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Measurements allow efficient preparation of interesting quantum many-body states with long-
range entanglement, conditioned on additional transformations based on measurement outcomes.
Here, we demonstrate that the so-called conformal quantum critical points (CQCP) can be ob-
tained by performing general single-site measurements in an appropriate basis on the cluster states
in d > 2. The equal-time correlators of the said states are described by correlation functions of
certain d-dimensional classical model at finite temperatures, and feature spatial conformal invari-
ance. This establishes an exact correspondence between the measurement-prepared critical states
and conformal field theories of a range of critical spin models, including familiar Ising models and
gauge theories. Furthermore, by mapping the long-range entanglement structure of measured quan-
tum states into the correlations of the corresponding thermal spin model, we rigorously establish
the stability condition of the long-range entanglement in the measurement-prepared quantum states
deviating from the ideal setting. Most importantly, we describe protocols to decode the resulting
quantum phases and transitions without post-selection, thus transferring the exponential measure-
ment complexity to a polynomial classical computation. Therefore, our findings suggest a novel
mechanism in which a quantum critical wavefunction emerges, providing new practical ways to
study quantum phases and conformal quantum critical points.

I. INTRODUCTION

Recently, the perplexing and exciting effects of mea-
surements on the evolution of quantum many-body states
are attracting growing interest from both the condensed
matter and quantum information communities. There
are two branches of studies. In the first branch, one
focuses on how quantum entanglement propagates and
builds up under random measurements and unitary dy-
namics. Initiated by the discovery of the transition in the
entanglement structure under random measurements and
circuit evolution [1-3], there has been extensive work in
this direction [4-17]. In the second branch, one focuses on
systematic measurements in a static situation, preparing
quantum states by performing measurements on a sub-
system of a so-called resource state, which is related to
the measurement-based quantum computation (MBQC).
Remarkably, various families of quantum states with
long range entanglement, such as Greenberger-Horne-
Zeilinger (GHZ) state or those with certain topological
and fracton orders among others [18-28] can be prepared
through measurements on cluster states.

Practically, many of the measurement-based state
preparation require a precise control of the measured op-
erators. In addition, classical data processing and quan-
tum feedback based on the measurement outcomes are
necessary to transform the resulting quantum state into
the desired one. For instance, to generate the GHZ and
toric code states from the cluster states in 1d and 2d,
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FIG. 1. Measurement-based quantum state preparation with
the measurement angle 6 away from the X-basis. The clus-
ter entangler is a product of controlled-Z gates between all
neighboring qubits in a given geometry. Here, we measure the
operator Oy = X cos 0+ Z sin 6 on a subset of sites, whose out-
come is denoted by s;. Our state preparation is equivalent to
the imaginary time evolution of a specific product state in
X-basis by some Hamiltonian H for 3 = tanh™!(cos6). With
this mapping, at 6 = 0 (8 — o0), it is straightforward that
we will prepare the ground state of H. At intermediate 38
(0 > 0), we may find an interesting critical point.

single-spin measurements of the Pauli X operators on the
sites are needed in the paradigmatic example [18-21], fol-
lowed by a series of spin-flips based on the measurement
outcomes. However, to adopt the measurement scheme
to prepare these quantum states in experiments, it is im-
portant to understand whether measurements deviating
from the X-axis can still produce a quantum state with
the same entanglement properties, since noise in control-
ling the measurement angle could be present in experi-
ments. Thereby motivated, in this work, we explore the
effects of general single-site measurements on the cluster
states, namely measurements of single spins along an ar-
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FIG. 2.

Schematic diagram to prepare and decode a 2D GHZ state by measurements, where basis rotation by 6 is applied for

the edges. The diagram divides in two parts: quantum experiment and classical data processing. In the first part, a quantum
experiment is performed to obtain measurement outcomes on edges (X-basis) and vertices (Z-basis) denoted by (s,o). In the
second part, a classical data processing is performed to decode a given experimental outcome (s,o). Here, the set of gauge
transformations T' = {t"} is generated based on the decoder denoted by P3(3]) (See Sec.V for details). Without classical
data processing of o based on the outcomes on edges s, the GHZ-ness of the quantum state on vertices (after measuring edges)

is not identifiable.

bitrary direction, which will shed light on the stability of
many measurement-based state preparation schemes.

With the general single-qubit measurements, a natu-
ral and perhaps more exciting question to ask is whether
we can tune the resulting state through a phase transi-
tion, i.e. access certain quantum critical states, by tuning
the measurement directions. The primary result of this
paper is that a family of quantum critical states at so-
called conformal quantum critical points (CQCP) [29, 30]
can be realized by measuring a subset of spins on a
cluster state in a direction rotated away from the X-
axis by a special angle 6.. We prove that the series
of quantum states labeled by the measurement angle 6
in d space dimension has wavefunction amplitudes given
by the Boltzmann weights of the corresponding classi-
cal spin model in d-dimension at inverse temperature
B(6) = tanh™*(cosf). In d > 2, certain quantum states
can undergo a phase transition at a critical measurement
angle 6.. At criticality, the spatial correlation functions
of the state exhibit conformal invariance [29].

Strikingly, we show that such a critical quantum state
can be obtained even without post-selection, by employ-
ing a classical decoding protocol. This contrasts to two
recent progresses: (i) if the single-qubit measurement is
performed on a subsystem of a generic highly entangled
quantum state, the remaining pure wavefunction exhibits
no feature (random), characterized by completely uni-
form distribution in the Hilbert space [31, 32]. (i¢) for the
random circuit dynamics with measurements, the result-
ing quantum state becomes maximally mixed state after
averaging over measurement outcomes, although post-
selection can reveal interesting features [1-16]. On the
other hand, although our setup (Fig.1) involves exten-
sive number of measurements, we do not require post-

selection to identify nontrivial correlation structure in the
resulting states. This facilitates the experimental prepa-
ration and detection without exponential scaling of the
measurement complexity. Thus, our discovery provides a
complementary viewpoint in essential ways to the criti-
cal steady states in monitored quantum dynamics either
with both unitary evolution and measurements or with
measurements only. The preparation of critical states in
our study can be thought of as a shallow depth unitary
circuit followed by single-site measurements as in Fig. 1.

The rest of the paper is organized as follows.

In Sec. I, we provide a detailed analysis of the 1D clus-
ter state under measurements in a rotated basis. By cal-
culating correlation functions of the post-measurement
state, we provide a rigorous understanding of the stabil-
ity of long-range entanglement there. Furthermore, we
establish that the post-measurement wavefunction am-
plitude is proportional to the Boltzmann weight of a clas-
sical 1D Ising model at finite temperature. More gener-
ally, the post-measurement state can be expressed as the
product state in X-basis, further evolved by a certain
quantum Hamiltonian in imaginary time. With this ob-
servation, we find a parent Hamiltonian for the measured
state, parametrized by the measurement angle 6.

In Sec. III, we generalize our idea and construction to
the 2D cluster state defined on vertices and edges of a
square lattice. By measuring edges in a rotated basis,
we obtain the classical 2D Ising model as the classical
Hamiltonian describing the post-measurement wavefunc-
tion amplitudes, while by measuring vertices, we obtain
the 2D Ising gauge theory as the corresponding classical
model. Interestingly, we find that the long-range entan-
glement structure of the GHZ state in the case of measur-
ing edges is robust against a finite angle deviation from



the X-axes. The transition of the post-measurement
state from a symmetry breaking phase to a disordered
phase is found at a finite measurement angle 6. with as-
sociated critical behavior. On the other hand, the long-
range entanglement structure of the toric code ground
state is unstable as soon as we deviate from the X-axes.
We show that the stability of these long-range entangle-
ment structures can be understood from the phase tran-
sitions of the corresponding classical models.

In Sec.IV, we turn to three dimensions, where we
construct two different cluster states, namely symme-
try protected topological (SPT) phases associated with
Zéo) X ZéQ) and Zgl) X Zél) symmetries. We show that
the post-measurement state of the first case corresponds
to the ordinary 3D Ising model and the 3D 2-form Ising
model! when measured on the vertices and edges respec-
tively, while the state of the second case corresponds to
the 3D Ising gauge theory. By mapping to the classical
partition functions, we show that preparation of the 3D
toric code topological order with 1-form symmetry break-
ing is stable under measurements away from the X-axes,
while that of the 3D toric code with 2-form symmetry
breaking is unstable.

In Sec. V, we discuss the critical issue of post-selection,
focusing on the 2D cluster state measured on edges as
a representative example. We show that measurement
outcomes are under a correlated probability distribu-
tion, which is a gauge-symmetrized version of the un-
correlated random bond Ising model (RBIM). Based on
this, we establish the correspondence between the en-
semble of quantum states prepared by measurements and
the ensemble of the ferromagnetic RBIM along the spe-
cial manifold called Nishimori line [33, 34]. Further-
more, although the density matrix after measurement
on the edges has no order on vertices if edge outcomes
are averaged over, we show that there is a classical de-
coding protocol which allows us to efficiently obtain a
long-range correlation (ferromagnetic ordering) in the
vertices for every measurement outcome on the edges
as illustrated in Fig.2. In other words, we show that
the resulting quantum state exhibits a hidden ordering
that can be efficiently revealed through the proposed de-
coding protocol. Thereby, we establish the stability of
detectable long-range entanglement and correlations for
generic post-measurement cluster states away from the
X-basis, avoiding post selection. Based on the proposed
decoding protocol, we outline an experimental blueprint
to detect the long-range ordered phases and their tran-
sitions, without exponential overhead. We also briefly
discuss the generalization of our state-preparation setup,
where one is not confined to the Nishimori line.

In Sec. VI, we discuss the general idea of interactive

1 Ising model and Ising gauge theory can be thought of as a model
with O-form and 1-form Zg symmetries. A model where six spins
at faces interact has a 2-form Zg symmetry, which we call 2-form
Ising model.

(a) Preparation of GHZ state

Symmetric state

D=1
: unstable GHZ state except at 8 =0
L 1
L -
B 2
SSB state Symmetric
D>2 :
stable GHZ state for 8 < 6, : state
I | -
=0 Critical Ising 0=—
model at D-dim 2
(b) Preparation of Topological Orders (T.0.)
D=2 Symmetric state
- unstable T.0. except at § =0
L '
L -
=0 0=—
2
D>3 SSB state Symmetric
stable T.O. state
I | -
=0 Critical Ising 0= 5

gauge theory at D-dim

FIG. 3. Schematic phase diagrams for the post-measurement
state with varying measurement angle § away from the X-
basis with post-selections for (a) GHZ state and (b) topolog-
ical order (T.O.) preparations at D spatial dimensions. The
red dotted lines represent critical points. For the preparation
of topological orders in D = 3, we consider a cluster state at
Zél) X Zél) SPT phase. We note that preparing 3D toric code
from Z;O) X Zf) SPT is unstable if 6 > 0. The presence of
0-form or 1-form symmetry in the unmeasured lattice trans-
lates into the global spin-flip or local gauge symmetries in
the corresponding classical model. Without post-selections,
the stable regions get smaller with random bond universality
classes for critical theories.

quantum phases. Furthermore, we address the issue of
post-selection of other examples, demonstrating the pres-
ence of long-range entanglement structures which can be
classically decoded in other measurement-prepared quan-
tum states. In particular, these examples correspond to
the random bond Ising model or random plaquette Ising
gauge theory along the Nishimori line [33-35], a special
manifold in the parameter space of these random inter-
action models.

In Sec. VII, we provide more examples of measuring
cluster states with subsystem symmetries and fracton
physics. In Sec. VIII, we conclude with a discussion on
conformal quantum critical states and outlook.

II. WARM-UP: MEASUREMENTS ON 1D
CLUSTER STATES

As a warm-up, we start our discussion from measure-
ments on 1D cluster states. Consider a chain of qubits



which are in a 1D cluster state [¢) stabilized by the
following Hamiltonian: HLP =~ = =Y o Zn-1XnZnt1.
The cluster state has interesting properties upon mea-
surements, which can be understood from its nature as
a decorated domain wall SPT [36]. The Hamiltonian
has G = Zy X Zy symmetry where g1 = [],, Xon+1
and go = Hn Xy, are the two generators. Note that
Zon—1Z2n+1 measures the ¢g; domain wall, while X5,
measures the go charge. Therefore, the ground state can
be understood as a superposition of all possible g; do-
main wall configurations where a go charge is attached
to a g1 domain wall. This special structure of the wave-
function indicates that measuring the Zs charges on the
even sites will specify the domain wall structure of the g;
symmetry. If the measurement outcomes are X,, = 1,
the resulting wavefunction will have no g; domain walls.
Since the measurements on the even sites commute with
the Za (g1) symmetry defined on the odd sites, this mea-
surement generates a GHZ state on the odd sites, i.e.
[t ...y + |4 ...), a symmetric superposition of sponta-
neously symmetry-breaking (SSB) states of the g; sym-
metry. On the other hand, if we measure qubits on the
even sites in the Z-basis and get all +1 outcomes, this
proliferates the domain walls of the g; symmetry result-
ing in a disordered wavefunction on the odd sites, namely
|+ 4+ ...).

A. General single-site measurements

Seeing that measuring the subset of qubits along the
X-direction and Z-direction give us states with com-
pletely different characteristics, one may wonder what
would happen if a general measurement is conducted
along the axis rotated away from X-axis by an angle 6.
Will the resulting state have the same universal proper-
ties as the GHZ state for small 87 Is there a transition
from the GHZ state to the paramagnetic state at a certain
angle? To answer these questions, let us consider the fol-
lowing projective measurement operator of the n*" qubit
P,, along the spin axis # = (cos @, sin § sin ¢, sin 6 cos ¢),

1

n Sn

(1)
where s,, = £1 is the measurement outcome. For now, we
assume ¢ = 0, which would not change the physics of pri-
mary interest. Let Py, y = [],, Ps,, denote the projec-
tion operator for measurements outcomes {s} on all the
even sites. For simplicity, we denote it by Ps. To char-
acterize the resulting state Psly)) = |Pstp), we will cal-
culate correlation functions, in particular, (Z1Zan41)pqy-
To that end, the following lemma is useful throughout
the work:

Lemma Consider a d-dimensional stabilizer SPT state
protected by symmetry groups ng) x ng_"_l), which
have a mixed anomaly. Here the superscripts denote n
and (d—n—1) form symmetries, while G; and G2 act on

qubits on two different sublattices. Then, the expectation
value of an operator defined on a given sublattice is non-
vanishing only if the operator is a symmetry action on
that sublattice.

The lemma can be understood quite intuitively. As
the ground state is stabilized by local stabilizer terms,
if a certain operator does not commute with all the sta-
bilizers, its expectation value should vanish. However,
if it commutes with all the stabilizers, it simply means
that the operator is nothing but a symmetry of the given
stabilizer Hamiltonian. For example, for the 1D cluster
state |¢), for any operator O defined on the even sublat-
tice, (1| O |¢) vanish unless O is the identity or [[,, X2,
(See Appendix. A).

With this lemma, we can show that the correlation
function in the measured state with outcomes {sa,} has
the following form

<Ps'¢}| Zl Z2n+1 ‘,Psw>
(Pst|Ps))

[T, s2m(c0s0)" + T _,. 41 s2m(cos )|

{1 +T1Y_, s9m(cos H)N}

<Z1Z2n+1>ps¢ -

N—o0

—>< 52m>e—"/€, with £ = [Incos6|*. (2)
m=1

Here N (even) is the number of unmeasured sites and
we have assumed periodic boundary conditions. In
this derivation, we employed both the lemma and the
equality; Z1 Zon11|t) =[], Xom|¥). The correlation
length only depends on 6 characterizing the deviation of
the measurement angle from the Z-axis. This means that
the long-range correlation of the GHZ state disappears
at any finite 0 in the thermodynamic limit. Practically,
one would get an approximate GHZ state for system size
smaller than the length scale £(6).

