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Measurements can detect errors in a decohered quantum memory allowing active error correction
to increase the memory time. Previous understanding of this mechanism has focused on evaluating
the performance of error correction algorithms based on measurement results. In this work, we
instead intrinsically characterize the information dynamics in a quantum memory under repeated
measurements, using coherent information and relative entropy. We consider the dynamics of a
d-dimensional stabilizer code subject to Pauli errors and noisy stabilizer measurements and develop
a (d + 1)-dimensional statistical mechanics model for the information-theoretic diagnostics. Our
model is dual to the model previously obtained for the optimal decoding algorithm, and the potential
decoding transition in the quantum memory again manifests as a thermal phase transition in the

statistical mechanics model.

We explicitly derive the model and study the phase transition in

information encoding in three examples: surface codes, repetition codes, and the XZZX code.

I. INTRODUCTION

Protecting quantum information against decoherence
in realistic devices is a central focus of quantum informa-
tion science. While designing a passive memory that en-
codes quantum information in thermal equilibrium states
remains elusive below four dimensions, one can alterna-
tively perform active error correction to protect encoded
information in non-equilibrium states [1, 2]. This entails
using repeated measurements to detect error syndromes
and applying feedback based on the measurement results
to correct errors. Measurements remove entropy from
the system and therefore can compete with decoherence
to increase the memory time, even if the measurement
outcomes are noisy.

Prior work has sought to understand this mechanism
by examining the performance of specific decoding al-
gorithms for specific quantum error-correcting (QEC)
codes. For example, in a surface code subject to deco-
herence, repeated noisy syndrome measurements enable a
decoding algorithm to protect quantum information until
exponentially late times as long as the rates of decoher-
ence and measurement noise are below a finite thresh-
old [3]. This is demonstrated in Ref. [3] by mapping
the transition in the fidelity of the decoding algorithm to
the confinement transition in the 3D random-plaquette
Ising model (RPIM), i.e. a random Z, gauge theory. It is
natural to ask whether the impact of repeated syndrome
measurements on memory time can be understood in-
trinsically from the information dynamics of the system
without reference to a particular decoding algorithm.

It has been recently shown that the surface code with
local decoherence can undergo an intrinsic information
transition in the mixed density matrix of the system,
which governs the decoding transition based on a sin-
gle round of perfect measurements [4-13]. In particular,
Ref. [4] maps the coherent information (the amount of re-

coverable information from the mixed state), along with
several other information diagnostics, to observables in a
2D multi-flavor Ising model. At a finite decoherence rate,
the multi-flavor Ising model undergoes a ferromagnetic
transition, detected by the information diagnostics. No-
tably, the multi-flavor Ising model is dual to the random-
bond Ising model along the Nishimori line [14], which
characterizes the decoding transition for the optimal de-
coding algorithm [3]. This duality stems from two differ-
ent expansions of the same decohered density matrix [4].

In this work, we extend this perspective to general sta-
bilizer codes subject to local decoherence and repeated
imperfect syndrome measurements. We study informa-
tion dynamics characterized by intrinsic information di-
agnostics, including coherent information and relative en-
tropy. To this end, we map the Rényi versions of the
diagnostics to observables in statistical mechanics (stat-
mech) models based on the stabilizer expansion of the
physical density matrix. We further perform the expan-
sion of the same density matrix in terms of error con-
figurations and obtain the stat-mech model previously
derived for the optimal decoding algorithm (i.e. the max-
imum likelihood decoder) [3, 15-22]. The two stat-mech
models are related by high-to-low temperature duality.
In the example of decohered surface codes under repeated
syndrome measurements, the decoding transition mani-
fests as a ferromagnetic transition in a 3D multi-flavor
Ising model (in the stabilizer expansion) dual to the con-
finement transition in the 3D RPIM (in the error config-
uration expansion).

A. Overview

We begin with an overview of our results before delv-
ing into the details. We consider the dynamics of d-
dimensional stabilizer codes subject to local Pauli errors
and repeated stabilizer measurements. The dynamics



(a) (b)

Figure 1. (a) One-dimensional repetition code under repeated
measurements. Each black solid line denotes a physical qubit.
In every time step, check operators Z,Z,11 on neighbor-
ing qubits are measured (horizontal blue lines) with mea-
surements modeled by coupling measurement ancillae (black
dashed lines) to physical qubits. The red and orange cir-
cles denote the physical decoherence and measurement errors
on the physical qubits and ancillae, respectively. (b) The 2D
multi-flavor Ising model for the 1D repetition code. The spins
live on the vertices (blue dots) of a 2D square lattice; each
vertex corresponds to a check operator in the circuit. The spa-
tial couplings (in red) are related to the strength of physical
decoherence. The temporal couplings (in orange) are related
to the error rate of measurement readout.

is described by a quantum circuit of T steps as illus-
trated in Fig. 1(a). In each time step, we first apply
single-qubit Pauli channels to the physical qubits and
then perform noisy measurements on a set of stabilizers
(called check operators). To characterize the informa-
tion dynamics, we consider the coherent information, the
amount of recoverable information in the system together
with the measurement record, and the relative entropy
between the quantum states of the memory for two ini-
tial states. The key result of this work is to develop a
(d+1)-dimensional stat-mech model for the n-th moment
trpin of the density matrix of the system @) together
with measurement record M as illustrated in Fig. 1(b).
The mapping allows evaluating the Rényi versions of our
information diagnostics as observables in the stat-mech
model.

In Sec. IV A, we detail the mapping from the n-th mo-
ment tr pgyy, to the partition function of the stat-mech
model based on the stabilizer expansion of ponm. The
model involves n — 1 flavors of Ising spins and has a
Hamiltonian

HM({o*}) = He) +H([Le%), (1)

where o? denotes a collection of the a-th flavor of Ising
spins. The Hamiltonian #H(o?) for each flavor involves
T 4 1 layers of Ising spins for T' time steps. Each spin
o+, in the t-th layer is associated with a check operator
gi- The Hamiltonian H (o) contains intralayer coupling
H(o;) determined by the decoherence rate and interlayer
Ising couplings with strength J, = —(1/2)log(1 — 2q)

controlled by the measurement error rate ¢, i.e.

T-1 T-1
H(o) = Z H(ot) — Jq Z Zat,i0t+1,i7 (2)
t=0 t=0 i

where we use o; and o := {0} to denote the spin config-
uration at time ¢ and the entire spacetime, respectively.
We note that in this model, higher noise rates give rise
to larger couplings (equiv. lower temperatures).

The multi-flavor Ising model exhibits a symmetry that
depends on the redundancy in the set of measured check
operators. A subset of check operators is redundant if
its product is the identity, and such redundancies form a
group R. The symmetry of the multi-flavor Ising model
is then given by G™ = (R"xS,,)/R. Notably, G is ei-
ther a local or global symmetry depending on whether the
redundant subset of check operators has local or global
support. For example, in the 2D toric code under re-
peated measurements of plaquette and star operators,
the redundancy R = Zy X Zs is given by the product of
all plaquette operators and the product of all star op-
erators, resulting in a global symmetry of the stat-mech
model. In the 2D repetition code on a square lattice with
check operators on the edges, the redundancy is given by
the product of four check operators locally, giving rise to
a local (gauge) symmetry of the stat-mech model. When
tuning the decoherence rate, the stat-mech model can un-
dergo a phase transition that either spontaneously breaks
the global symmetry G(™) or confines the gauge field.

The information diagnostics map to distinct observ-
ables in the stat-mech model. Specifically, the coherent
information is associated with the excess free energy of
inserting defects in the stat-mech model, and the relative
entropy maps to correlation functions. In the examples
studied in this work (surface codes, repetition codes, and
the XZZX code), such observables detect the underly-
ing phase transition in the stat-mech model and exhibit
singularities at the same point.

We note that the boundary condition in the stat-mech
model depends on the diagnostic we consider. For the in-
formation diagnostics associated with both the system Q
and the measurement record M, the stat-mech model has
an open boundary condition. In contrast, the stat-mech
model for the diagnostics associated with only the mea-
surement record has an external field at the final layer of
the spins.

The multi-flavor model obtained in the stabilizer ex-
pansion is dual to the stat-mech model previously derived
for the maximum likelihood (ML) decoder. In Sec. IV B,
we explicitly map the n-th moment tr pgy); to a stat-mech
model based on the error configuration expansion. Such
a model reduces to that for the ML decoder in the limit
n — 1 and is the Kramers-Wannier dual of the multi-
flavor Ising model.

Before proceeding, we comment on the advantages
of the multi-flavor Ising model obtained in the stabi-
lizer expansion. First, the mapping excels at identify-
ing codes with maximum threshold. In our model, the



high-temperature phase corresponds to the low error rate
regime of the stabilizer code. Thus, a code with a maxi-
mum error threshold (e.g. p. = 0.5 in the toric code with
Pauli-Y error) corresponds to a stat-mech model with no
finite-temperature ordering. These models are better un-
derstood compared to their dual (obtained previously for
the ML decoder), which are highly constrained and order
up to infinite temperature. Second, the impact of mea-
surement error is clear in the multi-flavor Ising model. A
higher rate of measurement readout errors corresponds
to a stronger interlayer coupling, which favors the ferro-
magnetic phase that does not encode information. Third,
the benefit of repeating noisy syndrome measurements in
quantum error correction is also explicit in our mapping.
Successful error correction relies on using the measure-
ment record to identify the error configurations in the
system. The corresponding stat-mech model has an ex-
ternal field on the final layer of spins due to the measure-
ment readout errors. When considering QEC in the de-
cohered 2D surface code, the presence of this symmetry-
breaking field indicates the decodable phase (i.e. a para-
magnetic phase) can exist only when the measurements
are repeated an extensive number of times.

The rest of the paper is organized as follows. Sec. 11
describes the dynamics of stabilizer code under repeated
noisy syndrome measurements. Sec. III introduces the
diagnostics of information dynamics in quantum mem-
ory. Sec. IV develops stat-mech models for information
diagnostics based on two expansions of the density ma-
trix. We close with discussion in Sec. V.
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II. SETUP

In this work, we study the dynamics of quantum in-
formation in stabilizer codes under decoherence and re-
peated noisy syndrome measurements. We keep track of
the mixed density matrix describing the quantum state of
the system together with the classical measurement out-
comes. In what follows, we first review the definition of
stabilizer codes and then detail the dynamics considered
in this work.



Stabilizer codes are a broad class of QEC codes whose
code space L is the simultaneous +1 eigenspace of a set
of mutually commuting Pauli operators g; [23]

L =span{|Y)}| : gi|v) =|¥),i€1,2,...,1p}. (3)

The Pauli operators generate a stabilizer group under
multiplication®

1 8Ip)- (4)

Each element s € S is called a stabilizer and takes a +1
eigenvalue in the code space. We take the Iy generators
to be independent; the stabilizer group then contains 27
elements and is isomorphic to ZL.

A stabilizer code with N physical qubits can encode
K = N — Ij logical qubits. We use g%, g; for k =
1,2,..., K to denote the Pauli-X and -Z operators of
logical qubits. These operators commute with the sta-
bilizers and operate within the code space. In practice,
stabilizer measurements are performed to identify errors
in a stabilizer code; s|¢)) = — |¢) for any s € S indicates
a departure from the code space. We refer to the col-
lection of stabilizer measurement outcomes as an error
syndrome.

We are now ready to introduce the stabilizer code dy-
namics studied in this work. We consider a stabilizer
code with N physical qubits initialized in an encoded
state pp € L and evolved under decoherent interaction
with the environment interrupted by repeated syndrome
measurements (as shown in Fig. 1) for T' time steps. In
particular, at each time step t € {1,...,T} the following
occurs:

S:<g17g2,...

1. We apply single-qubit Pauli channels to every qubit
in the system @, with p,, p,, and p. denoting the
probability of each type of Pauli error?.

2. We measure a set of stabilizers C and record their
measurement results in the ancilla qubits in M;.
FEach measurement may have a readout error; its
result is recorded incorrectly with probability gq.

The decoherence at each time step is described by
Nlp] =TI, N.[p] where the single-qubit Pauli channel
takes the form

Nolp) = (1 —~ Zm) p+ > paPpP. (5)

Here, P = X,,Y,,Z, for o = z,y,2, and their corre-
sponding error rates satisfy po, > 0 and » _ po < 1. In

1 Without loss of generality, we set the phase of each Pauli operator
to be +1.

2 Although we focus on uncorrelated Pauli errors in this work, our
framework can be straightforwardly extended to correlated Pauli
errors.

4

this work, we focus on the regime p,, + pa, < 1/2 for
any o # ao.

We perform measurements on the same set of check
operators in the stabilizer group at each time step,

79]}7 (6)

where each g; € S. We focus on the case that C generates
the entire stabilizer group. However, the check operators
in C may form an overcomplete generating set with re-
dundant check operators given by a product of the others.
The redundancies in check operators lead to constraints
in measurement results in the absence of measurement
errors and may provide additional information when per-
forming error correction with noisy measurement results.
These redundancies form a group R that is isomorphic to
Z3 0. In the 1D repetition code with a periodic bound-
ary condition, the product of all check operators is the
identity, giving rise to a global Z, redundancy. In the
2D repetition code on the square lattice, the product of
check operators around a plaquette is the identity, giving
rise to local Zo redundancies.

