the effective central charge, and in the limit (b) we
derive the following universal minimal cut entanglement entropy SA = (

√
3/π ) ln p ln LA for d = p large at the

transition. We verify those predictions numerically, and present extensive numerical results for critical exponents
at the transition in monitored Clifford circuits for prime number on-site Hilbert-space dimension d = p for a
variety of different values of p, finding that projective and forced measurement schemes yield the same critical
exponents and that they approach percolation values at large p. We clearly establish multifractal scaling of the
purity, reflected in a continuous spectrum of critical exponents, while the typical exponent is the prefactor of
the logarithm in the entanglement entropy. As a technical result, we generalize the notion of the Weingarten
function, previously known for averages involving the Haar measure, to averages over the Clifford group.
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I. INTRODUCTION

Entanglement plays a central role in the physics of
closed many-body quantum systems, in both equilibrium
and nonequilibrium settings [1–5]. With the advent of noisy
intermediate-scale quantum (NISQ) devices [6], the study
of the dynamics of quantum information in open quantum
systems has attracted a lot of attention recently. The inter-
play of unitary many-body quantum evolution [7–12]—which
generates quantum entanglement—and the nonunitary pro-
cesses generated by noisy couplings to the environments or
by measurements—which tend to reveal and destroy quan-
tum information—leads to a broad variety of new dynamical
phases of matter and phase transitions.

A particularly interesting example that captures the compe-
tition between unitary dynamics and nonunitary processes is
the so-called measurement-induced phase transition [13,14].
A simple setup where such a transition occurs is provided by
“monitored” quantum quantum circuits made up of random
unitary gates, combined with local projective measurements
occurring at a fixed rate. As a function of the measurement

probability p0, a remarkable entanglement transition occurs.
At low p0, the unitary dynamics can efficiently scramble
quantum information into highly nonlocal degrees of freedom
that cannot be accessed by the local measurements [15–18].
In that regime, the system reaches a highly entangled steady
state where the entanglement entropy of a subsystem scales
as its volume (volume law). In contrast, at high measurement
probability p0, the frequent local measurements are able to
effectively collapse the wave-function of the system, reminis-
cent of a many-body Zeno effect, with the entanglement of
subsystems scaling as their boundary (area law). This funda-
mentally new transition is not observable in the mixed density
matrix of the system averaged over measurement outcomes,
but is apparent in individual quantum trajectories of the pure
state wave function, conditional on measurement outcomes.
This transition has been studied extensively in recent years,
generalized to various classes of quantum dynamics with dif-
ferent symmetries and dimensionality [13–54], and realized
experimentally in a trapped-ion quantum computer [55].

An apparently different, but closely related entanglement
transition was discovered a bit earlier in random tensor
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networks [33,34,56–58]. There the transition can be induced
by tuning the bond dimension1 of a state obtained at the
boundary of two-dimensional random tensor networks pre-
viously formulated deep in the volume law phase, far from
the transition in Ref. [59]. A unifying description of such
entanglement transitions was proposed in Refs. [24,25,56]
in terms of a replica statistical mechanics model. A replica
trick is needed to deal with the intrinsic nonlinearities of the
problem—the entanglement transition is not visible in quan-
tities that are linear in the density matrix of the system. The
average over either Gaussian random tensors or Haar unitary
gates in the replicated tensor network can then be performed
exactly and leads to effective degrees of freedom (“spins”)
that are permutations of the replicas. There is a deep math-
ematical reason for the emergence of the permutation group
here, which is known as the Schur-Weyl duality: all operators
commuting with the action of the unitary group on a tensor
product Hilbert space are linear combinations of permutations
of the tensor factors (replicas). This leads to an exact refor-
mulation of the problem of computing entanglement entropies
and other observables in Haar monitored quantum circuits or
random tensor networks in terms of (the replica limit of) a
two-dimensional classical statistical mechanics model with
permutation degrees of freedom, and ferromagnetic interac-
tions. Even if taking the replica limit explicitly is challenging
in general, this mapping ends up explaining most (if not all)
of the phenomenology of entanglement transitions, which in
that language become simple symmetry-breaking (ordering)
transitions. In particular, it naturally explains the emergence
of conformal invariance (with a dynamical exponent z = 1)
at criticality [19,21,25,56]. The entanglement entropy maps
onto the free energy cost of “twisting” the boundary condi-
tions in the entanglement interval, forcing the insertion of a
domain wall at the boundary of the entanglement interval.
This free-energy cost scales with the size of the interval in
the ferromagnetic (symmetry-broken) phase of the statistical
mechanics model, corresponding to the volume-law entan-
gled phase, while it remains order one in the paramagnetic
phase, corresponding to the area-law phase. Additional sim-
plifications occur in the limit of large on-site Hilbert-space
dimensions, where the replica limit can be taken analytically,
predicting an entanglement transition that falls into the classi-
cal percolation universality class [24,25].

While these analytical results were derived for Haar ran-
dom unitary gates or tensors, large-scale numerical results are
conveniently obtained using random Clifford unitary gates,
and single-qubit measurements restricted to the Pauli group.
Such Clifford circuits (and the related stabilizer tensor net-
works [58,60]) can be efficiently simulated on a classical
computer in times polynomial in the system size thanks to the
Gottesman–Knill theorem [61–63], whereas the simulation
times of Haar circuits usually scale exponentially with the
system size. Clifford circuits have proven useful in the study
of entanglement and operator dynamics in various contexts,

1Or, at a fixed sufficiently large bond dimension, by randomly
diluting (=eliminating) bulk bonds with probability p0, the latter
serving as the parameter tuning through the transition [56].

see e.g., [64]. Numerical evidence indicates that the mea-
surement induced transition in Clifford qubit circuits is in a
different universality class from the Haar case, but a theoreti-
cal description of the Clifford transition has remained elusive.
Part of the difficulty is that while the structure of the Clifford
gates allows for efficient classical simulations, the very same
structure makes a general theoretical formulation of averages
over Clifford gates more challenging than over featureless
Haar gates. In this paper, we leverage recent results on the
“commutant” of the Clifford group [65], which generalize the
notion of Schur-Weyl duality to the Clifford case, to derive a
replica statistical mechanics description of Clifford monitored
quantum circuits and stabilizer random tensor networks for
qudits with dimension d = pM , where p is a prime number
[66]. The elements of the commutant replace permutations to
form the spin degrees of freedom of the resulting statistical
mechanics models. We show that the Boltzmann weights are
invariant under a symmetry group involving orthogonal matri-
ces with entries in the finite number field Fp (“Galois field”)
with p elements. This implies that the symmetry group and
all universal properties of entanglement transitions in Clifford
circuits and random tensor networks will in general depend on
the on-site Hilbert dimension d = pM of the circuit, but only
via the prime p, i.e., they are independent of the power M.
This also explains that Clifford circuits and random stabilizer
tensor networks (i.e., Clifford random tensor networks) are
in different universality classes than their Haar counterparts.
In particular, in the latter cases the on-site Hilbert-space di-
mension is a short-distance feature that does not affect their
symmetry [25] and thus not the universality class (as long as
d is finite), in contrast with the Clifford cases. Our approach
also allows us to derive mappings onto classical percolation
in the limit of large on-site Hilbert-space dimension d . Our
predictions are supported by exact numerical simulations of
large monitored Clifford circuits for d = p up to p = 997, and
for d = pM at a few small values of M, which also show that
projective and forced measurement schemes yield the same
critical exponents for Clifford circuits. Our approach also
explains some recent numerical results on Clifford random
tensor networks [58]. Finally, we provide clear evidence that
the purity of the reduced density matrix of a finite interval
exhibits multifractal scaling at the transition, by numerically
investigating the statistical fluctuations of the entanglement
entropy about its mean. This implies different scaling ex-
ponents for the averaged and the typical purity (the latter
being equal to the prefactor of the logarithm of system size
in the entanglement entropy) and is reflected in a continuous
spectrum of critical exponents associated with purity scaling.

This paper is organized as follows: In Sec. II, we focus
on random tensor networks (RTNs) and extend the notion of
Schur-Weyl duality to the Clifford case, relying heavily on
Ref. [65]. We describe the structure of the commutant and
explain how the statistical mechanics model describing Haar
RTNs can be extended to Clifford RTNs. In Sec. III, we gen-
eralize the notion of Weingarten functions to the Clifford case
and apply those results to monitored Clifford circuits. We also
make concrete predictions in the limit of large on-site Hilbert
space, carefully distinguishing the cases of p or M fixed when
d = pM → ∞. In Sec. IV, we provide numerical evidence
that the universality class of the entanglement transition at
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FIG. 1. (a) A tensor Tv at vertex v with coordination number
z = 4. (b) Arranging the tensors in a network (taken to be square
lattice here), we obtain a “tensor network state” ρ[T ] [see Eq. (4)] by
contracting indices on all bulk edges, as implemented by projecting
onto the maximally entangled state |Ie〉. The state ρ[T ] is supported
on the boundary qudits (highlighted by purple squares) and is in
general unnormalized.

qudit dimension d = pM indeed depends on p, but not on M,
report on the equality of exponents for projective and forced
measurement schemes, and establish multifractal scaling of
the purity. Technical details and additional mathematical re-
sults are gathered in the Appendixes.

II. RANDOM TENSOR NETWORKS
AND SCHUR-WEYL DUALITY

A. Review of Haar case

Following Ref. [56] we consider a Tensor Network with
a set of vertices v, from each of which emerge z edges
ve1, ve2, . . . , vez, where z is the coordination of the vertex
(assumed to be the same for all vertices), see Fig. 1(a). We
denote the bond dimension at each edge by d . At each vertex
v there is a quantum state described by a tensor

|Tv〉 =
d∑

µve1 ,µve2 ,...,µvez =1

(T )µve1 ,µve2 ,...,µvez

×|µve1〉 ⊗ |µve2〉 ⊗ · · · ⊗ |µvez 〉 =
D∑

µv=1

Tµv
|µv〉,

(1)

where we introduced the shorthand µv =
(µve1 , µve2 , . . . , µvez ) for the collection of labels of the
D := (d )z basis elements at a vertex, µv = 1, . . . D. Defining
a maximally entangled state on the edge e := 〈v, v′〉
connecting two adjacent vertices v and v′,

|Ie〉 := 1√
d

d∑

µve,µv′e=1

δµve,µv′e |µve〉 ⊗ |µv′e〉, (2)

the (unnormalized) wave function of the tensor network is
defined by

|ψ[T ]〉 := (⊗e〈Ie|)(⊗v|Tv〉), (3)

where the tensor product is over all (bulk) edges and all
vertices of the network, respectively. The object of interest is

the (so far still unnormalized) pure state density matrix of the
network

ρ[T ] := |ψ[T ]〉 〈ψ[T ]|, (4)
for the remaining (uncontracted) degrees of freedom (“dan-
gling legs” of the tensor network), which we choose to be at
the boundary of the network, see Fig. 1(b). Owing to the need
to normalize the states of the wave function at the boundary of
the network (and to describe the nth Rényi entropies for any
integer n), it is necessary to work with the tensor product of
Q = nm copies of this (unnormalized) density matrix:

⊗Qρ[T ] = ⊗Q(|ψ[T ]〉 〈ψ[T ]|). (5)
More precisely, our goal is to compute the nth entanglement
Rényi entropy of a subregion A of the dangling (“boundary”)
legs of the tensor networks:

S(n)
A = 1

1 − n
ln

trρn
A

(trρ)n , (6)

with ρA = trAρ being the reduced density matrix in the region
A, and Ā the complement of A. The average of this quantity
over the random tensors, to be defined more precisely below,
can be computed from the replicated density matrix using

S(n)
A = 1

1 − n
lim
m→0

1
m

[(
trρn

A

)m − (trρ⊗Q)
]
, (7)

where (trρn
A)m and tr(ρ⊗Q) differ only in the way the boundary

legs are contracted.
The Haar random tensor network is defined by letting

the state |µ(i)
v 〉 at each vertex v in each (replica and Rényi)

copy i = 1, . . . , Q arise from a fixed basis state in the D-
dimensional Hilbert space associated with the vertex by the
action of the same unitary D × D matrix2 U in each (replica
and Rényi) copy, chosen randomly and independently at each
vertex v from the Haar ensemble. Explicitly, the tensor in (1)
will then be of the form

Tµv
= 〈µv|Û |1〉 := (U )µv,1. µv = 1, . . . , D. (8)

The tensor factor contribution to (5) arising from the quantum
states (1) at vertex v will then be, using (3),

⊗Q(|Tv〉 〈Tv|) = ⊗Q(Û |1〉 〈1|Û †)

=
∑

µ(i)
v ,ν

( j)
v

Uµ(1)
v ,1 · · ·Uµ

(Q)
v ,1U

†
1,ν (1)

v
· · ·U †

1,ν
(Q)
v

×
(∣∣ν (1)

v

〉
⊗ · · · ⊗

∣∣ν (Q)
v

〉)
⊗

(〈
µ(1)

v

∣∣ ⊗ · · · ⊗
〈
µ(Q)

v

∣∣).
(9)

Specializing the familiar result3 for the average EU∈U (D)[. . .]
over the Haar measure dµ(U ) [67]

∫

Haar
dµ(U )Ui1, j1 · · ·UiQ, jQU †

j′1,i
′
1
· · ·U †

j′Q,i′Q

=
∑

σ,τ∈SQ

Wg(τσ−1)δi1,i
′
σ (1)

· · · δiQ,i′σ (Q)
δ j1, j′τ (1)

· · · δ jQ, j′τ (Q)

(10)

2Recall that d is the bond dimension of the Hilbert space on each
edge, and D = dz (z = coordination number) is the dimension of the
total Hilbert space associated with each vertex v.