B. Connection to Classical Partition Function

A keen reader may have noticed that Eq.(2) closely
resembles the low temperature series expansion for the
1D classical Ising model. Based on this observation,
one can show that the norm of the post-measurement
wavefunction is proportional to the partition function
of a classical Ising model at the inverse temperature
B = tanh™'(cos @), where the actual amplitude can have
an additional complex phase factor (See Appendix. A 2a
for more details):

Pat) = Y@ le) @ M), [w(C)f o et

{c}
(3)

where C = {0} denotes the spin configuration (in the
computational basis) on the odd sites, H[{s}]{c}) =



— Zn S9n02n—102n+1 1S the Ising Hamiltonian with bond
signs determined by the measurement outcomes {sa,},
|M) is the measured state on the even sites, and Z =
> e PH© s the thermal partition function of the cor-
responding spin model H[{s}]. Therefore, the stability
of the long-range entanglement of the post-measurement
1D cluster state can be understood in terms of the 1D
classical Ising model at the inverse temperature 5(6). In
1D, one can always make a variable change on the spins
(0’1‘ — t;o; and Sij — titjsij with ti,tj = :|:1), which
we refer to as a gauge transformation in the rest of the
paper, to make the 1D Ising model ferromagnetic, ex-
cept possibly for the last bond if H 182m = —1. It is

well-known that the 1D Ising model is dlsordered at any
finite T' > 0. Therefore, we conclude that the long-range
entanglement is unstable at # # 0, which is the same
conclusion as the one made from the explicit calculation
above.

C. The post-measurement wavefunction

In this section, we directly derive the wavefunction af-
ter measurements from the decorated domain-wall con-
struction [36]. The result shows an intriguing structure
for the wavefunction on the unmeasured odd sites:

1 55
Pst)oqa = \/77)6 2H[®f¥:1 | Xony1 = 52n32n+2>:|
e~ 2D o}
- 2

H[s] = - Z SonZon—1Zan+1, tanh 3 =cosf (4)

where Zy = (2cosh 8)V¢ and N, is the number of mea-
sured qubits (domain walls). This is the imaginary time
evolution of the product state ®N_; | Xo,11 = Son52n42)
by the Hamiltonian H. This form of the wavefunction
immediately implies that in the limit 3 — oo as § — 0,
the system should relax into the ground state of H.

Let us describe the derivation. The pre-measurement
cluster state wavefunction is written as the equal weight
superposition of all domain wall configurations with
charges attached accordingly:

where {da,, = £1}, and ds,, = —1 denotes a domain wall
between sites 2m — 1 and 2m + 1. Here the subscript
ddw stands for the state that is a decorated domain wall
basis, where domains (charges) are defined on odd (even)
sites. The summation is over 21 configurations since
with periodic boundary conditions the domain walls are

under the constraint H n—1 d2n = 1. Here,

Hd} aaw = \{a{d}}>odd ® I{d}>even

{o(a}) paq = l > el 1)Zzn =€ H dzm>]

E==1
Hd}) even = EN-1| Xan = dan) (6)

In this definition, the state labeled by |{d2n})4q4. is the
cat state of two different spin configurations giving the
same domain-wall configuration. For example, the state
with no domain wall, namely [{d2, = 1}) 4> Would be
the GHZ state on odd sites, and accordingly, all |+) states
on even sites:

)+l ] e [PY] @)

5
V2
With an explicit representation in hand for |¢), we now
want to obtain the amplitude of the post measurement
wavefunction, Ps [¢), which can be written as

Psv) = D Clda) [{o@}) @ M) (8)

{d2n}
where now |M) = ®@)_, | M, ) stands for the measured
component on even sites. To obtain C'({d}), we first de-

compose the kets |+) = [1,+1]7/v/2 into the measure-
ment basis:

[+) = ax [My) +bs [M_), 9)

1 (sm(e) + 1) (10)
2(1 £ sing) \ cos(f)
satisfying Op| My ) = +|My) with measurement operator
Op = X cos O+ Z sin 6 (assuming ¢ = 0). The coefficients
follow from ayx = (M4 |+£) and by = (M_|+).
Then, note that for a measurement outcome {sa,, }, the
projection is defined as

738 = ®g:l |M52n> <M52n‘ . (11)

with

(M) =

The coefficient can then be obtained by
C({d }) _ <M| ®nN:I |d2n> _ ngl <M52n|d2n>
2t = VoN-1 - VoN—1
where (see Appendix. B)

1+ s9,do, cos
<M82n|d2n> = <P2n\/( 2 22 )

= pane7 e [\ [Acosh . (13)

B

, (12)

with g, = (—1)(t—s2n)(1=d2n)/4 —
dan, = 02n—102n41, We have (at ¢ = 0)

Using

e% > S2nZan—1Z2n41 H Von
7172 JoN-T How}),
0
(14)

Path)oaa = D
{d}



where Z; = (2cosh 8)Y. The last factor of the above
wavefunction can be simplified as

{Zd; \/% ( ];[(02n7102n+1)51;82n)/2) ’{U{d}}>
= H<Z2n71Z2n+1)(1752")/2 [ &1 ) an1 ]
[ G

=N | Xon_1 = S2n—252n) (15)

Putting everything together, we finally obtain the
wavefunction in Eq. (4). This expression gives consistent
results for the norm (Psy)|Psp). For ¢ # 0, we can ob-
tain non-trivial complex phase factors as detailed in the
Appendix. B. Although these phase factors can affect the
expectation values when we measure correlations of Y or
X operators, they do not change any physics in the Z
correlations.

There are two solvable limits: § = 0 and 0 = 7/2. At
0 = 0, the result simply implies that unless so, = day,
the wavefunction component is zero. Therefore, the only
surviving component would be ’{O‘{S}}>, whose explicit
form is defined in Eq.(6). At 0 = 7/2, the wavefunc-
tion amplitudes become uniform with phase factors s,
depending on the measurement comes. For sg, = 1, it
gives |[+)®V, and for s, = (—1)", it gives |—)®". This
aligns with the expectation from the stabilizer correlation
ZQTLX2n+IZZTL+2|7/)> = |¢>

We remark that the derivation here is completely gen-
eral for any wavefunction constructed by a decorated
domain wall method. This is because decorated do-
main wall method completely specifies the relation be-
tween measured and unmeasured sites in a simple man-
ner. In a higher dimensional case, we can show that the
measurement-projected amplitude in Eq. (13) can be cal-
culated in terms of domain wall variable, which can be
converted into the operator action on unmeasured sites.
The expression for the product state to be time-evolved in
Eq. (15) can also be derived in a similar manner, where
the state in X-basis would be given by the product of
measurement outcomes neighboring an unmeasured site.

D. Parent Hamiltonian for the measured states

Interestingly, we find that the family of states |Ps1))
on the odd sites with post-selection s, = 1 is the ground
state of the following Hamiltonian H = )" H,:

H, =— [Xanl — cos? QZan?)XanlZanLl
+ cosO(Zon_ 32951 + Zzn—lzzn-s-l)] . (16)
We derive the Hamiltonian following the Witten conjuga-

tion method [37-39]. It is a simple procedure that later
allows us to generate the parent Hamiltonians for our

post-measurement states in various settings. The crucial
premise is that |Pst)) is given by the imaginary time evo-
lution of a certain product state Eq.(4) for the inverse
temperature 5 = £(0). This is to say, at 8 = 0, the
state is the ground state of ﬁo = — Zn SonS2n+1X2n+1,
and at 8 > 0, the state can be thought of as the evolu-
tion of the ground state under the non-unitary operator
MB — 6% >onS2nZan—1Z2n41 .

To proceed further, let us perform a Kramers-Wannier
duality, where we can write X5, 1 — X4 X/} and
Zon-1Z2n+1 — Zb,. The state becomes

Mjy = [[ ez
n

|\I/0>/ = |{XénX§”+2 = S2nS2n+2; fOI‘ all TL}>/ (17)

|Pi) oc M| W),

The Hamiltonian for |¥g)’ is
1
H(/) = Zn: 5 (1 - 52n32n+2XénXén+2)
= Z T ()T (n)

1
I'(n) = 3 (520 X5, — S2nt2X910) - (18)

where we intentionally write H{ in positive semi-definite
structure. Then it follows that one choice of the Hamil-
tonian for |Py)’ is

H =" H,=Y T, ()5 (n)
Iy(n) = ML (n) My~ (19)

As e7#% = cosh (1 — Z tanh 8) = cosh B(1 — Z cosf), up
to an overall constant prefactor of cosh 3(6),

T5(n) o (520 X5, — S2n42X5,42)
— 1 .cos Q(YQI’I’L - Y21n+2) (20)

Thus, H, reads

HrIL = 82n32n+2XénX§n+2 - COS2 GY’QITLYQ/n—&-Q
— €08 0(821, Z3,, + Sont2Z9y,40) +const.  (21)

As HJ is a positive semi-definite Hamiltonian that an-
nihilates |Pgvp), >, H) is a valid parent Hamiltonian
whose ground state is |Pst). Once we reverse the
Kramers-Wannier duality, we obtain

H, = —sonsantaXont1 +cos 022, 1 Xon11 29043
— COS 0(5277,Z2n7122n+1 + 32n+222n+1Z2n+3) (22)

For the measurement outcome s9, = 1 for all n, we ob-
tain the Hamiltonian Eq. (16). Furthermore, note that
applying X-gate (basis flip) to a set of sites is equivalent
to flipping {s} that are emanating from the set of sites.
In fact, if [ [ s2, = 1, we can always find a basis where the
model is entirely ferromagnetic. Even when [] s2,, = —1,
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FIG. 4. Adaptation from [39]. Schematic phase diagram
for the parent Hamiltonian of the d-dimensional cluster state
(defined on vertices and edges of the cubic lattice) measured
on vertices. In d = 1, Zgo) symmetry breaking simply cor-
responds to the ferromagnet, while in d > 1, Zéd_l) symme-
try breaking corresponds to a topological order. Red dotted
line is a trajectory that can be prepared by our measurement
scheme. Note that at § = 0, the ground state at the multicrit-
ical point coincides with the ground state at the fixed point
of Z§d71> SSB phase. In this phase, since Zédil) symmetry
defect is given by lines, the groundstate must be written as all
fluctuating configurations of Z = —1 loops in computational
basis. As a result, it already saturates the maximum area law
entanglement capacity, and if we can prepare the state, it has
to be located at the critical point with a special property.

we can find a basis where only a single bond is antiferro-
magnetic and the other bonds are ferromagnetic.

The spectrum of this Hamiltonian is known to be gap-
less at § = 0 [40], which is a multicritical point neigh-

boring the paramagnet, ferromagnet (Zéo) SSB), and

Zéo) x Z3 SPT (i.e., the cluster state) [41] as illustrated
in Fig.4. The gaplessness at § = 0 is easily seen from
Eq. (21), where the terms are nothing but the XY model
with perpendicular magnetic field [39] (which can be
written in terms of free fermions under a Jordan-Wigner
transformation). Although the Hamiltonian is gapless,
the ground state entanglement entropy does not diverge;
this can be directly inferred from the fact that the initial
1D cluster state is described by a matrix product state
(MPS) with bond dimension y = 2, and the measure-
ment projection cannot change the MPS structure. This
seemingly inconsistent behavior can be resolved by realiz-
ing that the criticality is not captured by a 2D conformal
field theory but by a critical theory of free fermions with
dynamic critical exponent z = 2 [42]. In fact, the ground
state trajectory of Eq. (16) is a paradigmatic example of
a 1D phase transition that can be expressed by a simple
MPS with bond dimension y = 2 [43].

III. 2D CLUSTER STATES

Now that we have a thorough understanding of the
post-measurement states in one dimension, we turn next
to two spatial dimensions, where higher form symme-
tries [44] become important. Consider the 2D cluster
state Hamiltonian where qubits reside at vertices and
edges of 2d square lattice as illustrated in Fig. 5(a):

Hz—Z(XvHZe> —Z<X6H2v>. (23)

v esv e vee

Bold symbols Z and X act on edges, and unbold sym-
bols Z and X act on vertices. Here, all terms in the
Hamiltonian commute with one another, and the ground-
state satisfies each term to be 1. This implies that
B, = Heep X. = 1 for any plaquette p. There are two
symmetries in this Hamiltonian:

Zéo) O-form: g = H Xy

Zél) 1-form: h, = H X, (24)

ecy

where «y is any closed loop along the bonds. Again, note
that the ground state of Eq.(23) has the decorated do-
main wall (defect) structure: the creation of a pair of
1-form charged objects by [].5, Z. is accompanied with
the creation of 0-form domain walls by X,; also, the cre-
ation of 1-form domain walls by X, is accompanied with
the creation of a pair of O-form charges by Z,Z,.

For the 2D cluster states, one can choose to measure
the spins either on the vertices or on the edges. The
two measurement schemes exhibit qualitatively different
physics as we will show below.

A. Measurements on vertices: Ising gauge theory

We apply the projective measurement in Eq. (1) on ev-
ery vertex spin. At § = 0 with all measurement out-
comes being 41, we would expect the resulting state
to satisfy the following constraint, A, = [],5, Z. = 1
and By, = [[.c, Xe = 1, giving rise to a topological or-
der of the 2D toric code model [45]. In this state, the
operator Cf* = Jlje,e Z; defined on the contractible
loop v+ = 0S perpendicular to the edges has the ex-
pectation value (C’i} = 1, which is a signature of the
spontaneously broken 1-form symmetry as Ci counts
the 1-form symmetry defects enclosed by the loop. In a
complementary point of view, we can embed the system
into the torus geometry, and consider a logical qubit op-
erator C’WZL for v+ being a non-contractible loop along
the cycle. Here, we can show that (C%) = 0. As
cX = Hee'y X, = 1 for any non-contractible loop -~y
due to the stabilizer structure and {C*,C?} = 0, the
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FIG. 5. Schematic visualization of (a) 2D and (b) 3D cluster
state models. In 2D, we have qubits on edges and vertices. In
3D, we have qubits on edges of the cubic lattice and its dual
lattice, where we have mixed anomaly between two 1-form
symmetries.

post-measurement state must have (C#) = 0. This im-
plies that the resulting quantum state is the symmetric
superposition of four different configurations under C#
operators. However, we can show that the correlation
function of two non-contractible loops separated by the
distance [ is constant, i.e., the state develops a long-range
order with a spontaneously broken 1-form symmetry.
We want to detect whether the topological order is
robust when the measurements are moved away from 6 =
0. To do so, we calculate the expectation value of C’gs
defined on the boundary of a surface S. Using the same
formalism, we can show that (See Appendix. A 2b)

(Pst] CFs |Pst))
(Pst|Pst))

where we employed both the lemma and the equality
[lecos Ze = 11,cg Xo- The area law of the loop expec-
tation value instead of the perimeter law, indicates that
1-form symmetry is intact in the thermodynamic limit.
Therefore, the |Ps1)) cannot be topologically ordered. A
complementary fact in support of this observation is that
the expectation value of [] ., X;, an operator that cre-
ates a pair of anyons on the two ends of a open string [,
is non-vanishing, namely

<HXl>7>sw H Zy >7> p

e€l veDl

(Cs)pow = ~ (cos6)'*! (25)

(sin6)? (26)

Non-vanishing expectation value for any open string op-
erator is the signature of the anyon condensation which
gives a trivial symmetric phase for 6 > 0. However, we
remark that even though the state is not the SSB of 1-
form symmetry, Eq. (25) gives a quantitative answer for
how far it exhibits the correlation structure that can be
approximated as being topologically ordered.

We observe that the above loop expectation value can
be mapped to the area-law correlation function in the 2D
classical Ising gauge theory at finite temperature, where
the 1-form symmetry exactly maps to the local gauge
symmetry. More precisely, the corresponding Ising gauge

theory is defined on the edges of the dual lattice, and
the local gauge transformation is defined as flipping the
spins on the edges emanating from the set of dual ver-
tices. Such a gauge transformation is equivalent to the
1-form symmetry action [[ X along the loop defined on
the boundary of the set of dual sites. Similar to the 1D
example in Eq. (4), the post-measurement wavefunction
can be expressed in the following form:

[Psth) o e_gg[@)nNzl |Xe = H 5v>}
veEe
ZSUHZ = ZSPHZQ, (27)
edv ecp

where the tilde subscript is for the dual lattice label. Ex-
panded in Z; basis in the dual lattice, the above expres-
sion gives rise to the wavefunction amplitude given by
the Boltzmann weight of the 2d Ising gauge theory (see
Appendix. A 2b). 2d Ising gauge theory is exactly solv-
able and known to enter a trivial phase with area law
loop expectation value at any finite temperature, which
aligns with Eq. (25).