A measurement can be modeled by coupling the sys-
tem @ to an ancilla M via a unitary operator and then
projectively measuring the ancilla. Specifically, the uni-
tary operator acting on the system and ancilla prepared
in |0),, defines an isometric embedding

C:={g1,99,---

Ugsom =Po®@[0), +P1@|1) (7)

where Py 1 = (1 £ g)/2 is the projector associated with
the outcome £1 when measuring a check operator g, and
(Ug—om)Ugsom = 1g. A subsequent measurement
on ancilla M in the Pauli-Z basis reads out the outcome
and projects the system @ to the corresponding eigen-
state of the check operator g. This measurement out-
come is probabilistic with its probability determined by
the Born rule, pg,; = trPy,1p. We note that the results in
the paper also apply to the case of weak measurements,
as discussed in Appendix A.

Measurements in realistic quantum devices also have
readout errors modeled by quantum channels acting on
the ancillary measurement device. In our dynamics, such
errors occur with probability ¢ and can be described by
a bit-flip channel before measuring the ancilla:

NM[PM} = (1fq)pM+qXMpMXM. (8)

Here, instead of considering individual states after
measurements, we keep track of the ensemble (i.e. an in-
coherent mixture) of the post-measurement states on the
system and ancilla, which can be obtained by applying
complete dephasing channels on the ancillae in the mea-
surement basis. This ensemble contains, on average, the
recoverable information. However, any code state sub-
ject to Pauli errors and strong syndrome measurements
always remains block-diagonal in the measurement basis;
the complete dephasing does not change the density ma-
trix at all and therefore can be neglected. The ensemble



generated by noisy measurements is then given by the
quantum channel

Mlp] = Nut[Ug—aum p U onr); (9)

which we refer to as the noisy measurement channel.
Having specified the quantum memory dynamics, we
can write down the evolution of the density matrix

PQM, = M, ON[IOQMt—l}
= metN[pQMt—l]Pmt ®NMt [|mt><mt|]’

my

(10)

where M; is the measurement channel for measuring all
the stabilizers at time ¢, Ay, is the measurement er-
ror channel acting on the ancillae introduced at time
t, and P,,, is the projector associated with the col-
lection of measurement outcomes m;. Here, we use
M; = {M;y, Ms, ..., M;} to denote all the ancilla qubits
introduced up to step t.

Before proceeding, we introduce a notation for the
Pauli operator O, in terms of a 2/N-component binary
vector a = (a”, a?),

N
Oq =i X 7% =i [[ X7 2. (11)
r=1

In this way, we can label the stabilizers using the bi-
nary vectors. We introduce binary vectors a; to label
the check operators g; = Og,. The set of vectors {a;}
for check operators unambiguously specifies the stabilizer
code. Then, an arbitrary stabilizer ¢g* € S may be de-
noted using an I-component binary vector wu,

I
gv = ngfi. (12)
=1

If the set of check operators C is overcomplete, the re-
dundancies are labeled by g% = 1 for u # 0, and the
redundancy group is R = {u : ¢g* = 1}.

We also introduce binary vectors ay for k =1,... . K
(k=K+1,...,2K) to label the logical Pauli-X(Z) oper-
ator gi = Og, (97 = Og,, ). We can denote any Pauli
operator in the logical space using a 2K-component bi-
nary vector K,

K

g* = [Ls @@ . (13)
k=1

III. INFORMATION DIAGNOSTICS

In this section, we introduce coherent information
(Sec. IITA) and relative entropy (Sec. III B) as diagnos-
tics of information dynamics in quantum memories. In
Sec. III C, we discuss the relation between coherent in-
formation and the fidelity of the optimal decoder.

A. Coherent information

A central quantity to characterize information dy-
namics is the coherent information, which measures the
amount of recoverable information in the quantum mem-
ory together with the measurement outcomes [24-27].

To formulate this quantity, one can consider the stabi-
lizer code initialized in a maximally entangled Bell state
with a reference R. The amount of recoverable infor-
mation in the system @ together with the measurement
record M := My is given by the recoverable entangle-
ment with the reference R,

I.(R)QM) := S(pgm) — S(poMmR), (14)

where S(pom(r)) = — tr pom(r) 10g pom(r) is the von
Neumann entropy. We note that the coherent informa-
tion retained in an ensemble of quantum trajectories (i.e.
quantum states labeled by the history of measurement
outcomes) is also studied in the context of measurement-
induced transitions [28].

Analytically computing coherent information is chal-
lenging. Here, we consider the Rényi version of the co-
herent information

1 tr p%M

I8 (R)QM) = ——log

1
s 1)
which recovers the coherent information in the limit
n — 1.

We remark that the Rényi version of the coherent
information in Eq. (15) is different from the average
Rényi coherent information over measurement trajecto-
ries. Specifically, one can express Ién) in terms of the
n-th moment in each trajectory m as

Y om P T PG m
Yo Do T PP Rm

I(R)QM) =~ log (16)

Since the averages over m occur inside the logarithm and
are weighted by the n-th power of the trajectory prob-
ability p.,, this quantity is distinct from the average of
the Rényi coherent information over trajectories. Across
a decoding transition in quantum memory (e.g. as in
Appendix D), we expect the two quantities to exhibit

different critical points and universalities for n > 1. The
two quantities coincide only when n — 1.

B. Relative entropy

Intuitively, retaining encoded information requires the
final state of the stabilizer code to depend on its initial
state. We thus consider initializing the stabilizer code in
distinct initial states and use the distinguishability be-
tween their corresponding final states, measured by the
relative entropy, to characterize the information flow.

First, we consider the quantum relative entropy be-
tween the density matrices of the final states of the sys-
tem @ together with the measurement record M. Here,



we prepare the stabilizer code in two orthogonal states,
a logical state |¥) and an excited state |¥s) = wg| V),
where wg is an error operator that creates the syndrome
s € ZL3. The relative entropy of the two corresponding
final states pom and pgwm,s is given by

D :=tr pom log pom — tr pom log pom,s- (17)

To compute the relative entropy, one can again formulate
it as the n — 1 limit of the Rényi relative entropies

1 tr p
Dg”) = log pQIZI_l .
tr poMPGOM s

n—1 (18)

Alternatively, one can consider the relative entropy be-
tween two density matrices of the measurement record
M only. This concerns whether the measurement record
can correctly identify the syndromes, which is required
for successful quantum error correction. The density
matrix png is diagonal and represents the probabil-
ity distribution of measurement outcomes, i.e. ppg =
> m Pm |m)m|. The relative entropy then reduces to
the Kullback-Leibler (KL) divergence between two dis-
tributions

DKL,S = me Ingm — Pm Ingm,37 (19>
m

where py, s denotes the probability of trajectory m when
initializing the code in the excited state |¥g). The KL
divergence can be similarly expressed as the n — 1 limit
of the Rényi sequence

1 n
log Zmp7271~
n—1 Zmpmpm,s

DY), = (20)

We note that both the quantum relative entropy Dg
and the KL divergence Dxy, s are monotones under com-
pletely positive trace-preserving maps [29-32], and there-
fore can only decrease in the dynamics considered in this
work. As we show in Sec. IV A, the two quantities map
to correlation functions in the stat-mech model with dif-
ferent boundary conditions and can detect the poten-
tial transition corresponding to the information loss as
demonstrated in Appendix D. Both quantities have been
studied in many-body settings; the quantum relative en-
tropy is used to probe the decoding transitions in the de-
cohered toric code [4, 6], and the KL divergence between
measurement records is used to diagnose measurement-
induced transitions [33].

3 The logical (the excited) state need not be a pure state and can
be also a mixed state describing the incoherent superposition of
different logical states (excited states with the same syndrome

s).

C. Fidelity of the optimal decoder

Previous works have characterized the information dy-
namics in quantum memories using the performance of
decoding algorithms. In particular, extensive work has
been done to compute the fidelity of the mazimum likeli-
hood (ML) decoder for various decohered quantum codes
and to use this as a benchmark of the information encod-
ing, both with and without errors in syndrome measure-
ments [3, 17, 19, 34, 35]. In what follows, we first briefly
review the ML decoder and then demonstrate that the
ML decoder is asymptotically optimal for Pauli errors by
establishing a relation between its fidelity and coherent
information.

To evaluate the decoding fidelity, it is convenient to
expand the density matrix pom as an incoherent super-
position of states with different error configurations

pom = Z Pr({by, €t })Ospr poOsbr
{bt7€t}

Xt |mt =+ et><mt + Et| . (21)

where b; = (bf,b) denotes the Pauli error applied on
Q, the binary vector €; denotes syndrome measurements
that are erroneously flipped at time step ¢, and Xb; :=
23:1 b is the cumulative Pauli error. Here, we can omit
the projector Py, at each step in Eq. (10) because the
syndrome m; is completely determined by the accumu-
lated Pauli error Oxp,.. The probability Pr({b;, €;}) for a
given error configuration is a positive number determined
by the error rates p, and gq.

In a decoding algorithm, our goal is to remove the ex-
citations created by the cumulative error operator Osp,.
based on the noisy measurement record {m; := m;+€,}.
Here, we assume that the last round of measurement is
perfect, i.e. ep = 0, and the record contains the genuine
measurement outcome my of the check operators in the
final state. In this case, one can restore a logical state
by applying a recovery Pauli operator to completely re-
move the excitations. However, the recovery operator is
not unique, and applying a recovery operator that differs
from the cumulative error by a logical operator g may
result in a logical error. In the maximum likelihood de-
coder, one evaluates the probability Pr(k|mr, {m/}) of
cumulative error operators in the class labeled by k and
selects the recovery operator in the class kM with the
maximum probability among 22X classes

&MY (mp, {m}}) := argmax,, Pr(k|mr, {m]}). (22)
It follows that the ML decoder’s decoding failure proba-
bility for a given syndrome is

A(mr,{m}}) =1 — max, Pr(k|mr,{m}). (23)

In Appendix B, we show that the average failure proba-
bility A := A(mr,{m}}) has an upper bound:

A < H(k|mz, {m}), (24)



where H(k|mr,{m/}}) is the conditional Shannon en-
tropy. A similar bound was derived in Ref. [10] for the
case without measurement errors.

In the next step, we relate the Shannon entropy to the
coherent information. To this end, we rewrite the den-
sity matrices pom and pomr in the error configuration
expansion in terms of the syndromes my and m/

1
> g Prlme, (mi}) Py @ fmim]

mry,{m}}
pomr =y Pr(k,mp,{m}})
w,mr,{m}} (25)
007" [@XP| g 7% Oo @1 [myfmy|,

pM =

where Pr(mr,{m;}) (Pr(k,mr,{m}})) is the total
probability of error operators that are consistent with
the syndrome (and are in the class g*). Here, we decom-
pose the cumulative error as Osp,. := Ogg°, where Oy is
a reference error operator that creates the syndrome mr,
and |®) ., is the maximally entangled state between the
reference R and the system (), which contains K Bell
pairs. It follows that

S(pom) = H(mr,{m;}) + K log2, (26)
S(pomnr) = H(k,mr, {m;}). (27)

Thus, we have the relation
A < H(slmr, {m}) = Klog2 — L(R)QM).  (28)

In conclusion, we have shown that the ML decoder
is asymptotically optimal, i.e. it has a vanishing fail-
ure probability as long as the coherent information ap-
proaches its maximum in the thermodynamic limit. We
remark that the proof works for decoherence described
by Pauli channels, and it does not apply to cases with
coherent errors.

In Sec. IV, we show that the stat-mech model derived
for coherent information is dual to that obtained for the
optimal decoding algorithm, which is consistent with the
rigorous relation shown in this section.

IV. STATISTICAL MECHANICS MODEL

In this section, we develop stat-mech descriptions for
the Rényi versions of information diagnostics in our quan-
tum memory dynamics. The key step is to map tr p¢yy
to the partition function of a stat-mech model. We then
find that the n-th moments of different density matri-
ces map to the same model but with different boundary
conditions or defect insertions. Furthermore, the Rényi
versions of the information diagnostics are identified with
distinct observables in the stat-mech model.

In Sec. IV A, we introduce the stabilizer expansion of
pom and use it to obtain a stat-mech model consisting
of n — 1 flavors of Ising spins. The model exhibits sym-
metries determined by the redundancies R in the check

operators. For example, in the surface code the check
operators exhibit a global Zs redundancy and the decod-
ing transition is associated with a Zs symmetry-breaking
transition in the stat-mech model. In this case, the mea-
surements of check operators suppress the ferromagnetic
ordering and therefore increase the decoherence thresh-
old.

Our stat-mech model is dual to the model obtained for
the maximum likelihood decoder [3, 19, 36]. In Sec. IV B,
we consider an alternative expansion of the same density
matrix in terms of error configurations. We then obtain a
stat-mech model with the same partition function as (i.e.
dual to) the model in the stabilizer expansion. We show
that our stat-mech model in the error configuration ex-
pansion reduces to the one associated with the decoding
fidelity of the ML decoder in the limit n — 1.

We remark that the mapping to stat-mech models
based on the two expansions of the density matrix and
the duality between the resulting models are first pro-
posed in Ref. [4] to study the information diagnostics
in topological quantum memory subject to local deco-
herence. Our stabilizer expansion generalizes the “loop
expansion” in Ref. [4] and allows better identification of
the symmetry in the resulting stat-mech model.