3A derivation is also provided in (C5) of Appendix C.
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to the case where j1 = · · · = jQ = 1 and j′1 = · · · = j′Q = 1
yields

EU∈U (D)
[
Ui1,1 · · ·UiQ,1U

†
1,i′1

· · ·U †
1,i′Q

]

= 1
NH

∑

τ∈SQ

δi1,i
′
τ (1)

· · · δiQ,i′τ (Q)
,

where 1/NH =
∑

σ WgD(σ ) =
∏Q

k=1(D + k − 1)−1. This
implies that the Haar average of (9) gives4 a contribution
coming from the vertex v of the form

EU∈U (D)[⊗Q(|Tv〉〈Tv|)] = 1
NH

∑

τ∈SQ

R̂v (τ ), (11)

where

R̂v (τ ) :=
∑

+µv

|τ̂ (+µv )〉〈+µv|, τ ∈ SQ, (12)

and where +µv = (µ(1)
v , µ(2)

v , . . . , µ(Q)
v ) labels an orthonormal

basis of the Q (replica and Rényi) copies of the D-dimensional
Hilbert space, (CD)Q, at vertex v. Here SQ denotes the permu-
tation group of Q elements, and τ̂ is the operator that permutes
the Q factors of the tensor product,

|+µv〉 :=
∣∣µ(1)

v , µ(2)
v , . . . , µ(Q)

v

〉
,

|τ̂ (+µv )〉 :=
∣∣µ(τ (1))

v , µ(τ (2))
v , . . . , µ(τ (Q))

v

〉
. (13)

The operator R̂v (τ ) in (12) is simply the permutation operator
permuting the Q (replica and Rényi) copies of the vector space
CD at vertex v. Equation (11) is the key result for the Haar
case. The operator R̂v (τ ) in (12) commutes with the action of
all unitaries U ∈ U (D) on the tensor product (CD)Q associ-
ated with a vertex. Viewing the set of operators R̂(τ ) where
τ runs over all permutations in the group SQ as a basis of a
(complex) linear vector space,5 it can be shown that this vector
space of operators forms the set of all operators commuting
with the action of the unitaries on the tensor product (CD)Q.
This set of operators is called the commutant of action of the
unitary group on the tensor product, and the stated result is
known as the famous statement of Schur-Weyl duality.

Consider now a single edge e emanating from a vertex v.
We label an orthonormal basis of the Q (replica and Rényi)
copies of the d-dimensional Hilbert space of edge e at vertex
v by +µve = (µ(1)

ve , µ(2)
ve , . . . , µ(Q)

ve ), corresponding to the kets

|+µve〉 :=
∣∣µ(1)

ve , µ(2)
ve , . . . , µ(Q)

ve

〉
. (14)

Recalling the decomposition from (1),

|µv〉 = |µve1〉 ⊗ |µve2〉 ⊗ · · · ⊗ |µvez 〉, (15)

valid in each (replica and Rényi) copy, as well as (13), we see
that the operator in (12) is the tensor product of operators

R̂e(τ ), (16)

4The sum over permutations τ was replaced by the sum over τ−1,
which makes no difference.

5Which is in fact an algebra because we can multiply the operators.

defined on the edges e of the vertex v, where

R̂e(τ ) :=
∑

+µve

|τ̂ (+µve)〉〈+µve|, τ ∈ SQ, (17)

and τ̂ labels6 the operator that permutes the Q (replica and
Rényi) copies of the d-dimensional Hilbert space, (Cd )Q, at
an edge e at vertex v:

|+µve〉 :=
∣∣µ(1)

ve , µ(2)
ve , . . . , µ(Q)

ve

〉
,

|τ̂ (+µve)〉 :=
∣∣µ(τ (1))

ve , µ(τ (2))
ve , . . . , µ(τ (Q))

ve

〉
. (18)

In other words, we have

R̂v (τ ) =
z⊗

e=1

R̂e(τ ) = [R̂e(τ )]⊗z. (19)

Consider now two adjacent vertices v and v′ connected by
an edge e. The contribution to (5) arising from the edge joining
adjacent vertices v (permutation τ ) and v′ (permutation σ ) is
then from (3) and (5)

(⊗Q〈Ie|)R̂e(τ )R̂e(σ )(⊗Q|Ie〉)

= 1
dQ

∑

+µve,+µv′e

[R̂e(τ )]+µve,+µv′e [R̂e(σ )]+µv′e,+µve

= 1
dQ

tr[R̂e(τ )R̂†
e (σ )] = 1

dQ
tr[R̂e(τσ−1)]. (20)

It is seen by inspection [56] [using definition (17)] that

tr[R̂e(τσ−1)] = e ln (d )C(τσ−1 ), (21)

where C(τ ) denotes the number of cycles in the permutation
τ ∈ SQ. Once the product over the analogous contributions
from all edges and vertices is taken, a sum over all indepen-
dent permutations σv in the group SQ at all vertices v has to
be performed. This yields the (bulk) partition function of the
Haar stat mech model [56], whose spins are the elements of
the permutation group located at the vertices,

Z∅ = EU∈U (D)trρ⊗Q =
∏

{σv}
exp




−
∑

〈v,v′〉
H(σv, σv′ )




,

H(σv, σv′ ) = ln (d )|σv, σv′ | := ln (d )
[
Q − C

(
σvσ

−1
v′

)]
,

(22)

where we can think of |σv, σv|, defined above, as a “metric”
on permutations.—We now see that the fact that the degrees
of freedom (the spins) of the RTN model of random Haar
tensors are the elements of the permutation group arises from
the fact that the permutations form a basis of the commutant
of the action of the unitaries on the tensor product Hilbert
space. The permutation degrees of freedom at the end of the
dangling boundary legs are fixed and are dictated by the trace
under consideration. To compute Z∅ = EU∈U (D) trρ⊗Q, the
boundary permutations are fixed to the identity, corresponding
to contracting each replica with itself. On the other hand,
one can compute ZA = EU∈U (D)(trρn

A)m by fixing the same

6Upon some slight abuse of notation.
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identity permutation in the region Ā, while fixing gSWAP =
(1, 2, . . . , n)⊗m in the region A in order to compute the partial
trace.

In the sequel, we identify, using the same logic, the degrees
of freedom (i.e., the spins) of the RTN model for random
Clifford tensors [58,60]. Analogously, they will form a basis
of the commutant of the action of the Clifford unitaries on
the Q-fold tensor product. Since Clifford unitary tensors form
a subgroup of all (Haar) unitary tensors, the set of operators
that will commute with their action on the tensor Hilbert space
will be larger. In other words, the commutant will be larger
as compared with the Haar case. We now proceed to explain
the nature of this larger commutant, and thus of the spins of
the stat mech model for the RTN model of random Clifford
tensors.

B. Schur-Weyl duality for the Clifford
random tensor network model

Throughout this section (and any discussion of the RTN or
monitored quantum circuits with random Clifford unitaries in
this paper) we take the on-site Hilbert-space dimension d at
each edge to be a power of a prime number p, i.e., d = pM

with some integer M.
The difference with the case of Haar unitary tensors ap-

pears in (8): In the Clifford case the matrix U is replaced
by a unitary matrix, which we denote by V , in the Clifford
subgroup Cliff (N, p) of all unitary D × D matrices U (D),
where D = dz = pzM = pN , and N = zM. First, we use this
setup to describe the commutant of this action on the Q-fold
tensor product space. Second, after the description of the
commutant is completed, we consider the generalization of
the average (11) to an average over all the elements of this
Clifford subgroup Cliff (N, p) acting on a fixed tensor |Tv〉
which is now chosen to be a stabilizer state.

For the first step, the key statement of Schur-Weyl duality
for the Clifford group is that there is a specific generalization
of the operators (12) spanning the commutant, which are no
longer characterized by permutations.

1. Description of properties of the commutant

Specifically, we are interested in the basis |+µv〉 of the Q-
fold tensor product space (CD)Q of all z edges7 emerging from
a given vertex v so that we can write (CD)Q = [(Cp)⊗N ]⊗Q,
where N = Mz. The p basis elements of the vector space
Cp can be labeled by the p elements of Zp := Z/(p · Z) =
0, 1, 2, . . . , (p − 1), i.e., by the set of integers modulo p (the
“computational basis”). It will soon become important that,
when p is a prime, the finite set Zp forms a number field.8

which is often also denoted by Fp = Zp.
Let us first consider the simplest case where N = 1, i.e., of

the Q-fold tensor product (Cp)⊗Q, which turns out to be the
most important case, underlying all others. The same unitary
p × p matrix V in the Clifford subgroup Cliff (1, p) of the
unitary group U (p) acts simultaneously on each of the Q

7As in (13).
8Meaning that addition, multiplication, and division are defined in

the usual way.

factors of the tensor product, generalizing (8) with D replaced
by p. Since the basis elements of Cp are labeled (as above)
by elements µ ∈ Zp = Fp, the elements of a basis of (Cp)⊗Q

will be labeled by Q-dimensional (say, column-) vectors9

with entries in Zp = Fp, written as usual as elements of
(Zp)Q = (Fp)Q, i.e., by vectors +µ = (µ(1), µ(2), . . . , µ(Q) )t ,
where µ(1), . . . , µ(Q) ∈ {0, 1, . . . , (p − 1)} = Fp. In other
words, every Q-dimensional (column) vector with entries in
Zp = Fp, i.e., every (column) vector in (Zp)Q = (Fp)Q,
denotes a basis element of the vector space (Cp)Q.

The main result of Ref. [65] is that, in this case, the gen-
eralization of (12) and (17), i.e., of the operators which in the
Haar case formed a basis of the commutant, i.e., of the set
(actually the vector space) of all operators commuting with
the action of the unitary group on the tensor product, in the
Clifford case is based on the operators

r̂(T ) =
∑

(+ν,+µ)∈T

|+ν〉〈+µ|, (23)

where T runs over a certain set (to be specified below) of
subspaces of (Zp)Q ⊕ (Zp)Q. In other words, the permutation
in the Haar case is now replaced by the (more general) object
T . The so-defined r̂(T ) is clearly an operator acting on (Cp)Q.
The set of allowed subspaces T , denoted by (Q(p) and to be
specified below, forms the commutant in the Clifford case.

To appreciate the meaning of (23), let us first look at a
special case: Since the set of all Clifford unitary matrices
V ∈ Cliff (1, p) forms a subgroup of the set of all unitary
matrices U ∈ U (p), the set of all operators commuting with
the action of all Clifford unitaries on the Q-fold tensor product
of the Hilbert space Cp must be a larger set than the set of
all those commuting with the action of all unitaries U . Since
we know from the previous section on the Haar case that the
commutant in the latter case is spanned by all permutations
τ ∈ SQ, the operators that appeared in (12) and (17) must
form a subset of the set of operators described in (23). Indeed,
choosing the subspace of (Zp)Q ⊕ (Zp)Q to be of the special
form

T = {(τ̂ (+µ), +µ) : +µ ∈ (Zp)Q} (24)

reproduces precisely the previous expression from (12) and
(17), where in the above equation τ̂ acts by permuting the Q
rows of the column vector +µ.

Before we move on to the description of the commutant
and its properties for the Clifford case, we state an impor-
tant stabilization property [65] that says that, once the prime
number p is fixed, this commutant does not depend on the di-
mension of the (on-site) Hilbert space on which it acts, as long
as that dimension is large enough. This is a very important
statement because it says that, for a fixed prime p, the specific
form of the commutant that we describe below is universally
valid, independent of the (sufficiently large) prime-power di-
mension of Hilbert space it acts on. For this purpose, we
consider a general on-site Hilbert space (Cp)N of dimension
D = pN (as above), i.e., simply the N-fold tensor product of
the Hilbert space Cp discussed above. We now consider as

9The superscript t denotes the transpose.
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before the tensor product of Q (replica, and Rényi) copies of
this D-dimensional Hilbert space, i.e., [(Cp)N ]⊗Q = (Cp)N ·Q,
and on each of the Q copies of the D = pN -dimensional vector
space (Cp)N acts the same unitary D × D matrix V in the
Clifford subgroup Cliff (N, p) of the unitary group U (D). Now
the following statement holds:

Stabilization property [65]. The number of linearly in-
dependent operators (which will span the commutant) that
commute with the action of the same Clifford unitary matri-
ces V ∈ Cliff (N, p) acting simultaneously on each of the Q
factors of the Q-fold tensor product, [(C)D]⊗Q, where D = pN

(p = prime), is independent of N as long as N ! (Q − 1).
Moreover, these linearly independent operators are simply

R̂(T ) = [r̂(T )]⊗N , where T ∈ (Q(p), (25)

i.e., they are nothing but the N-fold tensor products of the op-
erators introduced in (23) above. Note that these operators are
thus uniquely determined by the set (Q(p), independent of the
power N determining the Hilbert-space dimension D = pN , as
long as N is large enough10 (as specified above).

The key result of Ref. [65] is a complete characterization
of the set (Q(p) of subspaces T appearing in (25), which
describes the commutant of the Clifford action on the Q-fold
tensor product. A more detailed summary of this is given in
Appendix A. Here we just list those properties of the com-
mutant (Q(p) that appear directly in the formulation of the
Clifford RTN model. These are a metric on the commutant,
and the invariance of this metric under a certain symmetry
group. We now proceed to discuss these two properties.

An important property of the commutant (Q(p) is that
it contains a group as a subset [though (Q(p) is in general
larger than this group and does in general not form a group].
This group is the group of all orthogonal Q × Q matrices
O with elements in the number field Zp = Fp which satisfy
besides the “orthogonality condition” Ot O = OOt = IQ (the
Q × Q identity matrix) also the additional condition of “being
stochastic,” meaning that the column vector 1Q whose entries
are all the number 1 ∈ Fp, is invariant under the action of the
matrix O, as well as of its transpose, i.e., O 1Q = Ot 1Q = 1Q.
The set of such matrices forms a group denoted by OQ(p), the
so-called stochastic orthogonal group. Note that [in connec-
tion with the discussion around (24)] the permutation group
SQ is a subgroup of OQ(p), namely, it corresponds to the
set of those Q × Q matrices which have only one 1 ∈ Fp in
each row and each column; those matrices clearly implement
permutations.