We remark that in Eq. (27), |Pst) remains the same
if one replaces the imaginary time evolution e~##/2 by
e BHD since B, = Heep
terms in H and acts trivially on the state. Therefore, at
B — oo (0 — 0), we expect the projected wavefunction to
be the toric code ground state. Based on this observation,
we can find a series of parent Hamiltonian which stabi-
lizes the wavefunction in Eq. (27) parametrized by 3(6).
The parent Hamiltonian on the dual lattice reads [39]

X, commutes with all other

H = Hy + cos? 0Hgpr + 4 cos 0 Hyoric,

Hy=-Y [Hsﬁ}xé

é poe
Hspr = ZX I 2z
e’en(e)
Htoric = - Z Sp H Z (28)
EEp

Here 7(€) is the set of neighboring edges that are bound-
aries of two dual plaquettes sandwiching €. The deriva-
tion is a direct generalization of the procedure described
in Sec. I D.

This parent Hamiltonian is gapless at § = 0. Similar
to the 1D case, the gapless point is multicritical, neigh-
boring a Z, topological order, a Zél) x ZJ SPT, and a
trivial paramagnetic phase as illustrated in Fig.4. In-
terestingly, the ground state at € = 0 gapless point is
exactly the toric code ground state as our construction
demonstrates. However, for any 8 > 0, the Hamiltonian
enters the trivial confined phase. At the multicritical
point, the model has U(1) pivot symmetry [39] and the
low energy effective theory can be shown to be dual to a
dilute interacting Bose gas at zero density in 2d [46—48].
This critical theory is known to have exact dynamical



exponent z = 2 as the self energy correction from the bo-
son self-interaction vanishes at every order of perturba-
tion theory due to the absence of particles in the vacuum
state [48].

B. Measurements on edges: Ising model

Next, we apply the projective measurement in Eq. (1)
on every edge spin. At § = 0 with all measurement out-
comes s, = 1, we would expect the resulting state to
have Z,Z! = 1 for any edge e = (v,v’). Therefore,
the post-measurement state would be the GHZ state.
At 6 > 0, we can show that the two-point correlation
<ZiZj>7,S , 1s given by the two-point correlation function
of a classical 2D Ising model at temperature 5(6) (See
Appendix. A 2 c). Furthermore, the wavefunction on the
unmeasured sites is expressed as:

Po) e ¥ [, X, = ] so)]

H=-

If s¢ = 1 for all measurements, the physical proper-
ties of this wavefunction can be understood from the
2D classical ferromagnetic Ising model. Unlike the 1D
case, the 2D Ising model has a finite temperature or-
dering transition which implies that long-range entan-
glement is robust for # # 0 and that we can prepare a
quantum critical state at a specific measurement angle
. = cos~!tanh(B.). Since the 2D Ising model has an
exact self-duality, we obtain that the transition happens
when 8. = V2 — 1, i.e. 6, ~ 65°. Therefore, by mea-
suring the 2D cluster state, we can prepare the wave-
function which goes through the phase transition across
this measurement angle. In particular, the ordered state
will appear as the GHZ state of two SSB configurations,
which is long-range entangled and robust up to a finite 6
as illustrated in Fig. 3(a).

At 6 = 6., we have a quantum phase transition, where
the critical state has an area law entanglement since
the pre-measurement cluster state is parameterized by
2D tensor-network state, called projected entangled pair
states (PEPS), with bond dimension x = 2 [42]. As
its correlation functions in Z-basis are determined by
the critical 2D Ising model, the wavefunction has a spa-
tial conformal structure with power-law decaying corre-
lation functions. This turns out to be a specific example
of a conformal quantum critical point (CQCP)[29, 30].
For a CQCP with a known statistical weight, one can
always construct a parent Hamiltonian for the critical
state, which is the generalization of the RK Hamilto-
nian [49]. Such a parent (quantum) Hamiltonian will
have a dynamic critical exponent, z, to be equal to the
dynamic exponent for relaxational critical dynamics for
the corresponding classical statistical model. Thereby,
we can compute the dynamic critical exponent for a given
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FIG. 6. The coefficients of the parent Hamiltonian in Eq. (30)
as a function of measurement angle 6 € [0, 5]. The red dashed
line marks the position of #.. Coefficients are normalized in
such a way that the strength of the transverse field term ax
is 1 throughout the range.

CQCP Hamiltonian. For CQCPs with a U(1) symmetry,
the critical theory is analytically known to be a quantum
Lifschitz theory with a dynamic critical exponent z = 2.
However, the present model does not have any U(1) sym-
metry. Indeed, a numerical analysis reveals that its dy-
namic critical exponent is z & 2.2 [50, 51].

Similar to previous sections, we can obtain the par-
ent Hamiltonian for the post-measurement state using
the general method outlined in Sec. II. For measurement
outcomes s, = 1, H is given by

H:—aXZXi—a%HZZZiZj— o Z Z:7;

i i ((i3))

_a3-bodyZXiB a5bodyZX H Z; (30)

jen(i)

where B; = 37 (i) gk Z;Zy, and n(i) is the set of sites
neighboring the site . The coefficients are graphically
shown in Fig. 6. At the critical point 6., < o~ L1, while
the other coefficients as, a4, a5 are relatlvely small For
a comparison, the critical point of the 2d transverse field
Ising model is given by (52)rris ~ 1.5[52].

In the case without post selectlon the state after mea-
surements is still the ground state of a local Hamiltonian,
whose structure is similar to Eq. (30) but with the signs of
the coefficients depending on the measurement outcomes
(See Appendix. C1). With randomly signed interaction
coeflicients, one may wonder whether there still exists a
phase transition in this Hamiltonian as a function of 6.
If it exists, what is the nature of the transition? We will
address this in Sec. V.

IV. 3D CLUSTER STATES
A. 3D SPT with Zél) X Zé” symmetry

The generalization of the previous results into three
spatial dimensions is more diverse as there can be dif-
ferent types of cluster states. In 3D, we can consider a
new type of cluster state, illustrated in Fig.5(b), which



has a generalization of decorated domain wall (defect)
construction for two 1-form symmetries. In this model,
qubits are defined on the edges and faces of a cubic lat-
tice. Note that qubits on the faces live on the edges of the
dual cubic lattice. This particular 3D cluster stabilizer
Hamiltonian is written as the following:

Hspspr=—-> X [[2,-> X;[[2.  31)

fae f ecf

where f runs over all faces of the cubic lattice. Bolded
symbols act on faces, and unbolded symbols act on edges.
By multiplying stabilizers, we obtain that [],., X =1
for any cube ¢ and [],5, X, = 1 for any vertex v. Here,
generators of two 1-form symmetries are defined on two-
dimensional surfaces:

Zgl) 1-form: hgy = H Xy
feov

Zgl) 1-form: ggy = H X, (32)
eldV

where V' is a three-dimensional volume enclosed by cubic
faces, and V is an infinitesimally inflated version of V'
which intersects with edges emanating from V. There-
fore, AV is a set of faces, while OV is a set of edges.
Without loss of generality, if we measure all faces to be
X; = 1, then we obtain that the resulting state has
[leef Ze = 1 and [] .5, Xe = 1 for all f and v, which
gives the 3D toric code ground state.

Now, let us measure the qubits on the faces at an-
gle 6 (due to the dual nature of the system, we get
the same physics by measuring edges). In this case, the
post-measurement state in the Z-basis has its amplitudes
given by the Boltzmann weight of the 3d Ising gauge the-
ory (c.f. Eq.(3)). One can show that the 1-form symme-
try of the unmeasured model maps into the local gauge
symmetry in the 3d Ising gauge theory. With measure-
ment outcomes {sy}, the post-measurement state is ex-
pressed by

o) x e 5[ @I, X, =[] 51)]

foe

1=-Y s;[[ 2. (33)
7

ecf

Assume we shift H by the sum of local terms A, =
[1.5, Xe to convert it into HZD,.. Still, if we define

toric*
|Pst)) as above with this new Hamiltonian H3P, | the
state would be the same because A, commutes with H
and A, acts trivially on the initial state?. Therefore,
the above equation is nothing but an imaginary time

evolution by 3D toric code Hamiltonian H3D, . On the

2 This is because [Ie5,(ITf5e 57) = 1. In fact, for any 0, these Zo
gauge charge configurations remain frozen.
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other hand, note that H itself corresponds to the 3D
Ising gauge theory with a random interaction sign sf at
B = tanh™*(cos#). Since the 3D Ising gauge theory has
a finite temperature transition at B3P &3u8¢ = (.76, the
correspondence implies that the confinement transition
would happen at 0. ~ 50° with post-selection sy = 1.

For 6 < 6., the expectation of the Wilson loop oper-
ator Wr = [].cp Ze over a loop I' decays exponentially
with a perimeter law, which can be predicted based on
the correspondence to the 3d Ising gauge theory (See
Appendix. A 2f). As a result, the preparation of three-
dimensional deconfined phase is robust. For 6 > 6.,
(Wr) decays exponentially with an area law, which im-
plies that the phase belongs to the trivial confined phase.
At 6 = 6., the state becomes critical. Its dynamical crit-
ical exponent can be obtained from the dynamics of 3d
classical Ising model [51, 53], which can be calculated by
various methods. The parent Hamiltonian for the case
without post-selection is in Appendix. C 2.

In comparison, the transition between the same two
gapped phases is more commonly described by a 3d toric
code model in a single transverse field, where the trans-
verse field term generates flux loop excitations. In that
model, the direct transition between the two phases are
mapped to Wegner’s 4-dimensional lattice gauge theory
[54], and it is known to be of first order [55, 56].

B. 3D SPT with ng X Zg) symmetry

Note that one can also consider a different geometry
for a 3D cluster state, where qubits reside at vertices and
edges of a cubic lattice. This cluster state has a dec-
orated domain wall construction of a Z O-form and a
Z5 2-form symmetries. By measuring vertices in X-basis
with s, = 1, one can get the 3D toric code state. How-
ever, upon measuring vertices at angle 6, the resulting
topological order becomes unstable, which get mapped
into a 3D 2-form Ising model (See Appendix. A 2d). The
post-measurement wavefunction is given by

R D T

vee

At finite 0, the expectation value of Wilson surface
operator Myy = Heeav Z. that measures 2-form sym-
metry defects decays with the volume enclosed by the
surface,

<P31/J| Heeav Ze |Ps'¢)>
(Pst)|Psth)

For the state to be a topologically ordered, the above
quantity should decay at most exponentially with the sur-
face area. Therefore, there is no SSB of the 2-form sym-
metry nor long-range entanglement. In a complimentary
point of view, we can show that ([T.c, Xe)p_, ~ (sin6)?
(L is an open string), which indicates the anyon conden-
sation occurs for any 6 > 0.

~ (cos )V, (35)



In fact, 8 = 0 is again a multicriticality point with the
3D toric code state as the ground state. As one may guess
from its similarity to the 2D toric code preparation case,
this multi-critical point is captured by the Hamiltonian
with U(1) pivot symmetry generated by HZP. [39]:

toric

H = Hy + cos? @Hgpr + 6 cos 0 HZD, | (36)
whose detailed structure is illustrated in Appendix. C 3.
Similar to the 1D and 2D examples, the state has par-
ent Hamiltonian which is the interpolation of disordered,
Zgz) x 7] SPT, and topologically ordered states as illus-
trated in Fig. 4.

On the other hand, if we measure edges of this model,
we obtain the wavefunction with amplitude given by the
3D Ising model (See Appendix. A 2e). In this case, the
long-range entanglement, i.e., GHZ-ness of the state, is
robust as long as 6 < 6. ~ 78° if we post-select on s, = 1.

V. POST SELECTION ISSUES

In the previous sections, we primarily discussed the
properties of the post-measurement wavefunctions as-
suming post-selection on the measurement outcome s; =
1. However, this is highly restrictive since every time
we run the experiment we will likely get a different
measurement outcome. Indeed, the probability of get-
ting the same measurement outcome decreases exponen-
tially with the system size, so that correlations of the
post-measurement wavefunction cannot be experimen-
tally verified in a reasonable time, unless the system size
is small.

In general, the measurement procedure generates an
ensemble of quantum states with different measurement
outcomes s, whose structure is given by the mixed state
density matrix in the Kraus representation?:

7’s¢ s
1 o = S PP = 3P e
(37)

where Ps(s) = (Pst|Pst) is the probability for the mea-
surement outcome to be s = {s}. Without any post
selection, one should consider the mixed state density
matrix pg, instead of pure states |Psi). As we re-
peat the experiment, we will prepare a series of states
{|Ps, ), |Psy¥) , ...}, where the unmeasured degrees of
freedom on each state can be measured only once. Then,
one might well ask: Is it possible to extract any non-
trivial information about the general properties of post-
measurement wavefunctions? In the following, we will
demonstrate that this is possible, provided one classically
“decodes”, using the measurement results {si, sa, ..}

35 Ps =1, P2 =Ps, and PsPy = 84 o Ps.
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A. Probability distribution: measurement
outcomes

To demonstrate the simplest yet interesting case,
throughout this section, we consider measuring the
qubits on the edges of the 2D cluster state where we
have N vertices, see Sec. Il B. The probability distribu-
tion of the measurement outcome s directly follows from

Eq. (4):

Py(s) = (Pet|Pat)) = 2NZ D €fEn T (38)

o==+1

where Zy = (2cosh )2V since there are N vertices and
2N edges. Here, the sites are labelled by 7,5 and s;;
is the measurement outcome on the edge interconnecting
the two nearest-neighbor sites. Using this probability dis-
tribution, one can show that the measurement outcomes
satisfy the following correlations:

Bl L sl =2 P.(6)

€EYloop

H Se = (cos ) [Yioop| (39)

€EY1o0p

where |Yigop| is the length of an arbitrary closed loop
along the edges. The calculation of the above expecta-
tion value is equivalent to the application of the Lemma
described in Appendix.II. Or alternatively, can be ob-
tained directly from Eq. (38), upon using tanh 8 = cos 6.

B. Random Bond Ising Model

The correlation of the measurement outcomes char-
acterized by Eq.(39) is in a very particular form, and
one may ask whether there is any simpler probability
distribution that reproduces the same correlation struc-
ture. Indeed, consider the distribution of s where each
edge is chosen independently with probability p(s.) =
(1 + secos@)/2. This is the distribution of bonds in the
canonical random bond Ising model (RBIM) [57],

1+ s.cosf
RBIM e
=TI =T1 (257 w0

e

PRBIM

This distribution function can be conveniently re-
expressed as pREIM(s,) = siBfebse where e = 1fcost,
Equivalently, b = tanh™'(cosf) = 3, as in Eq. (4). Un-

der this probability distribution, one can show that

e[ [] =] =i(i)(—1>l "= py)

ey n=0

= (py — (1—py))' = (cosh)', (41)
where [ is the length of the loop «y. This is exactly the
same as in Eq.(39), and one may suspect a close con-
nection between Ps(s) and PRBM(s). Indeed, P(s)



can be obtained by a gauge symmetrization procedure
on PRBIM(g) defined as the following:

QLN Z HpRBIM (tisijtj)

. 2N
:LN Z (sm9) oS isy Blisists
20NN 2

_ Nl Z ez(ij> Btisijt;
2N Z,
0 ,=+1

PRBIN (5)

= Ps(s) (42>

where the set of variables t = {¢;} are defined on the
vertices.