A. Stat-mech models in the stabilizer expansion

Developing stat-mech models in the stabilizer expan-
sion takes two steps. In Sec. IV A1, we express the den-
sity matrix at time T as a sum of operators weighted by
real positive numbers. Then, in Sec. IV A 2, we map the
information diagnostics, the coherent information and
relative entropy, to the partition functions of stat-mech
models.

1. State evolution under noise and imperfect measurements

Here, we formulate the evolution of the density matrix
pom under 7' layers of decoherence and noisy syndrome
measurements in the stabilizer expansion. We consider
the initial state pgm, to be the maximally mixed state
in the code space of a stabilizer code S

1 14+ g; 1
pavo = o [ 57 =55 D_9™ (29)
el u

where u € Z} is an I-component binary vector that la-
bels the stabilizer ¢* € S (as in Eq. (12)). From now on,
we do not keep track of the overall prefactor in the expan-
sion, which can always be restored by enforcing tr p = 1.

The evolution of pgm, under physical decoherence
takes a simple form in the stabilizer expansion because
Pauli operators acquire only overall prefactors under
Pauli channels, i.e.

Nlpom,] =D e H™gx. (30)



To explicitly write down the prefactor, we express the
stabilizer as

gi = 1% % X% 79 (31)

where af(z) is a binary vector of length N specifying the

support of Pauli-X(Z) on physical qubits.
The prefactor then takes the form

o Hw)

=11 [(1 - Zpa> + puhi + p.h® 4+ pyhEhi|, (32)

where the binary variable het) = Hi(—l)“"afv(:) tracks
the support of Pauli-X(Z) at site r. This prefactor can
be viewed as the Boltzmann weight of a classical Hamil-
tonian

H(u) =Y —J.hf = Johi — J,hZh; (33)

up to a constant term independent of w, with

4 1= 2pa, — 2pas,

where « 2 3 are different labels chosen from {z,y, z}.
Next, we obtain the evolution of pgn under noisy syn-
drome measurements. Each Pauli operator g* in the sta-
bilizer expansion is evolved under the measurement chan-
nel M, ; associated with measuring g; at time ¢, which
takes the form
Mealg*l =D Pmeig P Naallmeidime il
m¢,;=0,1
1 ., —n
=359 (L+e Mg Zy;), (35)
where P, , = (1 + (—1)"*g;)/2 is the projector onto
corresponding eigenstates, p, = —log(1 — 2¢), and Z; ; is
the Pauli-Z operator for the measurement ancilla. After
a full layer of stabilizer measurements at the first time
step, the resulting density matrix is

PQM1 — Z e_H('U'O)_/J«q|'U»1—'ll»0|g‘llf1ZIll—uo7 (36)

Uo,U1
where |u| = ), u; counts the number of nonzero ele-
ments in the binary vector u, and Z¥ := ®@!_,Z}" is a

product of Pauli-Z on ancillae. We remark that |u; — ug|
serves as an Ising coupling between spins at consecutive
times.

After T layers of decoherence and noisy measurements,
the density matrix pom takes the form

pQM = Z e_H({ut})guT ®g‘:1 Z;l't*'ut—lj (37)
{u:}

where the weight of the Pauli operator can be written as
the Boltzmann weight associated with a classical Hamil-
tonian

T

H({w}) =D H(w 1) + gl — ws 1], (38)

t=1

Here, the Hamiltonian involves T + 1 layers of classical
variables with intralayer coupling described by H(u;) in
the first 7' layers and interlayer coupling pq|us — wi—1]
controlled by the measurement error rate. We note that
in the case that S has redundancies, a different set of bi-
nary vectors {u}} related to {u;} via a linear transforma-
tion can represent the same Pauli operator g*t. Here, all
u; must transform together to keep the Pauli-Z operator
on the ancillae, i.e. |uy — us—1|, invariant. The transfor-
mation, therefore, relates two sets of binary vectors with
the same weight and is a symmetry of the Hamiltonian.
This indicates that the Hamiltonian H({u:}) exhibits a
symmetry group R given by the redundancy of the sta-
bilizers. In addition, we note that the Hamiltonian can
exhibit “spacetime” symmetries arising from the symme-
tries of the code and decoherence model under transla-
tions, rotations, etc.

Ezamples.— We here discuss the Hamiltonian H(u)
in a few examples. In the 2D toric code (the surface
code on the 2D square lattice with periodic boundary
conditions), the qubits are defined on the edges, and the
model involves classical variables associated with check
operators on the vertices and plaquettes. The Pauli-X(Z)
operator for each qubit is only involved in two check op-
erators. Accordingly, A% in the Hamiltonian H (u) is
a two-body term, and AlhZ is a four-body term. The
check operators in the toric code have redundancies as
the product of all plaquette (star) check operators is the
identity, indicating an R = Zo X Zg symmetry of the
Hamiltonian.

In contrast, the 2D planar surface code with open
boundary conditions does not have extraneous check op-
erators. This indicates that the Hamiltonian does not
possess an exact R symmetry. Nevertheless, the prod-
uct of all plaquette (star) check operators in the planar
code cancels in the bulk with non-trivial support only
on the boundary, indicating an approximate symmetry
that is broken only on the boundary. We note that such
approximate symmetry is still crucial for governing the
potential symmetry-breaking transition in the thermody-
namic limit.

In the 2D repetition code on a square lattice with pe-
riodic boundary conditions, each qubit (defined on ver-
tices) is involved in four ZZ-check operators, leading to a
four-body coupling Ay in the Hamiltonian. Due to the lo-
cal redundancies in the check operators, namely that the
product of four checks around a plaquette is the iden-
tity, the Hamiltonian exhibits an extensive number of Zo
symmetries, whose local structure allows one to identify
H(u) as a Zy gauge theory.



2. Stat-mech models for information diagnostics

We are now ready to develop stat-mech models for
coherent information, decoding fidelity, and relative en-
tropy. The key step is to identify the n-th moment of the
density matrix, e.g. tr pgyg, with the partition function
of a (n — 1)-flavor Ising model,

Zp =t pom- (39)

In the stabilizer expansion, the n-th moment tr p¢y, =
Z, involves a factor

n T . .
Q({ua}) =tr (H guaT H Z);ut_'“'t1>
T n
:ZH‘S(ZU?:T), (40)

reR t=0 a=1

where u? is the binary variable associated with the a-th
copy of the density matrix pgn. Here, {2 is nonvanishing
only if > ui € R for all 0 < ¢ < T. We note that we
have omitted an overall constant in the second equality.

The delta function in Eq. (40) allows one to write the
n-th moment as a partition function of classical variables
in the first n — 1 copies

=YY

rER {ui}

S HED-HASIS Wi (4)

We note that since H({u, + r}) = H({w,}) for r € R,
the summation over the redundancy group gives only an
overall prefactor and therefore can be omitted.

It is convenient to introduce classical Ising spin vari-
ables 07 ; := (=1)“t: to re-express the partition function

as
Z, = Z

ol,...,on—1

—H™({o) (42)

with H(™) being the Hamiltonian of (n — 1)-flavor Ising
spins,

H(") ({02}

Z’H +H<Ha>- (43)

We note that the Hamiltonian H() has open boundary
conditions on the final ¢t = T layer.

The symmetry of H(™ is convenient to see by for-
mulating the Hamiltonian (™ as n copies of single-
flavor Hamiltonian #(o?) subject to the constraint o™ =
[17= o2 Then, the symmetry of H(™) contains n copies
of the symmetry R of the single-flavor Hamiltonian. The
R™ symmetry is further extended by the S,, symmetry
permuting over n identical copies of H(o?). After factor-
ing out a copy of symmetry R due to the constraint, we
obtain the global symmetry (R™ x S,)/R of the Hamil-
tonian H(™). Again, we note that when evaluating the

thermodynamic properties in the stat-mech model, one
also needs to involve the approximate symmetries and
the spacetime symmetries as a part of R.

We remark that the stat-mech model reduces to a
single-flavor model for n = 2 and n — co. At n = 2,
the Hamiltonian H(?) = 2H (o) contains a single flavor.
At n — oo, the interaction H([ [, 0*) between flavors be-
comes negligible?, and the system consists of n — 1 inde-
pendent copies of H(o?). These two cases provide useful
intuition regarding the potential phases and phase tran-
sitions in the n — 1 limit, despite different universalities
due to different symmetries of the model.

Coherent information.— To calculate the Rényi coher-
ent information, we now map the n-th moment tr pf)\;p
to the stat-mech model and show that the coherent infor-
mation corresponds to the excess free energy of inserting
defects in the stat-mech model.

To begin, the initial state pgm, r is the maximally en-
tangled state between the code space of the system @
and the reference R that contains K qubits

H 1+8kgk1+8kgk1—[1+gz

pQMOR 2

k=1

= W > g gts, (44)

u,K

where si(z) is the Pauli-X(Z) operator for the k-th qubit
in the reference R. The maximally entangled state is
stabilized by s7g7 and s7g;. Each term in the stabilizer
expansion can be labeled by the binary vector u together
with a 2K-component binary vector k which labels the
content in the logical space and reference. We will omit
the constant prefactor in the second equality in what
follows.

Under the time evolution of quantum memory, the den-
sity matrix pgmr evolves as

POMR = Z e —Hie({ue}) UTg Fa ®t 1Z'“'t Ut—1
{ut},k
(45)

Here, the logical operator g and the Pauli operator s on
the reference do not evolve, and the terms in the expan-
sion acquire a weight e~ that depends on the logical
operator K

The Hamiltonian that governs the weight is given by

He({ue}) =Y Helw) + pglue — ue, (46)

w)=> —J.he, — J.hL,

— JyhE B, (47)

K,7""R,T)

4 One can view the n — 1 flavors of the Ising spin as an additional

dimension. Let 72 := E;al o°. The Hamiltonian is H(™ =

H(T1) + 22;12 H(7212t1). The inter-replica coupling becomes
H(7'), a boundary field in the flavor dimension, which can be
neglected in the limit n — oco.



where

(—1)Z55 T B2 (), (48)
(—1)Z55 SR 2 (). (49)

hier(u) :
hir () :

Here, @}, is the 2N-component binary vector associated
with the 2K logical (X and Z) operators. The logical
operator g* in the expansion therefore controls the sign of
hi# effectively inserting a defect in the stat-mech model
along the temporal direction.

Next, we consider the n-th moment trpgyp in the
stabilizer expansion. The trace is non-vanishing only if
k" = S"" " k?. The n-th moment thus takes the form

- 1)K Zz ({k}) (50)

{r?}

tr pymr =

which is a summation of the partition functions with dif-
ferent defect insertions labeled by k2:

H= e

{w}

T Hia (u?) = Hy, e (3, ') (51)

We can thus write down the Rényi-n coherent infor-
mation as

" (RYQM) = log Z e AU _ Klog2,
{r?}
(52)
where AF({k?}) := —log Z,,({k?}) +log Z, is the excess

free energy of inserting the defect.

Relative entropy.— To evaluate the relative entropy,
we first express pom,,s = wspQMowl in the stabilizer
expansion

PaMas = Y _(—1)* g, (53)

u

where we recall that s is a nontrivial syndrome, resulting
from Pauli operator ws.

After evolving for T steps, the density matrix powm,s
takes the form

pQM,s = Z(_l)s-uoe*’]‘[({ut})g’u/p ®Z":1 ZZ‘”_ut—l.
{’Ut}
(54)

Accordingly, the n-th moment tr pQMng\/[l,s is given by
n— 'ul _qy(n) u?
tTPQMPQN}’S = Z(—l)s o M W), (55)
{w}

We note that the phase factor is inserted for the last n—1
copies, and we have used the constraint uy = > o, ud
to simplify the expression.
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We can thus write down the relative entropy as a
boundary correlation function between classical spins in
the first copy

1
(n) _ _ 1 \s;
DY = n—1 log <| I(Uo,i) > ) (56)

i

where (-) denotes the expectation value in the defect-
free stat-mech model of n — 1 flavors, and we recall that
0fi = (—1)“.

KL divergence.— Last, we consider the Rényi-n version
of the KL divergence in the stat-mech model. The key
difference is that we trace over the system @ to obtain
the reduced density matrix of the measurement ancillae
pMm = trg pom. The trace is non-vanishing only if g“7 is
the identity, i.e up € R. We note that for any ur € R,
one can shift u; — u; — wr while keeping the weight
invariant in the stabilizer expansion. Thus, without loss
of generality, we can set ur = 0. Then, the expansion
takes the form

M = ZeiH+({ut})Z;uT 1 ® - 2 Zut Ut — 17 (57)

Ut

where
T T-1
T({u}) = ZH ui—1) + Z pglue — we—1| + pglur—1].
=1 =1

(58)

Here, the last term changes under the symmetry trans-
formation w; +— u; + v with v € R, and therefore is
a symmetry-breaking field at the top boundary ¢ = T
in the stat-mech model. Accordingly, the n-th moment
tr ppy takes the form

tr pnM = Z e*’H(n)’Jr({ua})
{w}
=) e SR () - H (S ) (59)
{w}

Similar to the quantum relative entropy, the Rényi-n
KL divergence is given by

n 1 S
D&gsz—n_llog<r[<oé,i>l> . (60)
i +

where (-); denotes expectation value in the defect-free
stat-mech model of n—1 flavors with symmetry-breaking
boundary conditions.