For the formulation of the Clifford stat mech model we use
the fact that there exists a metric on the commutant: Namely,
that for any two elements Ta and Tb of the commutant (Q(p)
there exists a metric which arises from the trace

W (Ta, Tb) := tr[R̂†(Ta)R̂(Tb)] = (pN )Q−|Ta,Tb| (26)

10Note that (as briefly reviewed below) in the stat mech models
for the RTN and the quantum circuits monitored by measurements,
Q is a replica (Rényi) index which goes to Q → 0 in the RTN [56]
and goes to Q → 1 in the monitored quantum circuits [25]. Thus the
inequality required for stabilization will be automatically satisfied in
these limits of interest.

for any Ta, Tb ∈ (Q(p), where R̂(T ) is defined in (25). The
metric satisfies the usual properties |Ta, Tb| ! 0, |Ta, Tb| =
|Tb, Ta|, and |Ta, Tb| = 0 if and only if Ta = Tb. Additional
details on the definition of this metric are provided in
Appendix E.

The other property we need is that the metric in (26) is
invariant11 under the action of the direct product of two copies
of the stochastic orthogonal group OQ(p) × OQ(p), acting as

|T1, T2| = |T ′
1 , T ′

2 |, where T1, T2 ∈ (Q(p), (27)

and
T ′

1 = OLT1O−1
R , T ′

2 = OLT2O−1
R , with OL, OR ∈ OQ(p).

(28)

2. Stat mech model for the Clifford (stabilizer)
random tensor network

The construction of the Clifford RTN follows the same
steps as those reviewed in Sec. II A for Haar unitaries. We
consider the RTN where on each edge there is an “on-site”
Hilbert space (Cp)M of dimension d = pM of M qudits, each
qudit having a p-dimensional Hilbert space where p is a prime
number. (For a brief review, see, e.g., Appendix B.) In com-
plete analogy with Sec. II A, a Hilbert space (Cp)M·z = (Cp)N

of dimension D = pN , where N = Mz is associated with each
vertex v, where z is the coordination number of a vertex.

Specifically, in the Clifford case the first line of (9) will be
replaced by

⊗Q(|Tv〉 〈Tv|) = ⊗Q[(V̂ |0〉⊗N ) (〈0|⊗NV̂ †)], (29)

where V̂ is an element of the Clifford group Cliff (N, p) acting
on the Hilbert space (Cp)N at vertex v. This means simply
that each12 of the states |1〉 that appears in each of the Q
tensor factors in (9) is replaced by the state |0〉⊗N ∈ CN , which
is written in the computational basis, where 0 ∈ Fp denotes
the number zero in the finite number field Fp. [See, e.g., the
paragraph preceding that containing (23), or Appendix B.]
The reason why |0〉⊗N is chosen at each vertex is because
this state is a stabilizer state.13 Owing to the fact that this
state is a stabilizer state, the average of (29) over the Clifford
group at a vertex v is (as shown in Ref. [65]) an equal-weight
superposition over elements of the commutant [see, e.g., (B5)
of Appendix B]:

EV̂ ∈Cliff (N,p)[⊗Q((V̂ |0〉⊗N )(〈0|⊗NV̂ †))]

= 1
Zn,p,Q

∑

Tv∈(Q (p)

R̂v (Tv ), (30)

where

R̂v (T ) = [R̂e(T )]⊗z, with R̂e(T ) = [r̂(T )]⊗M .

Then, in complete analogy with (20), one obtains using a
maximally entangled state in an orthonormal basis on each

11See (A11) of Appendix A for details.
12Recall that, in the Haar case, |1〉 is just one of the D = dz states

of an orthonormal basis |µv〉, µv = 1, . . . , D that can occur at a
vertex v.

13In fact any stabilizer state could be chosen at a vertex v; see
Appendix B.
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edge, a contribution to the partition function from that edge of
the form

1

(pM )Q tr[R̂†
e (Tv )R̂e(Tv′ )] = (pM )−|Tv ,Tv′ |,

where Tv and Tv′ denote elements of the commutant from the
equal-weight sums (30) at the two vertices v and v′ connected
by the edge e. Then we obtain, by collecting all terms from
the equal-weight sums appearing at each edge, in complete
analogy to (22), the following (bulk) partition function of the
Clifford RTN model:

Z∅ = EV̂ ∈Cliff (M,p)trρ
⊗Q (31)

=
∏

{Tv∈(Q (p)}
exp




−
∑

〈v,v′〉
H(Tv, Tv′ )




,

H(Tv, Tv′ ) = ln(pM )|Tv, Tv′ |. (32)

Observables, including the entanglement entropy, are formu-
lated in the same way as in the Haar case. [See (5)–(7), and
the discussion below (22).]

We recall from Ref. [56]14 that the transition in the RTN
model can be driven by making (at each edge) the bond di-
mension random. In the Clifford case, this means that the bond
dimension is Dbond = pM with p = prime = fixed, where M
is independently distributed at each edge according to some
probability distribution. A simple choice for this would be
random dilution, corresponding to a binary probability distri-
bution for M, taking on two values M = 0 and M = M0 =
fixed at random. This would drive a transition in the RTN
model corresponding to the (same) universality class pos-
sessing (see below) symmetry group OQ(p) × OQ(p) for any
choice of a (large enough) value M0.

We stress that owing to the invariance property (27) of
the metric, the Clifford stat mech model is invariant under
the OQ(p) × OQ(p) symmetry group —up to an additional
Z2 semidirect factor that is also present in the Haar case and
will be irrelevant to our purposes, see Appendix A. Note that
this is a different symmetry group15 for different primes p, but
that this symmetry group is the same for all on-site Hilbert-
space dimensions d = pM for a fixed prime p, independent
of M: the symmetry group depends only on the prime p.
This thus implies that any universal quantities occurring at
continuous phase transitions in this stat mech model will in
general depend on the prime p but will be the same for all
on-site Hilbert-space dimensions d = pM of the same prime
number p, independent of M. Note that this is in contrast with
the Haar case, where the same universality class occurs for
the transition at any finite on-site Hilbert-space dimension.
In the Haar case, this must of course be the case, because
universal properties cannot depend on short-distance (“ultra-
violet”) physics—all those stat mech models have the same

14See Sec. IV F of Ref. [56].
15Recall that OQ(p) denotes orthogonal matrices whose entries

are elements of the number field Fp, which itself has only p
elements. Thus, the groups OQ(p) are different finite groups for dif-
ferent primes p—they even have different order (=number of group
elements).

FIG. 2. The architecture of the monitored quantum circuit model.
Each blue block represents a random unitary gate, and each hollowed
circle represents a rank-1 projective measurement, occurring ran-
domly with probability p0. The dynamical state ρ(t ) at circuit depth
t is supported on qudits at the final time step (highlighted with purple
squares) and is labeled by the measurement record m, see Eq. (33).
We consider two cases, depending on whether the random unitaries
are sampled from the Haar measure on U (D = 2d ) (the “random
Haar circuit”), or from the uniform distribution the Clifford group
Cliff (2M, p) ⊂ U (D) (the “random Clifford circuit”).

symmetry.16 While this feature is the same in the Clifford case
for a fixed value of the prime p (i.e., for on-site Hilbert-space
dimension d = pM and different values of M), RTN models
possessing on-site Hilbert-space dimensions which are pow-
ers of different primes have in general different universal
critical properties at continuous phase transitions because they
are invariant under different symmetry groups.

III. MEASUREMENT-INDUCED PHASE TRANSITION
IN CLIFFORD CIRCUITS

A. Setup and replica trick

We now turn to measurement-induced entanglement tran-
sitions in monitored quantum circuits. We consider a
one-dimensional chain of qudits with on-site Hilbert-space
dimension d , subject to discrete-time dynamics generated by
a quantum circuit with a “brick-wall” pattern, as illustrated in
Fig. 2. Each unitary gate is acting on a pair of neighboring qu-
dits and will be drawn from the Clifford group (we also briefly
review the Haar case below). After each layer of the circuit
(single time step), every site is either measured (projectively)
with probability p0, or left untouched with probability 1 − p0.
For a fixed set of unitary gates and measurement locations,
the hybrid nonunitary dynamics of the system is described
through the quantum channel

ρ(t ) =
∑

m

KmρK†
m, (33)

where ρ is the system’s density matrix, m denotes measure-
ment outcomes, and Km are Kraus operators consisting of the
random unitary gates and the projectors onto the measurement
outcomes. We are interested in the entanglement properties
of individual quantum trajectories ρm = KmρK†

m, which occur
with the Born probability pm = trρm. Our goal is to compute

16Which we recall from Ref. [56] is SQ × SQ.
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the Rényi entropy of such single trajectories, averaged over
measurement outcomes and random unitary gates

S(n)
A = EU

∑

m

pm
1

1 − n
ln

trρn
A,m

(trρm)n . (34)

Ultimately, we also want to average over measurement lo-

cations and denote S(n)
A the Rényi entropy averaged over

measurement locations as well. As in the random tensor net-
works section above, we follow Refs. [10,24,25,56] and use a
replica trick to compute (34):

S(n)
A = EU

∑

m

lim
k→0

trρm

(1 − n)k

[(
trρn

A,m

)k −
(
trρ⊗kn

m

)]
. (35)

We write Q = nk + 1 the number of replicas, where the addi-
tional replica compared with the random tensor networks case
comes from the Born probability weighting different quantum
trajectories.

B. Generalized Weingarten functions

1. Haar case

Let us first briefly summarize the main ingredient of the
statistical mechanics model of the measurement-induced tran-
sition, with Haar random unitary gates acting on qudits. Upon
replicating the model, averaging over Haar gates drawn from
the unitary group U (D = d2) naturally leads to degrees of
freedom living in the permutation group SQ, with Q = nk + 1
the number of replicas. This follows from the Schur-Weyl
duality detailed in the previous section, which states that
the permutation group SQ and the unitary group U (D) act
on (CD)⊗Q as a commuting pair. The Haar average of the
replicated unitaries is given by (see Appendix C)

EU∈U (D)(U ∗Q ⊗ U Q) =
∑

σ,τ∈SQ

WgD(σ−1τ )R̂v (σ ) ⊗ R̂v (τ ),

(36)
where Wg are Weingarten functions, D = d2, R̂v (σ ) =
R̂e(σ ) ⊗ R̂e(σ ) [see Eq. (12)] permutes the output legs of
U by σ and contracts them with the corresponding legs of
U ∗ [and similarly for R̂v (τ ) acting on the input legs]. The
tensor product in the right-hand side of Eq. (36) is over output
and input legs of the unitary. Now contrary to the previous
section on random tensor networks, the Weingarten function
will directly enter the Boltzmann weights of the statistical
models. As we review in Appendix C, those functions satisfy

∑

τ∈SQ

WgD(σ−1τ )DC(τ ) = δσ,1, (37)

where we recall that C(τ ) denotes the number of cycles in the
permutation τ . This implies that the Weingarten function is
the inverse of the cycle counting function DC(τ ). Equation (36)
naturally defines the degrees of freedom of the statistical
model living on a honeycomb lattice (Fig. 3), where permu-
tations live on vertices. Contracting unitary gates can be done
by assigning a weight to links connecting unitaries given by

W (σ, τ ) = tr [R̂†
e (σ )R̂e(τ )] = dC(σ−1τ ). (38)

Note the factor of d here, instead of D, since we are focusing
on a single leg of the unitary. This weight is associated with all

(a)

(b)

FIG. 3. Statistical mechanics model for monitored quantum cir-
cuits. (a) The average over replicated unitary gates leads to degrees
of freedom belonging to the commutant, defined on vertices; Wein-
garten weights WgD, represented by the dashed line; and link weights
W , corresponding to purple solid lines. (b) The statistical mechanics
model is defined on an anisotropic honeycomb lattice.

links that were not measured. If a link was measured instead,
all replicas are constrained to be in the same state, and the
weight is instead d after averaging over possible measurement
outcomes. Those equations fully determine the weights of the
statistical model in monitored Haar random circuits. Upon av-
eraging over measurement locations and outcomes, the weight
assigned to a link is therefore given by [25]

Wp(σ, τ ) = (1 − p0)dC(σ−1τ ) + p0d. (39)

Putting these results together, we obtain an anisotropic statis-
tical mechanics model defined on the honeycomb lattice,

Z =
∑

{gi∈SQ}

∏

〈i j〉∈Gs

Wp
(
σ−1

i τ j
) ∏

〈i j〉∈Gd

WgD

(
σ−1

i τ j
)
, (40)

where Gs (Gd ) denotes the set of solid (dashed) links on the
lattice. In Fig. 3, the vertical (dashed) links on the honeycomb
lattice represent the Weingarten functions which originated
from averaging the two-site unitary gates, and the solid links
keep track of the link weights originating from averaging over
measurements.

