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We investigate the prospects of employing the linear cross-entropy to experimentally access
measurement-induced phase transitions (MIPT) without requiring any postselection of quantum
trajectories. For two random circuits that are identical in the bulk but with di↵erent initial states,
the linear cross-entropy � between the bulk measurement outcome distributions in the two circuits
acts as a boundary order parameter, and can be used to distinguish the volume law from area law
phases. In the volume law phase (and in the thermodynamic limit) the bulk measurements cannot
distinguish between the two di↵erent initial states, and � = 1. In the area law phase � < 1. For
circuits with Cli↵ord gates, we provide numerical evidence that � can be sampled to accuracy "

from O(1/"2) trajectories, by running the first circuit on a quantum simulator without postselection,
aided by a classical simulation of the second. We also find that for weak depolarizing noise the
signature of the MIPT is still present for intermediate system sizes. In our protocol we have the
freedom of choosing initial states such that the “classical” side can be simulated e�ciently, while
simulating the “quantum” side is still classically hard.

I. INTRODUCTION

Open quantum dynamics can host a rich phenomenol-
ogy, including a family of measurement-induced phase
transitions (MIPT) in the scaling of entanglement along
quantum trajectories in monitored systems [1–7]. While
the MIPT occurs generically in a number of di↵erent
models [8–26], its verification can be challenging even
on an error-corrected quantum computer, due to the so-
called “postselection problem”. Quantum trajectories
are labeled by the measurement history m, whose length
is extensive in the space-time volume V of the circuit;
thus, the number of possible trajectoriesm is exponential
in V , but they each occur with roughly the same prob-
ability. On the other hand, one needs multiple copies of
the samem in order to verify any quantum entanglement;
and then many di↵erent m to perform a proper statis-
tical average. On a quantum simulator there is no gen-
eral recipe for producing such copies other than running
the quantum circuit many times and waiting until the
measurement results coincide (“postselection”). In other
words, the prepration of the output state is not read-
ily “repeatable”, and naively O(eV ) runs of the circuit
are required to generate multiple copies, thus severely
restricting the scalability of such experiments. Neverthe-
less, in an impressive recent experiment that carries out
postselection [27], the MIPT is observed on small scale
superconducting quantum processors.

The exponential postselection overhead has been
shown to be avoidable in two cases. First, when only
Cli↵ord circuits are considered, the entanglement can be
verified by “decoding” the circuit, either through a full
classical simulation within the stabilizer formalism [28]
or via machine learning [29]. With machine learning the
authors claim that “decoding” is possbile also beyond
Cli↵ord circuits, although this has yet to be explored
in detail. Second, when the non-unitary (monitored) dy-

namics is a spacetime dual of a unitary one [30–32], post-
selection is partially ameliorated, and correspondences
between unitary dynamics and monitored dynamics can
be made.1

Here we propose a resource e�cient experimental pro-
tocol for verifying the MIPT in random circuits, by esti-
mating the “linear cross-entropy” (denoted �) between
the probability distribution of (bulk circuit) measure-
ment outcomes m in two circuits with the same bulk but
di↵erent initial states, ⇢ and �. A closely related quantity
has been discussed by Bao et. al. [7], and in Ref. [34]. In
particular, as we establish both numerically and analyti-
cally, in the thermodynamic limit the linear cross-entropy
(when suitably normalized) is 1 in the volume law phase,
and equals a nonuniversal constant smaller than 1 in the
area law phase. Thus, the MIPT can also be viewed as
a phase transition in the distinguishability of two initial
states, when the bulk measurement outcomes are given.
Indeed, the MIPT is a transition in the bulk structure of
the quantum circuit, where the scaling of the entangle-
ment entropy in the output state is just one of its many
ramifications. A full appreciation of this fact may lead
to other ways of probing the transition experimentally.
The definition of � includes contributions from all sam-

ples of m, and to estimate � no postselection is involved.
However, as we discuss below (see Sec. II), estimating �

usually requires an exponentially long classical simula-
tion, thus not scalable. In Sec. II B, we show that the
classical simulation becomes scalable in Cli↵ord ciruits,
where � can be e�ciently sampled by running the ⇢-
circuit on a quantum simulator, aided by a classical sim-
ulation of the �-circuit. For a fixed circuit we estimate

1
We bring the reader’s attention to a recent proposal of revealing

the MIPT using “pre-selection” [33].
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FIG. 1. The layout of the hybrid circuit considered in this
paper. Di↵erent from the usual setup [9], we have an addi-
tional “encoding” stage before the hybrid evolution for time
tencoding = 2L, following Ref. [5]. We call the evolution after
the encoding stage the “circuit bulk”, which last for another
tbulk = 2L. The total circuit time is T = tencoding+tbulk = 4L.
We will compare two di↵erent initial states ⇢ and � (left un-
specified for the moment) undergoing the same circuit evolu-
tion.

that the number of samples of m scales as 1/"2. We pro-
vide numerical evidence that � is an order parameter for
the MIPT (i.e. � = 1 in the volume law phase and � < 1
in the area law phase), and simulate the e↵ect of depolar-
izing noise. We find that depolarizing noise generically
decreases � regardless of p, and in the thermodynamic
limit we expect no transition for any finite noise rate.

By choosing the circuit bulk to be composed of Clif-
ford operations and � to be a stabilizer state, the pro-
tocol is scalable on both the quantum and the classical
sides. Nevertheless, unless ⇢ is also a stabilizer state,
the ⇢-circuit output state is still highly nontrivial and
hard to represent classically. In Appendix C, we con-
sider one nontrivial aspect of the output state in the
volume law phase, and show that with a generic (non-
stabilizer) choice of ⇢ the probability distribution over
the output bitstrings obeys a nontrivial distribution with
a long tail, similar to, but di↵erent in detail than, the
Porter-Thomas distribution from purely unitary random
circuits. We discuss possible implications of this result.

