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The coherent superposition of quantum states is an important resource for quantum information
processing which distinguishes quantum dynamics and information from their classical counterparts.
In this article we investigate the coherence requirements to communicate quantum information by
using, as a test bed, a class of hybrid random circuits which show a phase transition in the quantum
and classical channel capacities. The hybrid random circuits are generated by a quantum information
game played between two opponents, Alice and Eve, who compete by applying random unitaries
and measurements on a fixed number of qubits. Alice applies unitaries in an attempt to maintain
quantum channel capacity, while Eve applies measurements in an attempt to destroy it. By limiting
the coherence generating or destroying operations available to each opponent, we can control who
wins or looses the game and tune phase transitions in entanglement and quantum channel capacity.
Such transitions allow us to identify the coherence requirements for quantum communication and,
in particular, prove that the coherence in any local basis gives an upper bound for the quantum
code distance of any stabilizer quantum error correction code. Such a bound provides a rigorous

quantification of the coherence resource requirements for quantum error correction.

I. INTRODUCTION

Protecting quantum superposition is essential for ob-
taining quantum advantage in simulation, sensing, com-
munication and computation. While noisy intermediate-
scale quantum devices have advanced this frontier [1-3]
by improving the fidelities of quantum gates and qubits,
quantum error correction is conjectured to be essen-
tial in the long run. Similar to classical error protec-
tion, quantum error correction requires redundancy in
the number of qubits and other quantum resources such
as entanglement. Thus, there has been a significant ef-
fort towards developing quantum resource theories [4],
which rigorously determine the nature and quantity of a
given quantum resource such as entanglement [5, 6], non-
locality [7, 8], or quantum coherence [9-13] (related to
superposition [14, 15]). For example, entanglement and
coherence have been demonstrated as essential resources
for performing quantum sensing [12, 16, 17]. At the same
time, any resource for any given quantum resource theory
is useful in some channel discrimination task [18-23]. Fi-
nally, Ref. [24] provided an error correction protocol that
consumes coherence as it corrects errors. Still it is not
yet known how precisely coherence constrains the ability
to correct errors when decoding quantum information.

In this article, we investigate the coherence resource
requirements for quantum communication and find that
a limit on coherence is a limit on the number of cor-
rectable errors. To do so, we first consider a large class
of quantum channels, known as random hybrid circuits,
and which show phase transitions in their channel ca-
pacity [25-29]. By controlling the coherence generating
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Figure 1. Cartoon hybrid random circuits composed of uni-
taries (white) and measurements (red), which can be viewed
as an information game played between Alice and Eve. In
this game, Alice attempts to store her diary in a set of qubits
and Eve attempts to destroy her diary by measuring them
(for instance, shining light on the qubits). To protect her di-
ary, Alice applies a random set of unitaries in an attempt to
protect her diary from Eve’s measurements, which Eve can
apply at a fixed rate relative to the rate at which Alice can
apply unitaries. Alice is allowed to capture the emitted light,
record the measurement outcomes, and knows the measure-
ment basis Eve makes a measurement in. In this way, Alice
can keep track of the evolving state of the system, such that
she might be able to apply a unitary at the end of the game to
recover her diary. The measurement-induced phase transition
corresponds to a transition in the quantum channel capacity
between the initial state encoding Alice’s diary, and the finial
state at the end of the game. Alice wins the game in the
volume-law phase when the quantum channel capacity is fi-
nite, while she loses the game in the area-law phase when the
quantum channel capacity is zero.

properties of such circuits we are able to control the phase
transition and generally extract the coherence require-
ments for obtaining a finite channel capacity. The hy-
brid circuit channels previously studied [30-50] are com-
posed of a sequence of random local unitaries and mea-
surements which compete to drive the phase transition
in channel capacity and entanglement properties. While
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the transition was first observed in the scaling properties
of entanglement [31-34], the manifestation of the transi-
tion in terms of channel capacity allows us to investigate
the information game shown in Fig. 1. In this game, an
agent Alice, having access to a set of qubits and a lim-
ited set of local unitary operations, attempts to protect
a quantum diary (i.e. an arbitrary quantum state) from
Eve who attempts to destroy it with the application of
quantum measurements (for which Alice can record the
outcomes of).

By limiting the coherence generating ability of Alice,
we are able to identify the coherence resources required
by Alice to protect her quantum diary. To identify which
operations are coherence generating and which are de-
stroying, we make use of the resource theory of coher-
ence [10], which is a basis specific resource theory, that
quantifies the amount of quantum superposition in that
basis. By using the relative entropy of coherence [9]
as the resource quantifier, and considering its dynam-
ics in the information game played between Alice in Eve,
we uncover the coherence resources required by Alice to
protect both classical and quantum diaries. Inspired by
these results, we apply the intuition and tools developed
studying the information game to quantum error correc-
tion and find the code distance of a stabilizer quantum
error correction code is bounded by the relative entropy
of coherence in any basis.

A. Coherence requirements in communication
games and quantum error correction

We first show that if Alice can only prepare coherence-
free states, and only perform the free operations of the
coherence resource theory, she can only store and pro-
tect classical information from a set of errors introduced
by Eve. If, instead, Alice is given a state (with coher-
ence) encoding a quantum diary, she can protect quan-
tum information using only coherence non-generation
unitaries (the free operations of the coherence resource
theory) as long as the measurements Eve performs in her
attack are restricted to preserve coherence. We further
investigate which attacks Alice can defend against using
only coherence-free operations by studying the dynam-
ics of the relative entropy of coherence in a class of hy-
brid random circuits composed of random controlled not
gates (CNOTSs) and projective measurements which can
generate or destroy coherence. This investigation shows
that, even at arbitrarily weak measurements, Alice’s abil-
ity to protect quantum information undergoes a transi-
tion tuned by the relative rate of coherence destroying
and generating measurements.

Finally, we allow Alice to use a limited rate, pgr, of co-
herence generating unitaries and identify the threshold
rate of decohering measurements, p¢, at which she can
protect her quantum diary. We find that the threshold
rate of decohering measurements pS, increases linearly
with pgr (i.e. p§, = apgr for some constant «), indicating

a greater capacity to protect her quantum diary given ac-
cess to more coherence generating unitaries. Thus, from
the study of hybrid circuit dynamics and with the help
of the resource theory of coherence, we are able to find
a phase transition in the quantum channel capacity that
demonstrates that coherence is a resource for quantum
communication.

This suggests that one could identify a threshold
amount of coherence required for error correction. In-
deed, we find such a relation between the relative en-
tropy of coherence (computed for a specific state in the
quantum code space) and the code distance (the num-
ber of errors correctable by the stabilizer code). A weak
formulation of this relation is that the relative entropy
of coherence of the maximum coherent state in the code
space bounds the code distance (Theorem 2 in Sec. V).
A stronger formulation can be obtained by considering
subspaces of the full code space since a bound on the
code distance for a subspace is a bound for the full code
space. Using one such stronger constraint on the code
distance, we show that our bound reproduces the classi-
cal Singleton bounds when applied to Calderbank-Shor-
Steane (CSS) codes which are a type of quantum error
correction code constructed from two classical error cor-
rection codes [51-53].

Using our bound, we therefore provide a rigorous quan-
tification of the coherence resource requirements for con-
structing a quantum error correction code. Intuitively,
this bound gives the extra coherent resources required to
encode a quantum state. While it is natural that the co-
herence of the physical state must be greater than that
of the encoded state, our bound shows that the coher-
ence is also constrained by the number of errors that one
desires to correct. Thus, it gives the amount of extra
coherence required for error correction than required to
simply represent the state.

We begin in section II by reviewing the resource theory
of coherence and one of its resource quantifiers, the rela-
tive entropy of coherence, introducing the random circuit
models considered in this paper and discussing the uni-
tary limit of such models. Then, in section III, we discuss
the coherence-free limit, and show that Alice can only en-
code and protect classical information in this limit. We
elaborate on this result in sections I1I B and IIT C by dis-
cussing Alice’s ability to protect quantum information
only using coherence non-generating operations. In sec-
tion I'V we investigate the dynamics of coherence induced
by measurements and show that, while Eve can always
destroy Alice’s diary if she is restricted to using coherence
non-generating unitaries, Alice can protect a quantum di-
ary if Eve accidentally generates coherence by performing
measurements in the wrong basis. Finally in section V
we discuss the coherence resource requirements for quan-
tum communication: both the requirements for Alice to
protect her diary (section V A), and the requirements in
quantum error correction code design (section V B).
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Figure 2. Sketch phase diagram for a circuit composed of
CNOTs, and vanishing rate of measurements p,,. In this
circuit, we randomly choose to measure in the X, Y or Z
measurements with probability p, py, and p. =1 —p; —p, re-
spectively (we define Ay = (pz —p=)/(1—py)). The phases la-
beled Z-classical and X-classical are area-law phases in which
superposition is vanishing in the Z and X basis respectively.
Typical states in these phases are therefore efficiently repre-
sented by a superposition of a limited number of X or Z ba-
sis states. This is in contrast to the “quantum” phase which
shows volume-law entanglement, and is characterized by a
large amount of superposition as quantified by the relative
entropy of coherence, both in the X and Z basis.

B. New perspectives on hybrid circuit dynamics

While our work primarily focuses on using hybrid cir-
cuit dynamics to understand the coherence resource re-
quirements for quantum communication, it also provides
perspectives and results interesting for the reader pri-
marily interested in hybrid circuits dynamics and their
transitions.

Classical circuits The first set of hybrid circuits we
consider are similar to the classical dynamics discussed
in Refs. [54, 55] which show measurement-induced transi-
tions in classical information and chaos quantifiers. Sim-
ilarly, we first consider in section IIT A, the dynamics
of a circuit composed of random CNOTs occurring at
a fixed rate and random bit erasers occurring at a rate,
Pe, relative to the rate of CNOTSs, and find a classical pu-
rification transition. The classical purification transition
is investigated by considering the dynamics of an initial
classical distribution of classical bit strings and observing
that the late time entropy of that distribution undergoes
a phase transition similar to the quantum purification
transitions discussed in Refs. [25]. Going beyond pre-
vious works, we show that this transition in a classical
entropy is the coherence-free limit of a more general class
of dynamics. We then show in section IIIB that if the
initial state has quantum coherence, and the bit erasers
are implemented using a sequence of measurements that
preserve coherence, then the transition can also be con-
sidered as a quantum purification transition. We show
in section III C that the dynamics of the circuit can be
described by the dynamics of a classical code space.

Coherence controlled entanglement transitions
The second set of hybrid circuits we consider are com-
posed of CNOT's and measurements which occur at a rel-

ative rate, p,,, to the CNOTs. We then randomly choose
to measure in the X, Y or Z bases with probability p,
py and p, = 1 — p, — p, respectively. For these circuits,
the dynamics of the relative entropy of coherence in the
X and Z basis are particularly interesting because they
constrain the amount of entanglement in the system (see
section IID). Furthermore, the dynamics of coherence
are analytically accessible both in the measurement-only
limit p,, — oo and vanishing measurement rate limit
pm — 1/L?. In the first case, the coherence can be pre-
dicted exactly, but the entanglement dynamics are trivial
and the steady states are all product states.

In the second limit, of vanishing measurement rate, an
entanglement transition can be observed as a function
of the relative probabilities of which Pauli operators are
measured, p, and A, = (py —p=)/(1 —py). In this limit,
the dynamics of coherence follow a Markov process de-
scribed by a random walk in the amount of information
"known’ about the X and Z basis states (see Fig. 7). By
studying this walker we find that the superposition (co-
herence) in the X basis increases at a rate py + p, — Dy-
Thus, if p; > py + p., the amount of superposition in
the X basis vanishes, the state becomes classical in the
X basis with no entanglement. Similarly in the Z ba-
sis, if p, > pz + py, the superposition in the Z basis
vanishes, the state becomes classical in the Z basis and
entanglement is again not allowed to form. Thus, if we
consider the entropy of a state where we first take the
infinite time limit and then the vanishing measurement
rate limit limy,  _,0lim;, S, we find a transition in the
entanglement S at the critical line |p; — p.| > p,. This
is summarized in Fig. 2, where we have a phase transi-
tion between states classical in the X and Z basis, and
quantum states with volume-law entanglement.

The random walk describing the dynamics of coher-
ence is discussed in section IV along with the coher-
ence controlled entanglement transition. Details about
the Markovian dynamics of coherence are given in ap-
pendix C.

What is quantum about the volume-law entan-
gled phases? In the final section V we find that there is
a transition in the ability of Alice to protect a quantum
code, controlled by the rate at which she can generate
coherence. In that section, Eve makes an attack with co-
herence preserving bit erasers and a coherence destroying
measurement, while Alice defends her diary with CNOT's
and a limited rate of phase gates. While in that section,
we only discuss her ability to protect a quantum diary,
we show in section VI that there is a transition between
a regime where Alice can only protect a classical diary
to one where she can protect a quantum diary. The
difference between the two phases provides an answer
to what is quantum about the entangling phase of the
measurement-induced transitions discussed in Refs. [31-
34] in comparison to the classical transitions discussed in
Refs. [54, 55]. Here, the transition between being able to
protect a classical diary to being able to protect a quan-
tum diary occurs as the ability to correct both bit and



phase errors as apposed to just bit errors. Thus, this an-
swer to what is quantum about the entangling phase of
the measurement-induced phase transitions is equivalent
to the answer to what is quantum about quantum error
correction codes [51, 56]. While classical error correction
and the classical scrambling phases protect information
from just bit or phase errors, the entangling phase and
quantum error correction codes are robust to both bit
and phase errors.