The existence of symmetry-breaking boundary fields
may lead to qualitative distinctions between Dgky, and D,
linked to the subtle difference between successful error
correction and retaining quantum information in pgm.
In the example of the 2D surface code, the boundary
field always orders the spins in the multi-flavor Ising
model (derived in Appendix D) when ¢ = O(1), leading




to Dkr, = O(1). This indicates that noisy measurements
cannot identify distinct error syndromes after O(1) time,
although the coherent quantum information I.(R)QM)
may remain maximal for sufficiently small error rates.
This highlights the need for ¢t = O(L) rounds of noisy
measurements for successful error correction. We explain
the same physics in the 3D RPIM for the ML decoder in
Appendix F.

B. Stat-mech model in the error configuration
expansion

In this section, we take the error configuration expan-
sion of the mixed density matrix pom in Eq. (21) and
map the n-th moment tr pgy, to the partition function
of a stat-mech model, which is dual to the model ob-
tained in the stabilizer expansion (Eq. (42)). In the limit
of n — 1, the stat-mech model in the error configuration
expansion reduces to a disordered model on the Nishimori
line, which governs the decoding fidelity of the maximum
likelihood decoder.

First, we use the error configuration expansion in
Eq. (21) to express the n-th moment tr pyyy as

n
ot = Y, [[PrU8 €D [[0msresmett st
t,a

{b}.ei}a=1

i
tr HOEbaT Po OEb"‘T ) (61)
a=1
where ¥b% := Zle b2 is a shorthand notation, and

we again choose py to be the maximally mixed state
in the logical space. In this expansion, the n-th mo-
ment becomes a constrained sum over error configura-
tions weighted by their probability.

The error configuration has a non-vanishing weight
only if the following two conditions are satisfied: (1) the
physical and measurement errors in each copy produce
the same error syndromes at every time step t, i.e.

m; +e =md+é€, fora=23,... n; (62)

(2) the cumulative physical errors 3b%. produce the same
syndromes in each copy, i.e.

miy =m?Z, fora=23,...,n (63)

Here, m? is the true eigenvalue of measured stabilizers
and is flipped only by the physical error operators,

(@i, b})), (64)

where ((a, b)) = a” - b* + a* - b* is the binary symplectic
form. Hence, the first condition requires

a a —
My —My_q; =

(ai, b%» + 5%,1‘ - 5%71,2' = (a;, b7)) + 5?,1’ - 6?71,1" (65)

We note that mj = €} = 0 in Egs. (64) and (65) for
t = 1. The second condition requires the same readout
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errors in the last round of measurements in each copy,
ie. €. =€3.

Before proceeding, we provide an intuitive understand-
ing of Eq. (65). One can view the symplectic form
{a;, b)) = Ob; as the boundary of the physical error
chain b;. The difference in measurement error €; ; —e€¢—1 ;
is the boundary de€; of measurement error chain €;. Equa-

tion (65) then takes the form
d(by — b)) + (e} — €7) =0. (66)

This indicates the (physical and measurement) error con-
figuration in the first and the a-th copy form a closed
chain.

We can thus introduce the new variables e} to specify
the closed chains and label the configuration of (b2, €?)
with non-vanishing weights:

b —b; = e, (67)
06} ; — der; = {(aq, €f)). (68)

Because each copy has the same syndrome ml. = m3. at
the final step, the cumulative physical errors in different
copies can only differ by a stabilizer a2 := Zfil vla; and

. _. 2K a—
a logical operator @, := > ;" Kjak
Yed = ¥b3 — Lbh = a2 + a>,. (69)

Thus, one can divide the error chain (b3, €2) in the a-th
copy into 22K classes according to the equivalence rela-
tion of Yed modulo stabilizers a2, i.e. [LeF] := k.

With the newly introduced variables, one can express
the n-th moment as the partition function of a stat-mech
model, i.e. tr ping = Zn,

n—1
1
Z, = KM Z Pr(b',€') (ZZ’(bl,el,n)> ,
bl el K
(70)

where the prefactor 1/2%(=1) originates from the nor-
malization of pg, and

Z'(b' e k)

= Z Pr ({b% + ey, 5%,1‘ + {a;, Eet»}) diser)=r- (71)
{e:}

The partition function Z,, can be regarded as the disorder
average of n — 1 copies of the disordered partition func-
tion. Specifically, we view b and €' as disorder variables.
The disordered stat-mech model involves binary variables
e; as the degrees of freedom. We introduce an additional
label k for later convenience; it is associated with the
decoding class in the QEC problem. In the example of
the toric code, the stat-mech model is a 3D RPIM, and
% indicates the defect insertions (i.e. m-flux lines) along
non-contractible loops in two spatial directions. We note
that the stat-mech model above and the model obtained



in the stabilizer expansion in Sec. IV A describe the same
quantity and therefore are dual.

We remark that the disordered model in Eq. (70) has a
gauge symmetry. The Boltzmann weight Pr in Eq. (71)
is invariant under a local change of the disorder configu-
ration

bl > bl + el (aiel)  (72)
together with a redefinition of the degrees of freedom in
the model?®,

(56%’1- — (56%’1- +

e e —ey. (73)

Hence, the partition function Z’ is invariant under the
shift in disorder configuration in Eq. (72), and its value
Z' is fully determined by the erroneous syndromes m; :=
m; + €;, true stabilizer eigenvalues mr in the final state,
and logical sectors K

To understand the stat-mech model in the n — 1 limit,
we consider a specific information diagnostic, the coher-
ent information, which according to Eq. (28) is related
to the Shannon entropy of the distribution over decoding
sectors in the limit n — 1. In Appendix C, we show that,
for each syndrome (m}, mr), the partition function Z’
determines the probability of each decoding sector  in
the ML decoder:

ZI(bOﬂeov )
Z Z/(b07€07 )

where (b}, €}) is a reference error configuration that pro-
duces the syndrome (mj},mr)®. Therefore, the disor-
dered model Z’ governs the information diagnostics in
the limit n — 1 and is a direct generalization of the
model previously obtained for the ML decoder in specific
quantum codes [3, 15-20].

Importantly, we note that the disordered stat-mech
model Z’ exhibits an enlarged symmetry, which is a defin-
ing feature of the Nishimori line [14]. Specifically, the
disorder average of n — 1 copies of the partition function
Z' ie. Z,, exhibits a permutation symmetry S,, over n
copies (as shown in Appendix C) [37, 38]. In our prob-
lem, the n-th moment Z, = tr POM always has an S,
symmetry which stems from the permutation symmetry
over n identical copies of the density matrices pgom.

We further note that, for perfect measurements, e; =
a,, + a,., given by a stabilizer and a logical operator,
and de; = 0. The stat-mech model is decoupled in the

P(kmi, mr) = (74)

5 In the 2D RBIM for decoding the toric code with perfect syn-
drome measurements, the gauge transformation is a spin flip in
Eq. (73) combined with a shift in the random bond configuration
as in Eq. (72).

6 We note that the decoding sector & depends on the choice of
(b(l,7 6(1)); however, the probability of the most likely sector is in-
dependent of this choice.
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temporal direction, and the partition function Z’ reduces

to
Le)=1]D  Pr(b

t v,k

G, + Qo) 05 =i (75)

The disordered stat-mech model for each time step is
the same as the model in Ref. [19] derived for the ML
decoder.

C. Duality between two expansions

Having derived stat-mech models based on the stabi-
lizer expansion in Eq. (37) and error configuration ex-
pansion in Eq. (25), we here explicitly show that the two
expansions are related by Fourier transformation.

Both expansions are possible because the set of sta-
bilizers g* and the set of syndrome projectors P,, both
comprise operator bases for the same space, which is the
set of density matrices that are block diagonal with re-
bpect to syndromes. In particular, we note that P.

Iy (1) g and [m)m| = 2713, (~1)meZ,
Therefore up to an overall constant,

T T
P @ o] = 37 (<)o [Tz
t=1 {ue} t=1
(76)
where dmj} = m;, , —m; with m7.,, := m and mg := 0.
Eq. (76) may also be inverted to express stabilizers in
terms of syndromes.
By comparing Eq. (25) and Eq. (37), and applying the
change of basis rule from Eq. (76), we arrive at a rela-
tionship between the coeflicients in the two expansions:

Z(_l)zt omjuy o —H({wi}) (77)
{u}

Pr(mr, {m;}) =

We observe that this may be viewed as a Zy Fourier trans-
form, and observe that it relates partition functions with
quenched disorder in the error configuration expansion
with Boltzmann weights in the stabilizer expansion.

As we saw in Sec. IVB, Pr(mr, {m}}) may be written
in terms of error configuration degrees of freedom. With
this in mind, we can use Eq. (77) to quickly obtain two
dualities.

First, we observe that

0,{0}) = Z e H{ud), (78)

{ue}
which shows that the error configuration stat-mech model
without disorder is dual to a single flavor of the stabilizer

expansion stat-mech model.
Second, we observe that

n _q(n) w?
> Pr(mp, {mi})" =) e M (79)

mr,{m,} {ui}



since 5, (—1)2: 9™t % places a constraint on the n-th
flavor of spins in terms of the other flavors, as we saw in
Sec. IV A 2. In this way, we see that the structure of the
duality arises from a generalized form of the Plancherel
theorem.

D. Examples

Having developed the mapping for generic stabilizer
codes, we here consider the surface code, repetition code,
and the XZZX code as specific examples and explicitly
derive the stat-mech models to study their decoding tran-
sitions. In what follows, we provide the summary of the
results and leave the details in the appendices.

In Appendix D, we consider the surface code subject
to single-qubit Pauli errors and noisy measurements. For
Pauli-X (or Pauli-Z) error, the stat-mech model is a 3D
(n — 1)-flavor Ising model with nearest-neighbor cou-
plings. In Appendix C, we verify that the model is the
Kramers-Wannier dual of the 3D random plaquette Ising
model in the limit n — 1. For Pauli-Y decoherence, the
stat-mech model has two-body couplings in the temporal
direction and four-body plaquette couplings in the spa-
tial direction; the model is in the same universality as the
(2+1)D Xu-Moore model [39]. We note that the (2+1)D
dynamics of the surface code can be re-formulated as
virtual time evolution generated by sequentially mea-
suring the qubits in a 3D cluster state introduced by
Raussendorf, Bravyi and Harrington (RBH) [40]. In Ap-
pendix G we alternatively derive the stat-mech model for
the (241)D surface code by considering the measurement
dynamics of the noisy RBH state.

In Appendix H, we derive the stat-mech model for the
d-dimensional repetition code subject to Pauli-X deco-
herence and noisy measurements. We show that the stat-
mech model is a 2D (n — 1)-flavor Ising model for the 1D
repetition code, and the model is a 3D (n — 1)-flavor Z
gauge theory for the 2D repetition code.

In Appendix I, we consider the XZZX code subject to
Pauli decoherence and noisy measurements. The result-
ing 3D (n—1)-flavor Ising model consists of two-body and
four-body couplings, similar to the surface code. Notably,
in the case of only Pauli-X (or Pauli-Z) decoherence, the
model reduces to decoupled 2D Ising models.

V. DISCUSSION

In this work, we study the dynamics of quantum mem-
ories under local Pauli decoherence channels and re-
peated noisy syndrome measurements. We develop a
stat-mech model for non-linear functions of the density
matrix, which allows evaluating information diagnostics,
such as coherent information and relative entropy.

Our model is dual to the stat-mech model previously
obtained for the optimal decoding algorithm. This dual-
ity can be understood by considering two different expan-
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sions of the same density matrix: the stabilizer expansion
and the error configuration expansion. Writing the den-
sity matrix as a weighted sum of stabilizers leads to our
model and writing the density matrix as a weighted sum
of various errors applied to the initial state leads to the
previously-obtained model.

Our dual model offers certain benefits. It exposes the
impact of imperfect stabilizer measurements on informa-
tion retention. The model consists of a layer of spins for
each time step of the dynamics. After a single round of
decoherence, quantities like the coherent information are
determined by ordering in a single layer of spins. Per-
fect syndrome measurements ensure that successive lay-
ers of spins are completely decoupled from prior layers
so that successive rounds of decoherence do not build on
top of prior rounds. As the probability of readout noise
increases, the layers of spins become coupled, making it
possible for less information to be retained by the system
over time. In the limit that readout noise is maximal, the
layers are completely coupled together and it is as if no
syndrome measurements occurred at all.

Our mapping also explains the necessity for repeating
noisy measurements for successful error correction in the
surface code even though the memory can in principle
retain (maximum) coherent information even after O(1)
rounds of noisy measurements [3]. This originates from
the clear distinction between stat-mech models for pom
and pp. In particular, error correction requires identify-
ing the error configuration only from the noisy measure-
ment record and therefore concerns the stat-mech model
associated with ppng. In the stabilizer expansion, this
stat-mech model has a boundary magnetic field explic-
itly breaking the Ising symmetry and therefore cannot
exhibit a paramagnetic phase for O(1) rounds of noisy
measurements. When the noisy measurements are re-
peated for O(L) times, the boundary magnetic field does
not affect the ordering in the bulk of the (2+1)D stat-
mech model. Thus, the stat-mech model can be in the
paramagnetic phase indicating successful error correc-
tion. On the other hand, the coherent information is
associated with the stat-mech model for pgn, which has
open boundary conditions on the final layer of spins and
can undergo a paramagnetic-to-ferromagnetic transition
for any finite number of rounds of noisy measurements.