II. LINEAR CROSS-ENTROPY AND ORDER
PARAMETER

We consider the “hybrid” circuit shown in Fig. 1, com-
posed of both unitary gates on nearest-neighbor qubits
arranged in a brickwork structure, and single-site mea-
surements in the bulk, performed with probability p at
each qubit within each time step. By convention, each
time step contains L/2 unitary gates. Di↵erent from
the usual setup [9], we have an additional “encoding”
stage before the hybrid evolution for time tencoding = 2L,
following Ref. [5]. The reason for this somewhat un-
usual choice is practical, to get a clearer experimental

signal of the MIPT; see Sec. II C. We call the evolu-
tion after the encoding stage the “circuit bulk”, which
lasts for another tbulk = 2L. The total circuit time is
T = tencoding + tbulk = 4L.
For concreteness, we take all the measurements to be

in the Pauli Z basis. Given a circuit layout (as de-
termined by the brickwork structure and the location
of measurements) and the unitary gates in the bulk –
which we denote collectively as C – the unnormalized
output state is defined by C and the measurement record
m = {m1,m2, . . . ,mN} as

⇢m = Cm⇢C
†
m, (1)

where Cm is the time-ordered product of all the unitaries
and projectors in the circuit, written schematically as

Cm = PmNPmN�1 . . . PmN�NT +1 · UT

· PmN�NT
. . . PmN�NT �NT�1+1 · UT�1

· PmN�NT �NT�1
. . . PmN�NT �NT�1�NT�2+1 · UT�2

. . . (2)

Here each line contains all quantum operations in one
circuit time step, and N is the total number of measure-
ments, which is proportional to the spacetime volume of
the circuit, N / pV = pLT . The corresponding proba-
bility of obtaining m is given by

p
⇢

m = tr ⇢m. (3)

We define similar quantities for a di↵erent initial state �,

�m = Cm�C
†
m, (4)

p
�

m = tr�m. (5)

With these, we define the (normalized) linear cross-
entropy of the circuit between the two initial states as

�C =

P
m p

⇢
mp

�
mP

m (p�m)2
. (6)

Here, after averaging overm, �C only depends on the cir-
cuit C, and we have explicitly included this dependence
in our notation. Finally, we take its average over C,

� := EC�C = EC

P
m p

⇢
mp

�
mP

m (p�m)2
. (7)

It was previously pointed out [7] that a quantity closely
related to � ln� corresponds to the free energy cost af-
ter fixing a boundary condition in a (replicated) spin
model [6, 7, 35, 36]; in Appendix A we provide a sim-
ilar calculation for our circuit. From this derivation we
expect 1�� = e

�O(L) for large L in the volume law phase
(p < pc), and 1 � � > 0 in the area law phase (p > pc),
even as L ! 1.
The physical meaning of � should be clear: it quanti-

fies the di↵erence between the probability distributions
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over measurement histories for the two initial states. In
the volume law phase, � = 1 implies the impossibility
of distinguishing di↵erent initial states from bulk mea-
surements, due to the “coding” properties of this phase
(i.e. the dynamics in the volume law phase generates a
“dynamical quantum memory” [4, 5, 37–40]). In partic-
ular, in the volume law phase, local measurements are
so infrequent that it extracts little information about the
inital state, as the information is su�ciently scrambled
by the random unitaries. The code breaks down when
p is increased past the transition, and � saturates to a
finite, nonuniversal constant strictly smaller than 1. In
this phase, information about the initial state leaks into
the measurement outcomes.

We now briefly outline a protocol for estimating �,
which is similar to the linear cross-entropy benchmark
(“linear XEB”) for random unitary circuits [41, 42].
Then we discuss its limitations when applied to the MIPT
and how to overcome them in case of a stabilizer circuit.

A. General setup

Consider running the circuit with initial state ⇢ (“the
⇢-circuit”) on a quantum simulator. From the simulation
we obtain a measurement record m, an event that occurs
with probability p

⇢
m. Given m we can perform a classical

simulation with the initial state �, and calculate the cor-
responding probablity p

�
m. Repeating this M times, we

obtain a sequence of probabilities {p�m1
, p

�
m2

, . . . p
�
mM

}.
Their mean converges to the numerator of Eq. (6),

lim
M!1

D
p
�

mM
j=1

E

⇢

:= lim
M!1

1

M

MX

j=1

p
�

mj
=

X

m

p
⇢

mp
�

m. (8)

The denominator of Eq. (6) can be estimated simi-
larly with a separate classical simulation, by running the
�-circuit M

0 times, and computing the mean of proba-
bilities {p�mj

}. This way we get

lim
M 0!1

D
p
�

mM0
j=1

E

�

:= lim
M 0!1

1

M 0

M
0X

j=1

p
�

mj
=

X

m

(p�m)2 .

(9)

Both equations above are well-defined, and in this pro-
tocol each run of the circuit is used, so no postselection
is required. This should lead to a general protocol for ex-
perimentally probe MIPTs, although a full classical sim-
ulation is still necessary, and the experimentally accessi-
ble system size will be limited by the power of classical
simulation.

To obtain a scalable protocol, we focus on the case
where � is a stabilizer state, and the circuit bulk Cm

is composed of stabilizer operations (Cli↵ord gates and
Pauli measurements) [43–45]. At this point we do not
put constraint on ⇢. In this special case, the denominator
of Eq. (6) can be computed exactly in polynomial time,

without doing any sampling as in Eq. (9) (see Appendix B
for details). Thus, we may rewrite Eq. (6) as

�C =
X

m

p
⇢

m
p
�
mP

m (p�m)2
, (10)

and in analogy with Eq. (8),

�C = lim
M!1

*
p
�

mM
j=1P

m (p�m)2

+

⇢

. (11)

For each run of the ⇢-circuit, we obtain the measurement

record mj and we can compute
p
�
mjP

m(p�
m)2

in polynomial

time, and take its mean over runs. Since the circuit is

Cli↵ord, the new “observable”
p
�
mjP

m(p�
m)2

is either 0 or 1

for a given m,2 and this average converges quickly with
increasing M . We also see that �C will be bounded be-
tween 0 and 1.
We now provide numerical methods and results for �

across the transition. We consider two types of choices
for the state ⇢, and take � to be a stabilizer state in both
cases.

B. Numerical methods and results

1. Stabilizer state ⇢ versus stabilizer state �

We first take ⇢ to be a stabilizer state, while keeping
� another stabilizer state. As we explain in Appendix B,
now �C in Eq. (10) admits a closed form expression that
does not involve any summation over m, see Eq. (B6).
This allows an exact calculation of �C without the need
of performing any sampling, at the cost of introducing N

extra qubits that record the measurement history. These
qubits are usually called “registers”.
A further simplification occurs when ⇢ is obtainable

from � via erasure or dephasing channels, so that the N

register qubits can also be dispensed with; see Eq. (B10).
We will focus on this case below, where the numerical
simulation is most scalable so that we can confidently
extrapolate the results to more general choices of ⇢.
In Fig. 2(a), we plot � = EC�C for ⇢ = 1

2L 1 and
� = (|0i h0|)⌦L, which satisfies the condition above. The
data shows a clear “crossing” of � near the transition,
confirming our expectation that � is an order parameter
for the MIPT. Indeed, in the large L limit and for p < pc,
� approaches unity, demonstrating that the distributions

2
Recall that for Cli↵ford circuits a measurement either has a de-

terministic outcome, or has random outcomes ±1 with equal

probabilities 1/2 [45]. Let Nrand be the number of measurements

(out of the total N) whose outcome is randomly ±1. There are

2
Nrand possible trajectories in total, and they occur with equal

probability p�m = 2
�Nrand .
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FIG. 2. (a) Numerical results for �C when averaged over 300 Cli↵ord circuits in the bulk (denoted by EC), with the initial
states ⇢ = 1

2L
1 and � = (|0i h0|)⌦L. Here, for each C, the calculation is exact, and M can be thought of as infinity in Eq. (11).