II. COHERENCE IN RANDOM CIRCUIT
DYNAMICS

A. Resource theory of coherence

In this paper, we make more rigorous the fact that
quantum error correction requires quantum superposi-
tion and quantify exactly how much superposition is re-
quired. We do this using the quantum resource theory of
quantum coherence [9, 10], which we will outline in this
section. We also discuss in depth the relative entropy
of coherence which provides an important and intuitive
quantification of coherent superposition.

Resource theories [4] provide a formal setting by iden-
tifying a set of resource free states (product states for the
resource theory of entanglement), a set of free operations
(i.e. Local Operations and Classical Communication ),
and then asks what operations and tasks are made avail-
able with the possession of a resource state (i.e. an en-
tangled state). The resource theory of coherence aims to
quantify the resourcefulness of a state with coherent su-
perposition in a given basis, and thus there is a different
resource theory of coherence for each basis D. The free
states for the coherence in a basis D are the set of diag-
onal states satisfying p = pp = > 4cp paa|d) (d| where
{|d)} are the basis states of the basis D. Importantly,
this set of free states can not contain any pure states with
quantum superposition in D since such states would have
off diagonal terms.

Similar to the freedom in choosing the free operations
of an entanglement resource theory (local unitaries v.s.
Local Operations and Classical Communication), the re-
source theory of coherence also has multiple choices of
free operations [13]. In this work, we limit our con-
siderations to the free operations introduced in Ref. [9]
called “Incoherent Operations”, therein defined as the set
of quantum channels where each Krauss operator of the
quantum channel takes diagonal states to diagonal states:
Exp1 E), = p2 where it is required that ps is diagonal in
the basis D if py is. Such a constraint ensures that states
with superposition can not be created by the set of Inco-
herent Operations, while at the same time is loose enough
to allow maps between different basis states as required
for classical computation. This is in contrast to other
choices of free operations [10, 13] such as strictly Inco-
herent Operations [57] which do not allow for classical
computations.

1. Relative entropy of coherence

Similar to how the resource theory of entanglement
allows for a multitude of entanglement monotones (i.e.
Log-negativity, relative entropy of entanglement, ...),
the resource theory of coherence also has a multitude of
resource quantifiers [4]. Here, we only consider the rela-
tive entropy of coherence because it provides an intuitive
quantification for the amount of coherent superposition
possessed by a given state. The relative entropy of co-
herence C(p, D) in a basis, D, is defined for a state p
as:

C(p,D) = S(pp) — S(p), (1)

where S(p) = —tr[plogp] is the von Neumann entropy
of a mixed state p and pp is again the diagonal part
of p in the basis D. In this work, we will focus on
the Hilbert space of L qubits and consider two coher-
ence resource theories: one in the computation basis
(D = X basis) with basis states |z) = |z1,22,...2L)
and for which the Pauli X; operators are diagonal,
X;|z) = (—=1)% |z), and one (the D = Z basis) with
basis states |z) = |21, 22, ... zr) in which the Z; Pauli op-
erators are diagonal. Below, we will refer to the relative
entropy of coherence simply as coherence C(p, D), and
label these coherences in the D = X and D = Z bases as
C,=Cy(p)=C(p,X) and C, = C,(p) = C(p, Z) where
the state is often implied by context.

For pure states, the coherence is equivalent to the
Shannon entropy of the probability distribution for the
measurement results P(d) = (d| p|d) pertaining to the
basis D (i.e. C(p,D) = H(P(d)) where H(P) is the
Shannon entropy of a distribution P. Thus, the coher-
ence of a pure state is the amount of statistical entropy
over which basis states the quantum state [¢) is a su-
perposition in. For example, a single qubit polarized in
the +Z direction is an equal superposition of two X ba-
sis states, and thus has coherence C, = 1, while a pure
state polarized in the X direction has zero coherence in
the X basis C;, = 0. For mixed states, consider the ex-
ample of a product state of N, bits polarized in the X
basis, IV, bits polarized in the Z basis, and M completely
mixed bits each in a state p; = (|0) (0]+|1) (1])/2. Such a
state has S(p) = M due to the M completely mixed bits,
and H(P(z)) = N, + M since both the Z polarized bits
and the completely mixed bits are completely uncertain
about the X basis states. Thus the coherence in the X
basis is Cy(p) = N..

B. Random circuit model

In this work, we use a class of hybrid random circuits
to understand the coherence resource requirements for
quantum communication. OQur approach involves study-
ing an information game where two opponents, Alice and
Eve, compete by applying random unitary and measure-
ments in an attempt to maintain or destroy the quan-
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Figure 3. An example of the random hybrid circuit studied in the text. Each gate has an effect on the coherence in either the
X or Z basis: preserves coherence in both basis (white), generates coherence in X basis (blue), or destroys coherence in either
X or Z basis (red). At each step n, a CNOT gate is applied to two neighboring qubits with probability p, = 1, a measurement
in the X, Y and Z basis is performed at a random site with probabilities pmpz, pmpy and pmp. respectively, a phase gate R, is
applied with probability pr, and a bit eraser error occurs with probability p.. Time is measured as t = n/L and since a CNOT
is performed at each time step (p, = 1), the circuit above shows ¢t = 2 after 12 = 2L random CNOTs have occurred.

Who can apply X-coherence

. . Section
generating operations?

The operation

Neither Alice nor Eve 111 N/A
Eve only v Y and Z measurements
Alice only \Y Phase gates

Table 1. Table showing which agent can apply the listed X-
coherence generating operations in the various sections of the
paper. All other circuit operations occurring in the hybrid
circuit considered do not generate coherence in the X basis
and are therefore Incoherent Operations in the X basis (free
operations of the X basis coherence resource theory).

tum channel capacity of the resulting hybrid circuit (see
Fig. 1). Alice attempts to store a diary in the evolving set
of qubits by applying random unitaries, and wins when
the resulting hybrid circuit has a finite quantum chan-
nel capacity. While Eve attempts to destroy the diary by
applying measurements at random qubits and wins when
the resulting hybrid circuit has zero quantum channel
capacity. By restricting the coherence resource generat-
ing or destroying operations of each opponent, we learn
about the coherence requirements for quantum commu-
nication by observing who wins the information game.
A sensible study of a resource theory first starts with
an investigation to what the resource free states and op-
erations can be accomplished, and then studies the ad-
ditional tasks achievable with the aid of various resource
generating operations. Our investigation directs this ap-
proach at understanding the coherence resource theory
defined with the X Pauli basis: first in section III, we
consider random circuits in which Alice and Eve are re-
stricted to only perform Incoherent Operations; then in

section IV, we allow Eve to perform coherence genera-
tion operations; and then in section V we also allow Alice
to perform coherence generation operations. We further
assume that Alice and Eve can only apply operations
probabilistically, such that the information game can be
considered as a random circuit composed of a sequence
of N steps, where at each step, n, one of the following
operations are performed with a given probability:

e CNOT on random site ¢ controlling a neigh-
boring site j i + 1 with probability p,.
Throughout the paper we set p, = 1 except in sec-
tion IV A. Such gates keep constant the coherence
in the X and Z bases, C,, and C, because they re-
versibly map Z basis states |z;, z;) to Z basis states
|zi, 2 @ 2;), and X basis states |z;,x;) to X basis
states |z; @ xj,x;).

measurement of a random Pauli operator
A; on a random site with probability p,,
With probabilities p,,pa, the Pauli operator A =
(X,Y,Z) is chosen for a (z,y, 2z) respectively.
The measurement destroys superposition in basis
A and reduces the coherence C,(|1)). Since the
probabilities p, control the relative rate of mea-
surement, we fix p, =1 —p; — p..

phase gate R, = exp (i(Z; + 1) /4) with prob-
ability pr which can both increase and decrease
C, but keeps constant C,; and

classical bit erasers defined in section IIIB oc-
curring with probability pe.

After n = L steps, L CNOTs will have been applied
(pu = 1), so we measure time in units of L steps, t = n/L.



An example random circuit is shown in Fig. 3, and which
operations are studied in which section is summarized in
Table. ITA 1. Since the CNOTs and X measurements
don’t generate coherence in the X basis, they are free op-
erations for the coherence resource theory in that basis.
While projective measurements of the Y; or Z; Pauli op-
erator force the i'” site to contribute 1 bit to the relative
entropy of X coherence, possibly increasing coherence,
and are therefore not free operations of the X coherence
resource theory. While our approach focuses on the co-
herence in the X basis, their exists a duality for CNOT
gates which allows equal considerations for the coherence
in the Z basis: a CNOT gate on site ¢ controlling j in
the Z basis is equivalent to a CNOT gate on site j con-
trolling site ¢ in the X basis. This is particularly useful
in section I'V where we will discuss C, and leave implicit
the dual result for C..

Finally, we assume that Alice knows the site and Pauli
operator of all measurements performed, and records all
their outcomes. In this way, she can keep track of the
pure state which evolves in her qubits and potentially
decode with a unitary operation at the end of the game.
To identify her capability to decode, we will consider in-
formation quantifiers computed on the pure states and
averaged over circuit realizations and possibly the mea-
surement outcomes. For an experiment to observe the
information quantifiers for one of the pure state pro-
duced (corresponding to a fixed set of measurements)
they must repeat the experiment multiple times and wait
for the same fixed set of measurement outcomes to occur
again. This procedure, called postselection, requires re-
peating the experiment a number of times exponentially
large in the number of measurements performed and is a
known [30, 33, 34] obstacle for observing measurement-
induced phase transitions. For the purposes of this work,
this obstacle is not particularly relevant, because 1) the
circuits we consider can be simulated efficiently on a clas-
sical computer, and 2) the goal of our work is to identify
the role of coherence in quantum communication as ap-
posed to study quantum complexity.

C. Stabilizer state tools

All gate operations discussed in this article, and pre-
sented in the section 11 B, are either part of the Clifford
unitary group or are measurements of Pauli operators.
This allows [51, 58] us to simulate the dynamics of these
circuits efficiently using stabilizer states. Throughout, all
numerical results presented are averaged over O(2 x 103)
circuit realizations and all possible measurement out-
comes for each circuit. The latter is possible because
while different measurement outcomes, do result in dif-
ferent states, they do not result in different entanglement
entropies for Clifford circuits. The stabilizer state tools
also provides us with a strong analytic method to rea-
son about these circuits and provide rigorous predictions
about the dynamics of these circuits. Since the details of

these arguments are presented in the appendices.

D. Unitary limit of coherence non-generating
dynamics

If Alice is limited in her ability to produce superpo-
sition states, then she will generally be limited in what
type of information she can encode. For example, even
if Eve is not interfering with her qubits, p. = p.,, = 0,
she is still limited in the amount of entanglement she can
generate if she is restricted to performing the free opera-
tions of either the X and Z coherence resource theories.
This constraint, previously understood in a general set-
ting [59-63], takes the following particularly useful form
of the following theorem:

Theorem 1. Given any local Pauli basis D, over L
qubits, and a pure state |v), the von Neumann entan-
glement entropy S(p,) for the reduced density matriz
pr = Trac[|) (Y]] of any subsystem R is bounded by the
coherence of the local Pauli basis:

S(pr) < C(lY), D). (2)

Here a Pauli basis D is any basis diagonal in a set of
chosen Pauli operators {A;} with i € (1...L) and A; €
(Xiv Yiv Z’L)

Proof The proof is given by the set of inequalities
C(14),D) = H(P(d)) > H(P,(d)) > S(p,) where
P, (d,) is the marginal distribution of the P (d) defined
on the subsystem R, S(p) is the von Neumann entropy
and H(P) is the Shannon entropy. The first inequality is
because the Shannon entropy of a bipartite distribution
is greater than any of its marginals, and the second in-
equality follows from the data processing inequality for
the von Neumann entropy [64], which states the von Neu-
mann entropy is constant or increasing under any CPTP
map. Here the CPTP map is taking the diagonals of p, in
the Pauli basis d.: p. — >, |d.) (d.] (d-] pr |dr) = par-
The second inequality then follows from H(P.(d,)) =
S(par) > S(pr). O

Therefore, if Alice is only able to apply CNOTs (free
operations in both the X and Z coherence resource the-
ory), then she will not be able to increase the coher-
ences C, or C, and the entanglement of the states she
can produce will be limited accordingly (i.e S(pr) <
min(Cy, C,)). This constraint is explicitly revealed in
the steady state entanglement of the random circuit con-
taining only CNOTS (p,, = pe = pr = 0). In this circuit,
the coherences C;, and C, are conserved quantities since
the CNOTs neither increase nor decrease the coherence
in the X or Z basis. In conjunction with the above the-
orem, the conservation of C, and C, implies that the
von Neumann entropy of any subsystem is bound by the
coherence C, and C, in the initial state. If we consider
an initial product state with IV, qubits polarized in the
X direction and N, = L — N, qubits polarized in the
Z direction, we find that the coherences at all times is
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Figure 4. Late time entanglement distribution for the ran-
dom CNOT circuit (pm = 0, pr = 0 and pe = 0). For such
a CNOT circuit, the coherence C, is conserved, and the co-
herence of the initial state is shown in the legend. At late
times, the above entanglement distribution can be predicted
under the assumption that the entanglement in a region is
maximized subject to the constraint given by Theorem 1.

