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The Floquet code utilizes a periodic sequence of two-qubit measurements to realize the topological order.
After eachmeasurement round, the instantaneous stabilizer group can bemapped to a honeycomb toric code,
explaining the topological feature. The code also possesses a time-crystal order—the e-m transmutation after
every cycle, breaking the Floquet symmetry of the measurement schedule. This behavior is distinct from the
stationary topological order realized in either random circuits or time-independent Hamiltonian. Therefore,
the resultant phase belongs to the overlap between the classes of Floquet enriched topological orders and
measurement-induced phases. In this Letter, we construct a continuous path interpolating between the
Floquet and toric codes, focusing on the transition between the time-crystal and stationary topological
phases. We show that this transition is characterized by a divergent length scale. We also add single-qubit
perturbations to the model and obtain a richer two-dimensional parametric phase diagram of the Floquet
code, showing the stability of the Floquet enriched topological order.
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Introduction.—Topological phases are highly interesting
because their nonlocal integrals of motion are robust
against local perturbations and thus beneficial for fault-
tolerant quantum computation [1–5]. These exotic features
were first established for the ground states of certain
time-independent Hamiltonians such as Z2 toric code,
and subsequently were extended to nonequilibrium unitary
dynamics [6–11] as well as non-unitary dynamics that
involve measurements [12–25]. In particular, Hasting and
Haah proposed a circuit model consisting of a sequence of
two-body measurements that gives rise to a dynamically
generated quantum error correcting code which is closely
related to Z2 toric code. Because of the time-periodic
nature of the measurement sequence, the underlying code
and logical operators transform periodically in time; thus
the protocol code is called the Floquet code [23]. This code
is not a stabilizer nor subsystem code, but dynamically
generates logical qubits through a sequence of noncom-
muting measurements [23,26–28].
A remarkable characteristic of this class of Floquet codes

is the time-crystalline ordering that transmutesmagnetic (m)
to electric (e)-type logical operators and vice versa each
cycle.Unlike conventional time crystals that can be accessed
by local order parameters [29–31], the e-m exchange can
only be accessed from nonlocal operators, suggesting its
topological nature. In fact, on an open boundary, this
nontrivial exchange manifests as a radical chiral mode with
a dynamical topological invariant

ffiffiffi
2

p
[32,33], and is thus

dubbed as the Floquet enriched topological order (FET). The

focus of this Letter is a measurement-induced version
of FET.
The main goal of this Letter is to study the stability of the

Floquet topological order against perturbations of the circuit
model away from the ideal protocol in Ref. [23]. Although
some ideas of fault tolerance havebeen discussed in [23], our
Letter illuminates two aspects. First, it establishes the
measurement-induced FET as a phase of matter, spanning
a finite region of the parameter space. Second, for quantum
platforms with native measurement operations, measure-
ment-induced automorphisms of logical operators can be
used as logical gates for quantum computing, e.g., the e-m
exchange facilitated by the Floquet code is equivalent to a
Hadamard gate that rotates between logical X and Z. Our
Letter shows that such logical gates inherit the Floquet
topological nature and are thus fault tolerant. For demon-
stration, we consider the effect of skipping some of the
measurements as well as the effect of randomly replacing a
two-qubit measurement with a pair of single-qubit mea-
surements. Interestingly, by using an error-corrected order
parameter, we find that the Floquet order is robust against
small but finite perturbations, giving rise to an extended
measurement-induced Floquet topological phase of matter.
As one increases the perturbation strength, there is a
measurement-induced phase transition to either a non-
Floquet topological phase, a volume law phase, or a trivial
area law phase (Fig. 1). We note that the FET phase,
being stabilized by measurements, does not undergo ther-
malization in the long time limit. This is not the case for
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unitary models without either MBL [7–9,34,35] or pre-
thermalization [36–38].
Model.—In this Letter, we consider a periodic-boundary

L × L honeycomb lattice where a qubit is located at each
vertex, with 2L2 qubits in total. Each hexagonal plaquette is
assigned one of three colors: red, blue, or green, ensuring
that no two adjacent plaquettes share the same color. Within
this geometry, a link only connects plaquettes sharing the
same color and thus inherits the respective color label.
Furthermore, a two-qubit operator is assigned to each
link, depending on the link orientation as demonstrated
in Fig. 1(a). A plaquette operator is defined as the clock-
wise product of the link operators around the corresponding
plaquette. For the standard Floquet code, all plaquette
operators are going to have a definite value (either þ1
or −1), and since they commute with all link operators,
their value will not change in the subsequent steps.
Each link measurement projects a C4 Hilbert space of

two adjacent physical qubits to a C2 Hilbert space which
can then be regarded as a single effective qubit sitting on
the link of a superlattice. Together with all the measured
plaquette operators, these stabilizers make up a toric code

state on a hexagonal superlattice [23] (see Fig. 1). Note that
an f logical operator is simply given by the product of all
link operators along a nontrivial loop in the original lattice.
We consider two types of perturbations to the standard