(Inset) Collapsing the data to a scaling form, with parameters pc and ⌫ close to those found near the MIPT in entanglement
entropy [3, 9]. (b,c) The bahavior of � when depolarizing noise is present in the ⇢-circuit. As we see, at noise rate q = 0.1% (b),
there is still evidence for a phase transition, although the location of the transition has shifted from pc ⇡ 0.16 to pc ⇡ 0.14. At
noise rate 1% (c), there is no crossing, and any signature of the phase transition is completely washed out. (d) The fluctuation
in � from a finite number M of samples, as defined in Eq. (12).

of measurement outcomes become equal, independent of
the initial state. Moreover, data collapse in Fig. 2(d)
shows good agreement to a standard scaling form, with
numerical values of the location of the transition pc and of
the critical exponent ⌫ close to previous characterizations
of the MIPT [9].

Although in the exact method for Fig. 2(a) no sampling
of the measurement results is needed in the numerics (and
we have essentially taken the limit M ! 1 in Eq. (11)),
we nevertheless simulate the sampling process for a finite
M and compute the mean in Eq. (11). By comparing this
to the exact result, we calculate the following measure of
statistical fluctuations,

"� := EC

2

4

������

*
p
�

mM
j=1P

m (p�m)2

+

⇢

� �C

������

3

5 . (12)

As we increase M we find "� / M
�1/2, as shown

in Fig. 2(d). This is consistent with the samples⇢
p
�
mM

j=1P
m(p�

m)2

�
being bounded and having weak correla-

tions.3

We also consider the e↵ect of depolarizing noise, oc-
curing randomly in the ⇢-circuit with probability q per
qubit per time step; whereas the �-circuit is still taken
to be noiseless. The setup is to mimic an experimen-
tal sampling procedure, where we run the ⇢-circuit on a
quantum processor subject to noise, whereas our supple-
mentary classical simulation of the �-circuit is noiseless.
The depolarizing noise acts as a symmetry-breaking field

3
Besides "�, �C has additional fluctuations around the layout

average � due to di↵erence choices of unitary gates which are

suppressed for large space-time volume.

FIG. 3. Numerical results of � for initial states ⇢ =
(|0i h0|)⌦L/2 ⌦ (|T i hT |)⌦L/2 (see Eq. (13)) and � =
(|0i h0|)⌦L, following the procedure in Eq. (11). Despite a
di↵erent choice of initial state and smaller system sizes, the
results are qualitatively similar to Fig. 2(a). Here the num-
ber of circuir realizations is 300, and for each circuit M = 100
shots of the circuit are taken.

in the e↵ective spin model [6, 7, 30, 31, 46–48],4 and in
its presence the MIPT is no longer sharply defined. Nev-
ertheless, evidence of the MIPT may still be observable if
the error rate is small compared to the inverse spacetime
volume of the circuit, as we see in Fig. 2(b,c).

2. Magic state ⇢ versus stabilizer state �

We take ⇢ to be a non-stabilizer state, and � to be a
stabilizer state. In particular, we choose a state with |0i

4
See also Refs. [49–51] for related discusssion in random unitary

circuits.
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and |T i on alternating sites,

⇢ =

L/2O

i=1

(|0i h0|2i�1 ⌦ |T i hT |2i), (13)

where |T i = 1p
2

�
|0i+ e

i⇡/4 |1i
�
is a magic state. We still

take the other initial state to be � = (|0i h0|)⌦L.
Based on our calculation in Appendix A, we expect

�C to exhibit similar behavior as in Sec. II B 1. This is
confirmed in Fig. 3, where we follow the sampling pro-
cedure in Eq. (11). In particular, for a given C, we take
L 2 {8, 12, 16}, and sample M = 100 measurement tra-

jectories, and compute

⌧
p
�
mM

j=1P
m(p�

m)2

�

⇢

⇡ �C .We then take

the average over many di↵erent choices of C, namely

EC

⌧
p
�
mM

j=1P
m(p�

m)2

�

⇢

⇡ EC�C . We observe a crossing of �

near p ⇡ pc ⇡ 0.16.
It is important to notice that though the classical side

of the computation (the �-circuit) can be carried out e�-
ciently, the quantum side (the ⇢-circuit) is still classically
hard [52]. This limits the system sizes that we can access
classically in Fig. 3, but we hope larger system sizes can
be achieved on near-term quantum processors.

C. Necessity of the encoding stage

Here we briefly discuss the choice of the circuit archi-
tecture in Fig. 1, in particular the inclusion of an encod-
ing stage. In the usual setup [9] without the encoding
stage, and when the two initial states di↵er on an exten-
sive number of qubits, � should vanish as L ! 1 for all
values of p, and thus cannot be used to probe the tran-
sition (see Appendix A2). When ⇢ and � di↵er only on
a constant number of qubits � would be instead related
to a local spontaneous magnetization [7, 34], having the
following scaling form near the transition,

� ⇡
(
|p� pc|� + �0, p < pc

�0, p > pc
,

see Appendix A 2 for a detailed discussion. In this case,
we do not expect a crossing as in Fig. 2, but instead a
collapse of the curves for di↵erent system sizes L. In
experiments, a collapse is likely harder to detect than a
crossing. Moreover, the collapse will be more susceptible
to noise for a given system size; that is, the collapse will
immediately disappaear for any rate of noise. For this
reason, we have chosen to focus on the circuit with an
encoding stage throughout the paper.

Moreover, for the purpose of observing MIPT, includ-
ing the encoding stage should only introduce minor ex-
perimental overhead. For example, noise in the encod-
ing stage t 2 [0, tencoding] would not a↵ect the signal
for MIPT in any important way as its e↵ect can be ac-
counted for by a di↵erent choice of ⇢, which is not es-
sential (see discussions in Appendix A); only noise in the

circuit bulk t 2 [tencoding, tencoding + tbulk] is important
(see Fig. 2(b,c)).