C, = N, and C, = N,. At late times, the CNOTSs
gates drive the system through an exponentially large in
L number of states, most of which are maximally entan-
gled subject to the bound in Theorem 1. In addition
to this bound, the entanglement entropy of any given
subregion A of the system is limited by the size of that
subregion: S(p,) < |A|. Combining these two bounds,
we predict that the entanglement entropy of a region be-
tween sites 1 and z is

S(z) = min(z, L — z,Cy, C,). (3)

This is confirmed in Fig. 4, where we show that the late
time entanglement entropy, S(z) for L = 64 site system
with C, < C, and demonstrate that the bound C, >
S(pr) is saturated for any subsystem with size |A| > C,.

III. COMMUNICATION IN COHERENCE
LIMITED RANDOM CIRCUITS

A. Alice protects a classical diary

We begin our investigation by considering what type
of information Alice can protect if she only has access to
X coherence-free states, with C,, = 0, and is only able to
apply Incoherent Operations in the X basis. From The-
orem 1, she is unable to produce entangled states from
pure states (and more generally from mixed [63]), and is
therefore unable to encode information non-locally. Fur-
thermore she cannot even create superposition in the X
basis and so cannot encode quantum information locally.
In this section, we will show that while she cannot protect
quantum information, she is able to encode and protect
classical information given that Eve is limited in the rate
at which she can induce errors in Alice’s qubits.

First imagine that Alice prepares an X-basis state, |z),
where x = (z1, 22,...21) for z; € (0,1) is a classical bit
string encoding some classical information. Eve then be-
gins an attack by applying bit erasers at random sites,
such that Alice’s i*" bit evolves as z; — 0 when the bit
eraser is applied there. In this section, we model this
attack using a local quantum channel with Kraus oper-
ators E4 ; = |0), (0], and Es; = |0), (1|, where |0), and
|1), are the eigenstates of X;, while in the next section
we describe how this channel can be implemented using
measurements. Since this channel can only destroy co-
herence, it is a free operation of the X coherence resource
theory, and the coherence in the X basis will remain 0 at
all times for a system evolving under a random sequence
of CNOTs and bit erasers. In addition, since the errors
FE don’t map X basis states to a mixed state, a system
initialized in an X basis state will remain in an X basis
state under such a random circuit (p,, = pg = 0). Thus,
the evolution of the qubits is described by a sequence of
classical maps between X bit strings x,, = ©,4+1 and the
dynamics can be considered as the classical equivalent of
the hybrid quantum circuits previously discussed.

We now consider the limit that must be placed on
the rate at which Eve can create errors, such that Al-
ice can still protect her classical diary by application
of random CNOTs. We will use the classical mutual
information, which is the unique quantifier of classical
channel capacity [51], in order to quantify the number
of classical bits she can protect. Such a channel ca-
pacity will vary in each random realization of the ran-
dom circuit, and for a specific realization, we can define
a classical map zg — x, = fn(xo) on the bit strings
2o which gives how an initial basis state |z¢) maps to
the basis state |z,) at time n. Then, given a distribu-
tion of initial state bit strings Py(x), the classical mu-
tual information is defined using the joint distribution
Po (0, 2n) = Po(x0)d (z, — fn (x0)) and the final dis-
tribution P, (z,) = >, P(wo,Ty):

Ix:H(P7L)+H(PO)_H(PO,n) (4)

where H(P) is the Shannon entropy of the distribution
P. Due to the noisy-channel coding theorem [65], the
mutual information, maximized over all distributions Py,
provides an upper bound on the average number of bit
in the initial state xg that can be reliably recovered from
the final state z,. In Fig. 5 we show the classical chan-
nel capacity for the C,, = 0 hybrid circuit, and it demon-
strates that Alice can indeed protect classical information
at long times so long as the rate at which Eve can attack
her qubits is limited (i.e. pe < 0.1). At p. = 0.1, the
circuit undergoes a phase transition from a finite chan-
nel capacity to vanishing channel capacity. Such a result
was computed by studying the purification of an initially
mixed state similar to results for quantum channel ca-
pacity [25].
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Figure 5. Classical, I;, and quantum, C, channel capacities of
a random hybrid circuit composed of CNOTs and coherence-
maintaining bit erasers as a function of p. for different lengths
L shown in the legend. The random hybrid circuit is com-
posed of first a set of t = 40L CNOT gates followed by the
hybrid circuit (p, = pr = 0) for a time ¢ = 10L. The chan-
nel capacities were computed via purification dynamics with
A = 10 ancillas. Depending on if the initial state has classical
or quantum correlations, the dynamics of the purity deter-
mine the classical channel capacity I, or the quantum chan-
nel capacity C. As discussed in the text, they are the same,
I, = C, when we consider a channel composed of CNOTs and
coherence-maintaining bit erasers.

1. Purification transition for classical circuits

In Refs. [25-29], the measurement-induced phase tran-
sition in the quantum channel capacity of a given cir-
cuit was related to the purification dynamics of an initial
mixed state evolved under that same circuit. Here, a sim-
ilar relation holds for the classical channel capacity, and
we use the purification dynamics of a mixed state under-
going the coherence-free circuits to compute the channel
capacity I,. Such a relation is derived by the introduc-
tion of a set of ancilla bits, A, used to store |A| bits of
the initial state of the system, and which do not undergo
any additional dynamics as the system, .S, evolves un-
der the random hybrid circuit dynamics. For studying
the classical channel capacity this memory is archived by
initializing the system in the correlated state:

1
psa(n=0) = 34 Z |, 2, 0) (z,z,0] (5)
€S,

where S, is all 24 bit strings of length |A|, and |a, s1, s2)
(equivalently (a, s1, s2|) is an X basis state of the system
and ancilla with the ancilla bit string, a, the first |A| bits
of the system sy, and the last L—|A| bits of the system ss.
Such a mixed state has system .5, ancilla A and the joint
system and ancilla AU S in a mixed state with von Neu-
mann entropy S(ps) = S(pa) = S(pas) = |A|. Since the
density matrix is diagonal in the X basis, the Shannon
entropy for the X basis states is equivalent to the von
Neumann entropy, and the mutual information between

system and ancilla is therefore I, = |A|, reflecting the
fact the ancilla remembers perfectly the initial state of
the system. After evolution of the random hybrid circuit,
the system-ancilla state evolves to

psa(n) = 2%1 D |z ((2,0)) (&, fo ((2,0))] (6)

TES,

where |z, f,((2,0))) is an x basis state with the ancilla
in state a = z and the system is in state (s1,s1) =
fn((2,0)). Such a state still has ancilla and joint entropy
S(pa) = S(psa) = |A|, but with classical mutual infor-
mation I, = S(pg) that depends on the channel capacity
of the classical evolution f,((z,0)). If the channel capac-
ity (classical mutual information) goes to 0, then the en-
tropy of the system S(pg) = I, also goes to 0 and the sys-
tem purifies. While instead, in the error protecting phase,
the system remains mixed with S(ps) = I, > 0. The
transition between the two phase has been argued to be
within the directed percolation universality class [54, 55].

B. Alice protects a quantum diary against
coherence preserving errors

While in the last section, we concluded that Alice can
not encode quantum information without being able to
generate X coherence, we can still ask if she can pro-
tect a state that already is encoding quantum informa-
tion. Specifically, we now investigate the restrictions that
must be placed on Eve’s bit eraser procedure such that
Alice, given a quantum state with coherence C, > 0,
can protect quantum information encoded in that state.
While above we determined that the random CNOTSs al-
low memory of an initial X basis state, we are now inter-
ested if they can also remember an arbitrary superposi-
tion of a set of the X basis states at late times. As we will
see below, this extra requirement translates to an extra
requirement on how the bit erasers are implemented.

If we take the quantum bit eraser with Kraus opera-
tors Fy; and Fs;, then they will destroy coherence and
quickly erase any superposition in the initial state. This
is seen by the following measurement implementation of
these Kraus operators:

1. measure Xj;

3. forget measurement outcome z; (don’t perform
postselection);

which acts on the state [1).) = 11 |¢1, 1) + 1o |¢o, 0) as:

e} (el = [1]* |61, 0) (@1, 0] + [¢bo|* [ @0, 0) (o, 0| (7)

Notice, that while forgetting the measurement outcome
is required to implement the Kraus operators, the co-
herence is still destroyed if the measurement outcome is
recorded and postselected. We will refer to the channel
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Figure 6. Difference in quantum channel capacity C be-

tween the coherence-maintaining bit eraser and coherence-
destroying bit eraser for a system of I = 128 bits for
pe = 0.02. After t = |A] = 10 coherence-destroying bit
erasers are applied, the coherence and quantum channel ca-
pacity approaches zero. For p. = 0.02 this occurs at times
t =10/pe/L =~ 4 as shown in the plot.

without postselection as the quantum bit eraser, and the
channel with postselection as the coherence-destroying bit
eraser.

This is in contrast to the coherence-maintaining bit
eraser which is implemented by the following sequence
of measurements and unitaries:

1. measure Z;;

2. post select the outcome z; = 1;

3. measure Xj;

4. flip X; if measurement outcome was z; = 1;
which has an action on the state |1).) as:

[9e) = (1 ]@1) + o [¢o)) @ [0) (8)

and preserves coherence so long as (¢1|¢o) = 0. For ex-
ample, take [1).) as the Bell state |¢.) = (]00) +|11))/v/2
which has one bit of coherence in the X basis when
|00) and |11) are X basis states. After performing
the coherence-maintaining bit eraser on the first site,
the state |1).) becomes (|00) + |01))/+/2 which still has
C, = 1. This is contrast to the coherence-destroying
bit eraser, for which the X; measurements learns the
X state of the first qubit and reduces the coherence to
C,=0.

The difference is revealed by considering the quantum
purification transition which is directly related to a tran-
sition in the quantum channel capacity, and will allow
us to identify which bit eraser efficiently destroys quan-
tum information. In the quantum purification transition,
instead of initializing the system and ancilla with the
classically correlated mixed state in Eq. 5, the system is
initialized in the entangled state:

1
[sa) (n=0) = oAl Z la =51 =8 =0) (9)
TES,

such that the ancilla is now remembering the initial quan-
tum state of the first |A| system bits. Note that as in the

classical case, the purpose of the ancilla is to encode the
initial state, and that it does not undergo any dynamics.
While the system reduced density matrix still has no co-
herence, the system and ancilla together have coherence
C, = |A] reflecting the encoding of quantum informa-
tion; this is contrast to the state encoding of classical
information in Eq. 5, which has C;, = 0. The quan-
tum channel capacity is then quantified by the coher-
ent information [25], C = S(ps) — S(psa), and so long
as the system-ancilla remains pure (as is the case for
the coherence preserving and destroying bit erasers) then
S(psa) = 0 at all time such that the coherent informa-
tion is C = S(ps) = S(pa). Such a quantum channel
capacity gives an upper bound on the number of qubits
of the initial quantum state recoverable from the final
quantum state of the system [66—68].

For the coherence preserving bit eraser, the dynam-
ics of the system reduced density matrix is equivalent to
that discussed in section ITT A and thus give S(ps) = I,
as before, but now S(psa) = 0 such that C = S(ps) = I,.
Thus, for the coherence preserving bit erasers, the sys-
tem protects quantum information as long as it protects
classical information. In contrast, for the coherence de-
stroying bit eraser, the state pga loses X coherence after
O(]A]) bit erasers, and becomes an X basis state with
zero entanglement between system and ancilla. Thus,
the system and ancilla purify, coherent information is
lost C — 0, and Alice is unable to recover her quantum
diary. This distinction in the dynamics of the coherent
information between the two types of errors is shown in
Fig. 6.

C. Dynamically evolving classical codes

Before continuing our discussion on the information
game played between Alice and Eve, we will first discuss
how the above results in section III A and section II1B
are directly related to error correction codes. We will first
make the connection explicit by showing the dynamics
above can be interpreted as the dynamics of a classical
code space and by describing how this code space evolves.
Then, we will argue that Alice’s classical diary is encoded
in this space, while her quantum diary would be a super-
position over states in this space similar to the design of
the repetition code. This connection between coherence-
free hybrid random circuits and repetition codes, which
can only correct bit errors, hints at the first connection
between coherence and the type of errors a code can cor-
rect. We will then continue discussing the information
game in section IV where we allow Eve to apply coher-
ence generating measurements.