Floquet code. First we consider randomly missing link
measurements at the blue and green rounds with probability
pM < 1, while the red round is free of missing defects. We
refer to this perturbation as the “missing” (M) perturbation.
Additionally, given that a link is measured, with probability
pS we replace the two-qubit measurement in the standard
protocol with two disjoint single-qubit measurements, e.g,
instead of measuring X1X2 on a link, we measure X1 on one
end and X2 on the other end. We denote this perturbation as
the “single-qubit” (S) perturbation. This type of error is
qualitative similar to random Pauli errors but simplified by
the structure of the Floquet code [23]. M perturbations
commute with all plaquette operators, leaving the quantum
state always topological at the end of each measurement
cycle. Meanwhile, S perturbations anticommute with
the plaquettes and can drive the quantum state to a different
phase.
We choose the initial state of the circuit to be the

common eigenstate of all the plaquette operators and the
logical operators mx, mz; and study the entanglement
structure of the late time state of the circuit after ∼OðLÞ
evolution. We note that due to the random dynamics of the
circuit, the late time entanglement structure would be
independent of the choice of the initial state [39].
Nevertheless, our choice of initial state optimizes the
readout of the time-crystalline order and reduces the time
for the quantum state to reach the topological sectors.
To obtain the phase diagram, we compute the tripartite

mutual information (TMI) of the late time state averaged
over different random realizations, which equals one
in the topological phase, zero in the trivial area-law
phase, and a negative extensive value in the volume-law
phase [16,22,24,40]. The exact phase boundary can be
obtained from a standard finite-size scaling method
which also agrees with the transition in purification
dynamics [40,41]. The detailed methodology and TMI
data are presented in the Supplemental Material [39]. The
phase diagram is shown in Fig. 1(d). Under the absence
of S perturbations, i.e., pS ¼ 0, the diagram features a
tricritical point at pc

M ≈ 0.48 which separates the FET
phase with a period-doubled e-m exchange behavior from
the stationary topological (T) phase for pM strictly less
than unity.
Missing link measurements.—First, we examine the

phase diagram along the line pS ¼ 0 (no S perturbation).
Because we have assumed no red link measurement would
be missed, the bulk ISG is always the same (up to%1 signs)
after each round of red linkmeasurements. This leaves room
for only the nonlocal logical qubits to have nontrivial
dynamics. The limit pM ¼ 0 realizes a standard honeycomb
Floquet code equippedwith an e-m exchange every cycle. In

(a) (b) (c)

(d)

FIG. 1. (a) Layout of the Floquet code with color labels for each
link and plaquette and the explicit forms of the plaquette and link
operators. The link operators only depend on the respective link
orientation and not on the color. (b)–(c) One configuration of the
m and e strings defined at the red round, respectively. (d) Phase
diagram with respect to the missing pM and single-qubit
measurements pS probabilities.
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the opposite limit pM → 1, the other two color rounds are
essentially absent and the circuit generates a stationary toric
code topological order on the superlattice associated with
the red links.
As we will show, the e-m exchange dynamics persists for

pM > 0 up to a critical value pc
M > 0, after which it

disappears and the system enters stationary toric code
phase. To probe the Floquet dynamics, we consider the
following procedure. Let mx and mz denote the m-type
string operators winding around the torus along x and z
directions, respectively. ex and ez are defined analogously
to denote the logical e-type string operators. We start with
the state which is the eigenstate of all plaquette operators as
well asmx and mz. After every red round of measurements,
we read out the expectation value of the m-loop along the x
direction GðtÞ ¼ hmxðtÞi2, where the overline stands for
averaging over random circuit realizations. For numerical
simulation, we use Clifford formalism [42], where post-
selection and averaging over measurement outcome are
included. Note that for the initial state, we have hmxð0Þi¼1
and hexð0Þi ¼ 0. Therefore, due to the e-m exchange
dynamics, we expect GðtÞ to oscillate between 1 and 0
in the FET phase, while it should remain constant and equal
to 1 in the toric code phase.
By inspecting GðtÞ with varying pM ∈ ½0; 1', we find an

extended FET phase separated from the toric code topo-
logical phase by a sharp phase transition at pc

M ¼ 0.48.
More specifically, for pM < pc

M, the value of GðtÞ in odd
and even cycles are visibly distinguishable, and GðtÞ
converges to the exact binary form GðtÞ¼ ðtþ1Þmod 2
as L → ∞, signaling the time-crystalline order [Fig. 2(a)].