III. DISCUSSIONS

Our protocol requires a simulation of many instances
of the random hybrid circuit with mid-circuit measure-
ments, and for each instance O(1/"2) trajectories to es-
timate the cross-entropy to accuracy ". This should be
a task of similar complexity to Google’s simulation of
random unitary circuits [42], except that here we do not
make measurements on the output state but in the bulk.
However, di↵erent from that experiment, for observing
the MIPT it su�ces to focus on Cli↵ord circuits, for
which the classical simulation is not hard. This proto-
col is thus as scalable as the quantum processors. Our
protocol does not require extra quantum operations, and
is flexible in the choice of the initial state. The signal
for the phase transition persists at L = 40 for su�ciently
weak (⇡ 0.1%) depolarizing noise. Thus, we hope this
protocol might be achievable on existing or near-term
devices.
We emphasize that if the circuit is not composed of

Cli↵ord gates, our protocol is expected to require expo-
nential classical resources. It is presently unclear whether
it is in fact possible to probe the MIPT beyond Cli↵ord
circuits with polynomial resources [29].
Although the classical simulation is chosen to be easy

for practical purposes, in our protocol the quantum simu-
lation is classically hard for a generic choice of the initial
state, which would result in a highly nontrivial output
state. Our numerical results in Appendix C suggest that
sampling measurement outcomes on the output state of
the quantum simulation is classically hard in the vol-
ume law phase. Whether this can be used in practice for
demonstrating quantum advantage is not known, due to
apparent need of postselection in order to sample from
this distribution.
Motivated by recent developments in benchmarking

using random circuits [53–55], it is tempting to specu-
late that our protocol may be also useful in that context.
Indeed, a successful observation of the MIPT would be
a testament that the underlying device remains coher-
ent until the very end. In particular, hybrid cricuits with
mid-circuit measurements may be telling of the scaling of
decoherence with respect to circuit depth. Such analyses
may involve the behavior of entanglement in “shallow”
hybrid circuits [46, 47].
Another interesting question is the (classical) sampling

complexity of the bulk measurement outcomes in a hy-
brid Cli↵ord circuit with magic initial states. We have
shown that the bulk measurement history in the volume
law phase does not depend on the initial state, and thus
may be reproduced in polynomial time for a Cli↵ord cir-
cuit with a stabilizer initial state. Similarly, in the area
law phase and at the critical point, a classical simula-
tion using matrix product states can (also) serve as a
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polynomial-time sampler, due to low entanglement en-
tropy. Thus, in one spatial dimension, sampling classi-
cally from the bulk measurement outcome distribution
should, in principle, always be easy. The situation is
much less clear in the area law phase of two dimensional
hybrid circuits [22, 56].
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Appendix A: Cross entropy as boundary correlation
function

1. Bulk cross entropy with encoding

We unpack the circuit averaged linear cross-entropy �

defined in Eq. (7),

� := EC�C

= EC

P
m p

⇢
mp

�
mP

m (p�m)2

= EC

P
m

�
trCm⇢C

†
m

� �
trCm�C

†
m

�

P
m

⇣
trCm�C

†
m

⌘2

= EC

P
m trC⌦2

m · (⇢⌦ �) · C†⌦2
mP

m trC⌦2
m · (� ⌦ �) · C†⌦2

m

. (A1)

Recall that the letter C encodes the circuit layout (i.e.
the locations of unitary gates and measurements) and the
unitary gates, but not the measurement outcomes. The
summation overm is taken inside the average, in both the
numerator and denominator, independently. Thus, � is
di↵erent from the trajectory-averaged entanglement en-
tropies that are used previously for identifying the MIPT.
Nevertheless, in Fig. 2 we see that the location of the

transition and the critical exponent ⌫ do not change much
when we use � as an order parameter.
A proper treatment of the quenched average leads to a

replicated spin model.5 For our purposes here, we can in-
stead consider the annealed average [37, 38], while keep-
ing in mind that this is only a illustrative tool. In par-
ticular, consider

� =
EC

P
m trC⌦2

m · (⇢⌦ �) · C†⌦2
m

EC

P
m trC⌦2

m · (� ⌦ �) · C†⌦2
m

. (A2)

After the average over C, the numerator and the de-
nominator each becomes an Ising partition function on a
triangular lattice. They have bulk weights Jp(si, sj ; sk)
for each downward-pointing triangle [6, 7] (see also
Refs. [35, 36, 57]), and only di↵er in their boundary con-
ditions. We denote them Z⇢� and Z��, respectively.
We take ⇢ and � to be products of local density matri-

ces, i.e.

⇢ =
LY

x=1

⇢x, � =
LY

x=1

�x, where tr ⇢x = tr�x = 1 8x.

(A3)

Moreover, we also have tr�2
x
= 1 since we assumed � is

a pure product state. Thus,

Z�� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

�
�sx=+1(tr�x)

2 + �sx=�1 tr
�
�
2
x

��

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1, (A4)

and

Z⇢� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

(�sx=+1(tr ⇢x)(tr�x) + �sx=�1 tr(⇢x · �x))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

(�sx=+1 + �sx=�1 tr(⇢x · �x))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

e
hx(sx�1)

. (A5)

Here, we use @M0 to denote the t = 0 boundary of the
circuit, and @MT to denote the final time (t = T ) bound-
ary. We see that at t = 0, Z�� has a “free” boundary
condition, and Z⇢� has a magnetic field with strength

5
Due to the di↵erence we stressed above, this leads to a stat mech

model that di↵ers from those obtained in Refs. [6, 7]. In partic-

ular, the spins here take values in the permutation group SQ=2n

with the replica limit n ! 0, and which has a di↵erent symmetry.

hx = � 1
2 ln [tr(⇢x · �x)]. At t = T , in both partition

functions spins are fixed to be sx = +1.

Our circuit in Fig. 1 has an “encoding” stage without
measurements (p = 0) up until tencoding = 2L. This
makes the lower half of the circuit a pure unitary one,
where domain walls with both endpoints on the t = 0
boundary are disallowed by the microscopics of the stat
mech model [35, 36]. In this case, the finite-strength field
at the t = 0 boundary of Z⇢� becomes essentially infinite,
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FIG. 4. (a) Pictorial representation of the partition function ratio Z⇢�/Z�� in Eq. (A8), for p = 0 in the encoding stage and
p < pc in the circuit bulk. (b) Pictorial representation of the partition function ratio in Eq. (A10). Here we do not have an
encoding stage, and there is a uniform, finite magnetic field of strength h (represented with a dashed line) applied at the t = 0
boundary. (c) Pictorial representation of the partition function ratio in Eq. (A11). Here we do not have an encoding stage, and
there is a local, finite magnetic field of strength h applied at the t = 0 boundary. In this case, the cross entropy is expected to
be a function p but not of L (see Eq. (A12)), as we confirm in (d). In all figures the blue color represents spins pointing in the
“+” direction, the yellow color represents spins pointing in the “�” direction, and the black color represents a “free” boundary
condition, where the spins can point in either direction.

putting a hard boundary condition at t = 0:

Z⇢� ⇡
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk)

·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

�sx=+1

:= Z++, (A6)

where Z++ denotes the partition function with + bound-
ary condition at t = 0 and + boundary condition at
t = T . By the same reasonining and the same notation,
we can rewrite