C. Gauge-Invariant Structure: Frustration

We have demonstrated that there is a connection be-
tween Py(s) and PRP™M(g). In order to gain more in-
sight, we can think about correlation structures of the
post-measurement wavefunction. According to Eq. (29),
correlations of the post-measurement wavefunction |Ps1))
are determined by the partition function Zg[s] =

Z{U} eP X %1949 since

(Pst|Zi Z;|Pst) 1

_ B ijy Sij0i0j
PaulPav) 730 {20;010]6 (i) . (43)

Viewing s = {s;;} as a set of gauge fields and o = {o;}
as a set of matter fields, one can think about the gauge
transformation defined by t = {¢;},

0; = tioy,  S8ij = t;8it5,  t; = x1. (44)

Since the partition function is invariant under the change
of variables to be summed over, Zg[s] = Z3[3]. Moreover,
the probability distribution function, Ps(s) o< Zg[s] is
also invariant under any gauge transformation by ¢.

This gauge transformation defines equivalence classes:
s and s’ belong to the same equivalence class if there
exists t such that s can be transformed into s’ under
Eq. (44), denoted by s ~ s’. Then, correlation functions
of two gauge-equivalent post-measurement wavefunctions
|Pstp) and |Pg1)) are related as

<Psw|ZzZ]|Psw> = titj <’Ps”‘/}|ZzZJ‘,Ps’w> (45)

Therefore, up to an overall sign ¢;t; (which is impor-
tant in an actual experimental detection), one concludes
that the correlation functions only depend on the gauge-
invariant structure.

The gauge-invariant structure, i.e., the equivalence
class of a given measurement outcome s, can be com-
pletely specified by the flux (frustration) configuration
m = {m,}. Note that there are two types of fluxes:
(1) flux per plaquette m, and (i¢) flux along the non-
contractible loop (cycle) me:

m, = Hse, me = H Se, m = %1, (46)

ecp ecC
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(a) Flux Configuration (C) 2D RBIM phase diagram
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FIG. 7.  (a) An example of the flux configuration where
colored plaquettes have m;, = —1. Thick red lines correspond
to antiferromagnetic bonds with s¢ = —1. (b) The density

of negative fluxes as function of p4 in RBIM. (c) The phase
diagrams for the 2D random bond Ising model [35]. Here,
the red line is called a Nishimori line [33], where (p+,8) =
((1 + cos6)/2,tanh™*(cos 9)).

where C' is a non-contractible loop. As we assume peri-
odic boundary condition, Hp m, = 1 and there are 2V !
distinct plaquette flux configurations. In addition, there
are two additional fluxes coming from two distinct cy-
cles Cy and Cy. Therefore, there are total 2V*! distinct
equivalence classes. The counting matches since there
are 22V possible measurement outcomes s with 2V~ dis-
tinct gauge transformation ¢ (having all ¢; = —1 does not
change s). For convenience, we will collectively denote
two different types of fluxes as just m,, and m = {m,}
denotes N + 1 fluxes.

Given a probability distribution of s, P,,(m) can be
directly evaluated by summing over all gauge-equivalent
configurations: Pp,(m) =, . Ps(s) = 2N=1P (s8,n)
where s,,, is a representative element of the equivalence
class defined by m. Since the probability distribution
of m only depends on the gauge-invariant structure, it
follows that

Pr(m) = PP (m). (47)

In fact, correlation functions of all fluxes through arbi-
trary loops in Eq. (39) uniquely specify the distribution of
fluxes through individual plaquettes, P,,(m), as proved
in Appendix. D.

Mapping the measurement outcomes into flux configu-
rations helps clarify the physics of interest. For example,
at 8 = 0, Eq. (39) translates into,

E[m, =1 < P,(m,=1)=1, (48)
which means that we always get a frustration-free con-
figuration at # = 0. Although there are 2V~! possi-
ble different measurement results, s, compatible with
m, = 1, it is always possible to find a gauge transforma-
tion, ¢, which maps a given measurement outcome s into



the fully-ferromagnetic configuration s™ with sfM = 1.

And these gauge transformations can be found efficiently,
within a time linear in the system size. The above rea-
soning implies that the ensemble of states represented by
pe in Eq. (37) at 8 = 0, correspond to the gauge choices
present in the well-known Mattis Ising model [58], where
H = —Zij Jijoi0; with J;; = €;¢; for random ¢; = %1.
This problem is readily mapped to the pure ferromag-
netic Ising model, since its random bonds have no frus-
tration.

D. Phase Diagram of 2D RBIM

Before further pursuing the close correspondence be-
tween the ensemble of quantum states generated in our
setup and the ensemble of classical thermal states gener-
ated by the distribution of the random bond Ising model,
we first review the physics of the 2D random bond Ising
model (RBIM).

The 2D random bond Ising model has the phase dia-
gram illustrated in Fig. 7(c), where the two axes are the
probability of negative (antiferromagnetic, AFM) bonds
p_ =1—p, and the temperature S~1. There are three
phases: ferromagnet (FM), paramagnet, and spin glass.
For p_ = 0 the model is simply the ferromagnetic Ising
model, and the Ising transition happens at 5,1 = 2.27.
At zero temperature, there is a phase transition between
the ferromagnetic (FM) phase and a spin glass (SG)
phase, occurring at p. = 0.104 [59]. This transition is
driven by the increase in density of the frustrated pla-
quettes (m, = —1), which grows monotonically with p_,
as shown Fig. 7(b) [60]. In 2D, the SG phase is unstable
at T' > 0, immediately transitioning into a paramagnetic
phase. The general phase boundary between ferromagnet
and paramagnet is shown by a dashed line.

There is an interesting manifold in the parameter
space where e?® = p, /p_, which is called the Nishimori
line [33, 34] drawn as a red line in Fig. 7(c). On the Nishi-
mori line a gauge symmetry allows for a series of exact
results [61-63] and invariance under the RG transforma-
tion [64]. The line crosses the phase boundary around
pYN =0.1094(2) [35]. Interestingly, when we make a cor-
respondence with pg, the trajectory in the 2D RBIM is
given by (p,8) = ((1 + cosf)/2,tanh™*(cos#)), which
exactly coincides with the Nishimori line.

The FM and PM phases in the Ising model can be
distinguished by the ferromagnetic susceptibility,

1
NOPEEDY
1,3
After averaging over disorder realizations, one obtains,

N, =3 PREIM () ((s))

N
X
const

1
B> iy TiSijo;
S iyt S T | (49)
Zgls] &=

(in FM phase)
(in PM phase)
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E. Decoding Measurement-Prepared Quantum
States

We just showed that on average, the ensemble of ther-
mal states from 2D RBIM exhibits ferromagnetic long-
range correlations for p_ < p. along the Nishimori line.
From Eq. (42), one can deduce that on average, the en-
semble of post-measurement wavefunctions in py should
also exhibit long-range correlations for 6 < 6. where
0. = cos™ (1 — 2p.). However, each post-measurement
wavefunction is long-range ordered with arbitrary spin-
directions for different sites, and we anticipate long-range
correlation to be hidden in most of the post-measurement
wavefunctions. In this case, would it be possible to ex-
perimentally detect this long-range correlation of the en-
semble of quantum states in py?

If one is possible to obtain exponential amount of mea-
surement outcomes, decoding this hidden ferromagnetic
correlation is a simple task. With enough data for each
measurement outcome s, one can perform a direct tomog-
raphy on each |Pst), and calculate a certain observable
identifying whether the resulting state is long-range or-
dered or not. Then, by evaluating a weighted-average
of this observable over all post-measurement wavefunc-
tions, one can talk about the behavior of the ensemble
po. However, for a realistic detection (or identification) of
long-range order in the ensemble of quantum states pre-
pared by the setup in Fig. 1, we want the measurement
complexity to be polynomial in the systems size.

In the following, we discuss the experimental protocol
to efficiently detect long-range order in py without any
need for post selection. To this end, let o = {o;} be
the measurement outcomes of the qubits on the vertices
in the Z-basis, see Fig.2. One might naively attempt
to extract the correlation function in a way similar to
Eq. (49):

<’Psw|ZiZj|’Ps¢>
(Psp|Psyp) 7

where an expression for this correlator is given in
Eq. (43). However, upon averaging over the measurement
outcomes s, this quantity vanishes identically:

Coilpoy " =D Pu(8) (Cig)py

= (Pl Z:Zj|Pst) = 0. (52)

<Cij>795¢ = (51)

This result can also be understood by considering the
distribution of o for the measurement results on the ver-
tices, after averaging over all s, which gives a uniform
distribution:

Ps({o}) = Tr(pe o) (o)
= > [{olPatp)* = 1/2". (53)

Being ignorant of the measurement outcomes on the
edges, it is not possible to detect any ordering for the



qubits on the vertices, regardless of the value of 6. As
we shall see, it will be necessary to use the measurement
outcome, s, in order to “decode” the “hidden” FM order.

First consider the simplest case, with § = 0. As we
have discussed, in this case s is always frustration-free,
with no frustrated plaquettes (m,(s) = +1). As a result,
it is always possible to find a gauge transformation t (in
a time linear in N) such that the underlying Hamilto-
nian (Eq. (29)) can be mapped into the fully ferromag-
netic Ising model. In other words, for any given measure-
ment outcomes s, we can construct a gauge transforma-
tion £(s), and then calculate (or measure) the following
correlation function:

= ZPS(s)tZ s)t

This correlator should exhibit the correlations of the
GHZ state |00...) +]11...), i.e., the groundstate of the fer-
romagnetic Ising model. By using Cdec"de to evaluate the

Cieode (8) (Cij)py- (54)

ferromagnetic susceptibility ydecode = ~ i y C’dec"de7 we

can obtain yd¢c°d® = N. Experimentally, for each state

prepared by measuring the edge qubits, we can make a
single measurement of the vertex qubits, and average over
the sequence of prepared states using the above formula.

Moreover, from measurements of (any) single vertex
qubit over repeated experiments, one would be able to
show that the average magnetization vanishes,

decode _ ZP >7331/J = 0. (55)

This would imply that the prepared quantum states on
the vertices are not only ferromagnetic, but also GHZ-
like. The fact that [[, X, =1 through the experimental
setup before the measurement on vertices also guarantees
that it is the GHZ state with coherent superposition.

What if # > 0?7 In this case, Py(s) starts to generate
frustrated configurations with non-zero probabilities, as
in Fig. 7(b). In this case the decoding will require finding
a gauge transformation which takes the (signs of the)
resulting measurement outcomes, s, into those for the
RBIM.

The key part of the protocol, that we detail below, is
to obtain a set of gauge-equivalent configurations based
on a certain RBIM distribution (which has a bias on FM
bonds) characterized by ¢. From various numerical sim-
ulations [59, 65, 66], we already know that 2D RBIM ex-
hibits a ferromagnetic ordering with diverging ferromag-
netic susceptibility. Therefore, for a flux configuration
ms determined by s, if we can obtain a set of configu-
rations likely to be generated by the RBIM and calcu-
late a usual ferromagnetic order parameter in each gauge
and average over them, we should be able to decode the
ferromagnetic ordering hidden in the randomness of the
measurement outcomes s. Although we have now intro-
duced a fancy term - “decoding” - this is exactly what
we did at 8 = 0.

We thus propose the decoding protocol for the 2D clus-
ter state measured on edges as the following;:
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Protocol 1: Decoding FM Order Parameter

1 Inputs. For each quantum experiment illustrated in
Fig. 2 with the cluster entangler and unitary rotation
by 6, the observer extracts (i.e. measures) s = {s} on
edges in the X-basis, and o = {o} on vertices in the
Z-basis.

2 Transform : Calculate the flux configuration
ms = {m,} from given measurement outcome on
edges s.

3 Computation : Stochastic sampling of § conditioned
on the flux configuration m, under the decoder’s
probability distribution:

Pi(sm) — {8',8%,8,..}. (56)

For our decoder, we use a specific decoder

distribution PsdCC = PRBIM which is defined by the

independent bond dlstrlbutlon with

p(s) = (1 + scosp)/2, and given explicitly below in

Eq. (58). Note that ¢ is not necessarily equal to the

rotation angle 6, although ¢ = 6 would be an optimal

choice to perfectly decode the hidden correlations in

p? (which is accessible with post-selections). This

step is repeated enough to generate a sequence of

different bond configurations S = {§"|n=1,2,...}.

4 Gauge Transformation : For each 8" € S, find a
gauge transformation t" from s to 8". This takes a
time linear in the system size. Denote T' = {¢"}.

5 Evaluation : Calculate the correlation function

O (s, o) = —| Z 8)oio;. (57)

tneT

6 Repeat above : And average the correlation function

An explicit expression for the decoder probability dis-
tribution function is

Psdﬁ,cl( |ms) x §(ms —mg) - PSP"EIMG)
= §(ma —ma) [J(1+ 5 cos9)/2, (58)
(ig)
which vanishes if § £ s, i.e., mz # mg.
this can be re-written as,

PEZ™M(5)

We note that

— OePe 2y Bis — C'/efﬁgoNAFM’ (59)
where tanh 3, = cos ¢ and Napy is the total number of
anti-ferromagnetic bonds (3;; = —1) in the configuration
§. Notice that for ¢ — 0, one has ﬂ;l — 0, and the
decoder selects the configuration of § which minimizes
NapMm. For a given flux configuration, mg, this mini-
mization can be achieved in polynomial time using the
protocol called minimal weight perfect matching, as we
discuss further, below.

We emphasize that the decoder’s probability distribu-
tion reflects our initial bias (knowledge) on the underly-
ing structure of the measurement outcomes. By choosing
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FIG. 8. (a) The histogram of 10° gauge-equivalent config-
urations with respect to the number of ferromagnetic bonds,
where the reference configuration is generated by PRB™(s)
with p; = 0.9. where the density of negative fluxes is
n— = 0.3 and the system size N = 2500. (b) Four gauge-
equivalent configurations with different number of ferromag-
netic bonds. Here thick red lines represent the AFM bonds,
which are crossed by pink lines.
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assuming that the underlying (gauge invariant) structure
of pg to be equivalent to the that of the RBIM with
p+ = (1+cosp)/2. In fact, the optimal choice of “bias” is
very important. If the sampling is performed by PBEIM
with ¢ = 6, we can show that the decoded order param-
eter averaged over ensemble of states rigorously equates
to the ferromagnetic susceptibility of the 2D RBIM in
Eq. (50), see Appendix. F for the detailed proof.

To do the proposed sampling, one may perform a
Monte Carlo simulation of the conditional probability
distribution in Eq. (58), where the Monte Carlo update is
constrained to conserve the flux configuration, m,. With
enough measurement outcomes, this procedure will re-
produce the disorder average result of the RBIM, and we
can decode the hidden information in the density matrix
pg. While full convergence might be slow, especially at
low temperatures for the Ising model, if 8 is small, even a
few experimental iterations accompanied with the decod-
ing protocol would be able to tell whether the resulting
mixed state has the long-range entanglement or not. The
procedure is summarized in Fig. 2.

(§|ms) = 6(ms — m3) (8), we are implicitly

F. Optimal choice of Decoder

In the previous section, we provided a decoding proto-
col using Eq. (58) with a free parameter ¢, and claimed
that at ¢ = 6 we can optimally decode the hidden ferro-
magnetic correlation in py. For a generic value of ¢, we
can prove that the decoded correlation function averaged
over different measurement outcomes would approach to
the following quantity (See Appendix. F):

P6  ———RBIM,pg

(CF7) " = {Ciy)e, (60)

which is the disorder-averaged correlation function of the
RBIM with the bond probability py(s) = (1 + scosf)/2
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FIG. 9. Simulated experiment results where we use the fast
decoding protocol elaborated in Sec. V G. Here we considered
1.5 x 10* measurement outcomes (s,0) at L = 12,16, ..., 32.
The dashed red line represents the true transition point
0. = 38.6° (p. = 0.109 [59]). (a) Normalized decoded sus-
ceptibility Xaec/L? and (b) Variance of the decoded suscepti-
bility normalized by L?. Note that Ydec/L? approaches to the
squared average magnetization in the thermodynamic limit.
While the crossing point of the x?/L is below the true tran-
sition point, the peak of the variance is roughly around the
true transition point.

at the inverse temperature 3, = tanh™" (cos ).