2. Clifford case

Let us now turn to the Clifford case, with random uni-
tary gates drawn from the Clifford group Cliff (N, p) ⊂ U (D),
with D = d2, N = 2M, and d = pM with p prime. As in the
Haar case, the average over Clifford gates is given in terms of
tensor products of elements of the commutant of the Clifford
group (see Appendix D)

EU∈Cliff (N,p)(U ∗Q ⊗ U Q)

=
∑

Ti,To∈(Q (p)

WgD(Ti, T0)R̂v (To) ⊗ R̂v (Ti ), (41)
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where, as before, R̂v (Ti ) = R̂e(Ti ) ⊗ R̂e(Ti ) is acting on in-
coming legs, while R̂e(To) acts on outgoing legs, where the
operator R̂e = r̂⊗M was introduced in the previous section,
see Eq. (23). Here the coefficients WgD(Ti, T0) are generalized
Weingarten weights. The procedure to determine them follows
closely the Haar case, and we show in Appendix D that the
generalization of Eq. (37) reads

∑

Tb∈(Q (p)

WgD(Ta, Tb)tr[R̂†
v (Tb)R̂v (Tc)] = δTa,Tc , (42)

as well as
∑

Tb∈(Q (p) tr[R̂†
v (Ta)R̂v (Tb)] WgD(Tb, Tc) = δTa,Tc . In

other words, the Weingarten weights (when viewed as a ma-
trix) are given by the inverse of the matrix tr[R̂†

v (Ta)R̂v (Tb)].
On the other hand, the link weights connecting two vertices
are given by

W (Ta, Tb) = tr[R̂†
e (Ta)R̂e(Tb)] = dQ−|Ta,Tb|, (43)

with d = pM . As in the Haar case, this weight is replaced by
a factor of d if a measurement occurred on that link (upon
averaging over measurement outcomes), as the measurement
constrains all replicas to be in the same state. After averaging
over measurement locations, the weight assigned to a link
reads

Wp(Ta, Tb) = (1 − p0)dQ−|Ta,Tb| + p0d. (44)

The partition function of the statistical model in the Clifford
case is then given by

Z =
∑

{Ti∈(Q (p)}

∏

〈i j〉∈Gs

Wp(Ti, Tj )
∏

〈i j〉∈Gd

WgD(Ti, Tj ), (45)

with the same lattice as in the Haar case (depicted in Fig. 3).
Note that both the link and Weingarten weights are in-

variant under two copies of the stochastic orthogonal group
OQ(p) × OQ(p), acting as T ′

a = OLTaO−1
R , T ′

b = OLTbO−1
R ,

with OL, OR ∈ OQ(p). The conclusions for the Clifford RTN
statistical mechanics model thus carry over to Clifford mon-
itored quantum circuits: the Clifford stat mech model is
invariant under a global OQ(p) × OQ(p) symmetry group.
This symmetry group depends only on the prime number p,
and not on M in the on-site Hilbert-space dimension d = pM .
This implies that all universal quantities of the entanglement
transition in Clifford monitored circuits will depend on p,
but will be independent of M. This is in sharp contrast to
the Haar case, where the same universality class occurs for
the transition at any finite on-site Hilbert-space dimension.
Although the statistical mechanics model (45) describing the
monitored Clifford circuit has the same symmetry group as
the one describing stabilizer RTNs (32), both problems corre-
spond to different replica limits: Q → 0 for RTNs, and Q → 1
for monitored quantum circuits.

C. M → ∞ limit with p fixed and percolation

While the Clifford statistical mechanics formulation is in
general not analytically tractable, the limit of large on-site
Hilbert space leads to drastic simplifications. Let us first con-
sider the link weight, given by Eq. (43), where we recall that
|Ta, Tb| is a metric satisfying |Ta, Tb| ! 0, |Ta, Tb| = |Tb, Ta|,
and |Ta, Tb| = 0 if and only if Ta = Tb. This immediately

implies that, at large d , the weight for nonmeasured links
simplifies dramatically to

W (Ta, Tb) ∼ dQδTa,Tb + · · · . (46)

This corresponds to a perfectly ferromagnetic interactions
that forces the elements of the commutant to be identical on
unmeasured links. Since the Weingarten weights are given by
the inverse of tr[R̂†

v (Ti )R̂v (To)], we immediately find

WgD(Ti, T0) ∼ D−QδTi,To + · · · , (47)

with D = d2. Note that those results hold for d = pM → ∞,
independently of how the limit is taken. We now focus on
the limit of d = pM with p prime fixed and M → ∞. (We
discuss the limit of large p in the next section). Combined,
those results tell us that in the M → ∞ limit, the statistical
mechanics weights for Clifford circuits become identical to
those of the Haar case: precisely in the M → ∞ limit we
obtain a Potts model, whose states are the elements Ta of the
commutant (Q(p). The number of states in the Potts model
depends on p and on the number of replicas Q and is given by
the dimension of the commutant [65]:

|(Q(p)| =
Q−2∏

k=0

(pk + 1) = p
(Q−1)(Q−2)

2

∏∞
k=0

(
1 + 1

pk

)

∏∞
k=0

(
1 + 1

pk+Q−1

) .

(48)
(In the second equality, obtained by straightforward rewriting,
the number Q can be analytically continued from integer val-
ues.) In the replica limit Q → 1, we have |(Q(p)| → 1, so the
critical theory of the measurement induced transition is simply
described by classical percolation. In particular, this predicts a
diverging correlation length with a critical exponent ν = 4/3.
Note that the way the replica limit is approached depends on
p. This shows up in, e.g., the effective central charge ceff =
limQ→1dc/dQ introduced in Ref. [49]. The central charge as
a function of the number of replicas Q is now given by c(Q) =
1 − 6

x(x+1) with x + 1 = π/arccos(
√

|(Q(p)|/2). This leads
to a closed form expression for the effective central charge:

cM→∞
eff = 5

√
3

8π

[
2ψ 1

p

(
iπ

lnp−1

)
− ln

p3

(p − 1)2

]
, (49)

where ψq(z) is the q digamma function, which is defined as
the derivative of ln)q(z) with respect to z, where )q(z) is the
q-deformed Gamma function. The special case p = 2 of this
formula was reported in Ref. [49].

This mapping to percolation is specific to the M → ∞
limit: if M is large but finite, the critical theory of the
measurement-induced transition is described by the perco-
lation CFT perturbed by a relevant perturbation (identified
as the “two-hull” operator in Refs. [25,56]), with scal-
ing dimension * = 5/4. To see this, let us consider the
Landau-Ginzburg formulation of the |(Q(p)|-state Potts field
theory in terms of the Potts order parameter field φa where
a = 1, . . . , |(Q(p)| labels elements of the commutants, and∑

a φa = 0. The symmetry of the Potts theory for M → ∞
is S|(Q (p)|, which is much larger than the stochastic orthog-
onal symmetry OQ(p) × OQ(p) of the finite-M case. To see
this, note that OQ(p) × OQ(p) ⊂ S|OQ (p)| using Cayley’s the-
orem: the left and right actions of the group OQ(p) on itself
have a permutation representation. Note also that S|OQ (p)| is
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a subgroup of S|(Q (p)| since the stochastic orthogonal group
is a subset of the commutant (Q(p). The symmetry-breaking
S|(Q (p)| → OQ(p) × OQ(p) can be implemented by the per-
turbing the Potts model,

L = LPotts +
∑

g,h∈OQ (p)

V (g−1h)φgφh, (50)

where V is a class function of the group OQ(p), ensuring
a left and right stochastic orthogonal group symmetry. The
perturbation has scaling dimension * = 5/4 at the Potts (per-
colation) fixed point in the replica limit and is therefore
relevant.

The fate of this theory in the IR is not known analytically
and corresponds to the generic universality class of Clifford
circuits for a given p. For p fixed and M large but finite,
we thus expect a crossover between percolation and the finite
d = pM universality class (dependent on p), with the corre-
sponding crossover length scale

ξ (M ) ∼ p4M/3, (51)

where we have assumed that the relevant perturbation comes
with an amplitude V ∼ d−1. Note that this crossover length
scales exponentially with M, giving a very broad regime L 1
ξ (M ) described by percolation at large M. For length scales
much smaller than ξ (M ), we expect to see percolation physics,
and in particular, the entanglement entropy should be given
by a minimal cut picture as we derive in the next section.
In particular, the entanglement entropy in that regime scales
with ln d = M ln p (see next section). However, for length
scales much larger than ξ (M ), the physics is controlled by the
infrared fixed point of the theory (50), corresponding to the
generic Clifford universality class for fixed prime p. In partic-
ular, in this regime, the prefactor of the logarithmic scaling of
the entanglement entropy at criticality will be universal, and
will depend on p, but not on M.

D. Large-p limit and minimal cut

Finally, we now comment on the large-p (prime) limit,
keeping M = 1 fixed. For each finite p, there is a distinct
universality class, which is independent of M. However, the
results of the previous section also indicate that the bulk
theory should approach percolation as p → ∞ (with M = 1
fixed): we thus expect a series of fixed points approaching
percolation as p → ∞. A simple way to understand this
is to consider a fixed realization of measurement locations.
Each bond that is measured is effectively cut, while all other
weights constrain the statistical model’s spins to be the same
in this limit. We thus obtain a simple percolation picture of
fully ordered (zero temperature) ferromagnetic spin model
diluted by the measurements. As we show below, a frustrated
link costs a large energy ≈ ln p, leading to an effective mini-
mal cut picture in that limit.

Recall that computing entanglement requires computing
two different partition functions ZA and Z∅, which differ only
by their boundary condition on the top boundary of the circuit.
The boundary condition for the calculation of ZA forces a
different boundary condition in region A, and thus introduces a
domain wall (DW) near the top boundary. In the limit d → ∞,
the DW is forced to follow a minimal cut, defined as a path

cutting a minimum number of unmeasured links (assumed
to be unique for simplicity): the argument follows closely
Ref. [50] in the Haar case. Due to the uniform boundary con-
dition in Z∅, all vertex elements in Z∅ are equal, so Z∅ is trivial
and give by a single configuration of spins. ZA differs from Z∅
due to the fact the DW will lead to frustrated links that con-
tribute different weights to ZA. Each frustrated unmeasured
link contributes a factor tr [r̂†(1)r̂(gSWAP)]/tr r̂(1) to the ratio
of partition functions ZA/Z∅, where gSWAP = (1, 2, . . . , n)⊗k

is the boundary condition enforced in the entanglement re-
gion A in ZA. (The permutation gSWAP acts trivially on the
last replica implementing the Born probability factor.) We
find tr [r̂†(1)r̂(gSWAP)]/tr r̂(1) = pk+1−Q = p(1−n)k 1 1. This
corresponds (since we are considering large p) to a very large
energy cost per frustrated link

*E = (n − 1)k ln p, (52)

so the domain wall will follow a path through the circuit
minimizing the number of unmeasured links it has to cut.
This leads to the expression ZA = p(1−n)k·-DW Z∅, with -DW
the number of unmeasured links that the DW crosses along
the minimal cut. In the replica limit, this leads to a simple
expression for the Rényi entropies:

S(n)
A = -DW ln p, (53)

where this equation is valid for any given configuration of
measurement locations. We use -DW to denote the average
of -DW over measurement locations, which are simply per-
colation configurations. This quantity has a simple scaling in
percolation: it is extensive -DW ∼ LA (volume law) for p0 <
p0,c = 1/2, and constant -DW ≈ O(1) (area law) for p0 >
p0,c = 1/2. At criticality, this implies a logarithmic scaling
of the entanglement entropy [14,68,69]

S(n)
A ≈

p31

√
3

π
ln p ln LA. (54)

We expect the measurement-induced transition to approach
these predictions at large p.

E. Forced measurements and random tensor networks at
large bond dimension

Our predictions can also be generalized to the case of
forced measurements, where the given outcome for a “forced
measurement” is chosen randomly in a way that is inde-
pendent of the state, instead of following the Born rule. In
the context of RTNs, entanglement transitions can be im-
plemented at fixed bond dimension by randomly breaking
bulk bonds [56], which can be thought of as such “forced
measurements” [34]. The corresponding statistical mechanics
models have the same stochastic orthogonal group symmetry
but correspond to different replica limits Q → 1 (projective
measurements) vs Q → 0 (forced measurements, RTNs), and
are thus in general expected to be in different universality
classes. However, numerical results suggest that forced vs pro-
jective measurements might be in the same universality class
in the Clifford case [58], indicating that the two replica limits
Q → 0 and Q → 1 could lead to the same critical theory.

The conclusions of the previous sections carry over to
this forced measurement setup as well: in the large-D limit,
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TABLE I. A comparison of the location of the critical point p0,c and the operator scaling dimensions ha|b, hMN, h(1)
f | f in hybrid Clifford

circuits with different prime qudit dimensions d = p.

Data at the critical point d = 2 d = 3 d = 5 d = 97 d = 997

p0,c 0.160 0.278 0.377 0.495 0.500 ≈ 1/2
ha|b 0.53 0.62 0.66 1.26 ≈

√
3

2π
ln(97) 1.90 ≈

√
3

2π
ln(997)

hMN 3.0 2.9 2.6 2.2 2.0
h(1)

f | f 0.41 0.33 ≈ 1/3

the link and Weingarten weights simplify dramatically, the
statistical mechanics model reduces to a Potts model, and the
large d = p limit also satisfies the minimal cut prediction (54).
The only difference is that the number of replicas is Q = nk
instead of Q = nk + 1, reflecting the absence of Born proba-
bilities. In particular, the replica limit corresponds to Q → 0
instead of Q → 1. At large p and Q small (i.e., 0 < Q < 1),
the dimension of the commutant reads, using Eq. (48),

|(Q(p)| ∼
p→∞

2
1 + pQ

p
Q(Q+1)

2 , (55)

which gives |(Q(p)| → 1 in the replica limit Q → 0. At
large p, the replica limit is thus given by a Potts model with
|(Q(p)| → 1 states, consistent with percolation and the mini-
mal cut prediction.

IV. NUMERICAL RESULTS

In this section we provide numerical evidence that supports
our key conclusions from the previous sections on symmetry,
namely, that the universality class of the transition for qudit
dimension d = pM depends on the prime number p, but not
on the power M. To this end, we consider two cases:

(A) d = pM with fixed M = 1 and different values of p,
where we expect a series of different, p-dependent universal-
ity classes;

(B) d = pM with fixed p and a few small values of
M, where we expect to obtain the same exponents while
varying M.

For each value of d , we simulate monitored Clifford cir-
cuits of L = 512 qudits with periodic boundary condition
and focus on the steady-state entanglement properties at their
respective critical points. The circuit thus takes the geometry
of a semi-infinite cylinder, and at criticality the entanglement
entropy of a region A is predicted to take the following form:

S(A = [z1, z2]) = 2ha|b ln
(

L
π

sin
πz12

L

)
:= 2ha|b ln w12,

(56)

where ha|b is the scaling dimension of a (primary) boundary-
condition changing operator in the underlying CFT.

A. Different universality classes at various d = pM=1

Here, we take the qudit dimension to be a prime number,
d = pM=1 for p ∈ {2, 3, 5, 97, 997}. In Fig. 4(a), we plot the
results of S(A = [z1, z2]) in the form of Eq. (56), and extract
the scaling dimension ha|b at the respective critical points. The
locations of the critical points are determined by the best fit of

S(A = [z1, z2]) to a linear function of ln w12, see Eq. (56). The
fits for ha|b and p0,c are collected in Table I.