On the other hand, for pM > pc
M, GðtÞ approaches a single-

valued function GðtÞ ¼ 1 in the thermodynamic limit
[Fig. 2(c)]. Remarkably, at the critical point pc

M ¼ 0.48
which separates the two phases, GðtÞ acquires a finite
lifetime and follows a universal function independent of the
system size [Fig. 2(b)], suggesting a zero dynamical
exponent z ¼ 0. This unusual z is due to the exact recovery
of the bulk ISG after every cycle. Away from the pS ¼ 0
axis, the dynamic exponent returns to the conventional
value of unity [39].
Accordingly, one can use the 0 and π components of the

Fourier transform of GðtÞ as order parameters for distin-
guishing the two phases and performing scaling analysis:

G0≡ lim
T→∞

2

T

XT

t¼0

GðtÞ; Gπ≡ lim
T→∞

2

T

XT

t¼0

eiπtGðtÞ: ð1Þ

We note that the time limit should be taken after the
thermodynamic limit, given that for any fixed system size,
limt→∞GðtÞ ¼ 0 [see Figs. 2(a)–2(c)]. Figures 2(d)–2(e)
shows the transition of these quantities across the
critical point, taking T ¼ 100; we have G0 ¼ Gπ ¼ 1 for
pM < pc

M, while for pM > pc
M, we have G0 ¼ 2 and

Gπ ¼ 0, in the thermodynamic limit. Both quantities follow
the scaling form F0;π½ðp − pc

MÞL1=ν' near the criticality,
with pc

M ∼ 0.48 and ν ∼ 1.35–1.36 [see Figs. 2(e)–2(f)].
The nature of this phase transition can be understood by

the microscopic dynamics of the Floquet phase. As is
explained in Ref. [23], the color-wise measurement of the
link operators along a loop maps the e-string along that
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FIG. 2. (a)–(c) GðtÞ for pM ¼ 0.38 (FET), 0.48 (critical), and 0.58 (T). The FET phase features double-period oscillations, which is
lacking in the T phase. The inset of (b) shows GðtÞ at the critical point fitted to a multichannel Markovian process. (d)–(e) The 0 and π
components averaged over T ¼ 100 cycles. (f)–(g) Data collapse of (d)–(e), respectively, with ðpc

M; νÞ ¼ ½0.47ð8Þ; 1.36ð0Þ' (f) and
½0.47ð6Þ; 1.35ð4Þ' (g).
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loop to an m-string along the same loop and vice versa (see
also the Supplemental Material [39]). Therefore, whenever
there exists a nontrivial path in the perturbed circuit model
along which all link operators get measured in a cycle, the
corresponding e-string operator along that path gets
mapped to an m-string operator. However, due to the
topological nature of the phase, it means any e-string
operator maps to the corresponding m-string operator, as
long as there exists one path along which all link operators
get measured properly. This picture places the FET-T
transition in the same universality class as 2D percolation.
More specifically, given that red links are always measured,
one can contract each red links into a point and consider the
bond percolation problem on the resulting Kagome lattice.
In fact, the critical value pc

M ¼ 0.48 for the FET-T phase
transition agrees with the numerical estimate of bond
percolation threshold on the Kagome lattice [43], which
explains the extended FET phase for pM < pc

M. On the
other hand, when pM > pc

M, there is no percolating path,
and hence each cycle consists of only disconnected finite-
size patches of measurements. Since such measurements
cannot access logical information, the e-m exchange van-
ishes in the non-percolating phase. The percolation picture
also explains why G0 vanishes at pM ¼ pc