The connection between error correction codes and
the dynamics in the above section is because the purifi-
cation dynamics of the mixed state on Alice’s system
ps = TI‘A PSA = TI‘A |¢SA> <1/)SA| map directly to the
evolution of a classical linear code space. In particular,
we show that the reduced state of the system, pg(n), dis-



cussed in section ITT A and section III B, can be written
in the following form (See Appendix A 4 for proof):

L—ky,

2;1 > la) (=] H b Zﬂgfj(n)%

where H5(n) is an L — k, by L matrix describing the
allowed x basis states in pg(n), and k, = S(ps(n)). This
expression shows that only basis states that satisfy the
constraint ), Hi%(n)z; = 0 are allowed to occur in the
evolving mixed state, and that these basis states all have
equal probability of occurring. Since this constraint has
the same form as the parity check matrix determining the
code words in a classical linear code space [51], we can
consider the dynamics of the state pg(n) as the dynamics
of a classical linear code space, K*(n), composed of those
code words. Remember here that a code space is defined
as the set of bit strings, K% (n), that can be used to encode
a message, and that the code space can be defined by a
check matrix, H*, as the set of bit strings satisfying the
above constraint: @ € K*(n) if and only if 3, Hf (n)x; =
0 for all .

When a random sequence of CNOTSs is applied to the
state, the different code words evolve under the same
random sequence of CNOT gates, and the difference be-
tween the code words, measured by the Hamming dis-
tance d(z1,z2) = >, |T1,; — ®2,| generically increases.
On the other hand, a bit eraser on the i*" bit will de-
crease the Hamming distance between two code words
with 1,; # x2,;. If there are too many bit erasers, the
Hamming distance between two different code words will
shrink to zero, and those two code words will become the
same bit string. When this occurs, the number of distinct
code words, S(pg), will decrease resulting in the system
purifying and a loss of channel capacity I, = S(ps).
Thus, the loss of channel capacity is equivalent to the
shrinking of the evolving classical code space.

Finally, by considering the full ancilla and system
state, we can see that Alice’s diary is encoded in this
classical code space. That is, any k bit classical message
she wishes to encode can be represented in her system by
one of the classical code words in the evolving code space.
By considering the system and ancilla state in Eq. 6, we
find that the initial basis state of the system |(x,0)) is
mapped to the basis state |f, ((z,0))) at a later time.
Upon tracing out the ancilla, we find |f, ((z,0))) must
be an allowed basis state and lives in the classical code
space K*(n). Thus, if Alice encodes a k bit message in
initial state |(z,0)), then that message will become en-
coded in the evolving code space K*(n). Similarly, Alice’s
quantum diary would be encoded on some superposition
of code words in the evolving code space.

This is similar to how a quantum bit in the repetition
code is encoded in the classical code space with code
words z1 = (111...) and z¢ = (000...). Notice that in
both the information game and in the repetition code, bit
flip errors can be corrected but only if they don’t include
a phase or decoherence error. In the information game,

ps(n) =

10

we showed the issue was Alice’s inability to maintain and
regenerate coherence, and by analogy we should expect
coherence can also provide a more general context for
why the repetition code can’t correct phase errors. Be-
low, in section V B 1, we show that this more general con-
text is the Theorem 2 which gives how coherence bounds
the code distance of a quantum error correction code.

IV. MEASUREMENT INDUCED DYNAMICS
OF COHERENCE

In the previous section, both Alice and Eve were
restricted to applying Incoherent Operations in the
X basis, and depending on whether Eve performed
a coherence-destroying or coherence-maintaining bit
eraser, Alice was able to protect a quantum diary. In
this section, we will allow Eve to make Y and Z mea-
surements which are not Incoherent Operations in the X
basis and can potentially increase the coherence in Alice’s
system. While this would not be an optimum strategy
for Eve, she may not have control over which basis she
measures in and we can therefore investigate if Alice can
take advantage of coherence generating measurements.
Below, we find that this is the case, and show that Al-
ice can protect a quantum diary when Eve preforms Y
measurements at a sufficiently high rate p, > |p; — p|.

We start by investigating how the coherence of a pure
state evolves under such a random hybrid circuit. For
Alice to be able to take advantage of the coherence gen-
erated by the measurements, then the steady state coher-
ence in the X and Z basis, C, and C,, must scale with
system size. Otherwise, the entanglement will be con-
strained, via Eq. 3, to be sub-extensive, Alice will only
be able to encode information locally, and her diary will
be susceptible to local errors.

A. Measurement only limit

We begin by considering the dynamics in the
measurement-only limit (p, = pr = p. = 0 and p,, = 1)
for an initial product state with N,, N, and N, =
L — N, — N, qubits polarized in either the X, Z or Y
directions respectively. In this limit, the evolving state
remains a product state, but with a different number of
qubits polarized in a given direction. States of this form
have Ny + N, qubits uncertain in the X direction and
therefore have C, = Ny, + N, = L — N, qubits of X
coherence. Similarly for the coherences in the Z and Y
directions: C, = L—-N,and Cy, = L—-N, = L—-C,—-C,.

The coherences then evolve according to how the num-
ber of qubits polarized in a given direction is randomly
updated after a given measurement. At each step, n, a
random measurement is made and the number of qubits
polarized in a given direction, N, can change by at most
one. Whether they change or not depends on the type
of measurement made and the probability that measure-



ment is made on a site polarized in a direction different
from the measurement basis. That probability depends
only on the value of N, before the measurement and
so the stochastic process for which N, are updated is
Markovian. The conditional probabilities of this process
are derived in Appendix C1 and lead to the following
rate equation:

(10)

with similar equations for N, and N, and where the
overlie in N, refers to averaging over circuit realizations.
Importantly, the rate at which N, increases or decreases
depends on the number of qubits already polarized in the
X direction. This follows from the fact that the effect of
a measurement depends on the polarization of the bit it is
applied to: X measurements only increase IV, if they are
applied to a Y or Z polarized bit. The steady state solu-
tion to these dynamics predicts the average steady state
density of « polarized qubits is equal to p, as intuitively
expected: N, = poL or equivalently for the coherences
Co = (1 — po) L. Thus, if the dynamics of coherence in
the measurement-only limit were robust to the addition
of unitary gates, Alice may be able to make use of the
volume-law coherence to encode states non-locally.

B. Random walk of coherence in weak
measurement limit

Unfortunately for Alice, this is not the case as shown
by studying the weak measurement limit where the mea-
surement rate p,, is so small that the system maximizes
entanglement with respect to the bounds given by co-
herence (c.f. Eq. 3). In this limit, the coherence dy-
namics again becomes Markovian because, as we show
in Appendix C 2, every measurement changes the coher-
ence in the X, Y or Z basis independently from the cur-
rent coherence in the system. Roughly, this can be ex-
pected because any time a measurement occurs in this
limit, each qubit will be in a maximally mixed state (as
long as min(C,,C,) > 1) and a measurement on any
qubit is guaranteed to have an uncertain outcome and
change the state and coherence. This is in contrast to
the measurement-only limit where effect of a measure-
ment strongly depends on the current coherences in the
system. This limit occurs when, between measurements,
there are enough CNOTs performed to guarantee that a
sequence of CNOTSs can entangle any two distinct qubits
within the system. This will occur after n = O(L?)
CNOT gates and thus we require that p,, < 1/L%

In Appendix C 2, we derive the Markov stochastic pro-
cess for N, and N,, where instead of being the number
of qubits polarized in the X or Z direction, N, = L—C,
and N, = L — C, are now, more generally, the number
of bits of information that can be specified about the X
or Z basis states. Where as C,(.) gives the entropy, or
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Figure 7. Cartoon of the random walk in the informa-
tion known about the X and Z basis: N, = L — C, and
N, = L — C, respectively. A measurement in the X,Y or
Z direction occurs with probability ps, py, and p., creating
jumps in information known about each basis N, and N, as
shown. The walker can not go above the line N, + N, = L
because the incompatibility between the X and Z observables
restrict the total amount of information known about the X
and Z bases. a) The walker localizes in one of the corners of
the plane depending on which which measurement rate domi-
nates (shown in red, yellow and blue). When Y measurements
dominate, information about the X basis and Z basis is lost
and the walker localizes in the (N, N.) = (0, 0) corner. While
when Z or X measurements dominate, information about the
X or Z basis becomes maximum and the walker localizes in
the respective corners.

the number of uncertain bits, of a given state’s distribu-
tion in the over the X(Z) basis, N, = L — C, give the
lack of entropy, or the number of bits known about the
basis states. We find that the stochastic process is a bi-
ased random walk in the (N, N,) plane, subject to the
bounds 0 < Nz(z) < L and N+ N, < L and is described
in Fig. 7. The direction of the drift velocity of the walker
is determined by the relative rates of the measurements
and yields the rate equations:

8mN1(m) ~ Pz — Pz — Py, (11)
amﬁz(m) ~ Pz — Pz — Py-

These rate equations predict that when p, > p, +
Dy, the probability distribution for the walker localizes
around the point (N,, N,) = (L,0) with a localization
length proportional to A ~ 1/(py — p. — py). Since the
rates of the Markov process are constants, the localiza-
tion length does not depend on system size such that
N, = L — c\ and so the average coherence C, = cA
becomes an area-law, where the constant ¢ depends on
the detailed features of the walker distribution. In this
limit the evolving quantum state is mostly classical in
the X basis and, by Theorem. 1, can only support area-
law scaling of entanglement. Thus, Alice will not be able
to encode quantum information non-locally and her di-
ary will be susceptible to local errors. Similarly, when



D. > Pz + Dy, the walker localizes around the point
(N, N.) = (0, L); the coherence C, — 0; states become
classical in the Z basis; and volume-law states are again
forbidden. Again, Alice will not be able to protect a
quantum diary.

In the region p; > p. +p,, the walker becomes less lo-
calized as p; is decreased, until the point p, = p, +p, at
which the localization length diverges and the walker dis-
tribution becomes uniformly distributed along the N, =
0 axis. At this critical point of the random walk, the
coherence in the Z direction remains maximal C, ~ L,
while the average coherence in the X direction becomes
C, = N, = L/2 giving rise to the possibility of volume
states and the ability of Alice to protect quantum infor-
mation. Decreasing p, further, the walker becomes local-
ized around the point (N, N,) = (0,0) where both co-
herences are scaling with volume and volume-law entan-
gled states will be allowed. In this limit, p, > |ps — p.|,
Alice has access to volume-law coherence and can poten-
tially use it to protect a quantum diary.

These three limits are summarized in Fig. 2, where we
describe the regions of the (p,, Ay = (px — p2)/(1 —py))
plane where C,, — 0 (X-classical states appear), C, — 0
(Z-classical states appear) and where both coherences
scale with the volume of the system (region labeled
“Quantum”). In this “Quantum” region, volume-law en-
tangled states are possible and, as we show in the next
section, Alice is able to protect quantum information.

C. Entanglement criticality at finite measurement
rate

While the above discussion relies on assumptions valid
only when p,,, < 1/L?, it appears to qualitatively capture
numerical simulations for finite p,, = 0.01. In Fig. 8, we
plot the X coherence, C,, and half cut entanglement en-
tropy, S(L/2), in the (py,A;) plane and find both have
a sharp change at p, = p, +p,. When p, > |p; — p.|,
we observe both Cy > L/2 and C, > L/2, while instead
when p, < |p; — p:|, one of the coherences drops below
L/2 consistent with the above predictions for p,, < 1/L?.
This sharp change in coherence is accompanied by a tran-
sition from volume-law entanglement, S(L/2) ~ L, in the
region p, > |p, — p-| to area-law entanglement in the re-
gion p, < |py — p-|. Furthermore, we observe in Fig. 10,
and discuss further in section IV D, that in the quantum
phase, p, > |py —p-|, Alice is able to protect a quan-
tum diary with a number of qubits scaling with system
size. The main difference from the weak measurement
limit where p,, vanishes in the infinite size limit (i.e.
pm — 1/L?) is that the coherences remain volume-law
throughout the phase diagram. We explain this discrep-
ancy by deriving, in appendix C 3, a phenomenological
rate equation for the finite measurement rate p,,, that in-
terpolates between the measurement-only limit and van-
ishing measurement limit.

This rate equation is constructed by introducing a
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Figure 8. (a) Steady state half cut entanglement, S(z = L/2),
and (b) coherence, Cy, for the hybrid circuits with a sequence
of random CNOTSs and X, Y and Z measurements for the
small measurement rate of p,, = 0.01 (pgr = 0 and p. = 0). In
these figures A, parameterizes the imbalance between X and
Z measurements A, = (pz —p-)/(1—py). These figures show
the critical line (white), |Az| = py/(1—py), which is predicted
by the competition between coherence loss and growth rates
as discussed in the text. Due to the duality between the X
and Z bases, dynamics are the same for A, — —A,. For the
Ay > 0 side of the duality, the coherence in the Z basis, C.,
is greater than C, and does not constrain the entanglement.
These figures were computed with L = 128 and averaging
over 2000 circuit realizations.

length scale &, associated to the typical distance at which
two qubits might be entangled. More precisely, it is the
typical length [29] of a stabilizer (see appendix C 3), and
scales with the half cut entanglement entropy S(L/2) ~
&. Under this assumption, we derive a rate equation for
the dynamics of the coherence:

0. N, = . (1 - (Nf)j ~p (1 - (%)jm)
(- (),

In a volume-law phase, this length diverges with system
size, S(L/2) ~ & ~ L, such that the phenomenologi-
cal rate equation is equivalent to Eq. 11 as L — oo. If
Py > |pz — p-| then the steady state of this rate equation
is consistent with the assumption of a volume-law phase.
Instead, if p, < [p; — p-|, then Eq. 11 predicts the coher-
ence and entanglement entropy becomes area-law, such

that & ~ S(L/2) must scale as constant with system size.
Thus, when p, < |p; — p.| only area-law entanglement is



Figure 9.
balance between X and Z measurements Ay = (pe —p-)/(1—
py). The A, = 1/3 critical point predicted by py = |pz — p:|
is confirmed by the b) Anti-podal mutual information I and
b) triparitite mutual info I35 as discussed in the text. Different
lines correspond to the system sizes shown in the legend. In
this figure p.,, = 0.01, py = 1/4 and pr = p. = 0.

a) Half cut entanglement entropy S(L/2) v.s. im-

consistent, and the predictions for the entangling phases
at p,, — 1/L? hold at finite p,,. The main difference
is that £ is now finite when p, < |p; — p.|, such that
the rate Eq. 12 predicts volume-law coherence consistent
with numerical simulation.