Our results open several directions for further study.
First, we note that in the dual picture developed in this
work, i.e. the stat-mech model in the stabilizer expan-
sion, codes with maximum threshold correspond to spin
models that fail to order at any finite temperature. As
such, one may be able to use insights from statistical me-
chanics to reverse engineer QEC codes that have maximal
thresholds even in the presence of noisy measurements.

Second, there are certain QEC codes whose many re-
dundancies or other special properties enable single-shot
QEC [41], in which single rounds of noisy measurements
can be used for decoding. Our dual stat-mech model may
provide a useful platform for studying single-shot stabi-
lizer QEC codes. Note that the stat-mech model describ-



ing moments of pp after a single round of measurements
would be a spin model with an external field, which nor-
mally induces ferromagnetic order. On the other hand, as
we discussed in Sec. IV, local redundancies in measured
stabilizers translate to gauge (or higher form) symmetries
of the stat-mech model, and it is known that higher-form
symmetries can be emergent even if the symmetry is ex-
plicitly broken microscopically [42, 43]. This may provide
a useful perspective explaining the essential ingredients
for successful single-shot decoding.

Third, although this work focuses only on stabilizer
codes, it may be possible to generalize our stat-mech
model to other related QEC codes, e.g. subsystem
codes [44] and dynamically generated codes [45], subject
to Pauli errors. In both cases, if starting from the maxi-
mally mixed state in the code space, the density matrix
of the system at any time step can be expressed as a clas-
sical mixture of Pauli operators and, as such, there may
exist natural extensions of our stat-mech model in each
of these settings.

Note added: After completing this manuscript, we be-
came aware of a recent work [46], which obtains results
related to ours in Sec. II1C.
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Appendix A: Generalization to weak measurements

In this work, we have focused on imperfect measure-
ments where the imperfection is caused by a readout error
that changes a measurement result. Weak measurements
are another natural source of imperfections, where the
unitary Ug_,gnr fails to perfectly correlate the system
and measurement ancilla, even before any readout errors
occur. This interaction can be described by the same
form of Ug—,qam in Eq. (7) but with Py 1 modified such
that

(A1)

where 0 < A <1. When A = 1 the operators Py ; are un-
changed from the rest of the text, and the measurement
becomes weaker the smaller A becomes.

As long as the initial state is in the code space and is
subject only to Pauli errors and imperfect syndrome mea-
surements, the state p at any later time may be written as
a weighted sum over stabilizers. Consequently, the state
always commutes with Py ;. Noting also that Py and Py
commute with each other, and using the shorthand U for
Ug—om, we can write

UpU' = p[PE @ |0X0],, + PE @ |1X1],,
+ PoP1 @ (J0)1] 5, + [1X0],,)]-

1 2Ag
2 —

It is useful to write |0X0],, = (1 + Zar)/2, |1)1],, =
(1 = Zn)/2, and |0)X1],, + [1X0],;, = X, because the
behavior of Zj; and X, under readout errors is straight-
forward. In particular,

(A2)

We note that

(A3)

NulZul = (1 —2q)Zu
NM[XM] =Xum.

It is also useful to define weights W, = (1 — 2¢) and
Wi = 2X/(1 + A?). Then,

(A4)
(A5)

NulUpU') = 2oL+ Wag)(L 4+ WyZar)  (A6)
(1= Wag)(1 - WeZar)  (AT)
+ 770731XM}. (AS)

In Sec. II, the PyP1 X term was not present because
PoPy =0 when A = 1. As a result, it was not necessary
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to explicitly consider the impact of the actual projective
measurement of the ancilla in the Pauli-Z basis. Here, it
is necessary to consider this measurement, leading us to
modify the imperfect measurement channel M:

(222 e (2

+ (1 QZM) Nu[UpUT] (12ZM> (A9)

which annihilates the PyP1 X term. We conclude that

Mp] =

Ml = 2oL+ WaWygZas). (AL0)
Analogous work in Sec. IVA1 yields the same result
without the factor of W,. Since W, is always posi-
tive, the combined weight W)\Wj, is positive as long as
0<g¢g< % In Sec. IV A1 these weights and their log-
arithms are natural objects to consider, allowing us to

interpret the impact of weak measurements as modifying

2
Hg = pq — log 1+ )2 (A11)
where p, = —log(1 — 2¢). We can also view this as mod-
ifying
2\ 1(1—M)?
— = A12
1 q(1+A2)+2 1+ A2 (AL2)

which lies between 0 and % as long as ¢ does.

In summary, allowing weak measurements in our dy-
namics is equivalent to modifying the rate of readout
errors. However, we note that the situation would be
significantly more complicated in dynamics with coher-
ent errors.

Appendix B: Bound on the optimal decoding
infidelity

Here, we provide a proof of the inequality
A < H(k|X) (B1)

where we use the shorthand notation X := (mr, {m}}),
and

A=) "Pr(X)(1 - max, Pr(x|X)). (B2)
X
For fixed X, Ho(Pr(k|X)) = —logmax, Pr(k|X). It
follows that
A=Y "Pr(X)(1 — e e PrislX), (B3)
X

Since 1 —e™* is concave, the linear approximation of the
function at any point is an upper bound. Consequently,

A < Pr(X)Hoo(Pr(k] X)) (B4)
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and, using Rényi entropy inequalities,

A <) Pr(X)H(Pr(k|X)) (B5)

where H(Pr(k|X)) = — >, Pr(k|X)log Pr(k|X). It fol-
lows that

A <= Pr(X)Pr(k|X)log Pr(k|X) (B6)
K, X

==Y Pr(k, X)log Pr(k|X) (B7)
Kr,X

= H(k|X). (BS)

Appendix C: The n — 1 limit of the stat-mech model
in the error configuration expansion

We here show that the disordered stat-mech model
Z' governs the information theoretical diagnostics in the
limit n — 1. We consider coherent information as an
example.

We first take the error configuration expansion of the
n-th moment tr pgynp

trpmp = »_ Pr(b',e!)2'(b',€',0)""".  (C1)

bl el

Here, the term in the error configuration expansion of
poMmr contributes to tr piyn g only if the cumulative er-
ror Yed = Yb3. — Xbk is given by a stabilizer, i.e.
Kk =[Xe¥] =0.

Next, knowing that the partition function Z’ only de-
pends on (m}, mr), we can express the n-th moment
in terms of the probability of error strings belonging to
different sectors, i.e.

. 1 n
rooM = SR Z <ZPT("‘~7mT,mQ)> ;

’
mr,m; K

tr poMR = Z ZPr(m,mT,m;)n, (C2)

mr,mj, K
where
Pr(k,mr,m}) = 2/ (b}, €5, K). (C3)

Here, b}, e} are a reference error configuration, and
we have the relation Z’(b',€!,0) = Pr(k, mp,m}) for
[$b! — Bbl] = k. This expression explicitly shows the
enlarged S,, permutation symmetry in the n-th moment
z,.

In the limit n — 1, the coherent information reduces to
I. = Klog2— H(k|mr, m}) in agreement with Eq. (28),
where H(k|my, m}) is the Shannon entropy of the con-
ditional distribution

Z'(b, €}, k)
Pr(klmp,m)) = —— 202 (C4)
Y XL 2(bg €. k)



This calculation shows that the partition function Z’ de-
termines the coherent information I.. Moreover, Z’ is
proportional to the probability of each decoding sector
and therefore is exactly the model obtained for the ML
decoder [3].

Appendix D: Decoding transitions in the surface
code

The surface code [48, 49] is a promising quantum mem-
ory that can retain quantum information up to a finite
threshold of decoherence and has been realized in leading
experimental platforms [50-55]. The information dynam-
ics in the decohered surface code was previously stud-
ied in the context of optimal decoding algorithms [3]. It
was shown that the decoding transition based on a single
round of measurements (with no readout errors) maps to
a ferromagnetic transition in the 2D random bond Ising
model, and the transition in the case of repeated imper-
fect measurements maps to a deconfinement transition
in the 3D random plaquette Ising model (RPIM). Here,
we apply the stat-mech model developed in Sec. IV to
the surface code and provide a dual perspective on the
decoding transition in the case of repeated stabilizer mea-
surements, generalizing the result in Ref. [4].

As we explain below, the stat-mech model derived us-
ing the stabilizer expansion in Sec. IV A exhibits a Z4
global symmetry and undergoes a ferromagnetic transi-
tion when tuning the decoherence rate, dual to the decon-
finement transition in the RPIM. The decoherence rate
tunes the temperature in the stat-mech model; the low-
temperature ferromagnetic ordering corresponds to the
information loss at a high decoherence rate. Our dual
picture makes it easier to understand situations with a
maximum threshold, which manifest as stat-mech models
exhibiting no finite-temperature ferromagnetic ordering.

In the rest of this section, we first introduce the sur-
face code and develop the stat-mech model in the dual
picture. We then consider the surface code subject to
physical Pauli-X/Z errors under repeated imperfect mea-
surements. We obtain a 3D (n — 1)-flavor Ising model for
the Rényi-n quantities, which is dual to the previously
known 3D RPIM in the limit n — 1 [3] (shown in Ap-
pendix E). Next, we consider the surface code subject
to Pauli-Y errors, which is shown to have the maximum
error threshold (p. = 0.5) based on a single round of per-
fect measurements [56]. Using our stat-mech mapping,
we show that unbiased measurement errors result in a
sub-maximum threshold (p. < 0.5).

1. Swurface code

A surface code is a stabilizer code associated with any
cellulation of a two-dimensional manifold. We focus on
the case of closed manifolds. Our results can be gen-
eralized to the planar surface code defined on an open
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Figure 2. Surface code on the square lattice with periodic
boundary conditions. The code has stabilizers A, associated
with vertices (a) and By associated with plaquettes (b). The
logical operator is a string operator along a non-contractible
loop (¢).

manifold with suitable boundary conditions. The cellula-
tion defines a graph (2-complex) that consists of vertices
(0-cells), edges (1-cells), and faces (2-cells). The surface
code consists of qubits on the edges ¢ of the graph and
two types of stabilizers associated with vertices v and
faces f:

A, = [ Xe Bs= (D1)
Lestar(v)

H ZZ?

£eboundary(f)

where star(v) and boundary(f) include all the edges em-
anated from the vertex v and on the boundary of the face
f, respectively.

The logical space of the surface code depends on the
homology of the manifold. Specifically, the stabilizer By
(A,) is a product of Pauli operators along a boundary
(co-boundary) on the graph. The operators that com-
mute with all the stabilizers are thus products of Pauli-
Z(X) along cycles (co-cycles). It follows that logical-Z(X)
operators, which are not products of stabilizers, are given
by the cycles (co-cycles) that are not boundaries (co-
boundaries) and are thus determined by the homology
(co-homology) group of the graph. For a closed 2D man-
ifold of genus G, the corresponding logical space can en-
code K = 2G qubits. See Ref. [57] for details.

A widely studied example of the surface code is the
so-called toric code defined on a two-dimensional square
lattice with periodic boundary conditions (topologically
equivalent to a torus) [48, 49]. The code space is four-
fold degenerate and can encode two logical qubits. The
logical-Z(X) operators are string operators along two
non-contractible loops on the direct (dual) lattice on the
torus. Examples of these check operators and logical op-
erators are illustrated in Fig. 2. Our results in this section
apply to general surface codes, but we use the toric code
as a helpful example throughout.

We remark that the (241)D dynamics of the toric
code under repeated syndrome measurements can be
equivalently formulated as sequentially measuring the 3D
Raussendorf-Bravyi-Harrington (RBH) state [40]. We
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I.(RYQM)

Coherent information | Quantum relative entropy

KL divergence

D;(poml|pom,s) Dkur,s(pml|pm,s)

Boundary field X X v
Finite threshold at T'= O(1) v v X
Finite threshold at T'= O(L) v v v

Table I. Properties of the stat-mech model for information diagnostics in the decohered surface code under repeated stabilizer

measurements.

detail this formulation and an alternative way to derive
the stat-mech model in Appendix G.

2. Stat-mech model of the surface code

The stat-mech model for the surface code under re-
peated measurements involves Ising spins at each time
step t associated with stabilizer measurements of A, and
B¢. Thus, the Ising spins are defined on the vertices of
the graph G and the dual graph G* denoted by o, + and
o7+, respectively. In the stabilizer expansion in Eq. (42),
the Boltzmann weight is given by an effective Hamilto-
nian

H= E —JzUr,tUr',t - Ja;U?,tUW,t - Jyo'r,to'r’,ta?,to'ﬁ’t
t,0

- Z Jvar,to'r,t—&-l - Z Jfo'?,to'?,t-i-h (DQ)
t,r t,r

where (r,7') is a pair of vertices connected by the edge
¢, (7,r") is a pair of faces (vertices on the dual graph)
connected by the dual edge ¢*, and the couplings are

given by Eq. (34) along with

1
Jv _510g(1 - 2qv)7 (D3)

1
Ty = =5 log(1 —2qy). (D4)

Here, ¢, and ¢; denote the readout error rates for mea-
suring A, and By, respectively.