M [Fig. 2(d)]. At
criticality, there is a finite chance of forming a percolating
cluster whose boundary is also percolating around the torus.
The result is aMarkovian process thatwe show in the inset of
Fig. 2(b) and explain in more detail in the Supplemental
Material [39]. We note that the Markovian nature is lifted if
red rounds are imperfect so that errors persist from one cycle
to the next and accumulate with time. This is the case of the
transition along the pS axis in Fig. 1(d). Another option is to
introduce M errors to red rounds. Both transitions are
controlled by the 3D percolation universality [39], signify-
ing the extension along the time direction.
Single-qubit measurements.—Even though the Floquet

code measures closed f operators, these loops can be
deformed into each other except for the two nontrivial loops
winding around the torus and thus do not contribute to the
entanglement inside the bulk. Therefore, the TMI stays
exactly unity everywhere along the pS ¼ 0 axis. The
picture changes significantly when we introduce single-
qubit perturbations. In fact, the generators of the ISG after
each red measurement round now contain “errors” to the
Hasting-Haah protocol not found in the pS ¼ 0 case. In
Fig. 3(a), we show an error generated by pair of red single-
qubit measurements that can be detected through the
two neighboring plaquettes with which this error anticom-
mutes. Another type of errors occurs if more than one green
or blue S perturbations happens along an f loop, resulting
in open string errors that are not immediately transparent
under plaquette measurements as shown in Fig. 3(b). We
note that at the tricritical point, the circuit measures
diverging f loops, which under nonzero pS, break into
extended strings. This explains the immediate emergence of

the volume phase at the critical point with any nonzero pS
shown in Fig. 1(d).
We expect that the FET characteristic must survive

throughout the topological phase with pM < pc
M as shown

in Fig. 1(d) because there cannot be a continuous deforma-
tion between the FET and T phases. However, our previous
probe cannot be applied straightforwardly in the presence of
S perturbation because the string that we read out may
randomly cross a point or an error string. Even worse, the
probability of crossing an error string increases with system
size, making the defined order parameter to vanish in the
large-L limit. This is similar to the problem that the
expectation values of loop operators decay exponentially
with a perimeter law when the toric code Hamiltonian is
subjected to an Ising field [5]. Nevertheless, the topological
order or the ground state degeneracy is preserved and the
exact 1-form symmetry characterizing the x loop is replaced
by an emergent 1-form symmetry defined along a “fattened”
loop with finite transverse width.
The same intuition can be applied to our model.

Specifically, by deforming ourm loop to avoid all the errors
[see the inset of Fig. 4(a)], we can recover the finite-value
order parameter as shown in Fig. 4. The exact implementa-
tion is described in the Supplemental Material [39]. The
typical width d of the corrected m string is governed by the

(a) (b)

FIG. 3. Examples of errors that can occur to the ISG upon
introducing S perturbations. (a) A local red S perturbation that
can be detected through two adjacent plaquettes (gray). (b) Non-
contractible open f string formed when at least two green or blue
S perturbations intercept an f loop.

24

30

36

(a) (b)

FIG. 4. The 0-component amplitude of G across the FET-
volume-law transition at pM ¼ 0.4 (a) and the T-volume-law
transition at pM ¼ 0.55 (b). The dash lines indicate the actual
critical pS obtained from TMI. The inset in (a) shows the
corrected m string after being morphed to avoid all errors.
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length of string errors, which is finite in the topological
phase but grows with the system size in the volume-law
phase. In our correction scheme, to be compatible with the
finite size, we fix the maximum width as d ¼ 11. Despite
being independent of the system size in the area-law phase,d
should increase as the circuit approaches the phase tran-
sition, so this d-fixingmakes the apparent transition in Fig. 4
happen before the actual one computed from TMI; this is
analogous to the situation where optimal and nonoptimal
decoders perform similarly away from the phase boundaries
in the circuit with measurements [44]. Nevertheless, this
corrected order parameter justifies the robustness of the
nontrivial e-m exchange against single-qubit perturbations,
which is expected for a topological phase.
Conclusion.—We discover a robust Floquet topological

phase in a quantum circuit characterized by a non-trivial
exchange that brings the logical operator back to itself after
two cycles. We establish in our quantum circuit model that
this phase is stable against microscopic perturbations to the
protocol, thus verifying the topological nature of the phase.
The research on Floquet topological order can advance in

several directions. An outstanding question is the bulk
invariant that can capture FET, which presumably describes
a non-Abelian defect. Lastly, we note that our order
parameter GðtÞ is not linear in the density matrix, meaning
that it can only be accessed experimentally with postse-
lection. However, in principle, it should be possible to use
the outcomes of the link measurements to perform proper
error detection and error correction, similar to the standard
Floquet code.
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