From our fitting, the scaling dimension ha|b clearly depends
on p, and increases monotonically with p. It approaches the
prediction from minimal cut percolation at large p, namely,
ha|b =

√
3

2π
ln p—see Eqs. (54) and (56). In addition, the value

of p0,c approaches 1/2 as p is increased, again consistent with
bond percolation on a square lattice.17

We also include results of the “mutual negativity” N (A, B)
between two disjoint regions A = [z1, z2] and B = [z3, z4]
[70]. This quantity is expected to take the following form
when the cross ratio η for the four endpoints is small,

N (A = [z1, z2], B = [z3, z4]) ∝ ηhMN , as η → 0. (57)

Here, hMN stands for the “mutual negativity exponent.” In
Fig. 4(b) and Table I, we see that hMN is close to three for
smaller values of d = p, and approaches two as d = p be-
comes large, as consistent with minimal cut percolation [70].

To further contrast universality classes at small d = p with
percolation at large d = p, we focus on the maximum and
minimum qudit dimensions in our numerics, namely, d =
p ∈ {2, 997}, and consider yet another quantity, known as
a localizable entanglement [71], recently introduced in the
context of hybrid circuits [21]. In this case, we again choose
two disjoint regions A = [z1, z2] and B = [z3, z4] and perform
a single-qudit projective measurement on each qudit outside
A ∪ B. In the postmeasurement state, the mutual information
between A and B is expected to be a conformal four-point
function [21], and takes the following form when the cross
ratio η for the four endpoints is small:

I (A = [z1, z2], B = [z3, z4]) ∝ ηh(1)
f | f as η → 0. (58)

Here, h(1)
f | f is another critical exponent, which takes the value

of 1/3 in the percolation limit d = p → ∞. In our numer-
ics [see Fig. 4(c)], we find that h(1)

f | f fits well to 1/3 ≈
0.33 at d = p = 997 but takes a distinct value ≈0.41 at
d = p = 2 [21].

B. Same universality class for d = p and d = p2

Here we compare qudit dimensions d = pM at a fixed p but
different M. To probe the infrared fixed point, we choose M =
1, 2 so that L 3 ξ (M ), where ξ (M ) is a crossover length scale

17We note in passing that the series of p0,c as summarized in Table I
violates a conjectured bound [18] for all values of d = p ! 3 that we
accessed.
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FIG. 4. Numerical results for d = pM=1. The fits for the critical
exponents are summarized in Table I. (a) We plot S(A = [z1, z2])
against ln w12 [see Eq. (56)] at different values of d = p, where we
see a clear dependence of the slope (=2ha|b) on p. With increas-
ing p, the value of ha|b approaches that of minimal cut percolation
[see Eq. (54)]. (b) The mutual negativity N (A, B) between two
disjoint subregions A = [z1, z2] and B = [z3, z4] against the cross
ratio η = (w12w34)/(w13w24). The power law at small η defines
a critical exponent hMN, which has a clear dependence on p, and
approaches minimal cut percolation at large p. (c) A “localizable
entanglement” between A and B. We perform a single-qudit projec-
tive measurements on each qudit outside A ∪ B, and calculate the
mutual information I (A, B) subsequently. The power law at small η is
another critical exponent h(1)

f | f , which should in general take different
values at different p, as we illustrate.

that diverges with M [see Eq. (51)]. Numerically accessing
the crossover from L 3 ξ (M ) to L 1 ξ (M ) is an interesting
problem left for future versions of this work.

FIG. 5. Numerical results for d = pM , where we take p ∈ {2, 3}
and M ∈ {1, 2}. Comparing Fig. 4(a) and Eq. (56), we see that ha|b
depends on the choice of p but not on M.

For concreteness, we briefly describe the circuit model
for M > 1. At each site of the lattice we construct a “com-
posite” qudit of dimension d = pM by grouping together
M “elementary” qudits each of dimension p. The circuit
takes a brickwork architecture in the composite qudits, where
nearest-neighbor composite qudits are coupled with random
unitaries from the group Cliff (2M, p), and single composite
qudits are subject to rank-1 projective measurements with
probability p0.

We compute the entanglement entropy S(A) of region A
for d ∈ {2, 4 = 22} and for d ∈ {3, 9 = 32}. The results are
plotted in Fig. 5, where we see that ha|b depends p but not
on the choice of M. Results for ha|b at other values of p also
follow this pattern but are not displayed.

Critical exponents for Clifford RTNs from Ref. [58] are
summarized in Table II for comparison. Our numerical re-
sults indicate that the critical properties do not depend on
the measurement scheme, forced (corresponding to the replica
limit Q → 0 in the statistical mechanics model) vs projec-
tive (replica limit Q → 1) [58] but appear to differ (slightly)
between monitored Clifford circuits and Clifford RTNs for
small p. Since the statistical mechanics models for RTNs (31)
and monitored circuits (45) have the same symmetry group,
we expect the entanglement transitions in both cases to be in
the same universality class for a given measurement scheme
(forced or projective). The numerical discrepancy between
those cases might be due to strong corrections to scaling
(i.e., from irrelevant operators) in the RTN case for small p,
since there is no transition for p = 2 in that case. One can, in
principle, get an idea of the strength of such corrections by
comparing Clifford RTNs with bond dimensions d = pM at a
few small values of M, in a similar fashion to Fig. 5, although
we leave a more thorough analysis of those corrections for
future work.

C. Multifractal scaling of the purity

In this section we take the prime number to be p = 2.
Based on the discussion and the results in the rest of this paper,
we have no reason to expect that the general physics discussed
in this section (multifractal scaling) will be fundamentally
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TABLE II. Exponents for Clifford RTN [58] with different prime qudit dimensions d = p. The exponents are all close to the Clifford
circuit but different.

Data at the critical point d = 2 d = 3 d = 5 d = 23 d = 503

ha|b 0.53 ≈ 0.48 ln(3) 0.61 ≈ 0.38 ln(5) 0.91 ≈ 0.29 ln(23) 1.74 ≈ 0.28 ln(503)
hMN 2.8 2.5 2.1 2.1
h(1)

f | f 0.37 0.36 0.33 ≈ 1/3 0.33 ≈ 1/3

different for other prime numbers p, except that numerical val-
ues for various critical exponents defined below are expected
to depend explicitly on the prime p for the symmetry reasons
mentioned in the other parts of this paper.

Specifically, in this section, we consider the purity of the
normalized reduced density matrix [compare (34)]

ρ̂A,m = ρA,m

tr(ρA,m)

of an interval A at the final time-slice of the circuit. In every
realization of circuit disorder (arising from the quantum tra-
jectory m, the Clifford unitaries and measurement locations,
the dependence on which is completely or partially suppressed
here and from now on, for ease of notation), the spectrum
of ρ̂A,m is known to be flat:18 Thus, in every realization of
disorder, the nth Rényi entropies S(n)

A ,

tr(ρ̂A,m)n = exp
{
−(n − 1)S(n)

A

}
,

are all equal, and we consider without loss of generality the
case n = 2. [Again, the dependence of S(n)

A on the quantum
trajectory m and the other types of disorder is suppressed,
which is also done for G(x1, x2) defined below.]

Specifically, we consider the disorder averages,19 denoted
by an overbar (. . . .), of powers (moments) of the purity

G(x1, x2) := tr(ρ̂A,m)2 = exp
{
−S(2)

A

}
, (59)

where x1 and x2 are the endpoints of the interval A, i.e., |x1 −
x2| = |A|: At the transition, these moments will all scale with
certain critical exponents Xk:

[
G(x1,x2 )

]k ∼ Bk

R2Xk
12

, (60)

where R12 is the chord distance

R12 := L
π

sin
(π

L
|x1 − x2|

)
,

L is the spatial size (with periodic boundary conditions), and
Bk are nonuniversal amplitudes which turn out to be of little
interest to us.20 The moment averages in (60) are those of the
two-point correlation function G(x1, x2) associated with the
so-called boundary-condition changing (bcc) operator twist-
ing the boundary conditions [25,56] at the endpoints of the

18All nonvanishing eigenvalues of ρ̂A,m are equal.
19Again, the average is over quantum trajectories involving the

Born rule probability, over random unitaries and measurement lo-
cations.

20The relationship of the nonuniversal amplitudes Bk with the uni-
versal results that we discuss below is mentioned in a footnote of
Appendix F.

interval A. If the dependence of the exponents Xk on the index
k is nonlinear, the correlation function G(x1, x2) is said to
obey multifractal scaling [49,72,73]. (See Appendix F for
a brief review.) This means in particular that the mean and
the typical values of G(x1, x2) scale with different critical
exponents, and that the entanglement transition possesses a
continuous spectrum of critical exponents [corresponding to
Xk with continuous real values of k, arising from noninte-
ger moment powers in (60)]. Whether multifractal scaling
is present can be inferred from the scaling of the statistical
fluctuations of S(2)

A as follows:
We know from (59) that, in every realization of disorder,

the negative of the logarithm of G(x1, x2) is the second Rényi
entropy,

− ln G(x1, x2) = S(2)
A (|x1 − x2| = |A|).

As briefly reviewed in Appendix F, a comparison of the cumu-
lant expansion of the left-hand side of Eq. (60) with the Taylor
expansion of the exponents Xk in powers of k [appearing on
the right-hand side of Eq. (60)] shows that all cumulants of the
second Rényi entropy S(2)

A grow linearly with the logarithm of
the chord distance, ln R12. The coefficients of proportionality
are universal and equal to (−1)k−1 times twice the Taylor
coefficients of Xk in powers of k,

S(2)
A ∼ 2x(1) ln R12, (61)

(
S(2)

A − S(2)
A

)2 ∼ −2x(2) ln R12, (62)

κ3
[
S(2)

A

]
∼ 2 x(3) ln R12,

... , (63)

where κ3[S(2)
A ] denotes the third cumulant of the random vari-

able S(2)
A , and

Xk = k x(1) + k2

2!
x(2) + k3

3!
x(3) + · · · . (64)

Note that (61) is nothing but (35) expressed in terms of
G(x1, x2) defined in (59).

As we summarize below, we find numerically that the
universal numbers x(2) and x(3), characterizing statistical fluc-
tuations of the entanglement entropy about its mean, are both
nonvanishing, and that at least x(2) is of a magnitude which is
a sizable fraction of x(1), the latter characterizing the averaged
entanglement entropy (35). It then follows from (64) that the
dependence of the exponent Xk on the moment-order k is non-
linear. As mentioned above, this signifies multifractal scaling
of the random variable G(x1, x2) defined in (59), i.e., it implies
(in particular) different scaling exponents for the average and
typical values of this quantity: The typical exponent describes
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FIG. 6. Numerical results for the first three cumulants of the
second Rényi entanglement entropy S(2)

A = SA=|x1,x2 |: Averaged en-
tanglement entropy (blue) from (61), its second cumulant (red) from
(62), and its third cumulant (green) from (63), versus the chord dis-
tance, here denoted by R12. The slopes of the plots yield the exponent
x(1) = ha|b ≈ 0.53, −x(2) = h(2)

a|b ≈ 0.32, and x(3) = h(3)
a|b ≈ 0.15.

(The notations ha|b, h(2)
a|b, and h(3)

a|b serve as a reminder that these are
the exponents associated with the boundary-condition changing (bcc)
operator [21,25,56].)

the universal prefactor factor x(1) multiplying the logarithm of
subsystem size of the averaged entanglement entropy, as in
(61). The exponent X1 ( 6=x(1) ) describes the algebraic decay
of the averaged purity [from (59) and (60) with k = 1],

tr(ρ̂A,m)2 = G(x1, x2) ∼ B1

R2X1
12

.

We now proceed to discuss the numerical results. In Fig. 6
we plot the numerical values of the first three cumulants of
the entanglement entropy S(2)

A = SA=|x1−x2| versus the chord
distance R12 in the figure: From the slopes of the plots of the
averaged entanglement entropy (blue) from (61), of its second
cumulant (red) from (62), and of its third cumulant (green)
from (63), we read off the critical exponents x(1) = ha|b ≈
0.53, and −x(2) = h(2)

a|b ≈ 0.32, and x(3) = h(3)
a|b ≈ 0.15, re-

spectively. (These notations ha|b, h(2)
a|b, as well as h(3)

a|b, just serve
as a reminder that these are the exponents associated with the
boundary-condition changing (bcc) operator [21,25,56], using
the notation of Ref. [21].)

Given the numerical values of these exponents we see that
the expansion term of Xk in (64) quadratic in k is of a sizable
fraction [≈0.32/(2 × 0.53) = 0.302] of the term linear in k.
Thus we conclude that Xk is clearly not a linear function of k
and that the purity thus exhibits multifractal scaling. The ex-
pansion term of Xk cubic in k, even though small as compared
with x(1) = ha|b, does not appear entirely negligible, which
is presumably indicative of a k dependence of Xk beyond
quadratic order.

In conclusion, our numerical study of the statistical fluc-
tuations of the entanglement entropy has established beyond
doubt multifractal scaling of the purity in our Clifford circuit
for prime p = 2. Moreover, as mentioned at the beginning
of this section, we have no reason to doubt that the scaling

behavior of the purity is also multifractal for on-site Hilbert-
space dimensions d = pM with other prime numbers p, except
that also the exponents x(2), x(3), . . ., in addition to x(1) = ha|b
(see Table I), are expected to depend explicitly on the prime
p, based on our results in the rest of this paper.