The Eq. (60) holds for any generic observable, such as
magnetization. Once decoded observables are brought
into the form in the RHS, the resulting quantity related
to the decodability of the underlying ferromagnetic cor-
relation is maximized when B, = 3 (i.e. ¢ =), as was
pointed out by Nishimori [67]. When ¢ # 6, the decod-
ability can only decrease in that the decoded correlation
function would falsely alarm the absence of the ferromag-
netic ordering in pg, although the ferromagnetic ordering
is still present. This can also be visually understood: in
the phase diagram of the 2D RBIM in Fig. 7(c), we ob-
serve that for a given value of p. at the Nishimori line, the
critical state becomes immediately paramagnetic either
for T > TN or T < TN. For a given p for the RBIM, the
ferromagnetic nature of the thermal state is maximized
at the Nishimori temperature T (p). It implies that the
decoded signal is optimal only if ¢ = 6.

G. Faster Decoding

The above discussion established that we can decode
the underlying structure perfectly as long as the opti-
mal decoder is precisely implemented. However, imple-
mentation requires importance sampling, using for exam-
ple a Monte Carlo algorithm, and the convergence on a
time scale polynomial in the system size is not rigorously
guaranteed. As we now discuss, a non-optimal decoder
with ¢ — 0 can be implemented efficiently, in polyno-
mial times scaling as N2. In this limit we are trying to
minimize the number of anti-ferromagnetic bonds, with
a constraint on the flux configuration, as demonstrated
explicitly in Eq. (59). This is equivalent to finding a solu-



tion of minimum weight matching problem (MWMP). For
example, if we have a configuration with two frustrated
plaquettes m, = m, = —1, a gauge-equivalent configu-
ration that minimizes the number of AFM bonds would
be the one where the bonds along the shortest path be-
tween p and p’ are set to be AFM, and the other bonds
are FM. In Fig.8(b), the top left panel represents the
configuration with minimum weight matching (there are
other degenerate solutions), while the other three panels
represent configurations with the same m but more AFM
bonds. Note that the number of AFM bonds is equal to
the total length of crimson lines connecting pairs of fluxes
with m, = —1. Note the similarity with the error cor-
rection from syndrome detection for Pauli errors in the
toric code [68]. The detailed formulation of the MWPM
is elaborated in Appendix. G.

In general, the MWPM problem can be solved by Ed-
mond’s blossom algorithm with a worst-case polynomial
time complexity O(M?3log M) [69], where M is the num-
ber of frustrated plaquettes (m, = —1). Since the algo-
rithm is polynomial in M, the MWPM problem can be
efficiently solved. Of course, one may look for a faster
method with a small approximation since we are already
not using an optimal decoder. By using a method called
Goemans-Williamson algorithm whose worst-case time
complexity is given by O(M?1log M), one can obtain an
approximate solution which is very close to the optimal
solution very quickly [70]. Or, one can sparsify the orig-
inal graph of frustrations (c.f. Appendix. G) controlled
by a sparsification parameter, reducing the time com-
plexity down to O(M?) without sacrificing accuracy too
much [68]. Using a usual laptop, the run-time for the
usual frustration configuration at § = 25° for 1,000 lat-
tice sites is about 1 second for a rigorous MWPM al-
gorithm, and 10~2 second for a sparsified MWPM algo-
rithm [68].%

We remark that in order to rigorously obtain the de-
coder limit ¢ = 0 in Eq. (60), one has to sample over the
entire list of degenerate solutions of the MWPM prob-
lem. For example, since we are on the square grid, there
are already significant degeneracies in the solution due to
the fact that the shortest path between two vertices v and
v’ is not unique in the square lattice. Furthermore, for
a given MWPM problem, there can be multiple optimal
solutions. In principle, in order to obtain the disorder-
averaged RBIM behavior at ¢ = 0, which is isotropic, one
should average over degenerate solutions (c.f. Eq. (57))
for each measurement data (s, o). Instead, if we choose
a single solution of the MWPM and corresponding § to
calculate the decoded correlation function, we would get
an anisotropic correlation function. However, ferromag-
netic susceptibility x would still diverge with N as long

4 The worst-case time complexity is different from the average time
complexity. Indeed, the average performance time complexity
is a lot smaller than the worst-case analysis, ~ O(M?2) for the
rigorous MWPM algorithm and ~ O(M 1) for the approximated
MWPM algorithm [68].
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as 0 is not too close to .. We thus propose the following
fast decoding protocol:

Protocol 2: Fast Decoding FM Order Parameter

1 Inputs. / Transform : Same.
2 Computation : Find a maximally ferromagnetic
bond configuration for a given flux configuration m

1. Mapping into the minimum weight matching
problem and solve using a certain classical
algorithm [68—70].

2. Assign s = —1 along the MWPM solution path,
and s. = +1 for all other bonds =- obtain s.

Gauge Transformation / Evaluation : Same.

H. Numerical Verification of Fast Decoding

In Fig. 9, we have demonstrated the performance of the
fast decoding protocol where the gauge transformation
for each measurement outcome is calculated only once
using the MWPM algorithm, ignoring other degenerate
solutions. In order to simulate the experimental proce-
dure, we sampled the measurement outcomes from the
distribution P(s, o), which is given by

P ,(0,8) = Py, (s|o)Py (). (61)
The conditional probability Py, (s|o) can be obtained as

[ Pos(afs)Ps(s)] 1 Bsis050;
PS‘U(Slo') - [ PU(O') ] - ZO H [6 }
(if)

(62)
where we use the Bayes rule, Eq. (38), and Eq. (53). The
above result implies that we can sample the measure-
ment outcomes (o, s) using the following two steps: (1)
Sample o using the uniform distribution in Eq. (53). (2)
Conditioned on o, sample s using Eq. (62) where the dis-
tribution decomposes into the independent distribution
of each bond s;;. Therefore, one can efficiently simu-
late the experimental setup and measurement outcomes
without knowing exact quantum states under the quan-
tum circuit evolution.

For the system size L € [12, 16, ...,32] and rotation an-
gle § € [0,60°], we repeated the simulated experiment
1.5 x 103 times using the above sampling method. Then,
based on the obtained set of {(o, s);}, we performed the
fast decoding protocol to calculate the decoded suscepti-
bility Xdec = 77 >_; ; Ci7°(s,0). The entire simulations
(sweeping over different L and 6) take about an hour
using a laptop, and we have verified that the fast de-
coding algorithm works well, especially deep in the fer-
romagnetic phase. Interestingly, the uncertainty of the
decoded susceptibility, i.e., (x?) — (x)? diverges around
the genuine critical point p. = 0.109 [59], signalling the
true phase transition.



I. Tuning away from Nishimori Line

After optimal decoding, the post-measurement state
would move along the red line in Fig.7(a), crossing
the unstable fixed point at the transition angle 6. =
38.6° [35]. This means that majority of the post-
measurement wavefunctions in the density matrix pg ex-
hibits long-range correlation (GHZ-ness) for § < 6., and
for 6 > 6., they do not. Furthermore, by using the op-
timal decoding protocol, one can even study the critical
behavior at § = 6., which would exhibit power-law de-
caying correlation functions.

However, note that the fixed point is unstable; if we
can slightly deviate either upward or downward along
the trajectory, we can access both the pure ferromag-
netic Ising and 7' = 0 random bond Ising FM to spin
glass universality classes. What ultimately affects the
physics of the random bond Ising model is the density
of frustrations as illustrated in Fig.7(a). For our exper-
imental protocols, the number of frustrated plaquettes
is monotonically increasing with 6 € [0,7/2]. If we can
somehow manipulate the density of frustrated plaquettes
in the ensemble of post-measurement wavefunctions, we
can deviate from the red trajectory (Nishimori line) at a
given inverse temperature.

There are several ways to achieve this. Firstly, we
could post-select on configurations with the density of
frustrated plaquettes strictly larger or smaller than the
average value. As the measurement outcomes s would
generate a distribution of mg, by focusing on a certain
portion of the measurement outcomes (which still scales
nicely), one can move away from the Nishimori line. Sec-
ondly, one could modify the original SPT state, starting
from specific stabilizer signs to distort the probability dis-
tribution under Eq. (39). This method will allow one to
add frustration to the bond configurations even at § = 0
(8 = 00). For example, if we start from a product of
|[+),. states, apply a uniform rotation along y-axis, and
then measure in X-basis again, we can introduce a ran-
domly distributed frustration in an adjustable way. In
fact, adding more frustration in this method would bring
our trajectory strictly below the Nishimori line in the
phase diagram in Fig. 7(c). Therefore, we have another
tuning knob to access different universality classes. If the
measured state ends up flowing into the T = 0 univer-
sality class of the transition between random Ising model
FM and spin glass, then its dynamic critical exponent
would be z &~ 3.11 [71].

VI. INTERACTIVE QUANTUM PHASES AND
TRANSITIONS

In the previous section, we provided an efficient ex-
perimental protocol to study the ensemble of quantum
states pg (37) for the 2D cluster state where edges are
rotated by angle 6 and then measured in X-basis. As we
revealed, the ensemble of post-measurement wavefunc-
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tions generates a completely random outputs o for the
vertices (53) if we average over measurement outcomes s
on the edges, even at § = 0. Only after applying an ap-
propriate transformation on o based on the knowledge
of s, we could efficiently identify the long-range order
of the ensemble of quantum states. Therefore, we dub
the aforementioned structures in the density matrix py
as interactive quantum phases and criticalities in that
proper feedback or decoding based on the measurement
outcomes are required to experimentally identify inter-
esting features in the resulting quantum state without
post-selection.

A. Computationally Assisted Observable

In this subsection, we further discuss the general idea
of interactive quantum phases and their efficient iden-
tifications. Assume we prepare a quantum state by a
quantum circuit consisting of a series of unitary evolu-
tions and measurements. Let s = {s;} be the set of
measurement outcomes obtained during the evolution by
the quantum circuit, where we can denote the resulting
quantum circuit as Us. Then, the ensemble of quantum
states prepared by this scheme is described by the fol-
lowing density matrix

p = |Ush){Ust)| (63)

Let o = {0;} be the measurement outcomes on the re-
sulting quantum state |Us1p), where measurement oper-
ators are not necessarily single-sited. Then, every time
we run the quantum circuit followed by a set of measure-
ments on the resulting states, we get a series of outcomes
{(317 0-1)7 (527 0'2)7 T }

In a conventional study of quantum phases, we say
that a quantum state exhibits a certain feature if one
can identify a nontrivial correlation within o. However,
this usual definition hardly fits into the behavior of the
ensemble of quantum states studied in Sec. V, where we
require o to be either conditioned on a specific s (post-
selection) or to be transformed based on the knowledge
of intermediate measurement outcomes s (efficient decod-
ing). Similarly, in the study of an ensemble of quantum
states prepared with the aid of measurements, nonlin-
ear order parameters based on both o and s, such as
entanglement entropy conditioned on intermediate out-
comes [72] or the decodability of the resulting quantum
state [17], have been suggested as particular probes for
the physics of interest.

In this regard, we propose the idea of computation-
ally assisted observable (CAO) for observables obtained
through either quantum or classical computational de-
coding process using both o and s, which helps identify-
ing the interactive quantum phases and their transitions
by measuring hidden structures of the ensemble of quan-
tum states. For instance, consider a density matrix p(x)
generated by a quantum circuit with measurements Us ()



tuned by a parameter x (c.f. Eq. (63)). Assuming we can
repeat the experiment arbitrarily many times, one can
fully understand the (averaged) underlying correlation
structure of post-measurement wavefunctions {|Us1)}.
Such a structure can undergo a transition at a certain
value of the tuning parameter x..” If one can efficiently
evaluate a quantity O(x) using measurement outcomes
{(s*,0")}M, i.e. both measurements and computational
time polynomial in the system size, and O(x) allows one
to locate the true transition point z., then we claim that
O is the computationally assisted observable that signals
the interactive quantum phases and their transitions in
the density matrix p(x).

Going back to the example discussed in Sec. V, we em-
phasize the importance of the decoding protocol for prac-
tical use of the measurement-prepared quantum states.
Naively at 6 < 0., at every experiment we prepare a cer-
tain long-range ordered GHZ-like wavefunction although
it is not conventional in that the alignment of neighbor-
ing spins is random, i.e., |Pst) ~ |010011..) + |101100..).
If the alignment is random every time we prepare the
state through measurements, it is not useful in that we
cannot detect nor make use of its long-range correla-
tion. However, if we apply a set of single-site gates
(spin-flip operation) based on the gauge transformation
t obtained through the decoding protocol, the resulting
quantum state becomes identifiable in that when we pre-
pare a series of quantum states with different measure-
ment outcomes, we can bring them into the similar form
~1000...) +|111...). One might argue that this identifia-
biliy is essential in any measurement-assisted setup.

Finally, we remark that post-selections are essential to
study measurement-induced phases and their transitions
in many literature [1-17] since these features disappear
once the resulting quantum states are averaged over dif-
ferent measurement outcomes. On the other hand, the
hidden long-range correlations of our model and its phase
transition behaviors can be rigorously decoded by clas-
sical algorithms without post-selection, which provides
a simple yet illustrative example of interactive quantum
states along with few other cases [17, 72-74].

B. Other examples

Below, we explain interactive nature of the measure-
ment prepared quantum states and their transitions for
the examples considered in Sec. IIT and Sec.IV.

(1) 2D Zgo) X Zgl) cluster state measured on ver-
tices: (c.f. Sec.IIT) At # = 0, the measurement outcomes
on the verticies are under the constraint E[[], s,] = 1.

5 For example, in the context of measurement-induced phase tran-
sitions, the measurement rate p corresponds to the tuning param-
eter and whether the resulting state has an area or volume law
entanglement corresponds to the structure one wants to probe.

18

(a) 3D RBIM (b) 3D RPGM
5 T
—— Nishimori line 14 .l —— Nishimori line
1.2 1 * N
v, confined
1.0 1 \
\
\
0.8 1 o) ‘|
g 1
0.6 1 =)
51 0,=19.9°
049 7@ |
o 1
0.2 ]
1
1
0.0 T T T
0.00 0.02 0.04 0.06

1—p4(0)

FIG. 10. Phase diagrams for the (a) 3D random bond Ising
model and (b) 3D random plaquette gauge model. 6. denoted
in the diagram represents the transition angle 6. where the
long-range entanglement disappears when we do not post-
select outcomes. These phase boundaries are taken from [59,
65, 66]. Here, the red line is the trajectory our measurement
protocol traverse without post-selection, i.e., (p,8) = ((1 +
cos0)/2,tanh™!(cos#)). The trajectory happens to coincide
with the Nishimori line [33]. Therefore, without additional
frustration from the initial stabilizer configurations, we will
get a critical behavior for the unstable fixed point denoted by
red circles.

For the identifiable toric code physics independent of the
measurement outcomes, we want to manipulate the re-
sulting quantum state so that it is the groundstate of
the uniform toric code Hamiltonian Hyric = — ., Ay —
Zp B,. To do so, we want the gauge where all 5, = 1.
This decoding protocol at § = 0 can be easily achieved by
the following transformation: for any pair of vertices with
Sy = 8, = —1, we can find a path connecting them and
perform Z, = —Z., i.e., gauge transformation ¢, = —1
along that path. Note that this transformation does not
change the measurement outcomes on the vertices in be-
tween, and flip the signs of s, and s, only. Formally, in
this case dual to the 2D Ising model, the gauge transfor-
mation is defined by

Ge =teOe, 5o =50 [tes te=+1 (64)

esSv

By the successive application of such transformations,
one can guarantee that all 5, can be made +1, recover-
ing ferromagnetic 2D gauge theory (or uniform toric code
state). However, when 6 > 0, the ensemble of quantum
states maps to the gauge-symmetrized version of the 2D
random plaquette gauge model (RPGM), which immedi-
ately becomes trivial at any finite temperature even when
there is no frustration.