Z�� ⇡ Z++ + Z�+. (A7)

We represent these partition functions diagrammati-
cally in Fig. 4, where the boundary conditions are high-
lighted with color: blue for + and orange for �. (In the
figure, we only illustrated the case where p < pc after the
initial encoding stage; these two stages are separated by
a gray, dashed line.) We have

� =
Z⇢�

Z��

=
1

1 + Z�+/Z++
. (A8)

In the volume law phase, we expect Z�+/Z++ /
exp(�O(L)), because a domain wall with finite line

tension of length L must be inserted between t 2
[tencoding, T ], to accommodate the boundary conditions
change from � to + in time; see Fig. 4. On the other
hand, in the area law phase, the domain wall line tension
vanishes, and we have Z�+/Z++ = O(1). Thus,

� =

(
1 + exp(�O(L)), p < pc

O(1), p > pc
. (A9)

Despite the fact that we are adopting an annealed average
in �, it captures the qualitative behavior of the quenched
average � in Sec. II in the two phases (but presumably
not the critical properties).

2. Bulk cross entropy without encoding

Here we extend our discussion in Sec. II C on � in the
absence of the encoding stage, so that the entire two-
dimensional magnet is now at finite temperature; see
Fig. 4(b). Here, the partition functions Z�� and Z⇢�

have boundary conditions that are identical to those in
Eqs. (A4, A5). However, the spins at the t = 0 boundary
now need not be completely aligned, and small domain
walls can be created at the cost of a finite free energy per
unit length.
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Using the same graphical notation as in Fig. 4(a), with
an additional color, black, representing the “free” bound-
ary condition f , and dashed blue line representing the
finite strength boundary magnetic field hx in the “+”
direction at t = 0, we represent � = Z⇢�

Z��
again with

partition functions of appropriate boundary conditions
in Fig. 4(b). First consider a case where the bound-
ary magnetic field hx = � 1

2 ln [tr(⇢x · �x)] is uniform and
independent of x. This would be the case when, say,
⇢ = 1

2L 1 and � = (|0i h0|)⌦L. Let the free energy cost
of a domain wall with unit length be �F and define the
fugacity to be y = e

��F , we have (compare Fig. 4(b))

� =
Z⇢�

Z��

=
1 +

�
L

1

�
e
�2h

y +
�
L

2

�
e
�4h

y
2 + . . .

1 +
�
L

1

�
y +

�
L

2

�
y2 + . . .

⇡ (1 + e
�2h

y)L

(1 + y)L
. (A10)

Both Z⇢� and Z�� numerator are now a series of terms,
with the i-th leading term having i domain walls each
of unit length (neglecting their interactions). Thus, �

is exponentially suppressed by L for any h > 0, thus
negligible throughout the phase diagram.

We can also generalize Eq. (A10) to the case where ⇢

and � only di↵er on one site, as discussed in Sec. II C.
The partition functions are shown in Fig. 4(c), where we
obtain

� ⇡ 1 + e
�2h

2
+

1� e
�2h

2
hsx2@M0isx2@MT

=+1 . (A11)

Here hsx2@M0isx2@MT
=+1 is the expectation value of a

boundary spin. Thus, we expect the following behavior
of � near the critical point:

� ⇡
(
|p� pc|� + �0, p < pc

�0, p > pc
. (A12)

Here, �0 ⇡ 1+e
�2h

2 is a nonuniversal constant between 0

and 1. This expectation is confirmed by numerical results
in Fig. 4(d).

3. Higher order cross entropies and the
Kullback-Leibler divergence

Here we compute another measure of the di↵erence
between the two probability distributions p

⇢
m and p

�
m,

the Kullback-Leibler divergence,

DKL(p
⇢|p�) =

X

m

(p⇢m log p⇢m � p
⇢

m log p�m). (A13)

This can be computed by the replica trick, where we
introduce an integer replica index Q and the higher-order
cross entropies

�Q = EC

P
m p

⇢
m(p�m)Q�1

P
m(p⇢m)Q

. (A14)

When Q = 2, this reduces to the linear cross entropy
Eq. (6) with the roles of ⇢ and � exchanged. Thus, this
quantity cannot be sampled using the method presented
in the main text.
In order to understand the higher-order cross entropies

in terms of the stat-mech model, we again resort to the
annealed average

�Q =
EC

P
m p

⇢
m(p�m)Q�1

EC

P
m(p⇢m)Q

(A15)

Although the two quantities �Q and �Q are di↵erent in
general, they become the same quantity in the limit Q !
1. More precisely, at Q = 1, �Q = �Q = 1 and

d�Q

dQ

����
Q=1

=
d�Q

dQ

����
Q=1

= �ECDKL(p
⇢|p�). (A16)

In order to see this, we expand Eq. (A14) to first order
in Q� 1,

�Q = EC

1 + (Q� 1)
P

m p
⇢
m log p�m +O((Q� 1)2)

1 + (Q� 1)
P

m p
⇢
m log p⇢m +O((Q� 1)2)

= 1 + (Q� 1)EC

X

m

(p⇢m log p�m � p
⇢

m log p⇢m) +O((Q� 1))2

= 1� (Q� 1)ECDKL(p
⇢|p�) +O((Q� 1)2), (A17)

Expanding Eq. (A15) to the first order, we obtain the
same expression.

Next, we compute �Q using the stat mech model as-
suming Haar random gates in the circuit. Notice that this

quantity can be infinite in general for Cli↵ord circuits.
The spins on the honeycomb lattice take on Q! di↵erent
values labelled by group elements of SQ, with three-body
ferromagnetic interactions on each downward-pointing
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triangles [6, 7]. The model has an SQ ⇥ SQ symmetry,
which is spontaneously broken in the volume law phase.
Assuming Eq. (A3), and repeating the derivation on the
boundary conditions that leads to Eq. (A8), we obtain

�Q =
ZQ,⇢�

ZQ,⇢⇢

, (A18)

where

ZQ,⇢� =
X

g2SQ�1

ZQ,ge (A19)

ZQ,⇢⇢ =
X

g2SQ

ZQ,ge, (A20)

and ZQ,ge is the partition function of the spin model with
fixed boundary condition g 2 SQ on the bottom bound-
ary and fixed boundary condition e (identity permuta-
tion) on the top boundary, SQ�1 is the subgroup of SQ

of permutations that keeps the first element invariant. In
the volume law phase (p < pc), domain walls have finite
tension, thus ZQ,ge/ZQ,ee = O(e�L) for every g 6= e. As
a result ZQ,⇢� ⇡ ZQ,⇢⇢ ⇡ ZQ,ee and �̄Q = 1 + O(e�L).
In the area law phase the partition functions with di↵er-
ent boundary conditions are on the same order and �̄Q is
an order one number that depends on Q. These results
are completely analogous with the case of Q = 2 as they
involve similar arguments.