V. DISCUSSION

In this work, we have introduced a replica statistical
mechanics mapping to compute entanglement properties of
stabilizer random tensor networks, and monitored Clifford
quantum circuits acting on qudits with d = pM . The degrees
of freedom (spins) of the resulting statistical models belong to
the commutant of the Clifford group, using a generalization of
the concept of Schur-Weyl duality to the Clifford case. We find
that the Boltzmann weights are invariant under the left and
right action of the stochastic orthogonal group with entries in
the finite number field Fp. This implies, surprisingly, that the
universal properties of the entanglement transitions in Clif-
ford circuits and RTNs depend on the on-site Hilbert-space
dimension d but only through the prime p. This is in sharp
contrast with the Haar case where the symmetry group is in-
dependent of d as long as it is not infinite. Our formalism also
allowed us to derive exact mappings onto classical percolation
and minimal cut formulas as d = pM becomes large, with
different consequences for p fixed and M → ∞, or M fixed
and p → ∞. We confirmed our predictions using large-scale
stabilizer numerics, which also showed that projective and
forced measurement schemes yield the same finite-d critical
exponents for Clifford circuits.

Our large-d results here bolster a known result about
stabilizer tensors. Random stabilizer tensors with large
bond dimension are perfect tensors with high probability
[59,74,75]. A perfect tensor has the special property of being
a unitary gate for any equal-size bipartition of its legs. Thus,
a Clifford circuit or RTN as d → ∞ becomes an assembly
of perfect tensors, for which the entanglement entropies are
given exactly by the minimal cut through the underlying
square lattice with randomly broken bonds.

Finally, for p = d = 2 we established that the purity of the
reduced density matrix of a finite interval exhibits multifractal
scaling at the transition. This implies different critical scaling
exponents for the averaged and typical purity (the latter being
equal to the prefactor of the logarithm of subsystem size in the
entanglement entropy), and a continuous spectrum of critical
exponents associated with the scaling of (noninteger moment
averages of) the purity. The same features are expected to
be present for (powers of) other primes p, while the corre-
sponding exponents will vary with p for the symmetry reasons
discussed in this paper.

Our approach could be generalized to other subgroups of
the unitary group: formally, the main algebraic object that is
needed would be the commutant of the subgroup. Once the
commutant is known, most of the formulas derived in this
paper carry over—including the definition of the Weingarten
functions, etc. It would be interesting to investigate whether
other universality classes of entanglement transitions can be
obtained in this way. As in the Haar case, an analytic un-
derstanding of the replica limit of the statistical mechanics
models for finite d remains a clear challenge for future work.
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One particularly intriguing aspect of our results is that while
the statistical mechanics approach is certainly very powerful
and allowed us to uncover the intricate dependence of the
symmetry group on the prime number p, some aspects of
Clifford circuits that are “simpler” (such as the ability to
simulate them classically, or the flat entanglement spectrum of
the reduced density matrix) are not yet particularly transparent
in the current formulation of our framework. Those special
properties of the Clifford group might possibly lead to some
simplifications in the statistical mechanics formulation, which
we leave for future work.
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APPENDIX A: DESCRIPTION AND BASIC PROPERTIES
OF THE COMMUTANT !Q(p) FOR THE CLIFFORD CASE

The following statements (from Ref. [65]) lead to the full
characterization of the commutant (Q(p), which is presented
in statement (iv) below, together with its properties relevant
for the construction of the Clifford stat mech model, summa-
rized in (v)–(vii):

(i) (Stochastic) orthogonal group. For every O ∈ OQ(p)
the subspace

TO := {(O+µ, +µ) : +µ ∈ (Zp)Q} (A1)

is an element of (Q(p), and any operator r̂(T ) as introduced
in (23) is invertible if and only if T is of the form T = TO
for some O ∈ OQ(p). Clearly, it follows from (23) that the
operator r̂(TO) maps basis element |+µ〉 into basis element
|O+µ〉. We denote this operator simply by r̂(O), and we write
simply r̂(TO) = r̂(O).

(ii) Left and right multiplication by (stochastic) orthogonal
group. For any subspace T ∈ (Q(p) as introduced in (23), and
for any stochastic orthogonal matrix O ∈ OQ(p), the objects

OT := {(O+ν, +µ) : (ν, µ) ∈ T } (A2)

and

T O := {(+ν, Ot +µ) : (ν, µ) ∈ T }

are themselves again elements of (Q(p), i.e., OT, T O ∈
(Q(p).

(iii) Compatibility with r̂(T ). The action with stochastic
orthogonal matrices O, O′ ∈ OQ(p) on subspaces T ∈ (Q(p),
defined in (ii) above, translates naturally into the action on the
corresponding operator r̂(T ):

r̂(O)r̂(T )r̂(O′) = r̂(OT )r̂(O′) = r̂(O)r̂(T O′) = r̂(OT O′).

(A3)

(iv) Double coset decomposition of commutant. Statement
(iii) above shows that the commutant (Q(p) is a disjoint union
of double cosets with respect to the left and right actions of the
stochastic orthogonal group, i.e.,

(Q(p) = OQ(p) T̄1 OQ(p) ∪ · · · ∪ OQ(p) T̄k OQ(p),

(A4)

where T̄1, . . . , T̄k denote representatives of different double
cosets. It can be shown [65] that k " Q. Here T̄1 = * is the
“diagonal subspace”

* := {(+µ, +µ) : +µ ∈ (Zp)Q}, (A5)

so that OQ(p)T̄1OQ(p) = OQ(p).
(v) Choice of representatives for double cosets. The op-

erators r̂(T ) associated with elements T of the commutant
that are not in the first double coset OQ(p)T̄1OQ(p) = OQ(p)
are not invertible. Representatives T̄a with a = 2, . . . , k can
be chosen21 such that r̂(T̄a) are projectors. In particular, one
can choose double coset representatives T̄a, a = 2, 3, . . . , k
(and the notation T̄a denotes from now on that such a choice
has been made) so that each is associated22 with a projector
PCSS(Na ) possessing a so-called “defect subspace” Na ⊆ (Zp)Q

of dimension dim(Na), and

r̂
(
T̄a

)
= pdim(Na )PCSS(Na ) (a = 2, 3, . . . , k), (A6)

with trace

tr[r̂(T̄a)] = pQ−dim(Na ). (A7)

It is convenient to also introduce the notation T̄1 = * and
N1 = 0.

(vi) Composition property. Consider two arbitrary ele-
ments T1, T2 ∈ (Q(p) of the commutant. Each can then be
reduced, upon right and left multiplication with elements in
OQ(p), to one of the elements23 T̄a, where a = 1, 2, . . . , k,
and thus can be assigned a (possibly trivial) defect space Na.
Then the following composition property holds

r̂(T1)r̂(T2) = pdim(N1∩N2 ) r̂(T1T2). (A8)

(vii) Trace. The commutant (Q(p) is equal to the disjoint
union of sets (-

Q(p), where - = 0, 1, . . . , (Q − 1), whose ele-
ments are those elements T ∈ (Q(p) with the property that

21Upon right and left multiplication with suitable stochastic orthog-
onal matrices, and making use of Theorem 4.24 of Ref. [65].

22The subscript CSS stands for the so-called Calderbank-Shor-
Steane codes [76–78] known from quantum information theory.

23or to elements that are conjugate to those upon conjugation in
OQ(p), which then have again the same right and left defect spaces,
which are images under OQ(p) of the original ones.
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dim(T ∩ *) = Q − -. Then, by the definition (23) of r̂(T )
and the definition of the trace, one has24

tr[r̂(T )] = pQ−-, for all elements T ∈ (-
Q(p). (A9)

(viii) Metric on an edge. For any two elements of the
commutant (Q(p), in analogy with (20) in the Haar case, the
Boltzmann weight on an edge of the Clifford RTN is built
from

1
pQ

tr([r̂(T1)]†r̂(T2)) = e− ln(p)|T1,T2|, (A10)

where is |T1, T2| a metric defined by collecting (A6)–(A9).
It satisfies the usual conditions |T1, T2| = |T2, T1| ! 0, and
|T1, T2| = 0 if and only if T1 = T2. We refer the reader to
Appendix E for additional details.

As a check, let us briefly compute the metric in the case
where T1 = T2 = T , and thereby confirm that the above rules
indeed yield the expected result |T, T | = 0. There are two
cases to consider. In the first case, T ∈ OQ(p) is itself a group
element, i.e., an element of the first double coset with “trivial”
representative T1 = *. In this case the defect spaces are trivial
(of dimension zero), and the trace in (A10) is that of the
identity operator acting on the (replicated) edge Hilbert space
(Cp)Q, yielding pQ. This is canceled by the prefactor in (A10)
with the result that |T, T | = 0 in this case, as expected. In the
second case, T is an element of one of the remaining (k − 1)
double cosets and is thus, upon right and left multiplication
with possibly different group elements25 in OQ(p), equal to
one of the “projector” representatives T̄a with a = 2, . . . Q. In
this case T̄a = PCSS(Na ) is a projector satisfying (T̄a)2 = T̄a, and
(A6)–(A8) yield for (A10) the expression

1
pQ

pdim(Na ) pQ−dim(Na ) = 1,

in agreement with the expected result |T, T | = 0.
(ix) Symmetry of the metric. It follows from its definition

in (A10) and from the compatibility property (A3) that the
metric |T1, T2| is invariant under the symmetry group OQ(p) ×
OQ(p), i.e., under right and left multiplication with arbitrary
elements of the stochastic orthogonal group,

|T1, T2| = |T ′
1 , T ′

2 |, where T1, T2 ∈ (Q(p), (A11)

and

T ′
1 =OLT1O−1

R , T ′
2 = OLT2O−1

R , with OL, OR ∈ OQ(p).

(A12)

Just like in the Haar case, the metric is also invariant under
a Z2 symmetry that corresponds to exchanging ket and bra.
To see this, for each element of the commutant T ∈ (Q(p),
we define T † as

r̂(T ) = r̂(OL )r̂(T̄ )r̂(OR) = r̂(OLT̄ OR),

r̂†(T ) = r̂(Ot
R)r̂(T̄ )r̂(Ot

L ) = r̂(Ot
RT̄ Ot

L ) := r̂(T †),

where r̂†(T̄ ) = r̂(T̄ ), T̄ † = T̄ .

Thus: T = OLT̄ OR, T † := Ot
RT̄ Ot

L,

24Recall (A5).
25These group elements disappear when forming the trace in (A10).

where we have used (A3), (A4), and (A6). With this notation
in hand, we establish the following simple property of the
metric:

|Ta, Tb| = |T †
a , T †

b |, (A13)

which follows from Eq. (A10) and

tr
(
[r̂(Ta)]† r̂(Tb)

)
=

∑

(+νa,+µa )∈Ta

∑

(+νb,+µb)∈Tb

δ+νa,+νbδ+µa,+µb

= tr(r̂(Ta)[r̂(Tb)]†), (A14)

using Eq. (23). We note that Eq. (A14), in conjunction with
(A10), also provides an explicit elementary definition of the
metric.

It is straightforward to show that the Weingarten functions
defined in Appendix D below also satisfy26 W gD(T †

a , T †
b ) =

W gD(Ta, Tb), which also implies that they are real.27 Thus
both principal ingredients of the Clifford statistical mechanics
model for monitored circuits and RTNs,28 namely, the Wein-
garten function W gD(Ti, Tj ) as well as the metric |Ti, Tj |, are
invariant under the Z2 symmetry which sends Ti → T †

i at all
sites.

APPENDIX B: BASIC PROPERTIES OF THE CLIFFORD
GROUP, STABILIZER STATES, ETC.

(1) Single qudit (d = p = prime), Hilbert space H1 =
Cp, computational basis |q〉 with q ∈ {0, . . . , (p − 1)} = Zp.
Pauli operators

X̂ |q〉 = |q + 1〉, Ẑ|q〉 = ωq|q〉, (ω = e2π iq/d ),

Ŷ := τ X̂ †Ẑ† (where τ = some suitable phase),

then: X̂Ŷ Ẑ = τ I. (B1)

(2) Hilbert space for n qudits (d = p = prime) Hn =
(Cp)n, computational basis |q〉 = (q1, . . . , qn) ∈ (Zp)n.

(3) Pauli group Pn is the group generated by the tensor
product of all Pauli operators on the n qudits, or, equivalently,
owing to (B1), by the group generated by the tensor product
of the operators τ Î, X̂ , Ẑ .

(4) Clifford group Cliff (n, p) of the Hilbert space Hn =
(Cp)n of n qudits is the normalizer of the Pauli group in the
unitary group acting on Hn = (Cp)n, i.e., the group of all uni-
tary operators V̂ acting on Hn = (Cp)n satisfying V̂ PnV̂ † ⊂
Pn up to phases.

(5) For a subgroup of the Pauli group, S ⊂ Pn [one that
does not contain any (nontrivial) multiple of the identity oper-
ator], the operator

P̂S := 1
|S|

∑

P̂∈S

P̂,

26Which follows from (D5) and the paragraph below this equation,
upon making use of (A13).

27Which follows from (D3) due to the manifest Hermiticity of
Ŷ defined in (D1) (analogous to the Haar case as discussed in
Appendix C).

28RTNs in the forced measurement formulation discussed in
Sec. III E also require the use the Weingarten function.
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is an orthogonal projector onto a subspace29 VS ⊂ Hn of
dimension pn/|S|. When |S| = pn, the projection is onto a
single state |S〉 called a stabilizer state (i.e., VS = C|S〉),
which is thus the unique (up to scalars) eigenvector of all Pauli
operators P̂ in S ,

P̂|S〉 = |S〉 (for all P̂ ∈ S ).

The (finite) set of all (pure) stabilizer states in Hn = (Cp)n

is denoted Stab(n, p). The number of stabilizer states [79] in
Stab(n, p) is =pn ∏n

i=1(pi + 1).
(6) For every stabilizer state |S〉 in Hn = (Cp)n there ex-

ists some Clifford unitary V̂ ∈ Cliff (n, p) such that

|S〉 = V̂ (|0〉⊗n) (where |0〉 = |q = 0〉, with q = 0 ∈ Fp).

It follows from this statement that the set of stabilizer states
Stab(n, p) of the qudit Hilbert space Hn = (Cp)n is a single
orbit of the action under the Clifford group Cliff (n, p).