(2) 3D ng xZéZ) cluster state measured on edges:
(c.f. Sec.IV) At 6 = 0, the resulting quantum state be-
comes the GHZ-like groundstate of the 3D Ising model.
To convert the resulting state to be identifiable, one has
to perform the gauge transformation as in the case of the



2D Ising model. The constraint is that Heef se = 1 for
any face f. As the bond configuration is frustration free,
there is an efficient algorithm to convert the configuration
into the fully ferromagnetic case.

At 6 > 0, faces are generally frustrated, but one can
show that total flux coming out from any cube or vol-
ume must be trivial. Therefore, if we draw a line on the
dual lattice edges that penetrates through the frustrated
faces, the line forms a closed loop. Again, we can con-
struct an optimal decoder as in the case of 2D Ising model
case. However, the classical sampling can be challenging
to efficiently simulate, since it is equivalent to the simula-
tion of elastic manifolds with boundary constraints. Still
there is a rigorous classical decoding algorithm that will
allow us to remove the exponential scaling of the mea-
surement complexity. Our protocol would go through
the Nishimori line as in Fig. 10(a) [61, 65, 75]. Again,
depending on how we perturb away from the Nishimori
line, we can access either 3d Ising universality or 3d ran-
dom bond universality class. At the 3D random bond
Ising universality, its dynamic critical exponent is given
by z = 2.11 [76], which is much larger than the 3d Ising
universality value.

(3) 3D ZS) X Zgl) cluster state measured on faces:
(c.f. Sec.IV) At 6 = 0, the resulting quantum state be-
comes the 3D toric code state. For the state to be identifi-
able, one has to perform the gauge transformation defined
as

Ge=teoe, Sp=ss[[tes te=+1 (65)
ecf

which can be done very efficiently. Here, the constraint
is that ers sy = 1 for any closed surface S. It means
that the line of sy = —1 along the dual edges forms
a closed loop v = 0A, where A is the surface defined
on the dual lattice. Then, if we apply [],, 4 Xc on the
resulting quantum state, we convert the loop of sy = —1
to be 5y = +1. By a successive application of this gauge
transformation on all sy = —1 dual loops, we recover the
uniform 3D toric code state.

At 6 > 0, then we will get a genuine frustration where
[I;cc 85 = —1 for the surface of a cube C. Note that
such frustrate cubes always occur as a pair. In this case,
our optimal decoder would map the resulting ensemble
of quantum states into the 3D random plaquette gauge
model (RPGM) [59] along the Nishimori line, where the
probability of having positive plaquette Ising interaction
is given as py = (1 + cosf)/2. An efficient decoder can
be constructed by again solving a minimum weight per-
fect matching problem among frustrated cubes in three
dimensions. In this case, for any paired frustrated cubes,
we can connect them through the dual line, and the faces
penetrated by the dual line would take a negative value
for the corresponding ZZZZ interaction. For the 3D
RPGM, we remark that the phase transition behavior is
closely related to the robust storage of quantum informa-
tion in the surface codes [77]. The numerical study shows
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that the RPGM is within the perimeter law phase (de-
confined) for p < 0.03, and transitions into the area law
phase (confined) for p > 0.03 [59, 66], which implies that
for 93ARPGM — 19 9° see Fig. 10(b). As long as 6 < 6.,
the preparation of the 3D topological order is robust.
However, we note that its dynamic critical exponent has
not been studied in the literature. The clear understand-
ing of the critical theory would require a detailed future
numerical work.

VII. MORE CLUSTER STATES

In general, the framework we developed can be ap-
plied for any graph (cluster) state in the bipartite lat-
tice. One interesting example is a subsystem SPT
(SSPT). For example, consider a 2D cluster state with
qubits defined on the vertices of a square lattice with
H = =3 Xy]I, ey, Zv- The square lattice is bipar-
tite, and we can decompose the lattice into two sublat-
tices A and B. The system has two subsystem sym-
metries G4 and Gp defined by the application of the
product of X operators along any diagonal direction for
a corresponding sublattice. Upon measuring the sublat-
tice A in X-basis, we obtain the ground state of Xu-
Moore model [78] on the other sublattice, described by
HxuMoore = — Y _yea Sv HU,En(U) Zy. With the subsys-
tem symmetry Gp, the ground state manifold has an
extensive degeneracy, and the post-measurement state
should be the superposition of exponentially-many (~
22L=1) SSB configurations of the subsystem symmetry.
As expected, this exponentially many superposition of
SSB configuration, which is the generalization of the
GHZ state, is not robust if  # 0. Indeed, the correspond-
ing classical partition function and correlation functions
are those of 2d plaquette (gonihedric) Ising model [79],
which is different from 2d Ising gauge theory as spins re-
side at vertices. This classical model exhibits an exotic
correlation structure, which can be decomposed into de-
coupled 1d Ising models. As it maps to the stacked 1d
Ising model, the system is disordered for any finite 6 (or
any 37! > 0) and the long-range entanglement is not
robust

For 3D SSPT, one can consider the cluster state
whose qubits are defined on vertices and faces of the
cubic lattice, described by H = =37 X¢[[,c; Zv —
> Xv1lf5, Z¢. The model has two symmetries. One is
subsystem symmetries G 4 acting as leane X for qubits
on vertices, and there are 3L planes for L x L x L
sites. The other is the one-form symmetry Gp acting
as ers X for qubits on faces. By construction, the
model has erF(+dual) X; = 1, where F(+qual) is the
set of four faces penetrated by the cross in the dual
lattice. Upon measuring faces in X-basis, one specifies
]_[Uef Z, = sy for any face, which is the ground state
of the 3D-version of Xu-Moore model with a degener-
acy ~ 23£=2 [80]. Post-selecting outcomes without any



frustration, the corresponding 3D Ising plaquette model
exhibits a first-order phase transition at finite tempera-
ture 8. ~ 0.55 [80]. It implies that the long-range en-
tanglement of the superposition of exponentially many
SSB configurations for the post-measurement state is ro-
bust upto 6. ~ 60° with post-selection sy = 1. Even
without any post-selection, the long-range entanglement
is expected to be robust for 5~ > 0 with some frustrated
interactions as long as the subsystem symmetry is intact,
similar to Fig.10. Therefore, similar to the RBIM and
RPGM, we expect the transition to occur at finite §. The
exact phase diagram of 3d random plaquette Ising model
(RPIM) at finite temperature is left for future study.

Upon measuring vertices in X-basis, we obtain
Hfav Z; = s,, which gives rise to a X-cube fracton
state [81] in the dual lattice. Again, the resulting
state is a superposition of ~ 26L=3 degenerate ground
states. If we thought of qubits on the faces (vertices)
as edges (cubes, denoted by G) of the dual lattice, we
get [[;ccnZe = sgg- Moving away from the X-basis
with an angle 6, the wavefunction is given by |Pst))
e~ Plxenne/2@| X ¢ = T, ., s,) where H is defined as the
following on the dual lattice:

Hxcupe = — %@( 11 Zé> ST x:  (66)

ée@ + ec+

The properties of the post-measurement state at angle
f can be argued to be trivial based on the observation
that the corresponding 12-body spin model has no phase
transition at 7' > 0. Following our previous strategy to
calculate the norm of the post-measurement state, we
can show that (Pst)[Pst)) ~ 5k (1 + 235 (cos 9)0L") ~

co + ec1l=e2(0)L where the summation is taken for all
possible intersecting planes (23F), i.e., elements of the
subsystem symmetry G 4. Since the second term gets
exponentially suppressed for any 6 # 0 (c > 0) in a large
system size, it implies the absence of the phase transition.
Therefore, the fracton order is unstable in our scheme for
any 0 # 0.

It is also worth pointing out the connection between
two different Hamiltonians resulting from measuring dif-
ferent sublattices of a given cluster SPT. Above, measur-
ing one sublattice gives the 3D Xu-Moore Hamiltonian,
while measuring the other sublattice gives the X-cube
model. As illustrated in [81], these two models are re-
lated by a generalized duality via gauging. This is pre-
cisely what is happening through the cluster entangler
followed by measurements [82]. We note that the wave-
function of the form in Eq. (3) with the Boltzmann weight
from a corresponding spin-model in [81] at a certain (3
would be realized through our protocol by measuring the
state obtained by a fracton state coupled with aniclla
qubits through cluster entangler.
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VIII. SUMMARY AND OUTLOOK

In this work, we revealed the fate of quantum states
obtained by measuring cluster states in the rotated basis
Op = X cosf + Zsinf, which is equivalent to applying
a certain shallow depth unitary circuit to the product
of |[+) and perform measurements in the X-axis. We
showed that any post-measurement state is expressed by
a certain product state in X-basis under the imaginary

time evolution e ¥ by the Hamiltonian depending on
the measurement outcomes, where 3 = tanh ™' (cos ). As
a result, any post-measurement state has its amplitudes
given by the Boltzmann weights of various corresponding
classical spin models, ranging from Ising model and gauge
theories [83] to plaquette model and even beyond.

At specific angles, the post-measurement wavefunction
exhibits quantum criticality, where the wavefunction ex-
hibits spatial conformal symmetry due to the amplitude
structure. Constrained by the finite amount of entangle-
ment the shallow circuit can infuse, the resulting state
has a constrained entanglement structure, giving rise to
a special family of quantum critical states. A family of
found quantum criticalities is called conformal quantum
critical points (CQCPs), and we found that the dynam-
ical exponent z > 2 for all the examples discussed in
this work, which is consistent with the analytical bound
for the dynamical exponent z = 2 argued in several lit-
erature [29, 51]. In particular, in any dimensions, we
found a family of post-measurement states whose parent
Hamiltonian is generated by a so-called pivoting struc-
ture [39] with the phase diagram in Fig.4. From the
Kramers-Wannier duality, the CQCPs for this family of
states maps into the Bose-Einstein condensation transi-
tion of hardcore bosons with z = 2 [46-48]. We remark
that this class of CQCPs with z = 2 has non-local U(1)
symmetry [39], analogous to quantum Lifschitz transi-
tions and famous Rohksar-Kivelson model [29, 84, 85]
with z = 2. We also found nontrivial examples with
z > 2 where there is no extra U(1) symmetry that pro-
tects the dynamical critical exponent [51]: z &~ 2.16 (2D)
and z = 2.02 (3D) for Ising CQCPs with post-selections.

Interestingly, we found that the post-measurement
wavefunctions with z = 2 CQCPs are all unstable in their
long-range entanglement structure under 6 # 0. This is
intimately tied to the observation that the cluster states
are described by tensor networks with a finite bond di-
mension with area-law entanglement capacity, and single-
sited measurements cannot change the underlying tensor-
network structure. Indeed, for all the examples (z = 2)
presented, the groundstate at § = 0 already saturates the
entanglement capacity. As the post-measurement state
parameterized by 6 already saturates its entanglement
entropy at 6 = 0 and its entanglement entropy cannot
increase with # > 0, it is natural for its parent Hamilto-
nian to host a (multi)critical point at § = 0.

Without post-selections, which is more realistic in both
practical and fundamental sense, one can obtain the en-
semble of post-measurement quantum states, whose cor-



relation structure is trivial once averaged over measure-
ment outcomes. However, we demonstrated the pres-
ence of classical decoding protocols for given measure-
ment outcomes, which allows one to identify a hidden
long-range entanglement structure and its phase tran-
sition behavior in the experiment without exponential
scaling of the measurement complexity. In particular, we
elaborated for the 2D cluster state measured on edges in
a rotated basis, where the resulting state can have a long-
range correlation structure (GHZ-type) depending on the
rotation angle #. By decoding this correlation structure
into the ferromagnetic correlation of the 2D RBIM with-
out post-selection, we provided an experimentally effi-
cient protocol to detect the transition behavior of this
long-range entanglement structure. We also generalized
this idea to other ensembles of states, corresponding to
random interaction models such as 3D random bond Ising
model or random plaquette gauge models.

Our results have several implications. First of all,
our work establishes a clear demonstration of several
important concepts: decoding and identifiability of a
measurement-prepared ensemble of states. Any quantum
state obtained by extensive number of measurements is
not reproducible in a sense that one has to repeat the
experiment exponential amount of times in the system
size. To experimentally claim the presence of any in-
teresting feature hidden inside the ensemble of quantum
states, one must be able to transform the resulting quan-
tum states into an identifiable form such that different
measurement outcomes can lead to the quantum states
with a shared feature that is experimentally verifiable. In
the family of ensembles of quantum states prepared by
our setup in Fig. 1, we rigorously showed that decoding
protocols exist to achieve this job.

With the aid of this decoding protocol, our work also
answers the robustness of the measurement-based quan-
tum state preparation in a rigorous way by mapping the
problem into the concrete statistical mechanics problem.
Furthermore, it provides an experimental guideline to
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prepare an exotic family of conformal quantum critical
states. Excitingly, our framework is generalizable to var-
ious quantum phases. Although we have considered Z,
higher-form symmetries, in general we can consider Zy
symmetries for graph states with qudits, which we con-
jecture to give rise to general Potts model and Zy gauge
theories among others. Furthermore, our method would
allow experimental preparation of a so-called skeleton
states [43, 86, 87] to higher dimensions, which are criti-
cal quantum states represented by tensor networks with
finite bond dimensions.

Note Added: Upon completion of the present
manuscript, we became aware of an independent work
studying extended long-range entangled phases and tran-
sitions from finite-depth unitaries and measurement,
which will appear in the same arXiv posting [88].
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Appendix A: Correlation functions

In this appendix, we demonstrate the following lemma in the main text and its consequence on calculating the
correlation function and norm of the post-measurement wavefunction.

Lemma Consider a stabilizer d-dim SPT state with ng) X Géd_n_l) mixed anomaly, where the superscript represents
they are n and (d —n — 1) form symmetries. Here, G; and G2 act on different sublattices. Then, the expectation
value of an operator defined on a certain sublattice does not vanish only if the operator is a symmetry action on the
corresponding sublattice.

1. Understanding SPT and Lemma

First, let us demonstrate the simplest example in 1D cluster state defined by the following Hamiltonian

H==Y Zy1XnZns1, (A1)

whose ground state is an 1D SPT protected by G = G1 X Ga = Zs X Zo, defined by product of Xs in even and odd
sites respectively. More precisely, we have two generators for G: g1 = HnN:1 Xon—1 and go = Hﬁ;l Xop. Here, X
measures Zy charge, while Z creates Zy charge. (Think about U(1) symmetry, whose transformation is €?’?. In this
sense, X indeed measures charge) Note that ZZ measures whether the G; domain wall exists, and whenever there
is a G; domain wall, the term enforces X in between to take nontrivial value, i.e., nontrivial Gy = Zy charge. Note
that 0d G2 SPT is distinguished by the charge. Therefore, we call such an SPT phase to have a mized anomaly
between G; = Zgo) and Gy = Zéo) (superscript implies they are 0-form symmetries). Note that it can be interpreted
in the other way — instead of prescribing an energy penalty for certain configurations, each term can be interpreted
as creating and annihilation certain configurations. To elaborate further, Z term creates non-trivial SPT by flipping
X-basis, while X term creates two domain walls next to it (and annihilate). Therefore, ZX Z term can be interpreted
as creating two domain walls next to X, and then each Z creates a non-trivial SPT at each domain wall. The ground
state would be the superposition of all configurations that is invariant under the action of such operations, which fits
into the decorated domain wall construction picture [36]. The later perspective will be used for the generalization.