At the critical point (p = pc), assuming periodic
boundary conditions in the spatial direction, Zge is a par-
tition function of the CFT on a finite cylinder with width
L and length T . The partition function can be written
in two equivalent forms [58]

ZQ,ge =
X

↵

h↵|gihe|↵ie�2⇡(�Q,↵�cQ/12)T/L (A21)

=
X

�

N
ge

�
e
�⇡(hQ,��cQ/24)L/T

. (A22)

In the first expression, ↵ runs over bulk operators, |gi
and he| are Cardy states corresponding to the two fixed
boundary conditions, �Q,↵ is the bulk scaling dimension,
cQ is the central charge. In the second expression, �

runs over boundary operators, hQ,� is the scaling dimen-
sion of the boundary operator, Nge

�
is the multiplicity of

the boundary condition changing operator from bound-
ary condition g to boundary condition e. The first expres-
sion is useful when T � L, then we only keep the ground
state ↵ = 1 in the sum. The second expression is useful
when T ⌧ L, then we only keep the leading boundary
condition changing operator in the sum. Thus,

ZQ,ge =

(
e
sQ,e+sQ,ge

�⇡cQT/(6L) (T � L)

e
�⇡(hQ,ge�cQ/24)L/T (T ⌧ L)

,(A23)

where sQ,g ⌘ log(h1|gi) is known as the A✏eck-Ludwig
boundary entropy [59], hQ,ge is the scaling dimension of
the lowest boundary condition changing operator from g

to e. Thus, at replica index Q � 2, we obtain

�Q =

P
g2SQ�1

e
sQ,g

P
g2SQ

esQ,g
(T � L) (A24)

and

�Q =

P
g2SQ�1

e
�⇡hQ,geL/T

P
g2SQ

e�⇡hQ,geL/T
(T ⌧ L) (A25)

We focus on the long time limit T � L, starting with
Eq. (A24). Since we are looking at the critical point, the
symmetry is not spontaneously broken, and the ground
state |1i is invariant under the action of SQ. Thus, sQ,g

for all fixed boundary conditions g are the same, and we
have

�Q =
1

Q
(T � L) (A26)

The situation is similar in the area law phase p > pc,
where an expansion similar to Eq. (A21) can be written
down from the transfer matrix of the spin model. The
spectrum here will become gapped, but in this limit only
the ground state contributes. Moreover, the ground state
still preserves the symmetry of the model. Summaring,
we have

�Q =

(
1, T � L, p < pc

1/Q, T � L, p � pc
, (A27)

neglecting terms that are exponentially small in L. Tak-
ing the Q ! 1 limit we obtain

ECDKL(p
⇢|p�) =

(
0, T � L, p < pc

1, T � L, p � pc
. (A28)

Another closely related quantity is

�
0
Q
= EC

P
m p

⇢
m(p�m)Q�1

P
m(p�m)Q

. (A29)

This is reduced to Eq. (6) when Q = 2. For generic
integer Q � 2, it can be sampled e�ciently using the
hybrid quantum-classical algorithm in the main text,

�
0
Q
=

⌧
(p�m)Q�1

P
m(p�m)Q

�

⇢

. (A30)

As in Q = 2, it is expected that the sampling error de-
cays as M�1/2, where M is the sample size, since we are
averging over random numbers with O(1) amplitude. In
order to interpret this quantity in the stat mech model,
we consider the annealed average

�
0
Q
=

EC

P
m p

⇢
m(p�m)Q�1

EC

P
m(p�m)Q

. (A31)



12

The quenched and annealed averages again coincide in
the replica limit,

d�
0

dQ
=

d�̄
0

dQ
= EC

X

m

(p⇢m � p
�

m) log p�m. (A32)

This also measures the di↵erence between the two prob-
ablity distributions, although it is not the KL divergence
anymore. As long as ⇢ and � are pure product states that
are not identical, Eq. (A31) and Eq. (A15) are mapped
to the same quantity in terms of the stat mech model.
The argument that leads to Eq. (A34) goes through, and
we obtain

�
0
Q
=

(
1, T � L, p < pc

1/Q, T � L, p � pc
, (A33)

neglecting terms that are exponentially small in L. Tak-
ing the Q ! 1 limit we obtain

EC

X

m

(p�m � p
⇢

m) log p�m =

(
0, T � L, p < pc

1, T � L, p � pc
. (A34)

4. Linear cross entropy with ancilla

In this Appendix we investigate how coupling to an an-
cilla may a↵ect the signature of the transition. Suppose
we extend the system, S, with a system of ancilla qudits

W , so that the initial state is ⇢SW or �SW . In particular,
we take |W | = |S| = L, and associate one ancilla qudit
to each system qudit, collectively denoted as SW, x on
site x. The evolution acts on system S as before, while
the ancillae W are idlers, i.e. no evolution occurs. We
denote the unnormalized output state when reduced to
W by ⇢mW = trS(Cm⇢SWC

†
m), and we similarly define

�mW . We consider the quantity

�
0 =

P
m trW ⇢mW�mWP

m trW �2
mW

(A35)

Di↵erently from Eq. (6), which is a cross entropy between
classical probability distributions, here �0 is a “quantum”
cross entropy.
We shall consider two particular ways of coupling sys-

tem and ancilla —one quantum and one classical. Each
way of coupling will lead to a particular dependence
of �0 on p which in turn may be used to diagnose the
transition. We will always take initial product states
⇢SW =

Q
x
⇢SW,x and �SW =

Q
x
�SW,x; moreover, for

simplicity we shall asssume that the ancilla is decou-
pled from the system in the ⇢ state ⇢SW = ⇢S ⌦ ⇢W .
We will study two forms of �SW : 1) EPR state for the
ancilla-system on each site each site x, �SW,x = |IxihIx|
with |Ixi = 1p

d

P
i
|iS,xiW,xi, and 2) classically correlated

state �SW,x = 1
d

P
i
|iS,xiW,xihiS,xiW,x|.