In Fig. 9, we confirm precisely the prediction for the
critical point p, = |p; — p-| when measurements in the Y’
direction are fixed at a rate p, = 1/4. There, we observe
a transition between area-law and volume-law entangle-
ment at the critical point |Ag| = |p; — p.| /(1—p,) = 1/3
as predicted. Near the critical point, A, ~ 1/3, we
find entanglement scaling logarithmically with system
size which creates finite sizes obstacles [69] to an ac-
curate determination of the critical point. Accordingly,
we consider the anti-podal mutual information, I, and
the tripartite mutual information, I3, to obtain circum-
vent these finite size effects as done in Refs. [25, 29].
The anti-podal mutual information is computed as Iy =
S(pr,)+S (prs)—S (pr,URs ), Where the regions R,, con-
tain the sites from (n—1)L/4 to nL/4. This quantity is a
constant when the entropies follow either volume or area-
law, but scales logarithmically with L if the entropies of
the different subregions scale logarithmically. Thus, it
is highly sensitive to the logarithmic scaling of entangle-
ment at the critical point, and a sharp peak identifies the
A, = 1/3 critical point in Fig. 9. Interestingly, it also
suggests the volume-law phase has a logarithmic correc-
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Figure 10. a) This figure shows the quantum channel capacity
C, computed by the purification dynamics, at a time ¢t = 5L,
for the same circuits studied in Fig. 9. It shows a transition
at A, =~ 1/3 (marked by a black vertical dashed line), the
location of the critical point determined by the competition of
coherence generating and coherence destroying measurements
Py > |pz — pz|. b) Coherence for the same circuit but with
an initial pure state. The coherence crosses C, = L/2 at the
critical point A, = 1/3 as predicted by the rate Eq. 12.

tion to the entanglement scaling; we leave for future work
the task of identifying the origins of this correction.

The tripartite mutual information also shows the A, =
1/3 critical point and is computed as Is = 45 (Ry) —
25 (R1|JR2) — S (R1JR3), which is equivalent to the
form in Ref. [25] due to translational invariance. The
triparitite mutual information goes to 0 in the area-law
phase, follows a volume-law in the volume-law phase, and
it goes to a constant independent of system size at the
critical point. Fig. 9 shows this behaviour with different
curves for different system sizes L crossing at the critical
point, A, =1/3.

D. Transition in channel capacity

We have shown that when Eve applies a sufficiently
high rate of Y measurements, Alice is able to produce and
maintain volume-law entangled states at late times. We
now investigate if this ability also allows her to protect
a quantum diary. As in section III B, we investigate Al-
ice’s ability to protect a quantum diary of |A| = L qubits
using the purification dynamics of an initial mixed state
with with entropy S(po) = L. At late times, the en-
tropy of the system is again equivalent to the coherent



information between the initial and final system states,
S(L) = C. Thus, when the system purifies, Alice looses
her diary, while when it remains mixed, Alice can recover
S(L) = C qubits of her diary. We consider a circuit with
pm = 0.03 and p, = 1/4 fixed, and study its purification
dynamics as a function of A, after an initial sequence of
L? random CNOT gates simulating an encoding proce-
dure Alice caries out before Eve’s attack. In Fig. 10, we
observe a transition between the protection and loss of
the quantum diary occurring at a critical point A, = 1/3,
the point at which Alice gains access to volume coherence
in the p,, — 1/L? limit. Thus, the ability of Alice to pro-
tect a quantum diary, is accurately predicted from the
condition that Eve’s measurements give Alice access to
large coherence, C,, > L/2. This provides evidence for a
connection between quantum communication and coher-
ence. In Appendix D, we give a first numerical analysis
of the critical behaviour of the transition presented in
this section, but leave for future work a detailed investi-
gation into the critical dynamics induced by the complex
interplay between coherence and entanglement.

V. COHERENCE REQUIREMENTS FOR
QUANTUM COMMUNICATION

A. Alice’s coherence generating requirements

In sections III and IV we found that if Alice is con-
strained in her ability to generate coherence, then she
can only protect quantum information if Eve is restricted
in her ability to destroy coherence. In section III, we
found that Eve must not apply coherence-destroying bit
erasers, while in section IV she is constrained to apply a
sufficient ratio of Y measurements to X and Z measure-
ments py > |p, — p-|. Thus, if Eve is able control which
operator she makes a measurement of, she could choose
to always measure the X basis (p, = 1), quickly destroy
X coherence and Alice’s quantum diary.

Alice is therefore required to dynamically regenerate
coherence in the system as it evolves. A simple way of
doing this is by adding a finite rate of phase gates R,
which can generate coherence in the X basis. We now
show that this solution works and allows Alice to protect
against the coherence-maintaining bit flip errors and co-
herence destroying X measurements.

The dynamics for a fixed error rate p,,+p. = 0.05, with
py = p. = 0 and p, = 1, are displayed in Fig. 11, and
show that for a sufficient rate of phase gates pr > 0.1 the
system can protect any ratio p,,/pe = ra/(1 — rq) of X-
measurements (dephasing errors) to bit erasers. For pgp <
0.1, the system can protect only a fixed fraction of bit flip
errors and this fraction is related to when the steady state
coherence reaches C, =~ L/2 (also shown in Fig. 11). This
correspondence demonstrates the necessity of quantum
coherence to maintain a finite quantum channel capacity.
Furthermore, we showed that coherence can be preserved
simply by the addition of a sufficient rate of single qubit
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Figure 11. Quantum channel capacity C for a diary encoding
|A| = 10 qubits (panel a) and X basis coherence C; (panel
b) at time ¢ = 10 for a circuit composed of CNOTSs, sin-
gle bit phase gates occurring at a rate pr, and two types of
attack operations occurring at a rate p,, +pe = 0.05: X mea-
surements occur at a rate p, = 0.05 xrq (i.e. p, = 1 and
py = p- = 0) while coherence-maintaining bit erasers occur
at arate p. = 0.05(1—rq). Panel a) demonstrates a transition
between zero and finite quantum channel capacity for suffi-
ciently large rate of coherence generating phase gates. Panel
b) shows that this transition is associated with a sharp change
in coherence C,. The color scheme in the panel b) is chosen
such that C; = L/2 = 64 is black.

coherence generating gates. Thus, once a dynamically
protecting classical code can be constructed via CNOTs,
only single qubit gates are sufficient to allow the code to
also protect quantum information from dephasing errors.

B. Coherence requirements for stabilizer error
correction codes

In the previous sections we observed that on the one
hand, Alice can protect classical information by main-
taining a classical code space with a large Hamming dis-
tance between the code words of the classical code space.
On the other hand, we observed that for Alice to pro-
tect quantum information, she was required to maintain
a large amount of superposition between different basis
states (i.e. a large volume-law coherence). In classical er-
ror correction codes, the Hamming distance between any
two code words is related the number of bit flip errors
that can be corrected (i.e. the code distance) [51]. This,
along with previous results studying the role of quantum



coherence in channel discrimination tasks [18-23|, sug-
gests quantum coherence is related to the code distance
of quantum codes. In this section, we formalize these ex-
pectations by presenting Theorem 2 that states the code
distance of any stabilizer quantum error correction code
is bounded by the coherence of its maximally coherent
state for any local Pauli basis. We then explain how
this bound can be made tighter by considering different
sub-codes, and discuss the relevance of this bound to the
dynamically generated quantum codes discussed in the
previous section. Finally, we conclude this section with
an application of the bound to CSS codes.

The theorem applies to [[N, k, d]] stabilizer codes that
use N qubits to detect up to d errors on a quantum code
space of dimension 2*. The code space is defined by a set
of N — k Pauli check operators {g;} that constrain the
states, 1) that can live in the code space via g; |¢) = [¢)
forie (1...N —k).

Theorem 2. Given a local Pauli basis D, the code dis-
tance d of a [[N,k,d]] stabilizer code, P, is bounded by
the coherence of the maximally coherent stabilizer state
in the code space:

déglggc(\w,D) =Cpp. (13)

Here, a local Pauli basis D is any basis that, on each
site 4, one of the Pauli operators A; € (X;,Y;, Z;) is di-
agonal. A proof of this theorem is given in Appendix B
and is constructed by identifying an undetectable error
composed of d = Cpp measurements of a subset of the
Pauli operators A; defining the Pauli basis D. Intuitively,
such an error can be constructed because any state in the
code space has at most Cpp coherence. Therefore, the
coherence of such a state can be reduced to 0 in at most
Cpp dephasing errors (measurements), thus destroying
all phase information the state might have encoded in
the basis states of the Pauli basis D.

Notice that, while this bound is expressed in terms of
the maximum coherent stabilizer state of the code space,
it is actually tighter. The tighter bound can be obtained
by applying the theorem to any subspace of the code
space. Then, since an error for any subspace of the code
space is an error for the whole code space, the coherence
of the maximum coherent state of the subspace bounds
the code distance. This way the bound is actually closer
to the coherence of the second least coherent stabilizer
code state. This is seen by constructing a basis of stabi-
lizer states which span the full code space and ordering
them by the coherence. The tightest bound comes from
the subspace formed from the two least coherent stabi-
lizer basis states. Within this subspace, the maximum
coherence is at most 1 bit more than the second least
coherent basis state, and thus the tightest bound is ob-
tained using that basis state.
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1. Application to Alice-Eve information game

Applying such a bound to the game played between
Alice and Eve is difficult because there is no static code
space that we can apply the bound to. Nonetheless, we
can use the intuition from Cpp > d to understand why
the transition line in Fig. 11 is linear. Our approach
will first identify an effective code distance, d.sf, for
the dynamically evolving code space; then it will pro-
vide an estimate on the relevant coherence, Cpp, limit-
ing Alice’s ability to protect her diary; and finally use
Cpp = dess to identify the critical line. Thus, we first
note that the error rate, p,, + pe, of the dynamically
generated code is fixed in the p,, versus pr plane of
Fig. 11. This allows us to assume the required effec-
tive code distance is some constant k.¢y = K that does
not depend on p,, or pr. Then, as argued in the pre-
vious section, the coherence in the X basis was limiting
the quantum channel capacity of the dynamically gener-
ated code and so we derive the p,, v.s. pr phase bound-
ary using Cpp = Cyp(pm,pr) = K: when the steady
state coherence in the X basis C,(pm,pr) is sufficiently
large, Cy(pm,pr) > deyy = K, then Alice can protect
her quantum diary, otherwise, she can’t and her channel
capacity drops to zero. Following similar arguments as
in Appendix C 3, we propose the following rate equation

for C,:
N 13

Solving for the steady state, we find that the critical
phase gate rate is given by pr = p. [1 - (1= K/L)E],
and for a fixed L we find the critical phase gate rate scales
linearly with p, as observed in Fig. 11. For increasing L,
it is natural that the effective number of errors, K, also
scales L, such that the proportionality of the critical line
pr ~ pp does not change with increase L as we have
confirmed numerically.

2. Application to the L-bit repetition code

The application to such a bound for a stabilizer error
correction code is much simpler than for the information
game since the theorem applies directly to static stabi-
lizer codes. We first consider the simplest quantum er-
ror correction code, the repetition code [51, 56] which is
the quantum generalization of the simple classical cod-
ing procedure of repeating a message multiple times. The
code space for the L-bit repetition code is spanned by the
X-basis states |00---0) and |11 ---1), and can correct up
to (L —1)/2 bit flip errors but zero X-dephasing errors.
The application of the theorem is done by considering
the state (|00 ---0) 4 [11---1)) /+/2 which has maximum
X coherence of C;, = 1 in the code space. Thus d < 1
and the repetition code can correct up to (d —1)/2 =0
X-dephasing errors. While the fact the repetition code



can not correct phase errors is obvious, the application of
Theorem 2 shows that this inability is because the code
lacks the ability to produce states with coherence in the
X basis.

3. Application to CSS codes

While the above examples are rather simple, they show
coherence provides a unifying and general view for cer-
tain requirements when designing quantum error correc-
tion codes. In this section, we show that this general
context provided by the coherence bound is related to
the generality of the singleton bound for classical error
correction codes. The classical Singleton bound [51] is a
bound d < L — k 4+ 1 on the code distance, d, for any
classical code determined strictly from the size of the
code space 2* and the number of physical bits used in
the code, L. The relation to the coherence bound comes
from applying Theorem 2 to the CSS quantum error cor-
rection codes which are codes constructed using two clas-
sical codes K* with an k, bit code space, and K? with
a k, bit code space defined on L physical bits. These
codes compose a large class of stabilizer error correction
codes [51, 70], and are useful for constructing codes will
good asymptotic properties [71].