We can now write down the n-th moment as the par-
tition function of a stat-mech model of n — 1 flavors of
Ising spins, trpgn = Zn. The symmetry of the stat-
mech model is determined by the redundancies of the
check operators. Here, the product of all star operators
as well as the product of all plaquette operators is the
identity, leading to the redundancy group R = Zs X Zs.
Hence, the stat-mech model for the n-th moment exhibits
a global symmetry of G = (R™ x S,,)/R. When in-
creasing the decoherence rate above the threshold, we ex-
pect a transition from a symmetric paramagnetic phase
to a ferromagnetic phase that breaks the G(™) symmetry.
In what follows, we formulate the information diagnos-
tics as observables in the stat-mech model and show they
indeed detect the transition.

Coherent information.— Using Eq. (45), the n-th mo-

ment tr plhop can be expressed as

1

tr prom = 221) Z Z,({r%}), (D5)
{r?}
where k® for a = 1,...,n — 1 is a 4-component binary

vector; the first (last) two components label the inser-
tion of two-dimensional non-contractible defects in zt and
yt planes associated with logical-X(Z) operators, respec-
tively.

We thus can write the n-th coherent information as

— 2log 2.

Z Z’ﬂ({’("’a}) (DG)

1
I = —log
¢ n—1 Zn
{r2}

We note that —log(Z2,({k*})/Z2,) = AF,({k?}) is the
excess free energy of inserting the defects denoted by 2.
In the paramagnetic phase, the defect costs zero free
energy in the thermodynamic limit, so all the 241

terms in the summation are unity, thus, Ic(n) = 2log 2.
In contrast, in the ferromagnetic phase of o2 associated
with Pauli-Z strings (assuming only Pauli-X errors and
no Pauli-Z errors), the defect associated with logical-Z
operators costs a free energy O(LT) that increases with
the system size. In this case, only 22(»=1) terms in the

summation are unity, and we have Ic(n) = 0. Hence, the
decoding transition in the Rényi-n coherent information
can be understood as the ordering transition in the 3D
stat-mech model.

Relative entropy.— Here, we find the Rényi-n rel-
ative entropy in the (n — 1)-flavor Ising model. We
consider the relative entropy between pom and pgom,m
where the latter state is evolved from the excited state
P = W (V) pow], () with w,, (y) = [Isc, Xe creating m
anyons at the endpoints r1 and ro of 7.

Then, according to Eq. (56), the n-th Rényi relative
entropy maps to the spin-spin correlation function on the
bottom boundary of the stat-mech model

1
D7(7TLL) = 1 1Og <aé,rl U(%,r2> .

(D7)
Hence, the relative entropy detects the ferromagnetic
transition in the (n — 1)-flavor Ising model; it diverges
in the paramagnetic phase and takes a finite value in the
ferromagnetic phase.

Similarly, the KL divergence D%} . maps to the corre-
lation function in the stat-mech model with a boundary



field. When the number of time steps T' = O(L), the
model can undergo a ferromagnetic phase transition in
the bulk, which is detected by the KL divergence.

3. Threshold of Pauli-X/Z error

The first example we consider is the surface code sub-
ject to Pauli-Z (or -X) errors on the physical qubits, i.e.
ps =py =0 (or p, = p, = 0). We focus on the case of
Pauli-Z errors. The analysis for Pauli-X is similar.

The Ising spins on the direct and dual graph are decou-
pled in the stat-mech model, and the only non-vanishing
couplings are J, = —(1/2)log(1 — 2p,), Jy, and J;. We
now consider the n-th moment tr pg, and write the ef-
fective Hamiltonian of the stat-mech model.

The stat-mech model for the spins on the dual graph
G* is decoupled one-dimensional Ising models with ferro-
magnetic couplings between neighboring sites in the tem-
poral direction, which are always disordered for ¢y < 0.5.
This is consistent with the fact that Pauli-Z errors do
not flip the eigenvalues of By stabilizers, and the classi-
cal information encoded in the logical Pauli-Z is always
retained.

The stat-mech model for the spins on the direct graph
G is a 3D multiple-flavor Ising model

n—1
(n) _
H, —E —J. g Op O ¢ — JH"rtth
0t
n—1 n—1
a a a a
+ E —Jy E 04011 — Ju H o701, (DB)
r,t a=1 a=1

where a =1,2,...,n — 1 label the Ising spins in the a-th
replica copy. The model is dual to the RPIM in the limit
n — 1 as shown in Appendix E.

The model undergoes a paramagnetic-to-ferromagnetic
phase transition when increasing the error rate. In the
case of n = 2, the stat-mech model reduces to a 3D Ising
model with couplings 2J, and 2J,. In the isotropic limit
p = q (ie. J, = J,), the transition occurs at 2u(2) =

0.221 [58, 59], corresponding to p(2) = q£2) = 0.099. In
the limit n — oo, the inter-replica interaction is negli-
gible, giving rise to a 3D Ising model with couplings J,
and J,. In the isotropic limit p = ¢, the transition occurs
at p° = ¢ = 0.179.

4. Threshold of Pauli-Y error

The next example we consider is the surface code with
Pauli-Y errors (p, = p. = 0). The Ising spins on
the direct and dual graph are coupled in the stat-mech
model. The couplings are given by J, = J, = 0 and
Jy = —(1/2)log(1 — 2p,). We remark that, in this case,
the stat-mech model exhibits subsystem symmetries in
each flavor. In what follows, we analyze the threshold
for different types of measurement errors.
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a. Perfect measurement

We start by considering the case with perfect measure-
ments. Here, the 3D multi-flavor Ising model consists of
decoupled 2D multi-flavor Ising models in the temporal
direction. The 2D model has a Hamiltonian

n—1

3+ H aiaiaiofb) .
a=1

(DY)

The model is a plaquette Ising model in 2D, which ex-
hibits no finite temperature order for any replica index
n. The absence of finite temperature order indicates a

maximum threshold pi™ = 0.5. This is consistent with
pe = 0.5 in the replica limit [56].

We remark that the maximum threshold in the case of
Pauli-Y errors is relevant for realizing the surface code
in experimental platforms with biased noise, i.e. when
Pauli errors along a specific direction dominate. One can
then tailor the surface code such that the biased noise
is in the Pauli-Y direction and allow the code to achieve
a high threshold of encoding quantum information [56].
With the same motivation, the XZZX code, related to
the surface code by local rotations, has been proposed to
encode information up to a maximum threshold of Pauli-
X, Y, or Z errors [60].

b. Noisy measurement

We now consider the surface code subject to Pauli-
Y errors and noisy measurements with unbiased readout
errors. In this case, in addition to the four-body Ising
couplings among spins at the same time step, Ising spins
on consecutive time steps are also coupled by two-body
Ising terms. The result is an Ising spin model on a cu-
bic lattice (tilted from the original lattice by m/4) that
contains 2?2 spins in each one of the T time steps (illus-
trated in Fig. 3(a)). The n-th moment maps the partition
function with the Hamiltonian

H(") —
n—1
—Jy ZZUMJ,tarta,t—i-HUTta,toTto,t
l,t a=1
_JZ Z UT tar t+1 + H UT tar t+1
rit a=1
n—1
_JZZUMUMH"' HartUT t+1° (D10)
r,t a=1
where J := J, = J; = —(1/2)log(1 — 2¢), and q is the

unbiased readout error rate.

The phase boundary of the model can be analytically
determined for certain replica indices. For n = 2, the
model is self-dual [39]. Assuming only two phases of
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Figure 3. Critical error rates (pﬁn)7 qﬁn)) in the (n — 1)-flavor
Ising model for the toric code with Pauli-Y errors and syn-
drome measurement errors. The physical and measurement
error rates are denoted by p and ¢, respectively. The criti-
cal points are determined analytically for n = 2 (dark) and
n — oo (light) based on the self-duality of the model.

the model, a ferromagnetic and a paramagnetic phase,
the transition occurs at the self-dual line satisfying
sinh(4Jy) sinh(4J) =1, i.e.

1— (1 _ 2q£2))2

2
1+ (1 . 2q§2))

@_1];_

@ =2 (D11)

In the limit n — oo, neglecting the inter-replica interac-
tion, the self-dual line is given by sinh(2J,) sinh(2J) =1,
ie.

Pl =1— % (D12)
2 - 2QC

The critical points for n = 2 and n — oo are illustrated
in Fig. 3(b). Away from the limit of perfect measurement
q = 0, the stat-mech model exhibits a finite temperature
ferromagnetic phase, indicating a threshold that is less
than the maximum value, i.e. p. < 0.5 for ¢ > 0. We
remark that for n = 2 and the limit of n — oo, the
3D stat-mech model is in the universality of the (2+1)D
quantum Xu-Moore model [39].

Appendix E: Duality between random plaquette
Ising model and multi-flavor Ising model in 3D

In this section, we explicitly derive the duality between
the 3D multi-flavor Ising model in Sec. IV and the 3D
random plaquette Ising model (RPIM) derived for error
correction in the toric code with Pauli-X/Z errors under
repeated erroneous syndrome measurements [3].

The 3D RPIM derived in Ref. [3] is of the form

> Jploup,  (B1)

pe Ot UDyt

Hepia = — Y Jynpttp —
pelay
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where J, = log+/(1 —p)/p, J; = log\/(1 —q)/q, up =

reop Tro and mp, Gy = =£1 are random variables that
take —1 with probability p and g, respectively. Impor-
tantly, the Hamiltonian has a constraint for p € O,
on the bottom layer; the product of four spins around
a plaquette is forced to be +1. In the language of Z,
gauge theory, the flux line does not penetrate the bot-
tom boundary. The spins on the top boundary are not
subject to hard constraints, and the flux line can termi-
nate at the top boundary. The RPIM model has periodic
boundary conditions in the x and y directions. Here, for
the toric code on a 2D square lattice of size L x L un-
der T rounds of repeated syndrome measurements, the
RPIM model is defined on a 3D slab of size L x L x T
and consists of spins on the edges (3L2T spins in total).

Before deriving the duality, we first rewrite the parti-
tion function of the 3D RPIM in terms of the flux lines in
the 3D classical Zy gauge theory. Any spin configuration
can be obtained by flipping a subset of spins to the —1
state from the configuration of every spin in the 41 state.
The spin-flip creates the violation of plaquette variables
along a closed loop C on the dual lattice, i.e. the m-flux
line. This allows writing Zrpmv as

ZRPIM — erNt(1_2p)+Jquy(1_2q)

Z H o207 H e~ 2Jams, (E2)

C p€ECyy peCy

where Ny, (IV;) is number of plaquettes in the zy plane
(«t and yt plane), and Cyy (C¢) is the collection of pla-
quettes in the zy plane (zt and yt plane) on the loop
C.

The RPIM partition function is dual to a nonlocal cor-
relation function in a 3D Ising model with spins defined
at the center of cubes in the original lattice,

J o 15, L sis
Pt = Y €7 tnm et aRen e TT s
{si} Mp="

= (cosh Jp)Nt(l_p) (sinh J,) NP

(cosh Jq)Nw(lfq) (sinh J,)Neva

2V > T (tanh.g,)™ [] (tanh )™, (E3)

C pECay peCy

where the link (i, 7) is dual to the plaquette p, the sub-
script zy (t) denotes the plaquette in the zy plane (xzt
and yt plane), and N is the total number of spins.
The two partition functions are identical up to a non-
singular prefactor provided that tanh.J, = e 2/ and
tanh J, = e~27¢. Such a duality is obtained in Ref. [47].

Lastly, we show that the average (n — 1)-th moment
of the RPIM partition function, and equivalently that of
Zlsing, Mmaps to the partition function of the (n—1)-flavor
Ising model derived in Sec. IV. Here, we obtain the ef-
fective Hamiltonian by averaging over random plaquette



variables 7, and ¢,

Zn—1 _ E ' eZ?:]l To sy ey 5150 iy, 5155

Ising
{si}
n—1
H (1—p+pHs§sj>
(1,5) 2y a=1
n—1
H (1—q+qHs?s§>
(2,5)¢ a=1
=N e (E4)
{si}

The effective Hamiltonian is exactly the one obtained in
Eq. (D8).

We here focus on the duality between the two models in
the bulk. In Appendix F, we comment on the boundary
conditions in the RPIM and its dual.

Appendix F: Stat-mech model in the limit of perfect
measurements

In this section, we consider the limit of perfect mea-
surement in the multi-flavor Ising model obtained in the
dual picture. We show that perfect syndrome measure-
ments lead to a stat-mech model with open boundary
conditions at the top of the slab. The resulting stat-mech
model exhibits a finite-temperature ordering transition
giving rise to a finite error threshold regardless of how
many rounds of syndrome measurements are performed.

The couplings in the multi-flavor Ising model in the
temporal direction are determined by the rate of mea-
surement errors, J;, = —(1/2)log(1l — 2¢); the coupling
Jq is vanishing if ¢ = 0. Thus, if the final round of mea-
surement is perfect, the model has an open boundary
condition at the top and, therefore, exhibits a transition
at a finite threshold regardless of the thickness T

The existence of a finite decoding threshold can be also
understood in the original picture of the RPIM. Here, the
boundary magnetic field in the dual picture translates to
the boundary condition for magnetic m-flux lines. The
m-flux line is allowed to terminate at the top boundary
when the boundary field is nonzero. We note that the
multi-flavor Ising model always has an open boundary
condition at the bottom, i.e. m-flux line cannot termi-
nate at the bottom. In this case, if the slab has a finite
thickness T, there is no transition when tuning the error
rate because the 2D classical Z, gauge theory is always
confined in the effective 2D slab. In contrast, when the
fluxes are not allowed to terminate at both the top and
the bottom, the gauge theory has a special boundary
condition, which allows the transition to happen.
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Figure 4. The unit-cell of the 3D cubic lattice A used to define
the RBH state. The qubits are placed on the edges (green)
and the faces (yellow) of A. The RBH state corresponds to a
graph state, with the underlying graph specified by the dashed
lines.