For this 1D cluster state, we want to demonstrate the Lemma. Let L; (L2) be the odd (even) sublattice where
G1 (G2) is acting on. Without loss of generality, consider an operator O defined on L;. Then, we can show that its
expectation value under |¢) disappears if it involves Zs,, 11 or Yo, 41:

(W O; [¥) = (| (Z2nXont1Z2n12)O0i(Zan Xont1Z2n12) [¥0) = — (Y| O; [1h) = 0 (A2)

Here, we can pull Zs, Xo,+1Z2n42 from [1)) since the ground state is stabilized by it. Furthermore, as two Zs on Loy
in the stabilizer simply commutes with any operator defined on L1, while Xs,,+1 anti-commutes with Z3, 1 or Y5, 41
inside O. Therefore, for the expectation value of O to not vanish, it has to be made of either I or X operators. Now,
we claim that it is one of two cases: either O =1 or O = HnN:1 Xont1. Assume that O # I,[[ X. Then, there must
be a neighboring two odd sites 2m — 1 and 2m + 1 where O|2m,1 = I while O|2m+1 = X. Then,

<¢| O; |¢> = <1/)| (ZmelXQmZ2m+1)Oi(Z2m71X2mZQm+1) W) = - <1/J| O; |1/1> =0 (A3)

This concludes the proof, i.e., (O) = 0 for O defined on L; if O is not the element of G; = {I, Hfj:l Xon+1}. In fact,
this is not a coincidence. For a given commuting stabilizer Hamiltonian, the ground state has a vanishing expectation
value against any operator that anti-commutes with any stabilizer. However, if a given operator commutes with all
stabilizers, if simply means that the operator is nothing but a symmetry action of a given Hamiltonian.

Now we want to generalize the claim for higher dimensional cluster state SPTs with ng) X Gédin*l) mixed anomaly,
where G is an n-form symmetry acting on the sublattice Ly and Gs is a (d — n — 1)-form symmetry acting on the
sublattice Ls. Such a cluster state SPT Hamiltonian consists of two local terms:

2,J

charge W .w. charge
H=— Z hyi — th hi; = 0730} ha; = O -05¢ (A4)
4 J

where O"8¢ (O4-%) creates the charge (domain wall) of the symmetry Gg") in a symmetric fashion.
For example, if G is a Zy 1-form symmetry, the generators of G is given by h, =[], -, Xe for any closed loop 71
defined on L;. This is the symmetry that randomly creates or annihilates Z = —1 closed loops. For this symmetry,
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(’)ffharge = [l.cqx Ze for the loop v+ defined in the dual lattice of L, creates the 1-form charged object in a symmetric
fashion; more precisely, an open string (or non-contractible loop) is a charged object, but when we create a charged
object as a term in the Hamiltonian, we always create a pair of them in the Z; symmetric case so we combine two
open strings to make it a loop. This is analogous to the situation in the 1D cluster Hamiltonian, where we have a
ZX 7 term with two Zs. On the other hand, O{'% = X, creates a pair of 1-form symmetry domain wall, i.e., the

discontinuity in Z = —1 strings perpendicular to the edges.
In general, if a Pauli operator O defined on the sublattice L; does not to vanish for this SPT, it has to satisfy
V’i, hl,iOhl,i = O and Vj, hQ’jOhg’j = O (A5)

These conditions imply that O is invariant under the conjugation by O%l‘-"’ - and Oil;-arge. In fact, this already implies
that O is in fact a symmetry of the system. Since O is restricted to L;, it means that O € Gy.

2. Application of Lemma

Below, we evaluate the correlation function for various post-measurement cluster states, which can be thought of
as Ps 1) where the measurement-projection operator Ps on the sublattice L; is defined as

1
Ps = H P, P = 5[1 +5i(Xing +Ying + Zin))], P} =P, (A6)
nel;

where s; is the measurement outcome.

a. 1D Cluster State

In this case, the even-sited operator’s expectation value with respect to |¢)) is non-vanishing only if the operator is
identity or product of Xs in all even sites. Then, we can calculate the correlation

(Ps¥| Z1 Zop 41 |Pst0) = (| Z1 Zang1 | Pst))
= (Y| XoXy ... Xon |Psth)

= 2LN ([ ﬁ szm} (cos )" + [ ﬂ szm} (cos Q)N—">

m=1 m=n+1
({HZL:I 52m} (cos )" + {Hﬁi:n—ﬁ-l SQm} (cos 0)N7n>
- _ (PaIP) (A7)
[1 + {Hmzl SQm:| (cos G)N}
since [Ps, Zont1] = 0 and Zy Zop 41 |¥0) = Xa ... Xop [¢0). Here we used that
XoXy ... Xo2,Ps = (Vanishing terms)

1 - Al o
+ o ([ H ngi| cos™ 0 -1+ [ H 52m:| cosN 9. H Xm) (AB)

m=1 m=n-+1 n=1

Note that the norm of [Ps1)) can be similarly calculated as

N
_ _ 1 N _ 1 S2n 3 En 02n—102n+41 —
(Pat|Pat)) = (] P [9) = 5 (1 + [m]_[l s2m | (cos 0) ) ~ Gon }{a}je 1, tanh B = cos

(A9)

for a system with 2N sites. Here I used that e*?:? = cosha(l+o0;0; tanha) for o; ; = 1. We can also calculate other
correlation functions involving X or Y by rewriting them in terms of operators defined on even sites. For example,
note that the expectation value of Xo,11 can be calculated as

<,Ps¢| X2n+1 ‘,Psw> = <¢| X2n+1 |,Ps"r/)>
= (Y| ZanZant2 |Pst))

1 B
= o [ + mny 7] (A10)
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where 7; = sinfsin ¢ and 7y = sin 0 cos ¢. Expectation values of more complicated operators can be calculated in a
similar way.

b. 2D Cluster State, measurement on vertices

A 2D cluster state becomes a 2D toric code state when measured on vertices in X-basis. The Lemma implies that

the expectation value of operators defined on vertices disappear unless it is an element of the O-form symmetry Zgo),

i.e., a product of X; over the all vertices. Then, the post-measurement wavefunction norm is given by

<Ps¢|7337/}> = <¢| Ps |"/)> = 2LN (1 + {H 51}} (COS 9)N> (All)

v

To detect the spontaneous symmetry breaking of the 1-form symmetry, one can measure the product of Zs along the
boundary of a certain region S as the following;:

Pstl [T Ze 1Psv) = @I [] 2 |Psv)

e€ds ecds
= @I [] X [Pat)
veS
= 2LN ({ H sv} (cosO)™ + { H sv} (cos G)N—”> (A12)
veS vgS

In the limit N — oo, the correlation function measuring the 1-form symmetry breaking becomes:

< H Ze> x (cos 9)‘3‘ (A13)
Psyp

e€dsS

This 1-form symmetry breaking looks robust only up to a finite region. Such 1-form symmetry becomes restored in
a long-enough length scale, and the resulting state must become 1-form symmetric.

c. 2D Cluster State, measurement on edges

The Lemma implies that the expectation value of operators defined on edges disappear unless it is an element of

the 1-form symmetry Zél), i.e., a product of X; on the closed loop. Let C' be the set of closed loops one can draw on
a given lattice. Then, the post-measurement wavefunction norm is given by

W Ps ) = 2LN > {Hse} (cos §) /' (A14)

leC e€l

as when we expand P, terms vanish unless it forms a product of X along a closed loop. For given two vertices v
and v’, let p be a path between them. Then, the correlation between two vertices is given as

(PY| Z,Zy | PY)  (Y[T]ie, X1 [PY)

@IPly) (WP

1 1 p
= WP |2~ Z {Hse] (cos §)/P! (A15)

ps.t.p+peC  €€p

which is nothing but an expression for the 2D Ising model with the sign of the Ising interaction at the edge e is given
by s.. From this structure, we can immediately infer that the amplitudes of the wavefunction in the Z basis should
be proportional to the Boltzmann weights.
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d. 3D Cluster State with Zg)) X ZgQ): measurements on vertices

Here we prepare a 3D cluster state defined on the cubic lattice where qubits reside at both vertices (V) and edges
(E). This cluster state has the mixed anomaly of 0-form and 2-form symmetries, and by measuring vertices in X-basis,
one can get the 3D toric code state. The stabilizer Hamiltonian is given by

ZX II z.-> (Xe 11 ZU> (A16)
een(v) e vEde

where n(v) is the set of edges neighboring the vertex v. Here, all operators commute and we have two symmetries:
0-form: g = HXU
v

2-form: h, = H X., -~ is the loop along the bonds (A17)
ecry

When measured on vertices, the above 3D cluster state becomes a 3D toric code state, spontaneously breaking the
2-form symmetry. The Lemma implies that the expectation value of operators defined on edges disappear unless it

is an element of the O-form symmetry Zéo), i.e., a product of X; over the all vertices. Then, the post-measurement
wavefunction norm is given by

(Potb Pt = (1] Ps ) = (1+[H }(cosmN) (A18)

v

To detect the spontaneous symmetry breaking of the 2-form symmetry, one can measure the product of Zs along the
boundary of a certain region V as the following;:

(Pl [[ 2e1Pav) = @l T] 2 [Pst)

ecdV ecdV
= <1/]‘ H Xy |7331/J>
veV
= 2LN ({ H sv} (cosO)™ + [ H sv} (cos G)N”> (A19)
veV vV

In the limit N — oo, the correlation function measuring the 2-form symmetry breaking becomes:

< H Ze> o (cos G)M (A20)
Pstp

ecdV

This 2-form symmetry breaking looks robust only up to a finite region for 8 # 0, implying that the resulting 3D
topological order is unstable under the deviation from the X-basis measurements. The corresponding classical model
is a Ising membrane theory (or Ising 2-form symmetric theory), which is defined by

H{o}) ==Y [] o; (A21)

v fen(v)

where f is the face of the dual cubic lattice, and n(v) is the set of dual faces neighboring to the vertex v in the original
cubic lattice. Note that each term is that the product of Ising spins defined on six faces. In fact, this is a natural
extension of Ising model (Ising 0-form symmetric theory) and Ising gauge theory (Ising 1-form symmetric theory).
Note that this classical partition function is also exactly solvable.

e. 3D Cluster State with Zéo) X Zéz): measurements on edges

Here, we studied the same model as above but measuring edges. The Lemma implies that the expectation value
of operators defined on edges disappear unless it is an element of the 2-form symmetry Zg), i.e., a product of X
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| WS R N

e

FIG. 11. The stabilizer As = J],5, Xi at each site s. It commutes with any single-site measurements on sites. It is a product
of six stabilizers, X; Hpsz Zi, with | € s. In the figure, there is a Pauli-X on each red link, and a Pauli-Z on each plaquette.

on the closed loop. Let C be the set of closed loops one can draw on the cubic lattce. Then, the post-measurement
wavefunction norm is given by

WP ) = 5 3 [ TL 5e] (cost) (A22)

leC e€l

as when we expand P, terms vanish unless it forms a product of X along a closed loop. For given two vertices v
and v’, let p be a path between them. Then, the correlation between two vertices is given as

(PY 2,20 |PY) _ (01TLie, X1 [PY)
WP ) Wl Py

1 1 _
= WP | 2¥ Z [H se] (cos §)!7! (A23)

ps.t.p+peC e€p

which is nothing but an expression for the 3D Ising model with the sign of the Ising interaction at the edge e is given
by s.. From this structure, we can immediately infer that the amplitudes of the wavefunction in the Z basis should
be proportional to the Boltzmann weights.

f- 3D Cluster State with Zgl) X Zél) : measurements on edges

Another 3D cluster Hamiltonian is written as the following:

Hsp spr = — ZX Hzf—ZXfHZ (A24)

foe ecf

where f runs for all faces of the cubic lattice. Bolded symbols act on faces, and unbolded symbols act on edges. Note
that by multiplying stabilizers, we obtain that [[;., Xy =1 for any cube c and [[ 5, X =1 for any vertex v. Here,
generators of two 1-form symmetries are defined on two-dimensional surfaces as the following:

Zgl) 1-form: hgy = H Xy
feov

Zgl) 1-form: ggy = H X, (A25)
eldV

where V is a certain three-dimensional volume enclosed by cubic faces, and Visa infinitesimally inflated version of
V which intersects with edges emanating from V. Therefore, 9V is a set of faces, while 9V is a set of edges. Without
loss of generality, if we measure all faces in X-basis, then we obtain that the resulting state has [[,.; Z. = 1 and

[I.5, Xe =1 for all f and v, which gives the 3D toric code ground state.
When the measurement direction deviates from the Z-direction, the plaquette terms B, = Hlep Z; are no longer

stabilizers. Nevertheless, the star terms A; = HDS X is still a stabilizer, as we illustrated in Fig. 11.
Assume we measured faces with angles. The norm of the wavefunction is given by

(Payo[Patt) = (W] [ Ze 1Patt) = (WI ] X [Patt)

ecdS fes

= QLN Z [ H sf] (cos §)19V (A26)

Vo fedv

ecf
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where the summation of V is over any three-dimensional volume. In fact, one can notice that this is the partition
function of 3D Ising gauge theory with plaquette signs given by {s;}. To detect the spontaneous symmetry breaking
of the 1-form symmetry (topological orders) one can measure the product of Zs along the boundary of a certain
surface S as the following:

(Pl T Ze1Pstt) = (W] T ZePstt) = (0| [ X1 1Pst)

e€ds e€ds fes

2LN Z [ H sf} (cos §)12V] (A27)

Vst V=S  feav

which agrees with the expressions for the loop correlation functions in 3D Ising gauge theory. Depend on 6, the loop
correlation decay exponentially either by |9.5] or |S|.

Appendix B: Post-measurement wavefunctions

One can directly write down the wavefunction after measurements in Eq.(3) using the decorated domain-wall
construction. The cluster state wavefunction is written as the equal superposition of all domain wall configurations
with charges attached accordingly:

1
VoN-1

|1/}> = Z |{d2n}>ddw (Bl)

{d2n}

where the subscript ddw stands for that the state is a decorated domain wall basis, where domains (charges) are
defined on odd (even) sites. For example, the basis without a domain wall, |{ds, = 1}) would be the GHZ state on
odd sites (and accordingly, all |+) states on even sites):

1
ﬁ

where the odd sites define spin configurations and even sites are charged based on whether the domain wall exists
in neighboring odd sites. The summation is over 2¥~! configurations since domain walls are under the constraint
[ dan = 1. Also, the domain-wall basis is the cat state of two different spin configurations giving the same domain-wall
configuration. Then, the wavefunction norm can be calculated as

[+ ] @ [14)®] (B2)

even

(PutlPot) = i (6 TL(1 + 2008 00 )

1
= SaNT Z H(l + 82,,c08 Oday,)

{d2n} n
1 N
= o (1t I sem(cos)™) = 2 (B3)
m=1

where we used the fact that in the expansion of P, any terms involving Y or Z disappears under the Lemma. The
measured wavefunction can be written as

[Psv) = Y C{dan}) Ho({dn})}) ® |M) (B4)
{d2n}

where now |M) = ®)_; |M,,,) stands for the measured component on even sites. The structure of the Z already
implies that

N 1/2
|IC({d2n})| = \/% <H(1 + $9,C08 Hdgn)>

- \/%[COSMW)]‘%% S, sandan .
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where we used e*?i% = cosh(a)(1 + tanh(a)o;o;). Although the calculated magnitude agrees with the square root of
the Boltzmann weight, in order to calculate the phase factor, one has to proceed with details. First, decompose |+)
state into the measurement basis:

) = ax [M) + be [M) (B6)

Then, we can obtain that ax = (M,|£) and by = (M_|+), where |+) = [1,£1]T/v2. Here, for a different
parametrization i = (cos 6 cos ¢, cos 0 sin ¢, sin 6), we get

M) = I (sin(G) + 1) (BT)

2(1 £ sin ) \ €' cos(f)
Then, note that for a measurement outcome {sa, }, the projection is defined as
Pa > @iy [My, ) (M, | (B8)

Then, we see that

N N
C({dan}) = <M|§;;711|d2n> = Hn—vﬁiﬁldzm 5

Note that

don) = Nﬁ [szn sin @ + 1 + so,done’® cos 9}
2n
= 2(cos /2 48—2:2 S0 0/2) [(cos 0/2 + s9,, 510 60/2) + Sgndgneiqb(COSQ 6/2 — sin® 9/2)]
n

(M

2n

i¢
= SQTH(COSH/Q + Sop,8i00/2) + cdzn (cos /2 — sa,8in6/2)
= Z22[(1+ s2ndanc’) cos(6/2) + (s2n — dane™) sin(6/2)] (B10)

For ¢ = 0, one can show that

(M, |dan) = Son, €08(6/2) = sap/(1 + cosb)/2, if s9,doy, > 0,0 =0
T sin(0/2) = /(1= cos) /2, if sodzn < 0,6 =0

= cpgn\/(l + sopday cos0)/2, Pon = (71)(1752")(1*[12")/4, if¢p=0
11, (14 sandayn cos @)
g <M32" d2n> = (E[ @271) \/ n 2N 9 (Bll)

which agrees with the expression obtained from the norm (Pgs1)|Pstb). Now, for ¢ # 0, we obtains that

) 1 ndon cos 0 . ;
(M, |d2,) = 6”7271\/ T S2nda QCOS cos (b, Nan, = Arg(sin 0 + so,, + sapday, cos 6‘61¢') (B12)

which agrees with the norm calculation (here the prefactor for X is cos 6 cos ¢).