To apply the coherence bound, we recall that a basis
for the CSS quantum code space can be constructed by
using the dual code K3 with code space of size L — k..
The code words, z, of the dual code are the bit strings
of length L generated by the transpose of parity check
matrix H7; of the code K

r=Giz=(H)"> (15)

for all bit strings z of length k*. Using these code words of
the dual code, K7, the 2k — 9ka—(L—k2) distinct stabilizer
basis states for the CSS code can be easily written [51]
in the X basis as:

|z + K7) = \/ﬁ Zyele |z +y). (16)

for all distinct « € % /K% . This shows immediately that
the coherence of each basis state is Cp = log,(|K%]) =
L — k,. We can then bound the code distance by con-
sidering the maximal coherent state for a single bit log-
ical subspace spanned by states |z + K7 ) and |z’ + K7)
such that = +y # 2 for all y in K%. The maxi-
mum coherent state of this subspace is the superposition
[v) = (Jo +K%) + |2’ + K2 ))/v/2 which has coherence
C, = L —k,+ 1. Thus the coherence bound for the code
distance is L — k, + 1 > d which retrieves the classical
Singleton bound of # which is used to correct phase er-
rors [51]. A similar analysis in the Z basis will retrieve
the classical Singleton bound for the K% code space with
L—Fk,+1>d.
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VI. DISCUSSION AND OUTLOOK

In this work, we have discussed the coherence resource
requirements for quantum communication, treating the
dynamics of random hybrid circuits as an information
game played between Alice and Eve. The game involved
Eve applying measurements in an attempt to destroy Al-
ice’s quantum diary, and Alice recording the measure-
ments (their location, polarization and outcome) and ap-
plying unitaries in an attempt to protect her diary. By
considering the purification dynamics of the associated
circuits, we determined Alice’s ability to protect her di-
ary and found that her access to coherence or coherence
generating operations allowed her to protect either clas-
sical information or quantum information. When Alice is
limited in her access to coherence, she can only protect
classical information, while if she has access to coher-
ence or coherence generating operations she can protect
quantum information.

This is summarized in Fig. 12, which shows a figure
similar to Fig. 11 in which a purification transition in
Alice’s Quantum Channel capacity depicted. In contrast
to Fig. 11, we show what type of information she is ca-
pable of protecting given a certain type of attack by Eve
and a maximum rate, pr, at which she can apply a coher-
ence generating operations. The main difference is that,
in Fig. 12, we treat pr as a limit on her ability to gener-
ate coherence, rather then the rate she actually applies
the coherence generating operation (for instance, a phase
gate). This is relevant because when Alice applies a phase
gates, she generate quantum noise in the X basis states,
which looks like an error from the perspective of the clas-
sical channel. Specifically, the classical channel capacity
is the mutual information between an initial distribution
of X basis states and the final distribution of X basis
states. Thus, a phase gate is a quantum error because it
generates quantum uncertainty (i.e. coherence) in the X
basis states. As a trivial example, if Alice first prepares a
X basis state on a qubit, then applies first a phase gate,
and finally makes a measurement in the X basis, the fi-
nal state of the qubit will be uncorrelated with the initial
state. The effect on classical channel capacity due to the
application of phase gates was more deeply investigated
in Ref. [55].

Thus, the circuits in Fig. 11 have zero classical chan-
nel capacity in the whole phase diagram, because Alice
is applying phase gates. If instead, she were to not apply
the phase gate and attempt to encode classical informa-
tion, she could protect a classical diary. Therefore, in
Fig. 12, we imagine pr as the rate at which she could
apply phase gates, and we observe the transition is from
an ability to protect classical information to an ability to
protect quantum information.

From a different perspective, this transition in the ca-
pacity to protect either quantum or classical informa-
tion provides an answer to what is quantum about the
entangling phase of the measurement-induced entangle-
ment transitions. This question is raised by transitions
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Figure 12. Alice’s coding capabilities in various regions of
parameter space with p. = p, = 0 and p, = 1. In all fig-
ures, we consider Eve’s attacks to be coherence-maintaining
bit erasers (at a rate p.) and X measurements (at a rate
Pm = pera/(1l — rq), and we give Alice the option to apply
phase gates up to a rate pgr. a) For pr = 0, Alice can only
encode a quantum diary if Eve does not apply coherence de-
stroying measurements (red line at r4 = 0), otherwise Alice
can protect a classical diary as long as p. is sufficiently small.
b) In this figure p,, = 0 and so Alice can always protect a
quantum diary as long as she can protect a classical diary.
When pr = 0, we retrieve the limit discussed in section II1I B
where only coherence-maintaining bit erasers are applied. c)
In this figure p. = 0.05 — p,, as in Fig. 11, but now Alice
has the choice to apply phase gates or not. The figure shows
the transition to quantum error correction as in Fig. 11, but
now if she chooses not to apply phase gates she can protect
classical information so long as p. < 0.1.

in classical information quantifiers observed in the classi-
cal circuits of section ITI, and Refs. [54, 55]. One answer
was given in Ref. [55], which showed quantum gates (i.e.
quantum noise), such as the phase gate, are an insta-
bility to the ordered classical phases. Another answer
is given by Fig. 11, which shows that in the quantum
phase, quantum information is protected from both bit
and phase errors (coherence destroying errors).

Thus, the answer to what is quantum about the
measurement-induced entanglement transitions is equiv-
alent to the question, what is quantum about quantum
error correction codes. In both cases, it is a stability to
both bit and phase errors. Also, in both cases, the extent
to which both are stable to X or Z errors corresponds to
the amount of X or Z coherence respectively. It is only
when the phase, or quantum code space, contains states
with both X or Z coherence will they be stable to X or Z
errors. In the case of measurement-induced phase tran-
sitions, this fact is reflected in a volume-law to area-law
phase transition corresponding to a critical loss of either
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X or Z coherence (cf. Section IV B). While in the case
of quantum error correction codes, the Singleton bound
on the code distance for X or Z bit errors in a CSS code
corresponds to the coherence bound on the code distance
applied to either the X or Z basis.

The coherence bound may also provide a useful design
principle for quantum error codes targeting a given exper-
iment. For example, while generating coherence in any
given basis can be achieved by single qubit operations,
generating it for all local Pauli basis requires entangling
gates and is therefore more difficult. Thus experiments
will generally be limited in the amount of coherence they
generate in some basis. By identifying this limit on co-
herence, one could identify a maximum code distance
the experiment could produce, and focus on constructing
codes with a code distance less than that.

Our work therefore provides interesting directions in
both the design of systems protecting quantum informa-
tion and the relation between classical and quantum in-
formation dynamics. While here, we have studied the
classical limit of quantum gate operations, it could also
be interesting to study how coherence brings one away
from the classical limit of chaotic dynamics of continuous
systems. In the present work, spreading and scrambling
of quantum information was done by controlled gate op-
erations, but one may also be interested in the natural
scrambling of information present in both classical and
quantum chaotic systems [72-84]. Since here coherence
distinguished between classical and quantum dynamics,
it might also be possible that it can elucidate results con-
necting classical to quantum chaos [85-87]. In conclusion,
our results can provide a new perspective on the connec-
tion between classical and quantum information scram-
bling, and their relation to communication technologies.
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VII. APPENDIX

Appendix A: Properties of stabilizer states

Definition 1. A stabilizer mized state, p on L qubits,
with von Neumann entropy S(p) is defined using a group
S generated by a set of Ny = L — S(p) operators which
are strings of single site Pauli operators {g;}:

L-5S(p)

b= H 1;91‘

=1

(A1)

We use the stabilizer check matrix, C;; which isa L—S(p)
by 2L + 1 matrix, where the rows index the generators
and the columns specify the form of the generator:

L 2L
g = (_1)C'i,2L+1 H chid H chw" (A2)
j=1 j=L+1

The stabilizer check matrix has entries from the field
Fo = (0,1), and act in a vector space defined over that
field, where multiplication and addition are performed
modulo 2. The set of all Pauli string operators that com-
mute with the elements of S are called the centralizer
of S. This set forms a group C(S) where p € C(S) if
pg; = g;p for all g; € S. It will be important to consider
the set, C'— .5, of Pauli strings operators contained in the
centralizer but not contained in the stabilizer group.

1. Representations of stabilizer states

A stabilizer mixed state is defined by its stabilizer
group, S, and can have different representations based on
the different choices of generators g; of that group [51].
Changes between representations, often called gauges,
can be made by taking one element in the group R € S
and another generator, g; such an element

9i — 9; = Rgi (A3)
If R is the inverse of one of the generators, then R will
need to be added to the set of generators to maintain
the same number of nontrivial generators of the group S.
If we write R = (—1)2t+ Hf:l X;j H?iLH Z;J, then
such a procedure changes the stabilizer check matrix,
by adding the vector r to the i*" row of the stabilizer
check matrix C;; (again all operations performed mod-
ulo 2) [51]. Thus different representations of the stabilizer
state correspond to different stabilizer check matrices all
related to each other by row operations. Gaussian elim-
ination will be a useful tool to find convenient represen-
tations of the stabilizer state when proving lemma 4.
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2. Measurements on stabilizer states

The measurement of a Pauli string, O on a stabilizer
mixed state, can have three possible effects:

e No effect: Occurs when =0 € S, since the stabilizer
state is already an eigenstate of the measurement
operator O.

e O changes the state and reduces the entropy. In
this case, O is added to the generators of the sta-
bilizer state, and occurs when O in the centralizer
of S but not in S: O € C(S) and O ¢ S.

e O changes the state, but not the entropy. This
case occurs when [0, g;] # 0 for at least one of the
generators g; and it requires a non trivial update
to the stabilizers state.

In the last case, updating the state is performed [51] by:

1. Changing the representation of the stabilizer state
to one in which only one generator ¢} does not com-
mute with O.

2. Replacing the generator g} with the new generator
0.

3. Coherence of stabilizer states

We now prove the lemmas and theorem discussed in
the text, and in particular, we prove Theorem 5 which
gives an expression for the relative entropy of coherence
for a stabilizer state. To be as general as possible, it is
useful for us to define

Definition 2. A local Pauli basis is as any basis that,
on each site i, one of the Pauli operators A; € (X;,Y:, Z;)
is diagonal.

The basis states, {|s)}, of a local Pauli basis are defined
by a given bit string s = {a1,as---ar} obtained after
performing a projective measurement on L Pauli opera-
tors {4}

Arls) = (1)

s) (A4)

where «; € (0,1). We will also define H(p(z)) =
— > . p(z)log(p(x)) to be the Shannon entropy of a dis-
tribution p(x).

We will often find it useful to use a generalization of
the property of stabilizer states discussed in appendix A 2
that states the outcome of measuring a Pauli operator is
either certain (P(s; =0) = 1 or P(s; = 1) = 1), or uncer-
tain with probability P(s;) = 1/2 for s; € (0,1). When
applied to a sequence of measurements on the Pauli oper-
ators {A;} defining a Pauli basis, we obtain the following
theorem:



Lemma 3. Given a stabilizer mixed state p, the prob-
ability, P(s) for the bit string, s, resulting from a mea-
surement on a local Pauli basis A, is uniform over 2™ bit
strings where n,, = H(P(s)) is the number of uncertain
measurement outcomes in a sequence of measurements
Ay, As .. Ap. ice. P(s) = 27" if the bit string is one of
the 2™ allowed bit strings or P(s) =0 if not.

Proof: From Born rule, the probability:

(ILED™ A+ 1)
Tr { > p

P(s)="Tr

HD(/L: =a;)p

where A; is the single site Pauli operator on the i‘" site
defining the local Pauli basis A, and [[, D(4; = o) is
the projector to the basis state |s). We can compute this
probability P(s) sequentially by performing a sequence
of projective measurements on the i*" site:

pi = D(A; = ai)pi-1D(A; = o) (A5)

where pg = p and pr, = P(s)|s) (s| is the projected Pauli
basis state with normalization P(s) = Tr(py,).

The probability distribution P(s) will depend on
whether the probability distribution of the individual
measurements

pi(ai) = Tr[D(A; = i) pi-1D(Ai = a;)]/ Tr[pi—1{A6)

are certain or uncertain. There are four options for the
outcome of the i*" projection on the i*" stabilizer state
with stabilizer group S;:

1. A; € S;; pi(a;) € (1,0) and the measurement out-
come is certain. In this case p; = p;—1 or p; =0
depending on a; = 0 or 1 respectively, and the
measurement outcome of A; is certain.

2. —A; € Si; pi(oy) € (1,0) and the measurement
outcome is certain. This is the same case as 1) but
pi = pi—1ifa; =1and p; =0 if a; = 0.

3. Both A4; € C(Sl) — S; and —A; € C(S7) - S5
pi(a;) = 1/2 and the measurement outcome is un-
certain: in this case p; = D(4; = «a;)pi—1D(A; =
a;) = D?p;_1 = Dp;_, independent of a;. Here

4. A; ¢ C(S;); pi(e;) = 1/2 and the measurement
outcome is uncertain. In this case, we can choose
a representation of S; such that only one generator
g; does not commute, [g;, A;] # 0 . Furthermore,
since g; and A; are non commuting Pauli operators
we have g;A; = —A;g;, and can compute:

(D™ A +1) (1 +g;5) (=D A +1)
8
14 (=1)*4;
=0
such that the state p; is the stabilizer state with the
4" term in the product of Eq. A1 replaced by (1 +
(=1)* A;)/2 and normalization such that p;(«;) =
1/2.