In the EPR pair case, we have (suppressing the x-
dependence ⇢SW,x ! ⇢SW and �SW,x ! �SW )

Z⇢� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

trW (�sx=+1(trS ⇢SW )(trS �SW ) + �sx=�1 trS(⇢SW · �SW ))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

✓
�sx=+1 ·

1

d
+ �sx=�1 ·

1

d
tr(⇢S⇢W )

◆
= d

�L
Z++ (A36)

Z�� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

trW (�sx=+1(trS �SW )(trS �SW ) + �sx=�1 trS(�SW · �SW ))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

✓
�sx=+1 ·

1

d
+ �sx=�1

◆
= d

�L
Z++ + Z�+ . (A37)

Where in the last step of each of the above equations we
assumed tr(⇢S⇢W ) < 1. We see that

�̄ =
Z⇢�

Z��

=
Z++

Z++ + dLZ�+
. (A38)

The tension of domain walls in the Ising model (see
Eq. (4)) decreases as p becomes finite, therefore Z�+ ⇠

e
�aL log d with a < 1. Therefore, as soon as p > 0, �̄
becomes exponentially suppressed in system size L thus
destroying the signature of the transition. This is because
at the final time we have access to su�cient information
about the initial quantum state of the system due to the
highly-entangled ancilla-system coupling.
For the classically correlated state �SW =

1
d

P
i
|iSiW ihiSiW |, we have
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Z⇢� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

trW (�sx=+1(trS ⇢SW )(trS �SW ) + �sx=�1 trS(⇢SW · �SW ))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

✓
�sx=+1 ·

1

d
+ �sx=�1 ·

1

d
tr(⇢̃S ⇢̃W )

◆
= d

�L
Z++ (A39)

Z�� =
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

trW (�sx=+1(trS �SW )(trS �SW ) + �sx=�1 trS(�SW · �SW ))

=
X

{si=±1}

Y

hi,j,ki2O

Jp(si, sj ; sk) ·
Y

x2@MT

�sx=+1 ·
Y

x2@M0

✓
�sx=+1 ·

1

d
+ �sx=�1 ·

1

d

◆
= d

�L
Z++ + d

�L
Z�+ ,

(A40)

where ⇢̃ =
P

i
hi|⇢|ii|iihi| denotes a dephased state, and

we assumed tr(⇢̃S ⇢̃W ) < 1. We now have

�̄ =
Z⇢�

Z��

=
Z++

Z++ + Z�+
(A41)

and we find the same behavior as in the case without
ancilla. We conclude that a classically correlated an-
cilla does not seem to qualitatively alter the signature of
the transition. This is expected, as at the final time we
only have access to classical information about the initial
state.

Appendix B: Numerical algorithm for �C in Cli↵ord
circuits

We first recall a “purified” representation of the hybrid
circuit. As pointed out in Refs. [5, 7], the dynamics of the
hybrid circuit can be purified by introducing one “regis-
ter” qubit for each single site measurement. In particular,
each measurement can be replaced by a controlled-NOT
(CNOT) gate from the measured qubit to the register,
followed by a dephasing channel on the register.6 With

6
To see this, it is su�cient to consider the case of one qubit and

one register. Initially, let the qubit be in the state | i = ↵ |0i+
� |1i, and the register be in the state |0i, so the joint state is

⇢QR = | i h |Q ⌦ |0i h0|R . (B1)

After the CNOT cate, we have

⇢0QR = CNOTQ!R · ⇢QR · CNOTQ!R

= (↵ |00i+ � |11i) (↵⇤ h00|+ �⇤ h11|)QR . (B2)

Under the dephasing channel on R,

⇢00QR =
1

2

⇣
⇢0QR + ZR⇢

0
QRZR

⌘

= |↵|2 |0i h0|Q ⌦ |0i h0|R + |�|2 |1i h1|Q ⌦ |1i h1|R
= (P0 | i h |P0)Q ⌦ |0i h0|R + (P1 | i h |P1)Q ⌦ |1i h1|R .

(B3)

these, at the end of the time evolution we have the follow-
ing joint state on physical qubits Q and register qubits
R,

⇢QR =
X

m

Cm⇢C
†
m ⌦ |mi hm|

R
. (B4)

And similarly for the initial state �,

�QR =
X

m

Cm�C
†
m ⌦ |mi hm|

R
. (B5)

The cross-entropy will then have the following represen-
tation

�C =

P
m p

⇢
mp

�
mP

m (p�m)2
=

tr ⇢R�R

tr�2
R

, (B6)

where ⇢R is the reduced state of ⇢QR on R, and similarly
for �R.

We now focus on the case where ⇢ and � are both sta-
bilizer states and the circuit is a Cli↵ord circuit, so that
⇢QR,�QR, ⇢R,�R are all stabilizer states. Moreover, we
will choose the state ⇢ to be obtainable from � via erasure
and dephasing channels. Equivalently, we choose states
⇢ and � such that the stabilizer group S⇢ is a subgroup
of S�. Whenever this condition is satisfied for the ini-
tial state, it follows that S⇢QR ✓ S�QR and S⇢R ✓ S�R

at any point of the purified circuit evolution. With this
property, Eq. (B6) can be greatly simplified. We have

⇢R =
1

2|R|

X

g2S⇢R

g, �R =
1

2|R|

X

h2S�R

h, (B7)

The result ⇢00QR is a mixture of di↵erent trajectories, with the

measurement outcome stored in R. Generalization to many

qubits and many registers can be carried out in a similar fashion.
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FIG. 5. Numerical results of � for initial states ⇢ =
(|0i h0|)⌦L/2 ⌦ (|+i h+|)⌦L/2 and � = (|0i h0|)⌦L, following
the procedure in Eq. (11). Despite a di↵erent choice of initial
state, the results are comparable to Fig. 2(a) and Fig. 3. Here
the number of circuir realizations is 300, and for each circuit
M = 100 shots of the circuit are taken.

and

tr ⇢R�R =
1

22|R|

X

g2S⇢R

X

h2S�R

tr gh

=
1

22|R|

X

g2S⇢R

X

h2S⇢R

tr gh

= tr ⇢2
R
. (B8)

Here, we noticed that tr gh = 2|R|
�gh for Pauli strings g

and h, and used S⇢R ✓ S�R . Thus, the cross-entropy is
simply the ratio between the second Renyi purity of the
probability distributions {p⇢m} and {p�m},

�C =
tr ⇢2

R

tr�2
R

=

P
m (p⇢m)2

P
m (p�m)2

. (B9)

For Cli↵ord circuit evolution, the second Renyi purity
equals 2�Nrand , where Nrand is the number of measure-
ments (out of the total N) whose outcome is randomly
±1 (see footnote 2). This number Nrand can be obtained
by running the circuit once for each initial state [45]. We
have

�C = 2�Nrand(C,⇢)+Nrand(C,�)
. (B10)

More generally, for initial states ⇢ and � that may not
satisfy the condition S⇢ ✓ S�, Eq. (B8) takes the form

tr ⇢R�R =
1

22|R|

X

g2S⇢R

X

h2S�R

tr gh =
|S⇢R \ S�R |

2|R| .