Although these phase factors can affect the expectation values when we measure correlations of Y or Z operators,
they should not change any essential physics. The result implies that if we measure in xz-plane without y-component,
the wavefunction is real. Then, it simply implies that the wavefunction weight would be given by a Gibbs weight.
However, even if there is a phase factor, it would simply correspond to some basis rotation; as long as we do not
measure correlations in Y or Z, such basis rotation along the X-axis should not matter. After such rotation, we
should obtain a real wavefunction weight again.

Appendix C: Parent Hamiltonians

We use the strategy described in Sec. IID [37-39] to generate the parent Hamiltonians for our post-measurement
states in higher dimensions. In the cases described below, minor modifications are needed compared to the derivation
for 1D.
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1. 2d measurement on edges

After the measurement, the wavefunction is
|\Il> :M5|\IJO>7 ‘\II() ‘{X ]i[sl}>7 MB :Hegsijzizj. (Cl)
[EY (i)

One choice of its parent Hamiltonians is H = )", H;, and

2 cos? 0
H; =—cosf(1+ cos® ) ZsijZiZj + 3 cos’6B; — X; Hsl 1+ cos* GHSZ H Z; — TBi ,
(ij) 1> 3¢ jen(i)
Bi = Z SijsiijZk- (02)

Jken(i),j#k

where n(i) is the set of sites neighboring the site i. We derive the Hamiltonian (C2) by first performing a Kramers-
Wannier duality of the wavefunction, which becomes

(W) = Mp|Wg), W) = |{H si1Xj = 1}> . My =][e2 (C3)

EY 1
Adapting the strategy in Subsection I D, the parent Hamiltonian for this state is found to be
1 4
=320 (M M) (METY; (D) M), (C4)
l j=2

where

Ty(l) = (5152X{1X§l - 5354X§le/11) ) F/12<l) I5(1)

(1 - H sZX/l> (C5)

N —
l\J\H

and similarly for I'y3,I'14. The result is H' = >, H;, where

20
H| = — cos (1 + cos®6) ZSlZl gcos 20B; — Al <1+cos HHSZZZ cos B£>7

=Y =Y 3
A =1]sXi, Bi= > sismZiZ, (C6)
134 19i,m>i,l#m

After reversing the KW duality, we obtain the aforementioned parent Hamiltonian.

2. 3d measurement on plaquettes of the Zéw X ZS) SPT

One choice of the parent Hamiltonian H =), H; is

2 20
2H; = —cosf(1 + cos? ) Z spBp + 3 cos? 0B; — X H sp |1+ cos* 0 H Splip COZ B,
p3l p3l p3l
By=[[%. Bi= > sp54BpBy, (C7)
lep p31,931,p#q
together with the gauge constraint [[,., X; = 1 for each vertex s.
We derive it in this way. The state post-measurement is
U) = Mpg|Wo), |Wo) = [{X; =] s,}), Ms=]]elor?22%, (C8)

pol
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where Z¥, i =1,2,3,4 act on the links on the boundary of the plaquette p. Under a Kramers-Wannier duality from
links to plaquettes, the state is mapped to

|9') = M|, |h) = HXIXG XFXY = shshsisl}), Mp=[]eP%, (C9)
p

where X{l,i = 1,2,3,4 represent the Pauli-X operators that act on the four plaquettes neighboring the link [, and

sé,i =1,2,3,4 are the measurement outcomes on those plaquettes. |¥y) is the ground state of the Hamiltonian

PR SELE e o1
which can be rewritten as
Hy =3 37 [Phra) + TR0 + T 0] (1)
!
where
Tha(l) = 5 (ssh X1 XY — sho Xy 1), (C12)

and similarly for T} and T}. In particular, (Do) =0, i = 12,13,14. Then it follows that the state [¥') is the
ground state of the following Hamiltonian,

=3 > (o) (e (©13)

1 j=2,3,4

More explicitly,
1 U / ’ ’
O 5 (518266(3121+32Z2)X{X5 _ 3334eﬁ(3323+34z4)X§X4’1) , (C14)

where the Pauli operators act on the four plaquettes around the link .

4
2T, (1) T4 (1) = — cos O (1 + cos® 0) Z spZn + 2cos® 0(s15021 Z + s354 25 7))

p=1
4
qus
p=1

— cos® 0515021 Zh + 815421 2} + 505375 75 + 3234Z§Z4'1)} : (C15)

4
1+ cos*6 H spZ; +cos? O(s152 21 Zb + 5354257
p=1

Similar results hold for I'}f (O, () for j = 3 4. Here, we have scaled Eq. (C'15) by an overall constant cosh? 3, such
that at 6 = Z, the parent Hamlltonlan is =13, X [, sp-
Then it follows that

4 4
2 cos 9
2H] = — cosO(1 + cos? 0) Z spZi + 3 cos?dB) — A} |1+ cos? 6 H spZy — B;
p=1 p=1
A =1]sX), Bi= >  sps,2,Z) (C16)
p3l p3l,g3L,p#q

These local terms, after reversing KW duality, becomes Eq. (C7).
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3. 3d measurement on sites of the Zg)) X Z;Q) SPT

A computation similar as in 2d case leads us to the following parent Hamiltonian, up to an unimportant constant
and total prefactor, H =, H;,

Hl:—XleU—FcosQGXlH H Zm—COSGZSvHZl, (C17)
vel vel m3v vel 5v

together with gauge contraints, Hlep X, =1
Let us rewrite it in a more illuminating way, for the case that the outcomes are s, = 1,

H =Hy + 6 cos 0H, .. + cos? Hgpr,
Hy==> X, He=-Y 1[% HspT—ZXlH 11 Zn. (C18)
l v [Dv vel mdv

together with gauge contraints, Hlep X; = 1. Under a Kramers-Wannier duality from links to vertices, the model
becomes

H= —Z(Xin—i—cosQGYin) —GCOSQZZ,-. (C19)
(i5) 2
At 6 = 0, the model has a U(1) symmetry.

Appendix D: Probability Distribution of Fluxes

In this section, we prove that the correlation functions of all fluxes uniquely specify the probability distribution
P,,(m) for the flux configuration m = {m,,}. There are total N —1 independent plaquettes and 2 independent cycles.
By m, we denote fluxes through those independent N + 1 plaquettes and cycles. Consider a closed loop ~y, which is
represented as the boundary of (possibly disjoint) areas A, i.e., ¥ = OA. Then, We note that the expectation value of
the gauge-invariant object

E[Hse] = (cos 91?4 = E| H my| = (cos 9)!94l (D1)

ecOA pEA

for any arbitrary set of plaquettes A. Note that along the cycles, we also have E[Heecse] = (cos#)!¢l. To show
that P,,(m) is completely fixed by the correlation in Eq. (D1), we reconstruct the full probability distribution in a
inductive manner:

e Get P,,(my), which is the probability distribution for a certain plaquette m,, where the others are marginalized.
Given the flux expectation values, it is straightforward to show that

Prfmy) = 5 (14 my(cos6)) (D2)

e We get all single-flux probability distribution. Based on this information, we can get all two-fluxes probabil-
ity distributions between any two plaquettes. Basically, Eq. (D1) tells that any pair of separated plaquettes
are independent, while the neighboring plaquettes are correlated. We can establish the set of equations for
neighboring plaquettes:

(COS 0)6 = Z (mlmg)P7n(m1,m2)

my,m2

m ml § P mlam2
P, m2 g Pm m1,m2

1= Z P(ml,mg) (D?))

mi,msa

Since P,,(m1, ms) consists of 4 = 22 variables and we have 4 equations, we can completely determine the
two-point probability distribution.
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e The above proof can be simply extended for any three-points probability distribution, and so on. More generally,
for a given 1,2, ...,k — 1-points probability distributions and the correlation structure Eq. (D1), we can obtain
k-plaquettes probability distribution. For a given P,,({m;}*_,) for a set of plaquettes enclosed by the boundary
of length [, it satisfies the set of equations as the following:

(cos@ Z [H m | P ({m}y)

{m}, Li=1

Pum) = S P{mh)
{m}e\{m:}

Pn(mi,mj) = Y. P({m})
{m}i\{mi,m;}

Po({m}i\ {mi}) =Y Pu({m}y)

1= Y Pu(my) (D4)
{m}e

Note that the number of equations are simply given by the binomial expansion:

L k k k ok
#ofequat10ns—1+<1>+<2>+ ~-+<k_1>+1—2 (D5)

Therefore, since we have 2* independent equations, it should completely determines P, ({m;}¥_,) with 2*
variables.

e By induction, since we know how to get all P, for a single plaquette, we can obtain P,,(m) for all plaquettes.
This implies that the loop correlation function is enough to completely specify the probability distribution for
the fluxes.

Appendix E: Removing complex phase factor by a shallow quantum circuit

Let us show that the difference between the measurement at ¢ # 0, comparing to the case that ¢ = 0. If P|y) is
the pure state measured at (6, = 0), then Py|1)) measured at angle (6, ¢) only differs from P|y¢) by the U(1) phase
in their wavefunctions.

Without loss of generality, let us consider we perform measurements on all links on the cluster state on a d-
dimensional square lattice.

Py = R;;PRQM,, Ry g = H (COS gll + isin gQSXZ) (E1)

links [

Py = 3 wionlfoi) @) (E2)

{O'L:il}

It follows that

Pslt) = R, ,PR. slv) = R, 4P [] (Cosll + lsmHz> ) (E3)

links ¢ i€l
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Since the projectors are operators on links,

Pol)) :R;; ey (cos gll + isin g H ZZ.> Py

i€l

_R_’; (cosll—i- 1smHZ> Z W0}
links 1

{0:}) ®|s1)

i€l {oi=%1}
= Z w{gi}ei% 2 tinks 1 [Licr o {01}> ® R;}”Sl) (E4)
{o;==%1}
Therefore,
Pots) = UzlP), Uz =][e's a2, (E5)

l

The two states are related by a single-depth local unitary.

Similar results also hold when we measure the qubits on sites. For example, if we start with the Zg) X Zél) SPT
state and measure the sites, the post-measurement state are related by

Py = Uz|Py), Uz =]]e a2, (E6)

9

Appendix F: Stochastic Sampling

In this appendix, we prove that the decoded correlation function calculated by maximum likelihood sampling protocol
would give the correlation function of the RBIM. First, note that the conditional probability can be calculated as the
following:

PRBIM( )PRBIM(m |§)

RBIM S,p m|s,p s

Ps\m %) ( |m8) = PRBIM( ) (Fl)
m,p ms

where PE‘BIM is given as independent bond distribution where p(s) = (1 + cos¢)/2. Note that

1 ifs~s
PRBIM 3 — . F2
imla. (M) 0  otherwise (F2)
Also, note that
1 S 1 S;
pBEIM(S) BZt iti o pTlr’;E;IM(ms) _ E ’ BZt ijts (F3)

2Nzﬂ ZB

where Zg = (2cosh 3)2N and § = tanh™" cos(p). It is straightforward that 3 PEBM(3lmy) = 1.

1. Equivalence to the random bond Ising model (RBIM)

With these results, we can now compare the correlation functions of the RBIM and our decoded correlations. First,
the RBIM correlation function is defined as

RBIM RBIM 1 B> ij)y OiSij0;
Cu) a Z za: Zsls] 170" v "
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while the correlation function calculated by our protocol (where ¢ = 6 is chosen) would be formally expressed as

<Cdecode Z Z

ZPRBIM (3lms)ti(s > 8)t;(s — 8)osoje’ =0 ‘“S“"f}

- s & i Z Z Ims)&ﬁjeﬁzm5i53?!x‘ple&j]
]. ~ _sample ~
_ RBIM ~ ~ B> iy Gisi; G
E E E P; o (8lms) P (s) {Zﬂ[é] Giojel =t 7% ]
1 5 sample = — _RBIM
— § E PRBIM |:Z/B[ }O—ZJ‘] Z(iﬂo’isij pl Uj:| — <CZ]> (F5)

where mys is the flux configuration calculated from the bond configuration s. Here we used that Z[s] = Z[3], and the
following equality:

PRBIM ( ~)‘PRBIM (

RBIM S,$
ZP |ms)PspB (S) = Z PRBIM

s m,e

ms|3)

(ma) P (s)

3 »Sa?avrnple X
- Z 1 PRBIM( )Zt ef Ztisiy ’/Zﬁ ZgPRBIM(g)ZtGBZtI o b

= Sl Tuentz] 2 Ty PR
Z [g] ZB P e(ssample)
— PRBIM B .20 _ pRBIM/ sample S, F6
S, (S) Z~[§] ZOB (S )PS’W(Ssample) ( )
At =7 (¢ = 6), the above expression simply becomes PREIM( §). This result rigorously establishes the equivalence

between our decoded correlation functions and those of the RBIM upon proposed stochastic sampling.

2. Optimal choice of ¢

Now one can ask the following question: What if we choose ¢ # 67 It means that the decoding scheme does not
properly take into account of the internal noise structure. In this case, one can show that

ecode pe R‘BIM7 (/3)
(CFo%e) =1Ciy(Cidg " =(Ciy)g

)

(F7)

which is the correlation function of the RBIM away from the Nishimori condition. The corresponding RBIM would
be at the inverse temperature § whose disorder distribution is determined by p; = (1 4 cos0)/2, i.e., S.

Using the interesting observation by Nishimori [67], the ferromagnetic correlation for a given probability p(8) =
(1 + tanh 8)/2 is maximized when the inverse temperature B = (. Therefore, for an optimal estimation of the
correlation functions, one should take 8 = 3.

The derivation of Eq. (60) is a direct generalization of the following equality:

0 ( sample)

T decode, "’ RBIM P, L 55 e,
Y = 3 PN ) T e B e

sample )

) 1 =
Btisizt; 57 LigeP 2 9181305
QNZB Zzze ssample) |:Z5[§] i0i€

1 P Z Z ﬁf Sij J] Z Zﬁ al BE(LJ O-Z‘sl‘lo-]‘|

2NZg PS 0 (8)
o; 65 Em) 0i8ij0;

:ZPSO ZZ ] Bt s1]t]‘|

Zﬁ[ 3]

R R (%)
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Appendix G: Minimum Weight Perfect Matching Problem

For a given flux configuration m = {m,}, the problem of finding a bond configuration s with the maximum number
of ferromagnetic bonds can be mapped to the problem of finding a complete pairing between frustrated plaquettes
(my = —1) where the sum of the distances (in the square grid) between paired plaquettes is minimized [89].

More precisely, the problem is defined by the weighted graph G = (V, E, W) with the following definitions:

e Vertices V: the set of negative fluxes m, = —1.
e Edges E: the set of shortest paths along the square lattice among all vertices V.
e Weights W: the set of (integer) distances for paths path in E.
Note that the resulting graph has all-to-all connections. Then, the objective is the following:

Minimize Z W (v,v" )z (v,v")

v eV

Constraints Zx(v, V') = Z z(v,v) =1

’ v’

ZJJ(U,U’) >0 (G1)

’

v

v

where z(v',v) = z(v,v") represents whether two vertices v and v’ are matched (x(v,v") = 1) or not (z(v,v") = 0).
The constraint implies that all vertices are perfectly matched.

(