(A7)
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We can then find the probability of a measurement out-
come P(s) from the probability of the i** measurement
outcome p;(a;):

P(s) = Tr[pr] = pr(ar) Tr[pr—1] = Hpi(ai) (A8)

which is either 27"« or 0 where n,, is the number of un-
certain measurement outcomes in the sequence. Further-
more, whether a measurement outcome is certain (case
1 and 2) or uncertain (case 2 or 3) depends only on the
measurement being performed, A;, and not the previous
measurement outcome, «; for j < i. Thus we find that
regardless of the bit string being projected s, the num-
ber of uncertain outcomes is the same. We conclude that
P(s) is a uniform distribution (for all P(s) # 0 we have
P(s) = 27™) with entropy H (P (s)) = n, C.

Notice that since this gives us the entropy of P(s) such
that we can easily compute the relative entropy of coher-
ence in the basis A as:

C(p.A) = H (P () = S(p) = nu+ No— L (A9)
where Ny is the number of independent generators in the
stabilizer group S.

To easily obtain the number n, of uncertain outcomes,
we find the following stabilizer representation useful:

Lemma 4. The CSS “gauge” For a given stabilizer
mized state, there exists a representation, called the CSS
gauge, in which the stabilizer check matriz takes the fol-
lowing form.:

G% 0 s*

0 G% s*
Gy G osY

(A10)

where the rows of Gy are linearly independent, and where
the rows of G, are also linearly independent. In Eq. A10,
G% is a N, by L matriz defining, along with the column
s%, a set of generators {gF} composed solely of X; oper-
ators; G% is a N, by L matriz defining, along with the
column s*, a set of generators {g?} composed solely of Z;
operators; while Gy, and G} are L — S(p) — N, — N by
L matrices that together with the column sY define a set
of generators {g!}.

In this gauge, there are set of N, generators {¢g7} de-
fined via the matrix G% composing only X Pauli strings:
g7 = (—1)% I, X;Gi)i’j. Similarly there are a set of N,
generators {g?} defined via the matrix G2 composed only
of Z Pauli strings, while the remaining L—S(p)— N, — N,
generators have both X and Z Pauli strings.

Proof: We first note that, as discussed in appendix A 1,
row operations applied to the stabilizer check matrix cor-
respond to multiplication of the generators g;, such that
different representations of the stabilizer group S are re-
lated by row operations applied to the stabilizer check



matrix. The proof then proceeds by construction. First
start with a generic stabilizer check matrix

o7 a7 o] (A11)
Where g7 and gf are L—S by L matrices. If g7 has M, <

L — S(p) linearly independent rows, then by Gaussian
elimination on the columns j = L + 1...2L, will obtain

a new matrix with
g0 s
95 g5 5

where g5 has M, linearly independent rows and g% has
N, = L—S(p)— M, rows. Furthermore since the genera-
tors are independent and do not contain I or —I, the rows
of ¢g¥ must be linearly independent such that the check
matrix can not contain a row with all Os in the columns
1...2L. Now the combined set of rows from both ¢g> and
93 may also have only M, < L — S(p) linearly indepen-
dent rows, such that Gaussian elimination can eliminate
N, = L — M, rows of ¢g5. Applying that Gaussian elim-
ination on Eq. A12 we obtain the CSS gauge Eq. A10
0.

We can now derive the relative entropy of coherence of
Stabilizer states for the coherence in the X and Z basis’s:

(A12)

Theorem 5. The coherences in the X and Z basis of
a stabilizer state are determined by number the of rows
Ny, N, and Ny of the matrices g3, g% and g, of the CSS
gauge:
Cy =Ny + N,
C.=Ny+N,

(A13)

Proof: The coherences are given as C, = H(P(x)) —
S(p) and C, = H(P(z)) — S(p), where in the CSS gauge
the von Neumann entropy is easily given as S(p) =
L — N, — Ny, — N,. Without loss of generality we focus
finding the Shannon entropy H, = H(P(z)) using the
above Lemma 3, and counting the number of uncertain
measurements for a sequence of measurements A; = X;.
To do this, we prove there exists a permutation of the
sequence of measurements, {X;} — {X;¢} such that
measurements of the J(i) =1... (N, + N,) bits fall into
case 4) in the proof for Lemma 3; the measurements of
the J(i) = N, + N, +1...L — N, bits fall into case 3);
and the rest have zero uncertainty in the measurement
outcome (case 1 or 2). Given such a result, we have
Ny =L—-Ny,=H;and C;, = N, + N..

Such a sequence can be found by Gaussian eliminating
the columns L+1...2L of the rows N, +1...L—S(p) of
the stabilizer check matrix in the CSS gauge, such that
the check matrix has the from in Eq. A12, but with ¢5 in
upper triangular form. If we take J(i), fori=1... N, +
Ny to be the left most site for which the generator i+ N,
has a Z;(;) Pauli operator in it ( min J(i) such that
(95)i,s = 1), we will ensure that [X ¢, Zs¢;] # 0 for the
measurements ¢ = 1... N, + N, and that they of case 4)
above.
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After this first sequence N, + N, measurements, the
stabilizer group Si=n,4+n, Wwill only contain operators
that contains X Pauli operators, and since the previous
case 4) measurements don’t change the number of in-
dependent generators we have S(pi=n.+n,) = S(pi=o)-
Thus, the remaining measurements fall into case 1, 2
and 3 outlined in the proof of Lemma 3. The mea-
surements that fall into case 1 and 2 don’t change the
state or the entropy, and so we can choose the measure-
ments J(i) for i = (N, + N,)...N, + N, + S(p) to be
the measurement that falls into case 3, such that the
state loses one bit of entropy after each measurement
S(pit+1) = S(pi) — 1. After this set of S(p) measurements
we will then have S(p;) = 0, and the state as an X ba-
sis state such that all subsequent measurement will have
zero uncertainty in the outcome. Thus we have found the
sequence J (i) we set out to. In the case of pure states, we
have C; = Ny+N, = L—N; and C, = Ny,+N, = L—N.,.
O

4. Coherence free stabilizer states

In section ITI C, we claimed that a stabilizer state with
zero coherence in the X basis has the form

L—k,
ps(n) = 5o S0l el TT 6 | S0 5 (m)ay
x =1 J

where HJ define the generators of the stabilizer state

g7 = 1, X jH Y. This equality follows first from Theo-
rem 5, which shows that such a state, which has NV, =
N, = 0 has zero coherence in the X basis, C;; = 0. This
implies that the density matrix pg(n) is diagonal X basis
such that it can be written as

ps(n) =Y |x) (x| P(x) (A14)
Finally, we have that
P(x) = (2] ps(n) |x) (A15)
L—5(p) 1+ (2| g; |z
[[1 <2|g |z)
L:S(p)

14 (—1)%s i
2

i=1
L—-S(p)

=251 H 5 ZH;;xj
i=1 j

Appendix B: Proof of the coherence bound on the
code distance

The coherence bound on the code distance for stabi-
lizer codes is proven by making use of two properties of



stabilizer states. The first is the lemma 3, which states
the distribution of bit strings, P(s) for given Pauli ba-
sis is uniform over 27(F()) allowed bit strings (P(s) =
1/2H(P(5)) if s is allowed or P(s) = 0). The second useful
property of stabilizer states is

Lemma 6. Given a local Pauli basis D, any Pauli sta-
bilizer state ) can be reduced to a product state in

M = C(|¢), D) measurements.

Proof: Without loss of generality, take the tensor prod-
uct basis D, to be the logical basis for the logical opera-
tors X;. Now imagine applying each measurement oper-
ator X; in order from ¢ = 1 to ¢ = L. Since the state [);)
after measurement of X;_; is a stabilizer state, either
X ;) = £|¢;) and the measurement outcome is cer-
tain, or the measurement outcome is +1 with probability
1/2 and the measurement is completely uncertain. After
all measurements are performed the state is in a product
state, but the measurements whose outcomes were cer-
tain, did not need to be made as they didn’t affect the
state. Thus only the number of uncertain measurements
ny(s) = M are needed to reduce the state to a product
state. From Lemma 3, n,, = H(P(s)), and since the state
|¢) is a pure state, we have n,, = C(|¢), D) O.

Treating such a sequence of M measurements as an
error on a state 1) encoding a set of logical qubits, we
can then prove the desired theorem:

Theorem 2. Given a local Pauli basis D, the code dis-
tance d of a [[N,k,d]] stabilizer code, P, is bounded by
the coherence of the mazimally coherent stabilizer state
in the code space:

d <maxC(|y), D) = Cpp (B1)

Proof: Without loss of generality choose D = X as
the basis diagonal with respect to the Pauli {X;} opera-
tors. Then choose a complete set of logical Pauli opera-
tors Z, and X,, acting on the code space, such that the
basis states of the code, |¢,), diagonal with the logical
Z,, operators, contain the maximally coherent stabilizer
state |¢1) (ie. C(J¢1),X) > C(J3), X) for all stabilizer
states [¢) in the code space). From lemma 6, the states
|t,) can be reduced to a product state in the compu-
tational basis with at most Cpp measurements. Thus,
there exists a projector Ps_, for each basis state |¢y),
with weight Cy ., = Cy(|¢n)) < Cpp, that reduces that
basis state |1,,) to a X basis state in C, ,, measurements:
Py, i) = 2= C=n/2 |2, s,) where x,, are the value of the
bits not projected by P, and s,, are the values of the C ,,
bits specified by the projector.

We now prove that one of the P, , which has weight
M < Cpp, must be an error and thus d = M < C(P, D).
We use proof by contradiction and assume all P, are cor-
rectable. This implies the error correction condition [51]
for all P, = P,:

<wz| P, P, W)j> = anméiJW (B2)
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This condition for n = m = 1, such that P; is the
X basis projector associated to the maximum coherent
stabilizer state |¢1), implies that all basis states must
have the same coherence Cpp. First choosing i = 1, the
condition implies ar1 = (1| Pf [1) = (1| Pi[gn) =
P(s1) = 27°PP from lemma 3. For i # 1 the condition
27CPp = (4| PPy |t¢p;) implies Py [¢p;) = 2797p/2|y))
where [¢]) is a stabilizer state normalized to 1. Then
from lemma 3, either |¢]) is an X basis state and |1);) has
coherence Cpp, or |1}) has some finite coherence C’ > 0
such that Cy; = Cpp + C’ > Cpp. The second option
is not valid from the assumption that Cpp is the coher-
ence of the maximal coherent stabilizer state, and so all
basis states |¢;) must have coherence Cy; = Cpp. Since
|t}) must have zero coherence, the projector P, = Ps,,
projects all basis states |i,) to a product state |z, s1).

Furthermore, from the error correction condition at
n =m = 1 we have (z;,s1|z;,s2) = 0;; such that the
states Pj |¢;) are all orthogonal to each other. Now
choose |1)3) to be the state obtained by flipping Z; of
the first logical bit for the state |¢1), and consider the
stabilizer state state |[+) = (|11) + |2))/v/2 obtained
by applying a logical Hadamard gate to the first logi-
cal bit. Projecting |[4+) by P; gives us a stabilizer state
Pi|+) = (Jz1,81) + |x2,51))/2(€PP+tD/2 which has co-
herence 1 because of the required orthogonality between
|z1,81) and |zg, s1). But this implies |[+) has coherence
Cpp + 1 which is a contradiction with the assumption
[t)1) is the maximally coherent stabilizer state. Thus the
error correction condition can not hold for all P, and the
code distance d = Cy ,, < Cpp. O

Appendix C: Measurement induced Markovian
dynamics of coherence

1. Markovian dynamics of coherence in
measurement-only circuits

In the main text, we discussed that the dynamics of
coherence in the measurement-only limit are Markovian,
and that they are described by the number of qubits po-
larized in the X, Y, and Z directions, N., Ny, and N,
respectively. The Markov chain is defined by the condi-
tional probabilities P(N,(n), N,(n)|Ny(n—1), N.(n—1))
for N, and N, at step n given them at step n — 1. To
determine the conditional probabilities, first consider the
event of an X; measurement. If the measurement is made
on a site polarized in the X direction, the state does not
change, but if it is made on a site polarized in Y direction,
the X direction is learned and Y direction is forgotten:
Ny = Ny +1 and N, — N, — 1. Given that a X; mea-
surement is made, the probability this occurs is N, /L.
A similar thing happens if a Z polarized bit is measured,



which occurs with a probability N, /L, thus we have:

N,

PN, +1,N:INo N =22 (C1)
N,
P(Nw+1aNz_1|NLE;NZ):p$f
Ny
P(NxaNz+1|NxaNz):pzT
Ny
P(Nx_laNZ+1|NLE5NZ):pzT
Ny
P(Nm*]-aNz|NzaNz):pyT

P(Na:aNz - 1|N17N2) = Dy

SI

for the non-zero conditional probabilities. Using these
conditional probabilities, a rate equation can then be de-
rived for the average density of X polarized qubits after
m measurements N, (m) = Y. Ny P(N,(m)) as

N,
- (pz +py)77

amNac (m) = Pz % (C2>
with similar equations for Ny and N,. The steady state
solution to these dynamics predicts the average steady
state density of a polarized qubits is equal to p, as in-
tuitively expected: No = poL or equivalently for the
coherences C,, = (1 — p,)L.