(7) There is a simple way to see that the state |0〉⊗n ∈
Hn = (Cp)n, is a stabilizer state, i.e., an element of the set
Stab(n, p) of stabilizer states.

The argument uses the notation of Weyl operators:

Ŵx = Ŵp,q = τ−p·q(Ẑ p1 X̂ q1 ) ⊗ · · · ⊗ (Ẑ pn X̂ qn ),

where x = (p, q) ∈ Vn := (Zp)2n (“phase space”). Each Weyl
operator is an element of the Paul group Pn; moreover, each
element of the Pauli group is, up to a phase, equal to a Weyl
operator. It is obvious [using (B1)] that the state |0〉⊗n ∈ Hn is
the simultaneous eigenvector of the set of all Weyl operators
Ŵx with x = (p, q) where q = 0, i.e.,

Ŵp,0|0〉⊗n = |0〉⊗n. (B2)

This particular set of these Weyl operators thus represents the
subgroup S ⊂ Pn of the Pauli group, which “stabilizes” the
state |0〉⊗n. Note that the order of this subgroup of the Pauli
group is |S| = pn, as required.

(8) Furthermore, it is now possible to show that V̂ |0〉⊗n,
where V̂ ∈ Cliff (n, p) is an arbitrary Clifford unitary operator
in Hn, is also a stabilizer state, i.e., an element of the set
Stab(n, p) of stabilizer states. To see this, rewrite (B2) as

(V̂Ŵp,0V̂ †) (V̂ |0〉⊗n) = (V̂ |0〉⊗n),

which says that the group of pn operators (V̂Ŵp,0V̂ †) stabilizes
the state (V̂ |0〉⊗n). Owing to Eq. (2.8) of Ref. [65] we know
that

V̂Ŵp,0V̂ † = ω fV̂ (p,0) Ŵ)V̂ (p,0),

where )V̂ (p, 0) ∈ Sp(2n, p) and fV̂ (x) is a suitable function
on phase space Vn [defined under item (7) above—Sp(2n, p)
is the symplectic group with entries in the field Fp.] Then
since, as also mentioned under item (7) above, every Weyl op-
erator is an element of the Pauli group, the group {V̂Ŵp,0V̂ † :
p ∈ (Zp)n} forms a subgroup of the Pauli group Pn and can be
identified with the stabilizer subgroup of the stabilizer state
V̂ |0〉⊗n.

29VS is called a “stabilizer code.”

(9) Projective Clifford group, Pauli group, and orders of
groups. Since we are interested in acting with elements of
the Clifford group V̂ ∈ Cliff (n, p) on a density matrix of a
pure state |ψ〉, i.e., V̂ |ψ〉 〈ψ |V̂ †, we can work with elements
of the Clifford group modulo phases. We define the pro-
jective Clifford group as the Clifford group modulo phases,
i.e., Cliff (n, p) := Cliff (n, p)/U (1). Similarly, we call Pn the
Pauli group modulo phases. It can then be shown [65,79] that

Cliff (n, p)/Pn = Sp2n(p),

where, again, the latter is the symplectic group with entries
in the field Fp. Since the dimension of this symplectic group
is known [79] to be |Sp2n(p)| = pn2 ∏n

i=1(p2i − 1), we know
that the order of the projective Clifford group is

|Cliff (n, p)| = p2n pn2
n∏

i=1

(p2i − 1), (B3)

where we used the fact [see item (7) above] that the projective
Pauli group is simply the set of all Weyl operators (of which
there are as many as elements in phase space Vn, defined
above).

(10) Average over the Clifford group. It turns out [65] that,
for an arbitrary (meaning: not a stabilizer state) state |ψ〉 ∈
Hn, the average

∑

V̂ ∈Cliff (n,p)

[V̂ |ψ〉 〈ψ |V̂ †]⊗Q, (B4)

will, while still (obviously) expressible as a linear combina-
tion of the elements R̂(T ) of the commutant, in general not
simply be an equal-weight superposition of the latter, but may
depend30 on details of the state |ψ〉 itself. However, if we take
|ψ〉 to be any stabilizer state|S0〉 ∈ Stab(n, p) ∈ Hn, the sum
can be expressed as an equal-weight sum over the commutant,
namely,

1
Nnorm

∑

V̂ ∈Cliff (n,p)

[V̂ |S0〉 〈S0|V̂ †]⊗Q

=
∑

|S〉∈Stab(n,p)

[|S〉 〈S|]⊗Q = 1
Zn,p,Q

∑

T ∈(Q (p)

R̂(T ), (B5)

where Nnorm and

Zn,p,Q = pn
(Q−2)∏

k=1

(pk + pn),

are normalization factors. The first equality follows because
the set Stab(n, p) of stabilizer states is [see item (6) above] a
single orbit under the action of the Clifford group on stabilizer
states.31

30Certain linear combinations of expressions (B4) with different
nonstablilizer states |ψ〉 can even be shown to represent Haar av-
erages [65].

31If the first sum is over the projective Clifford group Cliff (n, p),
which gives the same result up to possibly an overall multiplicative
constant, it follows from (B3) that the normalization factor would
in this case read N norm = pn pn2 ∏n

i=1(pi − 1) because [79] every
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APPENDIX C: WEINGARTEN FUNCTIONS FOR HAAR

Let us consider the operator32 (repeated indices summed)

X̂ := EÛ∈U (D)[Û (· · · )Û †]⊗Q

=
∫

Haar
dµ(Û )[Û (· · · )Û †]⊗Q

=
∫

Haar
dµ(U )Uī1, j1 · · ·UīQ, jQU †

j̄1,i1
· · ·U †

j̄Q,iQ

×(|ī1, . . . , īQ〉〈i1, . . . , iQ|) ⊗ (| j̄1, . . . , j̄Q〉〈 j1, . . . , jQ|),
(C1)

where i1, . . . , īQ, j1, . . . j̄Q ∈ {1, . . . , D}. We can
view the second tensor factor in the fourth line,
(| j̄1, . . . , j̄Q〉〈 j1, . . . , jQ|), as defining an orthonormal basis of
the Q-fold tensor product of an “in” vector space of operators
Hop

in , i.e., of (Hop
in )⊗Q. In the same way, we can view the first

tensor factor in the fourth line, (|ī1, . . . , īQ〉〈i1, . . . , iQ|), as
defining an orthonormal basis of the Q-fold tensor product
an “out” vector space of operators Hop

out, i.e., of (Hop
out )

⊗Q.
In other words, we can view X̂ as an element of the tensor
product of these two vector spaces of operators:

X̂ ∈
(
Hop

out

)⊗Q ⊗
(
Hop

in

)⊗Q
. (C2)

Let us now consider a unitary operator Ŵ1 acting (by conju-
gation) solely on Hout, while we act with the identity operator
I on Hin. For such an operator we obtain33

(
Ŵ ⊗Q

1 ⊗ I⊗Q)
X̂

(
Ŵ †⊗Q

1 ⊗ I⊗Q)
= X̂ , (C3)

which follows from the invariance of the Haar measure under
left-multiplication of Û with Ŵ1. Similarly, for a unitary op-
erator Ŵ2 acting (by conjugation) solely on Hin, while we act
with the identity operator on Hout, we obtain

(
I⊗Q ⊗ Ŵ †⊗Q

2

)
X̂

(
I⊗Q ⊗ Ŵ2

⊗Q)
= X̂ (C4)

due to invariance of the Haar measure under right-
multiplication of Û by Ŵ2. Owing to (C3) and (C4), the
operator X̂ can be expanded as a tensor product of operators
R̂(σ ) which form a basis of the commutant acting on (Hop

in )⊗Q,
and operators R̂(τ ) which form a basis of the commutant
acting on (Hop

out )
⊗Q, i.e.,

X̂ =
∑

σ,τ∈SQ

WgD(σ, τ )R̂(σ ) ⊗ R̂(τ ), (C5)

element of Cliff (n, p) is a product of an element of the Pauli group
(modulo phases) and a (projective) representation of the symplectic
group Sp2n(p). The result follows because a subgroup of order pn of
the Pauli group is the stabilizer group of the stabilizer state, and the
length of the orbit is |Stab(n, p)| = pn ∏n

i=1(pi + 1) (as mentioned
above).

32The last two lines are obtained from the second line by inserting
a complete set of D states in each of the Q tensor factors, e.g., Û =
|ī1〉 Uī1, j1 〈 j1|, etc.—we use the notation |ī1, . . . , īQ〉 = |ī1〉 ⊗ . . . ⊗
|īQ〉, etc.

33More explicitly, the left-hand side is the Haar average of
Uī1, j1 · · ·UīQ, jQU †

j̄1,i1
· · ·U †

j̄Q,iQ
(Ŵ ⊗Q

1 |ī1, . . . , īQ〉〈i1, . . . , iQ|Ŵ †
1

⊗Q ) ⊗
(| j̄1, . . . , j̄Q〉〈 j1, . . . , jQ|), equal to X̂ upon letting U → W1U .

where WgD(σ, τ ) are expansion coefficients34 called Wein-
garten functions. Clearly, reading (C1) in conjunction with
(C5), (17), and (18), equation (C1) is equivalent to the state-
ment (10) and constitutes a proof of the latter.

We close this discussion with a slightly more compact,
basis-independent formulation of the same facts. In particular,
if we apply X̂ to an operator in (Hop

in )⊗Q that is a Q-fold
tensor product of an operator Ôin which is an element in the
Hilbert space Hop

in of in operators, we obtain the following
result which is an element of the Q-fold tensor product in the
Hilbert space Hop

out of out operators:

X̂ :
(
Hop

in

)⊗Q →
(
Hop

out

)⊗Q
,

(Ôin )⊗Q → X̂ [(Ôin )⊗Q], (C6)

where

X̂ [(Ôin )⊗Q] =
∫

Haar
dµ(Û )[Û ÔinÛ †]⊗Q.

The operator X̂ is (evidently) invariant under the action of
independent unitary operators Ŵ1 and Ŵ2, implemented by
right and left multiplication of the (integrated) Haar unitary
Û

X̂ [(Ôin )⊗Q] = X̂
[
Ŵ ⊗Q

2 Ô⊗Q
in Ŵ †⊗Q

2

]

= Ŵ ⊗Q
1 (X̂ [(Ôin )⊗Q])Ŵ †⊗Q

1 .

This is the symmetry giving rise to the expansion (C5) of X̂ in
terms of a tensor product of elements of the commutant. The
same logic will apply in the Clifford case, the only difference
being that the commutant will then be different.

We note for future use the fact that we can apply the
operator X̂ to any element R̂(τ ) of the commutant, viewed as
an element of the vector space of operators (Hop

in )⊗Q. Using
the fact that R̂(τ ) commutes by definition with Û ⊗Q, we see
that X̂ [R̂(τ )] = R̂(τ ) where, by (C6), the right-hand side is an
element of the vector space (Hop

out )
⊗Q.

1. Key properties of the Weingarten functions WgD(σ, τ )
for the Haar case

Let us perform the trace over the second tensor factor
(Hop

in )⊗Q of X̂ defined in (C1) and (C2); in the following we
denote the trace over the first35 and second36 tensor factor
by tr(1) and tr(2). When denoting the identity operator in the
Hilbert space underlying the first tensor factor, i.e., in Hout,
by I we obtain for any permutation τ ∈ SQ

tr(2)X̂ (I⊗Q ⊗ R̂(τ )) = X̂ [R̂(τ )] = R̂(τ )

=
∑

σo,σi∈SQ

WgD(σo, σi )R̂(σo)tr[R̂†(σi )R̂(τ )]

=
∑

σo,σi∈SQ

WgD(σo, σi )R̂(σo)DQ−|σi,τ | ∈
(
Hop

out

)⊗Q
, (C7)

34Which are real because X̂ is Hermitian, and WgD(σ, τ ) =
WgD(σ−1, τ−1).

35In other words, over (Hop
out )

⊗Q.
36In other words, over (Hop

in )⊗Q.
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where in the first line we used the fact that R̂(τ ) is an element
of the commutant [and the definition (C1) of X̂ , as well as of
the metric, (22) and (21)], and in the second line we used (C5).
Here D = d2 is the dimension of the Hilbert space on which
the two-site unitary gate acts. Since R̂(σo) form a basis of the
commutant, (C7) implies that

∑

σi

WgD(σo, σi )DQ−|σi,τ | = δσo,τ . (C8)

This equation says that the Weingarten function is the left-
inverse of DQ−|σi,τ | under matrix multiplication when both are
viewed as matrices.

The analogous argument applied to the equa-
tion tr(1)X̂ (R̂(τ ) ⊗ I⊗Q) = R̂(τ ) implies a similar equation for
the right inverse,

∑

σo

DQ−|τ,σo|WgD(σo, σi ) = δτ,σi . (C9)

A simplification occurs in the Haar case because the metric
satisfies |σ, τ | = |σ−1τ |, i.e., it does not depend separately
on σ and τ . This has two implications: (i) First, and most
importantly, the Weingarten function, being the inverse of
DQ−|σ,τ | = DQ−|σ−1τ | is also a function of the combined
variable, namely, WgD(σo, σi ) = WgD(σ−1

o σi ). (ii) Second,
without loss of generality, we may replace τ → 1 by the
identity permutation 1 in (C8) and (C9).

2. Consequences of (9) and (11)

Set j1 = · · · = jQ = j̄1 = · · · = j̄Q = 1 in those equa-
tions. If we define the projection operator onto this state in
(Hin )⊗Q,

Q̂0 := |1〉⊗Q〈1|⊗Q,

we conclude that

tr(2)[X̂ (I⊗Q ⊗ Q̂0)] =
∫

Haar
dµ(Û )[Û |1〉 〈1|Û †]⊗Q

= const ×
∑

τ∈SQ

R̂(τ ),

where we used (9) and (11).
On the other hand, using the form (C5) for X̂ , the same

expression is equal to

=
∑

σ,τ∈SQ

WgD(σ, τ )R̂(σ )(tr[R̂(τ )Q̂0]).