(B11)

Computing |S⇢R \ S�R | without further simplifications
can take time O(L3 · T 3). In practice it would be most
convenient to carry out the sampling procedure outlined
at the beginning of Sec. II B, which, as we have shown,

converges in poly(1/") time. So we can use the procedure
in Eq. (11),

�C = lim
M!1

*
p
�

mM
j=1P

m (p�m)2

+

⇢

. (B12)

That is, we run the ⇢-circuit and obtain an ensemble
of measurement histories {mj}, and take the average of
their corresponding probabilities p�mj

in the �-circuit, di-

vided by
P

m (p�m)2 = 2�Nrand . Each p
�
mj

/
P

m (p�m)2

can be computed in polynomial time by running a �-
circuit in parallel.
To verify the validity of this method, we consider ini-

tial states ⇢ = (|0i h0|)⌦L/2 ⌦ (|+i h+|)⌦L/2 and � =
(|0i h0|)⌦L. Both are stabilizer states, but S⇢ 6✓ S�, and
Eq. (B10) does not apply. We carry out the sampling
procedure in Eq. (11), and plot the results in Fig. 5,
which we find comparable to Fig. 2(a) despite a more
involved numerical calculation. Thus, to estimate � we
have the freedom of choosing ⇢, as consistent with the
picture developed in Appendix A.

Appendix C: Bitstring distribution in the output
state

As we discussed in the main text, the linear cross-
entropy � for the MIPT is most conveniently estimated
numerically for Cli↵ord circuits with a stabilizer initial
state ⇢, and can be extended to Cli↵ord circuit with a
non-stabilizer ⇢ (and scaled up) given access to a quan-
tum processor. In either case � admits the same inter-
pretation in the stat mech language, and should contain
the same universal data, e.g. the critical exponent ⌫.
Thus, one natural question is whether considering a non-
stabilizer initial state on a quantum processor reveals
anything new about the physics surrounding the MIPT.
As we have shown, in the volume law phase, � = 1

almost identically for su�ciently large L; and it follows
that it is impossible – in an information-theoretic sense –
to distinguish two di↵erent initial states from infrequent
(p < pc) bulk measurements. The information about the
initial state must therefore be contained in the output
state of the circuit.
The di↵erence between the two initial states may be

detected using various measures [60, 61]. Here we con-
sider the probability distribution over bitstrings when
each qubit of the output state of the ⇢-circuit (namely
⇢m = Cm⇢C

†
m in Eq. (1)) is measured in the computa-

tional basis, where the input state ⇢ is taken to be the
one from Eq. (13). For a fixed bitstring x 2 {0, 1}L, the
probability for this outcome to occur in the output state
of Cm is

µ(x;Cm, ⇢) = hx| ⇢m |xi , (C1)

where ⇢m = ⇢m/ tr ⇢m is the normalized output state. In
Fig. 6(a) we plot the fraction of bistrings with probability
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FIG. 6. (a) The bitstring distribution defined in Eq. (C2), for a typical instance of Cm with a generic (nonstabilizer) initial
state ⇢ in Eq. (13). We see a broad distribution, in sharp contrast to the bitstring distribution from a stabilizer initial state in
Eq. (C3). (b) The bitstring distribution defined in Eq. (C4), when the data in (a) is averaged over Cm. The Porter-Thomas
distribution Pr(z) = e

�z is reproduced in the unitary limit p = 0, and a qualitatively di↵erent (powerlaw) distribution is
observed for p > 0 (see Eq. (C6)).

µ = z/D in a typical instance of Cm, where z is a random
variable and D = 2L is the dimension of the L-qubit
Hilbert space,

Pr(z;Cm, ⇢) =
1

D

X

x2{0,1}L

�(z � µ(x;Cm, ⇢) ·D). (C2)

As we can see, in a typical circuit at p > 0 the output
distribution is already notably broader than at p = 0.

On the other hand, for the output of the �-circuit,
namely �m = Cm�C

†
m/ trCm�C

†
m where � is a stabi-

lizer state, the distribution function Pr(z;Cm,�) is much
simpler:

Pr(z;Cm,�) =

✓
1� 1

2L�n

◆
�(z) +

1

2L�n
�(z � 2L�n).

(C3)

Here, n is an integer between 0 and L. The broad distri-
bution in Fig. 6(a) is markedly di↵erent from this, and is
due to the fact that ⇢ is a non-stabilizer state.

We focus on the non-stabilizer state ⇢m henceforth. In
analogy with random unitary circuits, we consider the
circuit average of Pr(z;Cm),

Pr(z) := ECmPr(z;Cm)

=
1

D

X

x2{0,1}L

ECm�(z � µ(x;Cm, ⇢) ·D)

= ECm�(z � µ(x;Cm, ⇢) ·D). (C4)

Here, after circuit averaging Pr(z) does not depend on
the bitstring x despite the notation, and we can choose
|xi = |0i⌦L, for concreteness.

In the unitary limit p = 0, there are no measurements,
and ECm = EU . Here Pr(z) should be the Porter-Thomas
distribution since the Cli↵ord group forms a unitary 2-
design,

Pr(z) = EU�(z � µ(x;U, ⇢) ·D) = e
�z

. (C5)

For p > 0, we observe numerically that (see Fig. 6(b))

Pr(z) / ↵�(z) + �z
��

, � ⇡ 4. (C6)

Since this function z
�� diverges as z ! 0, the asymp-

totics is only valid for z greater than some (possibly L-
dependent, see below) cuto↵ �. We suspect that the ex-
ponent � is universal (as we have checked for a few values
of p), while the constants of proportionality ↵,� are �-
dependent (to keep Pr(z) normalized) and nonuniversal.

Since the distributions in Fig. 6(a,b) have long tails
– meaning that in a given Cm the bitstrings occur with
rather uneven probabilities – predicting which ones oc-
cur more commonly should be hard, and it is tempting to
conjecture the classical hardness of sampling x from the
probability distribution µ(x;Cm, ⇢), for a generic (non-
stabilizer) initial state ⇢. Given that on a noiseless quan-
tum computer we can simulate the hybrid circuit and
produce the state ⇢m, such hybrid circuits may serve the
purpose of demonstrating quantum advantage.

However, there is an important caveat here. As evi-
dent from the definition of µ, for a fixed C the bitstring
distribution as obtained from measuring ⇢m still has an
explicit dependence on m. In each run of the circuit, one
gets a new m, and the bitstring distribution µ changes
from run to run. Thus, even the circuit itself cannot
e�ently sample µ(x;Cm, ⇢) for any given m, for we have
no control over m, and cannot repeatedly prepare ⇢m.
To sample x from µ(x;Cm, ⇢) for a given m, it seems
that we must again resort to postselection.

It might be possible to avoid the need of postselection
by focusing on a particular subset of non-stabilizer initial
states ⇢, for which the bitstring distributions µ(x;Cm, ⇢)
for di↵erent m can be related to each other by a change
of variable in x. Characterizations of such ⇢ is beyond
the scope of this work, which we will discuss elsewhere.