2. Coherence dynamics in weak measurement limit

In this section we derive the conditional probabilities
for the Markov process in the weak measurement limit
Pm ~ O(1/L?), arguing why, in this limit, each measure-
ment has an uncertain outcome and changes the state.
We again make use of stabilizer state tools, and in par-
ticular the CSS gauge of a stabilizer state discussed in ap-
pendix A 3. As discussed there, this representation of the
stabilizer state has two parity check matrices G% and G%
with N* and N? rows respectively. The generators spec-
ified by these check matrices, are all strings of all X (2)
Pauli operators and therefore constrain N*(?) bits of in-
formation about the X (Z) basis states that make up the
stabilizer state. Theorem 5 then shows that the X (Z) co-
herence of a stabilizer pure state is equal to the number of
bits not known about the X (Z) basis (Cy(») = L—Ny(2))-
Using this theorem, we can therefore focus on the condi-
tional probabilities for the number of bits of information
specified about the X and Z basis (IV, and N,) instead
of the coherences directly. Notice that this is a general-
ization of the procedure for the measurement-only limit
where the number of bits known about the X (Z) basis
states is equal to the number of physical qubits polarized
in the X (Z) basis.

We are therefore interested in obtaining the conditional
probabilities P(N,(n), N.(n)|Nz(n—1),N,(n —1)), and
can determine them by imagining the effect of an X;
measurement on site . The measurement can either act
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trivially on the state, if [¢) is an eigenstate of X; (i.e.
[X;,g;] = 0 for all generators g;), or it can change the
state otherwise (i.e. [X;,g;] # 0 for at least one g;). To
determine the probability a measurement of X; acts triv-
ially on the state, we first note that after n = O(L?) ran-
dom CNOTs, each generator g; will have Pauli operators
randomly distributed across the whole system. In the
CSS gauge, the ¢g* generators all commute with X;, while
the g* and g¥ generators have, after n = O(L?) random
CNOTs, an equal probability of containing the Z; Pauli
operator. Therefore we estimate the probability that the
measurement of X; changes the state is ~ 1 —(1/2)¢ =Nz,
and approaches 1 in the thermodynamic limit as long as
the coherence C,, = L — N, is O(L).

When [X;,g;] # 0 for some g;, the measurement of
X; changes the stabilizer state and we must identify
how the stabilizer state is updated. If the measure-
ment outcome is x;, then the updated state will obey
(=1)* X, |¢) = |[¢), and we find that (—1)* X, is a new
generator of the stabilizer state with N, — N, + 1.
Then, to ensure all g; are commuting such that the state
is a valid stabilizer state, we must, as described in ap-
pendix A 2, first change the representation of the stabi-
lizer state so only one g; is non-commuting, and then
remove it from the set of generators. The net effect is to
replace the non commuting generator g with the mea-
surement operator (—1)*¢X;. Such an update can only
be performed while at the same time maintaining the
CSS gauge if one of the {gi} generators is chosen to
be replaced (See Appendix C4 for why). This results
in N, — N, — 1, and reflects the fact, that after the
measurement, the qubit ¢ is in a superposition state of
Z; basis states such that the coherence in the Z basis,
C, = L — N,, has increased by one bit. Overall, we find
that the X; measurement on a maximally entangled state
increases the number of bits known about the X basis
states by 1 and decreases the number bits known about
the Z basis states by 1: N, - N, +1and N, - N, — 1.
The effects of Y; and Z; measurements are determined
similarly (See Appendix C4), and we find that the non-
zero conditional probabilities for the Markov chain are
given as:

P(N,+1,N, —1|N,,N,) =p, (C3)
P(N:L’ - 17Nz + 1|N17Nz) =Pz
P(N; —1,N, — 1|N,, N) =Dy

for N, and N, away from the Markov chain’s bound-
aries: N, > 0, N, > 0 and N, + N, < L. The sec-
ond boundary condition is because the number of gen-
erators allowed in the stabilizer state can not exceed L.
The transition rates at the boundary are similarly deter-
mined and are shown in Fig. 7. We can therefore consider
the dynamics of (N,,N.) as a two dimensional random
walk and derive the diffusion equation for the evolution



of P(N,,N,,m) = P(x,z,m) as

OmP = (py +p. — pw)axp (04)
+(py + Pz — p2)0. P
+1/2(9% + 0*)P
—(pz + D2 — py)0:0, P

which has drift velocity (p, +p, — pe)E + (Dy + Pz — P2)2
leading to the rate Eq. 11 discussed in the main text. No-
tice that special care must be taken on the N, = 0 (and
N, = 0 by symmetry) boundaries. At N, = 0 bound-
ary the conditional probabilities are given as P(N, +
1,0|N,0) = p; and P(N; — 1,0|N,,0) = p, and result
in the diffusion equation

OmP(2=0) = ((py + Dy —Ps)O0s + ;6‘5) P(z=0).

The steady state solution on this boundary gives the lo-
calization length A ~ 1/(py, + p. — pe) in the z direction
as discussed in the main text.

3. Finite measurement rate dynamics

The two limits discussed above offer solutions for the
steady state coherence in two extremes: 1) p,,/p, — 00,
in which the probability that a measurement of X; is un-
certain depends on the number of bits known about the
X basis; and 2) p,,/p, — 1/L? in which the probability
of an uncertain measurement outcome depends only on
the rates p,, p. and p,. When p, > py, + p. these two
extremes are distinguished by volume-law v.s. area-law
coherence in the X basis. This suggest the possibility
of a coherence transition as a function of measurement
rate p,,. This possibility is ruled out by the Clifford sim-
ulations shown in the top panel of Fig. 13, which only
shows volume-law coherence. Thus, the weak measure-
ment limit, p,, < 1/L? is a finite size effect and does not
exist as L — oo for finite p,,.

To access the finite measurement rate limit, we first
note that the two extremes discussed above correspond
to two distinct structures of the generators in the late
time stabilizer states: 1) when p,,/p, — oo and g; are
single site Pauli operators, and 2) when p,,/p, — 1/L?
and the generators g; have extent scaling with system
size. To interpolate between these two limits and access
a finite p,, dynamics, we make the assumption that the
generators of the stabilizer state have instead a finite ex-
tent £ and are centered at sites evenly spaced throughout
the chain. We proceed as before and determine the prob-
ability that the measurement of X; changes the state and
the coherence. This occurs if one of the generators g; does
not commute with X;, which under the above assump-
tion, is only possible for generators centered at most &
sites away. If we take 3, as the probability one of these
generators commutes with X;, then the probability all
generators commute with support on site i is 35. Thus
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Figure 13. Steady state coherence C, as a function of p,,
and A, = (pz — p2) for py, = pr = pe = 0. The top figure
shows volume-law coherence C, for A, = 0.5 obtained via
Clifford simulations. It shows no evidence of a phase with
area-law coherence for finite p,,. The bottom figure shows
the steady state coherence C, for different values of p,, and
a system size L = 32. The colored dots are data computed
via Clifford simulations, while the solid lines correspond to
the predictions using the coherence rate equations derived
in the text. The three black lines correspond to the rate
equation Eq. 12 where the lengths scales £ = (2.7,5,8) are
found by best fit for the Clifford simulation data at p., =
(0.06,0.01, 0.0025) respectively.

the probability a measurement of X; is uncertain and ob-
tains information about the X basis is 1 — 3§, yielding
the rate equation

Om N = po(1 = B3) = pa(1 — B2) — py(1 - B5) (C5)

In the weak measurement limit, we expect £ ~ L — oo,
since the generators are assumed to have extent over the
entire system. This is consistent with the fact that in the
infinite system size limit, Eq. C5 reproduces the weak
measurement rate equation Eq. 11 for p, = 0. If in-
stead we work in the measurement-only limit,the stabi-
lizer state becomes a product state with £ = 1. If we
choose (3, = %, Bz = J\f and 8, = #, then
the rate equation Eq. C5 will have the form of Eq. C2.
Therefore, we have a single phenomenological parameter
¢ to interpolate between the two extreme limits of strong
and weak measurement. The steady state coherence for
a given £ is then given by the following implicit equation
Om N, = 0, which can be solved numerically. Numerical
solutions for C, = L— N, are shown in the bottom panel
of Fig. 13, and agree well with Clifford simulations of C,
when A, > 0.1 for a single choice of the length scale &.




4. Markov Chain Effects of Z and Y measurements

Above, in section C2, we presented the conditional
probabilities, Eq. C3 for the Markov chain in the weak
measurement limit and derived the contribution from the
X; measurements. That derivation relied on the fact that
the measurement of X; can only be performed on a stabi-
lizer state while maintaining the CSS gauge if one of the
{gj} generators is used to perform gaussian elimination.
This is seen as follows. First, all generators which do
not commute with X; contain a Z; Pauli operator. Since
there are generally O(L) {g7} operators, with stabilizer
extent L, at least C, > 1 of them is likely to contain
Z;. This is also true of the {g{} generators, but if one of
them, say g}, is used to perform the gaussian elimination
of Z;, the N, {g7} generators will all contain the X Pauli
string of the g} operator used for elimination. After this
procedure, gy will then contain C; — 1 linear dependent
rows and the state will not be in the CSS gauge. This
does not occur if one of the {g7} generators is uses for
elimination.

The derivation of the contribution from Z measure-
ments is exactly the same as the first due to the duality
between X and Z measurements in the stabilizer gauge.
The contribution from Y measurements occurs because
it becomes, with high probability, a generator in {g7}
and another in {g7} will not commute with the Y; mea-
surement in the L — oo limit. Thus one generator (say
the one in {gf}), will have to eliminate the other ({g5})
leading to N, -+ N, — 1 and Ny — N, + 1. Then the
row in g7 used for elimination will be replaced with Y;
leading to N; -+ N, — 1 and N, =+ N, + 1. Thus for a
Y measurement N, and N, both decrease by 1 as in the
third equation in Eq. C3.
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Figure 14. Scaling collapse for tripartite mutual information
I3. Data for the different system sizes cross at A, = A =
0.333 £ 0.005 confirming the A, = 1/3 critical point pre-
dicted by the dynamics of coherence. The curves collapse for
v = 1.2 + 0.05 where the error source is sampling error from
the finite, O(2000), circuit realizations preformed which we
estimate to be Al; ~ 0.5. Here we do not show lines for
L < 128 owing to non-universal finite size effects causing a
slight drift in the apparent critical point. For example, the
curves for L = 128 and L = 256 cross at A = 0.35.
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Appendix D: Critical properties of the coherence
controlled entanglement transition

In section IV, we presented a phase transition con-
trolled by the relative rate of X, Y and Z measurements
of a circuit composed of CNOTs and measurements at
a fixed overall measurement rate p,, = 0.01. The phase
transition was observable in the half cut entanglement
entropy at late times, S(L/2), the biparitite, I, and
tripartite, I3, mutual informations and the coherent in-
formation, C between the initial and final state of the
system. These quantities identified a critical point of
AS = (pz —p2)/(1 —py) = 1/3 when p, = 1/4, and
Pz +p. = 1 —py. In this appendix, we determine the
length critical exponent, & ~ (A, — AS)~Y and the expo-
nent 3 for the coherent information, C ~ (A, — A¢)P.

—4 -2 0 2 4
(A, — AS)LMVY

Figure 15. Scaling collapse for the coherent information, C,
occurring at three different times ¢ = 5L,15L and t/L = 40
as labeled in the figure. In this figure A = 0.33 £ 0.02,
v =1.0940.05 and 8 = 0.65+0.05, where the variation in the
exponents arises from both sampling error as in Fig. 14 and
from variations in the best fit critical parameters at the three
different times. The length critical exponent, v is compatible
by a single standard deviation with the one obtained in Fig. 14
for the tripartite mutual information.

To identify these critical exponents, we make the fol-
lowing scaling hypothesis
IS(Az) = f ((Ax - A;) qu)
C(A,)=LPg (A, — AS)L7Y),

(D1)

and find that data from our numerical simulations con-
firms these hypothesises in Fig. 14 and Fig. 15. There, we
determine that the critical parameters, AS = 0.33+0.02,
v = 1.09 + 0.05 and 5 = 0.65 &+ 0.05 obtain the best
fits to the data. These exponents are distinct from the
critical exponents found for the transition described in
Ref. [25, 69], where different from the circuit considered
here, the two-qubit unitaries are not just CNOTs and
are chosen from the full two-qubit Clifford group, and



the transition is controlled by the rate of measurements,
Pm. In particular, Ref. [25] finds the coherent informa-
tion exponent as f = 0, which is inconsistent with our
data. The critical exponent ¥ = 1.09 is consistent with
directed percolation which describes the classical transi-

25

tion discussed in section IIT and in Refs. [54, 55]. Future
work could find it interesting to better understand if the
transition is in the directed percolation universality class
or not. An obstacle to this is apparent large finite size
effects occurring in these circuits as discussed in the cap-
tion of Fig. 14.
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