Owing to (12) the trace in the above equation is unity inde-
pendent37 of the element τ of the commutant SQ,

(tr[R̂(τ ) Q̂0]) = 1 for all τ ∈ SQ.

We therefore conclude that

const×
∑

σ∈SQ

R̂(σ ) =
∑

σ∈SQ




∑

τ∈SQ

WgD(σ, τ )



 R̂(σ ),

37Because the state |1〉⊗Q is invariant under permutation of the Q
tensor factors.

which means that the expression in parentheses is a constant,
i.e., independent of σ ,

∑

τ∈SQ

WgD(σ, τ ) = const for all σ ∈ SQ. (C10)

Of course, here in the Weingarten case for Haar under consid-
eration here, WgD(σ, τ ) is a function of only στ−1 and so this
condition is obviously satisfied.

APPENDIX D: WEINGARTEN FUNCTIONS
FOR CLIFFORD

Let us start with the analog of (C1) for Clifford:

Ŷ := EV̂ ∈Cliff (n,p)[V̂ (· · · )V̂ †]⊗Q

= 1
NCliff

∑

V̂ ∈Cliff (n,p)

[V̂ (· · · )V̂ †]⊗Q

= 1
NCliff

∑

V̂ ∈Cliff (n,p)

Vī1, j1 · · ·VīQ, jQV †
j̄1,i1

· · ·V †
j̄Q,iQ

×(|ī1, . . . , īQ〉〈i1, . . . , iQ|)⊗(| j̄1, . . . , j̄Q〉〈 j1, . . . , jQ|),
(D1)

where

Ŷ ∈
(
Hop

out

)⊗Q ⊗
(
Hop

in

)⊗Q
. (D2)

Note that here |i〉 ∈ Hn = (Cp)n denotes elements of an or-
thonormal basis of Hn, having no relationship with stabilizer
states in Hn (but see Sec. D 2 below). Now, the analogs of
(C3) and (C4) follow up on the replacement X̂ → Ŷ , for any
Clifford unitary operators Ŵ1 and Ŵ2. Furthermore, the analog
of (C5) for the expansion of Ŷ as a tensor product of operators
in the commutant goes through in the same way as for Haar,
leading to

Ŷ =
∑

To,Ti∈(Q (p)

WgD(To, Ti )R̂(To) ⊗ R̂(Ti ), (D3)

where WgD(To, Ti ) are generalized Weingarten functions (see
also Ref. [80] for explicit expressions in the case of Q = 4
replicas).

1. Key properties of the Weingarten functions WgD(To, Ti )
for the Clifford case

We proceed in complete analogy with the Haar case, dis-
cussed in Sec. C 1. For any element of the commutant T ∈
(Q(p), we have

tr(2)Ŷ (I⊗Q ⊗ R̂(T )) = R̂(T )

=
∑

To,Ti∈(Q (p)

WgD(To, Ti )R̂(To)tr[R̂†(Ti )R̂(T )]

=
∑

To,Ti∈(Q (p)

WgD(To, Ti )R̂(To)DQ−|Ti,T |, (D4)

where in the first line we used the fact that T belongs to the
commutant. We thus have

∑

Ti∈(Q (p)

WgD(To, Ti )DQ−|Ti,T | = δTo,T . (D5)
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The last equation says that the Weingarten function is the left-
inverse of DQ−|Ti,T | (both viewed as a matrix). Similarly, by
acting in the first line of (D4) with R̂(T ) on the first tensor
factor and performing the trace over the first, we get a similar
equation for the right inverse.

2. Connection with stabilizer states—consequences of (B5)

To this end, we pick an orthonormal basis in (Cp)n so
that one element of this basis is the state |0〉⊗n ∈ Hn = (Cp)n

where 0 denotes the number zero in the finite number field
Fp; this is the state that is described in items (6) and (7) of
Appendix B. Having done so, we use this orthonormal basis
in (D1) and set jk = j0

k , j̄k = j̄0
k for k = 1, . . . , Q, where

j0
1 = · · · = j0

Q = j̄0
1 = · · · = j̄0

Q = 0⊗n. (In better notation,
| j0

1〉 = · · · = | j0
Q〉 = |0〉⊗n, etc.)

If we define the projection operator onto this state in
(Hin )⊗Q

P̂0 := [|0〉⊗n]⊗Q[〈0|⊗n]⊗Q,

we conclude that

tr(2)[Ŷ (I⊗Q ⊗ P̂0)]

= 1
NCliff

∑

V̂ ∈Cliff (n,p)

[V̂ (|0〉⊗n)(〈0|⊗n)V̂ †]⊗Q

= const ×
∑

T ∈(Q (p)

R̂(T ),

where we used (B5).
On the other hand, using the form (D3) for Ŷ , the same

expression is equal to

=
∑

To,Ti∈(Q (p)

WgD(To, Ti )R̂(To)(tr[R̂(Ti ) P̂0]).

Owing to Eq. (4.10) of Ref. [65], the trace in the above equa-
tion is unity independent of the element Ti of the commutant
(Q(p),

(tr[R̂(Ti )P̂0]) = 1 for all Ti ∈ (Q(p).

We therefore conclude that

const ×
∑

T ∈(Q (p)

R̂(T )

=
∑

To∈(Q (p)




∑

Ti∈(Q (p)

WgD(To, Ti )



R̂(To),

which means that the expression in parentheses is a constant,
independent of To,

∑

Ti∈(Q (p)

WgD(To, Ti ) = const for all To ∈ (Q(p). (D6)

This is the analog of (C10) of the Haar case, where it is tied to
the group structure of the commutant.

3. Generalization to other groups

Note that the generalized Weingarten formulas of the pre-
vious section do not rely on any specific property of the

commutant of the Clifford group. As such, most of our re-
sults can be generalized to derive statistical mechanics models
for RTNs and monitored quantum circuits involving aver-
ages over other subgroups of the unitary group, expressed
solely in terms of the commutant of such subgroups. Once
this algebraic object, the commutant, is known, the link and
Weingarten weights derived for the Clifford group carry over
without any change, with the spins Ti now belonging to this
new commutant. Previously, Weingarten functions had been
derived for unitary [67], orthogonal and symplectic groups
[81,82]—See Ref. [83] for a recent review. The formulas in
the present Appendix are completely general, and extend the
notion of the Weingarten function to all situations for which
the commutant is known.

APPENDIX E: METRIC ON THE COMMUTANT
OF THE CLIFFORD GROUP

The Boltzmann weights of the Clifford stat mech model
rely on the existence of a metric on the commutant: for any
two elements Ta and Tb of the commutant (Q(p), there exists
a metric which arises from the trace:

W (Ta, Tb) := tr[R̂†(Ta)R̂(Tb)] = (pN )Q−|Ta,Tb|, (E1)

for any Ta, Tb ∈ (Q(p), where R̂(T ) is defined in (25). Our
main results rely only on the standard properties satisfied by
this metric: |Ta, Tb| ! 0, |Ta, Tb| = |Tb, Ta|, and |Ta, Tb| = 0
if and only if Ta = Tb. In this Appendix, we provide addi-
tional details on the definition of this metric following closely
Ref. [65].

Consider the double coset representation of the commutant
defined in Eq. (A4). The simplest elements are the orthogo-
nal group elements themselves, T1 = O1, T2 = O2 ∈ OQ(p),
which, as noted in the line below (A5), correspond to the first
element of the disjoint union of double cosets in (A4): When
applied to those, r̂ is a representation of the group OQ(p) [see
our Eq. (A1)], and thus we have Eq. (A10). When O1 = O2,
we have 〈+µ|(Ot

1O2)|+µ〉 = 1 for all +µ, thus e− ln(p) |O1,O2| = 1
and |O1, O2| = 0. When O1 6= O2, we have 〈+µ|(Ot

1O2)|+µ〉 <
1 for at least some +µ, thus e− ln(p) |O1,O2| < 1 and |O1, O2| > 0.

Now consider two general elements T1, T2 of the com-
mutant (Q(p) (which may or may not be elements of the
same double coset). According to Proposition 4.17, as well
as Eq. (4.18) and Lemma 4.18 of Ref. [65], we can transform
those by right and left multiplication with group elements in
OQ(p) to elements T ′

1 and T ′
1,

Tj → T ′
j ≡ OjTjO′

j, with Oj, O′
j ∈ OQ(p) ( j = 1, 2),

so that the right and left defect subspaces T ′
j,LD and T ′

j,RD of
each T ′

j become equal, N ′
j ≡ T ′

j,LD = T ′
j,RD, i.e.,

Oj Tj,LD = O′t
j Tj,RD ( j = 1, 2). (E2)

Since the last equality in Eq. (E2) above can be achieved by
choosing38 for example O1 = O2 = 1, let us make that choice
so that

T ′
1 = T1 O′

1, T ′
2 = T2 O′

2. (E3)

38Letting Oj → 1, we have O′t
j → Oj

t O′t
j = (O′

j O j )t .
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Then, using Eq. (A3) we get for the trace in (A10)

tr([r̂(T1)]†r̂(T2)) = tr(r̂(O′
1)[r̂(T ′

1)]†r̂(T ′
2)r̂(O′

2
t ))

= tr(r̂(O′
2

t O′
1)[r̂(T ′

1)]†r̂(T ′
2)). (E4)

Now, owing to (E2) above and Theorem 4.24 of Ref. [65],
the operators r̂(T ′

j ) are both proportional to Calderbank-
Shor-Steane (CSS) projectors,

r̂
(
T ′

j
)

= pdimN ′
j PCSS(N ′

j ).

Note in particular their Hermiticity, especially [r̂(T ′
1)]† =

r̂(T ′
1). Next, Eq. (4.24) of Ref. [65] proves the result

[r̂(T ′
1)]†r̂(T ′

2) = r̂(T ′
1)r̂(T ′

2) = pdim(N ′
1∩N ′

2 )r̂(T ′
1T ′

2),
(E5)

which (at the same time) defines the meaning of the product of
T ′

1 and T ′
2 on the right-hand side (the “semigroup property”).

Using these results, the trace in Eq. (E4) above then leads
to the following expression for the metric e− ln(p)|T1,T2|:

e− ln(p)[Q−dim(N ′
1∩N ′

2 )]tr[r̂(O′
2

t O′
1)r̂(T ′

1T ′
2)]. (E6)

Note that in the special case where T1 = T ′
1 and T2 = T ′

2, i.e.,
when both are already proportional to (CSS) projectors, thus
when both already have equal right and left defect subspaces,
we also have O′

j = 1 for j = 1, 2 (see, e.g., Eq. (E3)]. In this
case, using Lemma 4.25 of Ref. [65], we find39

|T1, T2| = [Q − dim(N1 ∩ N2) − dim(N⊥
1 ∩ N⊥

2 )],

and we have |T1, T2| ! 0 since (N1 ∩ N2)⊥ ⊇ N⊥
1 + N⊥

2 ⊇
N⊥

1 ∩ N⊥
2 .

In the general case, Eq. (E6) above, where r̂(O′t
2O′

1) is not
the identity, a closed form expression is presently not known,
even though an explicit elementary expression for the metric
is given by (A14) and (A10), as already mentioned below
(A14). Finally, we note that since the permutation group SQ is
a subgroup40 of OQ(p), it follows from its definition that the
metric between two permutations is the same as that familiar
from the Haar circuits and expressible in terms of the cycle-
counting function, a property used in the main text.

APPENDIX F: SOME DETAILS
ON MULTIFRACTAL SCALING

In this Appendix we present more details on the multi-
fractal scaling of the purity, discussed in Sec. IV C. This is
a special case of the general discussion of the scaling of a
correlation function (at disorder dominated critical points) in
disordered systems, as discussed in Refs. [49,72,73].

We start from the scaling of all moments of the purity at
the transition, Eq. (60),

[
G(x1,x2 )

]k ∼ Bk

R2Xk
12

, (F1)

39In particular, using the unnumbered equation below Eq. (4.26) of
Ref. [65].

40Recall, e.g., (24).

where the purity in a fixed realization of circuit disorder is
a random variable, viewed as a two-point correlation function
G(x1, x2) = tr(ρ̂A,m)2 associated with the boundary-condition
changing (bcc) operator determining entanglement properties
[25,56]. Here R12 is the chord distance:

R12 := L
π

sin
(π

L
|x1 − x2|

)
= L

π
sin

(π

L
|A|

)
.

Since upon recalling (59), ln G(x1, x2) = −S(2)
A , the cumulant

expansion of the left-hand side of (F1) reads

[
G(x1,x2 )

]k = exp
{
−k S(2)

A + k2

2!

(
S(2)

A − S(2)
A

)2

−k3

3!
κ3

[
S(2)

A

]
+ · · ·

}
, (F2)

where κ3[S(2)
A ] denotes the third cumulant of the random vari-

able S(2)
A . We compare this with the right-hand side of (F1),

using the Taylor expansion (64) of the exponents Xk in powers
of k,

Xk = k x(1) + k2

2!
x(2) + k3

3!
x(3) + · · · , (F3)

yielding

Bk exp {−2Xk ln R12}

= Bk exp
{
−

[
k2x(1) + k2

2!
2x(2) + k3

3!
2x(3) + · · ·

]
ln R12

}
.

(F4)

Comparison of (F2) with (F4) shows that all cumulants grow41

proportional to ln R12, the constants of proportionality being
universal and equal to (−1)k−1 times twice the expansion
coefficients x(k) appearing the Taylor expansion (F3),

S(2)
A ∼ 2x(1) ln R12, (F5)

(
S(2)

A − S(2)
A

)2 ∼ −2x(2) ln R12, (F6)

κ3
[
S(2)

A

]
∼ 2x(3) ln R12,

... . (F7)

These are Eqs. (61)–(63) of the main text.

41The analogous expansion of Bk = exp{k b1 + (k2/2!) b2 + · · · }
shows that a nonuniversal constant offset (−1)k bk appears in the kth
cumulant κk[S(2)

A ] of the entanglement entropy S(2)
A , but these offsets

will of course just represent subleading contributions in the regime
of interest of large values of R12.
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