Appendix G: Toric code with repeated syndrome
measurements as 3D RBH

In this section, we briefly explain how the 3D cluster
state of Raussendorf, Bravyi and Harrington (RBH) [40]
can be used to reason about the quantum information
content of the 2D toric code under repeated noisy mea-
surements in the presence of noise. Although the dis-
cussion in this section is focused on the 2D toric code,
it readily generalizes to any CSS code, by replacing
the RBH state with the corresponding foliated cluster
state [61].

1. The RBH state

Consider the 3D cubic lattice A with qubits placed on
edges and faces (Fig. 4). Let E and F denote the set
of edges and faces of A. Let P. (Pf) denote the Pauli
operator P acting on the qubit which is placed on e € F
(f € F). For each edge, define go = Xc[[;..cor 2y,
where Jf denotes the boundary of f. Similarly, for each
face f € F define gf = Xy [[.cp; Ze- The RBH state
is the state stabilized by g. and gy for all e € E and
f € F. Equivalently, the RBH state can viewed as the
graph state [62] corresponding to the graph obtained by
connecting each face qubit to the four edge qubits on the
face boundary (the dashed line in Fig. 4). As such, the
RBH sate |¢)rpr) can be written as,

[Yrpr) = Ua |+)&

Ur =[] [ C2Z.s

fEF ecdf

(G1)
(G2)

where CZ;; stands for the controlled Z gate between
qubits ¢ and j. Thus one could prepare the RBH state
by initializing every qubit in the |+) state and applying
CZ gates along the dashed lines in Fig. 4.
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Figure 5. a) The gy stabilizer on the boundary is equal to the
toric code plaquette operator on the boundary times Xf. b)
The product of four g. stabilizers around a vertex on the
boundary is equal to the toric code star operator on the
boundary times X. in the bulk. ¢) The product of all g
stabilizers that lie on a vertical plane is equal to the product
of the toric code Z logical operators on the top and bottom
boundary times a product of some Xy in the bulk. d) The
product of g. operators where e cuts through a fixed veritcal
plane is equal to the product of the toric code X logical oper-
ators on the top and bottom boundary times product of some
Xy in the bulk.

2. The RBH state and the toric code

Consider the RBH state on the L, x L, x L, cubic lat-
tice with periodic boundary conditions along the z and
y axes and open boundary condition along the z axis.
If one measures all qubits except the edge qubits on the
top and bottom boundaries in the Pauli-X basis, the re-
sulting state on the unmeasured qubits consists of toric
code eigenstates on the boundaries, which are entangled
to make a pair of logical Bell pairs [40]. To see this, note
that a face stabilizer gy on a boundary is just the toric
code plaquette operator times X; (Fig. 5a). Measuring
the face qubit in the Pauli-X basis thus ensures that the
unmeasured qubits are an eigenstate of the corresponding
toric code plaquette operator, with the eigenvalue deter-
mined by the measurement outcome of X;. Moreover,
if one multiplies all the five edge stabilizers g. that are
stemming out of a vertex at a boundary, one obtains the
star operator of the toric code on the boundary times X,
in the bulk (Fig. 5b). Thus, measuring the bulk qubits
in the Pauli-X basis projects the boundary edge qubits
into an eigenstate of the toric code star operator. Lastly,
multiplying all the face stabilizers gy where f lies in a
fixed yz plane (or in a fixed xzz plane) gives the product
of the Z logical operators of the toric codes on the top
and bottom boundaries times a product of X in the bulk
(Fig. 5c). Similarly, the product of all edge stabilizers g
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where e cuts through a fixed yz plane (or a fixed xz plane)
gives the product of the X logicals times a product of X
in the bulk (Fig. 5d). Therefore, measuring bulk qubits
in the X basis projects the boundary toric codes into log-
ical Bell pairs, with the particular Bell pairs determined
by the signs of the bulk Pauli-X measurements.

3. Using the RBH state to teleport toric code
eigenstates

Just like the 1D cluster state can be used to teleport
a single qubit [63, 64], the 3D cluster state, i.e. the RBH
state, can be used to teleport a 2D toric code state along
the 3rd axis. Consider the following setup. Imagine hav-
ing qubits on the edges and faces of a L, x L, x 1 slab of a
cubic lattice A with periodic boundary conditions along
x and y directions, and open boundaries at the z = 0
and z = 1 planes. Assume the edge qubits at the z = 0
plane are in a code state of the toric code |¢rc), and all
the other qubits are initialized in the |+) state. First,
we apply the unitary Up (defined in Eq. (G2)) — which
we interpret as growing a single layer RBH state — and
then we measure all qubits except the edge qubits on the
z = 1 boundary” in the Pauli-X basis. Doing so teleports
the toric code state from the bottom boundary to the top
boundary, i.e. the post-measurement state of the top edge
qubits (at z = 1) would be |¢r¢), up to =+ sign structure
differences in star and plaquette operators which can be
easily determined based on the outcomes of the Pauli-X
measurements. To see why, first note that one could con-
sider an equivalent alternative scenario, where the edge
qubits at z = 0 start in a toric code logical Bell pair state
with a set of added reference qubits, instead of being ini-
tialized in |¢rc). Then, the same steps (i.e. applying Up
followed by X measurements) will result in a logical Bell
pair between the reference qubits and the edge qubits
at the z = 1 boundary. It is easy to see why this new
formulation of the claim is true by viewing the original
logical Bell pair between the reference qubits and z = 0
edge qubits as the post-measurement state of another
slab of the RBH state, say between z = —1 (where we
place the reference qubits) and z = 0, as described in
Appendix G2. Then the aforementioned procedure can
be seen as making an RBH state on a L, x L, x 2 slab
between z = —1 and z = 1 and then measuring all qubits
in X basis except those on the top (z = 1) and bottom
(z = —1) boundaries. Again, based on Appendix G2,
this would result in a logical Bell pair between the two
boundaries, i.e. the reference qubits and the ones on the
z =1 edges. Then, teleportation follows from measuring
logical operators on the reference qubits.

7 Note that the edge qubits on the bottom boundary are measured
as well.



4. The RBH state and repeated syndrome
measurements in the absence of noise

As was explained in the previous section, the RBH
state can be used to teleport the toric code along the z
axis. It turns out that the procedure outlined above also
measures the stabilizers of the toric code. Again, con-
sider the setup with a L, x L, x 1 cubic lattice between
z = 0 and z = 1 planes, where the edge qubits on the
z = 0 are initially an eigenstate of the toric code plaque-
tte and star stabilizers with a set of unknown eigenvalues
s; (and the rest of the qubits are in the |4) state). Let
us first focus on the plaquette operators. Since Pauli-Z
commutes with any CZ gate, the resulting state after Uy
is applied remains an eigenstate of the plaquette opera-
tors with the same eigenvalue as before. As such, one can
read off the value of plaquette stabilizers from the out-
come of the Pauli-X measurements performed on the face
qubits in the z = 0 plane (Fig. 5a). Next, we consider
the star operators. Under the application of Uy, a star
operator is dressed by the product of Pauli-Z operators
on face qubits that are directly above the edge qubits
participating in a star operator, since CZ X[ CZh=X2Z.
Multiplying the dressed operator by g., where e is the
vertical edge coming out of the star, then shows that the
value of the original star operator is now encoded in the
five qubit Pauli-X operator shown in Fig. 5b. Hence, after
measuring qubits in Pauli-X, one can read off the value
of the corresponding star stabilizer from the product of
the Pauli-X measurement outcomes on these five qubits.
The above discussion shows that one can describe one
round of syndrome measurements in a toric code state
as growing a depth-one slab of RBH out of the initial
state and then measuring every qubit, except those on
the top edges, in the Pauli-X basis. More generally, M
rounds of syndrome measurements can be described in
the RBH picture by repeating the same steps M times;
the first round of syndrome measurements corresponds
to growing a single-layer RBH state followed by Pauli-
X measurements except on the top boundary. The next
round of syndrome measurements corresponds to grow-
ing another layer above the top boundary (between z = 1
and z = 2) and then measuring every qubit in Pauli-X
except those on the new top boundary, and so on. The
edge qubits on the z = T plane then represent the state
of the toric code at time ¢ = T. Clearly, one can in-
stead first grow a L, x L, x T slab of the RBH state and
then perform all the Pauli-X measurements throughout
the slab.

5. The RBH state and repeated syndrome
measurements in the presence of noise

In the last section, we explained how one can use a
3D RBH state to represent repeated syndrome measure-
ments of the 2D toric code through time. In this section
we explain how the effect of noise (including measure-
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Figure 6. The product of g stabilizers around a cube is equal
to the product of toric code plaquette operators on the top
and bottom boundary times the product of four Xy in the
bulk.

ment errors) can be incorporated in the RBH picture.
To start, we consider the noise that can happen in one
step of toric code syndrome measurements. Therefore we
start with a L, x L, x 1 cubic lattice A, where the edge
qubits on the z = 0 plane are initially an eigenstate of
plaquette and star operators and rest of the qubits are
initialized in the |+) state. As before, we first grow a
single-layer RBH state state via by Uy, and then mea-
sure all qubits except those on the top boundary in the
Pauli-X basis.

First, we explain how plaquette measurement errors
can be incorporated into this picture. Since the value of
a plaquette operator is inferred from the outcome of the
corresponding face qubit at the z = 0 plane, a phase flip
Pauli-Z error on that qubit before the Pauli-X measure-
ments results in a plaquette measurement error. Impor-
tantly, such an error does not affect the actual value of
the plaquette operator as it is copied from the bottom
layer into the top layer after the bulk X measurements.
To see this, note that for a given plaquette p, the product
of g¢ where f is a vertical face directly above p is equal
to the product of plaquette operators on the top and bot-
tom boundary times the product of Xy on the face qubits
in between (Fig. 6). This stabilizer makes it clear why
the value of the bottom plaquette operator is copied to
the top layer (up to a sign depending on the X measure-
ment outcomes). Since it does not involve the face qubits
on horizontal planes, a phase flip on those qubits will not
have any effect on the actual value of the plaquette op-
erators on the top boundary after the bulk and bottom
boundary qubits are measured in Pauli-X. As for star
measurement errors, since their value is inferred from the
product of X measurement outcomes shown in Fig. 5b,
a phase flip Pauli-Z error on the vertical edge qubit di-
rectly above the star will result in an erroneous stabilizer
measurement. For similar reasons as for the plaquette
operators, such an error only flips the stabilizer measure-
ment outcome, leaving unchanged the actual value of the
stabilizer on the top boundary. Hence, this correctly rep-
resents a star operator measurement error.

To account for physical errors, it is sufficient to de-



scribe how single qubit physical Pauli-X and -Z errors
can be represented in the RBH picture. To implement a
physical Pauli-Z error on a qubit at time ¢t = 1, we may
simply apply Pauli-Z on the corresponding edge qubit on
the top boundary (z = 1)%. On the other hand, a phys-
ical Pauli-X error on a qubit is represented in the RBH
picture by a Pauli-Z error on the face qubit directly below
the corresponding edge qubit. To see this, recall that the
stabilizer shown in Fig. 6 is responsible for copying the
value of a plaquette operator from the bottom boundary
to the top boundary (once the bulk and bottom bound-
ary qubits have been measured in Pauli-X). A phase flip
Zy on a vertical face qubit flips the sign of this stabilizer
and thus flips the sign of the plaquette as it gets copied
to the top layer. The same occurs for the adjacent pla-
quette, as well as the logical Z strings that pass along
the corresponding edge qubit (see Fig. 5¢). Therefore a
phase flip Z; on a face qubit translates into a bit flip X,
on the top edge qubit after the bulk and bottom qubits
have been measured in Pauli-X.
To summarize,

e Plaquette stabilizer measurement errors correspond
to Pauli-Z errors on horizontal face qubits.

e Star stabilizer measurement errors correspond to
Pauli-Z errors on vertical edge qubits.

e Physical Pauli-Z errors correspond to Pauli-Z errors
on horizontal edge qubits.

e Physical Pauli-X errors correspond to Pauli-Z er-
rors on vertical face qubits.

Importantly, all types of noise in the repeated syndrome
measurement setup correspond to Pauli-Z errors in the
RBH picture. Since Pauli-Z commutes with CZ gates,
in describing T rounds of noisy repeated syndrome mea-
surements one may first grow a L, x L, x T slab of the
RBH state and then, at the end, decohere the bulk ac-
cording to the noise model. This allows us to remove
time completely in the RBH picture, and thus describe
the (2+1)D dynamics of quantum information via a static
3D quantum system undergoing one step of decoherence.

6. Stat-mech model in the stabilizer expansion
using the RBH state

In this section we sketch how one can use the RBH
state to arrive at the stat-mech model describing the mo-
ments of the density matrix of the 2D toric code under
repeated noisy measurement and decoherence in the sta-
bilizer expansion formalism (Sec. IV A). The stat-mech

8 Applying Pauli-Z on the corresponding edge qubit in the z = 0
plane corresponds to a physical Pauli-Z error at time ¢t = 0.
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model in the error configuration formalism can be ob-
tained via a similar line of reasoning. Moreover, here we
focus on the stat-mech model in the bulk and leave out
the details of the boundary conditions.

For simplicity, we consider the toric code under only
Pauli-X errors with noisy measurement of plaquette op-
erators, which is studied in more detail in Appendix D.
Moreover, we assume the bit-flip error rate and faulty
measurement rate are both equal to a given parameter
p. It is straightforward to adapt the following to more
general noise channels.

Let A* denote the cubic lattice dual to A, where the
vertices of A correspond to cubes of A*, faces of A cor-
respond to edges of A* and cubes of A correspond to
vertices of A*. In particular, note that edge stabilizers g,
can be viewed as the face stabilizers for faces in A*, which
we may denote by g¢-. Accordingly, the RBH state can
be written as,

[YrBH)YRBH| = (G3)

Zg 9%,

where u (v) is a binary vector specifying a set of faces,
i.e. membranes, in A (A*). ¢* and g? are shorthand
for T];cn g;ff and [];.cp- g;’:* respectively. In general
g% (g?) is a Pauli string composed of Pauli-X on qubits
on the surface of the membrane specified by u (v) and
Pauli-Z on qubits on its boundary. According to the dis-
cussion above, physical Pauli-X errors in the toric code
correspond to Pauli-Z dephasing channels on vertical face
qubits of the RBH state and measurement errors on pla-
quette stabilizers correspond to Pauli-Z dephasing chan-
nels on horizontal face qubits of the RBH state. Note that
¥ does not have any Pauli-X support on the face qubits.
Therefore, the corresponding decohered RBH state is,

E e Hulgn

N([¢Yreu)¥rEH|) = (G4)

with p = —log(1 — 2p). Lastly, to faithfully represent
the toric code state after multiple rounds of physical noise
and noisy measurements, we must measure all the qubits
in the bulk of the RBH state projectively in the Pauli-X
basis. Note that a projective measurement channel in the
Pauli-X basis is the same as a complete Pauli-X dephas-
ing channel. Doing so will restrict the sum in Eq.(G4)
to membranes u and v that do not have any boundaries
in the bulk, i.e. domain walls, because otherwise g* or
g? would have a Pauli-Z support and thus be annihilated
under the complete Pauli-X dephasing channel. There-
fore, we end up with a sum over domain walls in the 3D
cubic lattice with energy penalties proportional to the
domain wall sizes. This is exactly the 3D Ising model on
a 3D cubic lattice, which was derived in Appendix D as
well.



Appendix H: Decoding transition in the repetition
code

1. The repetition code

The d-dimensional repetition code consists of N = L¢
qubits located at the sites of a d-dimensional cubic lattice
with periodic boundary conditions. The code has I =
dL% check operators g; = Z,Z,,, which involve qubits on
the nearest neighbors r and 7’ to an edge 7 in the lattice.
Since 7 labels the edge between these two sites, we adopt
the notation 7,7’ € i. The repetition code encodes one
logical qubit of information in the GHZ state over all
sites, implying that Iy = L?—1. It follows that the check
operators have I — Iy = (d — 1) L% + 1 redundancies, each
of which is a symmetry of the corresponding stat-mech
model. The logical X operator is [], X, and the logical
Z operator is Z,, for any fixed site rg.

2. Stat-mech model

The framework developed in Sec. IV A enables one to
derive the entire (n — 1)-flavor (d + 1)-dimensional stat-
mech model from just two quantities: hZ (o) = [],(0:)% "
and hZ(a) = [[,(0:)% . These terms couple together all
the check operators with Pauli-X and Pauli-Z support,
respectively, at site r. It follows that hY = 1 and hZ =
HBT o;. In other words, no check operators have Pauli-
X support at any site and all check operators at edges 4
such that r € ¢ have Pauli-Z support at r.

Since the repetition code only protects quantum in-
formation against Pauli-X errors, we consider the case
where p, = p, = 0, which implies J, = J, = 0. Then the
Hamiltonian for each flavor is

H(U) =—J; ZHGt,i -

t,r ior

where J, = —(1/2)log(l —2¢). The Hamiltonian
H™ ({a?}) follows from this, as defined in Eq. (43).
For the 1D repetition code, the corresponding stat-mech
model is a 2D Ising model. For the 2D repetition code, it
is a 3D Zy gauge theory.® Neither model orders at finite
temperature when J, = 0 (in which case they are reduced
to a 1D Ising model and a 2D Zs gauge theory respec-
tively), indicating that they have maximum thresholds,
i.e. p. = 0.5, in the absence of readout noise. In the pres-
ence of readout noise, both models have sub-maximum
thresholds, i.e. p. < 0.5.

Ty Y o101, (H1)
t,e

9 In each layer, spins on edges which share a vertex are coupled,
which looks like a four-body plaquette coupling on the dual lat-
tice. Then, Eq. (H1) describes layers of 2D Zs gauge theories
with Ising couplings between adjacent layers. This is equivalent
to a 3D Zg gauge theory with all temporal links set to +1, which
is always possible using local gauge transformations.
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The symmetry group resulting from check operator re-
dundancies is R = Z2 10 for each flavor and (R" % S,,)/R
for the full stat-mech model. As noted above, I — Iy =
(d—1)L?41 for the d-dimensional repetition code. When
d = 1, this corresponds to the global Z, symmetry in each
flavor of the Ising model. For d > 1 there are an exten-
sive number of local symmetries generated by the spin
flips of the spins along the edges of the plaquettes in the
original lattice.

3. Information diagnostics

Here, we show the transition in the stat-mech model
Z, manifests in the information diagnostics. First, the
coherent information depends on the stat-mech model we
determined in Appendix H2 as well as related partition
functions with defects inserted. In particular, for k =
(Ku, k,) € Z3 with K, and k. indicating the insertion of
the logical X and Z operator, the Hamiltonian terms hj, ,.
and h, . change accordingly. We find that hi . = (—1)"*
since the logical X operator has Pauli-X support on every
site, and hf . = (=1)"0; s, [[;5, 0i since the logical Z
operator has Pauli-Z support only on site 9. Here, only
hZ . appears in the Hamiltonian when p, = p, = 0, in

K,T

which case we have

H,.;(O') = _Ja: Z(_l)nz 6r,7‘0 H Otq — Jq Z 0t,i0t+1,i-
t,r 7 t,r
(H2)
The logical sector xk, = 1 corresponds to inserting a tem-
poral defect at site rg along which p, — —p.
The Rényi-n coherent information then takes the form

1 a

IC(”) — — log Z e_AFn({”z}) , (Hg)
{2}

where the summation over k2 runs over 2"~ ! choices of
inserting temporal defects at site r( in each flavor. Here,
we have performed the summation over x3, which cancels
the constant term in Eq. (52). The Rényi coherent infor-
mation can then detect the transition in the stat-mech
model; I;" = log 2 when each defect insertion costs van-
ishing free energy, i.e. AF,({xk2}) — 0, and i =0
when each defect has a cost AF, ({x2}) — oo. For the
1D repetition code, AF,({k2}) — 0 in the paramag-
netic phase of the corresponding 2D Ising model and
AF,({k2}) — oo in the ferromagnetic phase. For the
2D repetition code, AF, ({x2}) is the excess free energy
for inserting a magnetic 7w-flux line at position r( in the
temporal direction. In the corresponding 3D Z, gauge
theory, the excess free energy vanishes in the deconfined
phase, while it is of O(T') and diverges in the confined
phase.

The phase transition in the stat-mech model is also
probed by the relative entropy between pom and pgowm,s
where s denotes the syndromes created by applying Pauli



Figure 7. The XZZX code. (a) Each stabilizer is a four-
body Pauli operator associated with a plaquette. Each has
Pauli-X operators on the top-left and bottom-right corners
and Pauli-Z operators on the top-right and the bottom-left
corners. (b) The logical operators are Pauli strings along
non-contractible loops involving products of Pauli-X and -Z
operators.

X, to a contiguous region in the system. For the 1D repe-
tition code, we consider applying Pauli-X to a subregion
such that s; = s; = —1 for 4 and j on the boundary.
Then, the Rényi relative entropy is given by the two-
point correlation function at the bottom of the stat-mech
model, i.e. Dgn) = —ﬁ log <U(1)’1-0(1)’j>. It grows with the
size of the subregion |i — j| in the paramagnetic phase,
while it remains constant in the ferromagnetic phase. For
the 2D repetition code, we consider applying Pauli-X
to a subregion A generating s; = —1 for all 7 along a
loop OA (on the dual lattice along the boundary of the
subregion A). Then, D" = ——Lolog ([T;coa o) =

——1-log (e $o4 A4y which grows with the area of A in the

area-law (confined) phase and with |0.A| in the perimeter-
law (deconfined) phase.

Appendix I: Decoding transition in XZZX code

1. The XZZX code

The XZZX code [60] involves qubits on the vertices of
the square lattice, which is equivalent to a toric code up
to local rotations at certain sites. It is notable for sat-
urating the maximum error threshold of p. = 0.5 when
subject to only one of Pauli-X, -Y, or -Z physical er-
rors. The XZZX code has a stabilizer group generated
by the products of four Pauli operators on the vertices of
a plaquette and encodes two logical qubits. Examples of
stabilizer and logical operators are illustrated in Fig. 7.

Here, we consider the XZZX code on a L x L square
lattice with periodic boundary conditions and discuss the
stat-mech model for the code subject to Pauli-X, -Y, or
-Z errors and repeated noisy syndrome measurements on
all plaquettes. The set of check operators involving all
plaquettes exhibits an R = Zy X Zy redundancy, giving
rise to the symmetry of the stat-mech model.
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Figure 8. (a) Pauli-Z error at a site anticommutes with two
diagonally-adjacent plaquette operators (colored red) that
have Pauli-X support at that site. Corresponding plaquettes
along the opposite diagonal have Pauli-Z support at a site,
leading them to anticommute with Pauli-X errors. (b) Pauli-
Z error induces two-body Ising couplings hy along the diag-
onal from the top left to the bottom right. The analogous
statement is true for Pauli-X error and hZ, with plaquettes
coupled along the opposite diagonal.

2. Pauli-X and -Z errors

In this section, we determine Z, for the XZZX code
subject to Pauli-X or -Z errors. As shown in Sec. IV A,
the only code-specific aspects of Z, are the local spin
terms h;y and hZ, so it is sufficient to compute only these
terms.

As illustrated in Fig. 8(a), the upper-left and lower-
right plaquettes at a site have Pauli-X support at that
site, which anticommutes with Pauli-Z errors. Likewise,
the upper-right and lower-left plaquettes have Pauli-Z
support at that site, which anticommutes with Pauli-
X errors. Taking the bottom left to be x = y = 0,
we conclude that iy (o) = 0(3,)0(a41,y—1) and hi(o) =
O(2,y9)0 (a+1,y+1)

Therefore, when only Pauli-Z errors are present, each
flavor of the stat-mech model consists of L uncoupled 1D
Ising models running along diagonal lines from the top-
left to the bottom-right. Similarly, when only Pauli-X
errors are present, each flavor of the stat-mech model con-
sists of L uncoupled 1D Ising models running along diago-
nal lines from the top-right to the bottom-left. These sys-
tems only order at zero temperature, leading to a decod-
ing threshold at p, . = 0.5 (or py,. = 0.5) when there is
no readout noise. Representative couplings and diagonal
lines are illustrated in Fig. 8(b). In the presence of read-
out noise, the stat-mech model instead consists of decou-
pled 2D Ising models and exhibits a finite-temperature
phase transition, giving rise to a sub-maximum error
threshold, i.e. p. < 0.5.

As derived in Sec. IVA and demonstrated in Ap-
pendix D and Appendix H, the coherent information may
be formulated explicitly in terms of free energy costs of
defect insertions. These defect insertions arise from the
Pauli-X and Pauli-Z support of the logical operators. In
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Figure 9. (a) Pauli-Y error at a site anticommutes with all
four adjacent plaquettes, each of which has Pauli-X or Pauli-Z
support at that site. (b) The result is a four-body plaquette
Ising coupling on the lattice of classical spins.

particular, each logical operator flips the sign of the cou-
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pling on one bond in each 1D Ising model.

3. Pauli-Y errors

When Pauli-Y errors are present, a four-body coupling
hihi = [licq 0i is added to the Hamiltonian, where O
denotes the vertices of the plaquette dual to . The im-
plicated check operators and the resulting coupling are
illustrated in Fig. 9(a) and Fig. 9(b), respectively.

When only Pauli-Y error is present and there is no
readout noise, the decodability of the XZZX code is thus
captured by a 2D plaquette Ising model, like the surface
code under Pauli-Y error. This model does not order at
finite temperature, giving rise to a maximum decoding
threshold of p, . = 0.5, as expected. When we include
readout error, the model is T layers of plaquette Ising
models coupled by two-body Ising interactions. This
model generally orders at a finite temperature, leading
to a sub-maximum error threshold.



