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We demonstrate that, starting with a simple fermion wave function, the steady mixed state of the
evolution of a class of Lindbladians, and the ensemble created by strong local measurement of fermion
density without post-selection can be mapped to the “Gutzwiller projected” wave functions in the
doubled Hilbert space – the representation of the density matrix through the Choi-Jamio!lkowski
isomorphism. A Gutzwiller projection is a broadly used approach of constructing spin liquid states.
For example, if one starts with a gapless free Dirac fermion pure quantum state, the constructed
mixed state corresponds to an algebraic spin liquid in the doubled Hilbert space. We also predict
that for some initial fermion wave function, the mixed state created following the procedure de-
scribed above is expected to have a spontaneous “strong-to-weak” U(1) symmetry breaking, which
corresponds to the emergence of superconductivity in the doubled Hilbert space. We also design the
experimental protocol to construct the desired physics of mixed states.

I. INTRODUCTION

Quantum spin liquids, a class of highly nontrivial dis-
ordered phase of quantum spins, have been the subject of
an extremely active subfield of condensed matter physics
since their early theoretical proposal [1, 2]. Despite great
progress made in the field, many open questions and
challenges remain (for a review, please refer to [3–5]).
First of all, the theoretical description of spin liquids usu-
ally involves a strongly coupled gauge theory, which is a
formidable analytical problem except for certain theoret-
ical limits. Secondly, though it is certain that spin liq-
uids do exist in some elegant theoretical models, e.g. the
Kitaev model [6], numerical simulation of quantum spin
liquid on more realistic models often su!ers from sign
problems as the models that potentially realize the spin
liquid usually have geometric frustration. Hence contro-
versies continue to persist about the existence or nature
of the spin liquids in various important realistic mod-
els. Thirdly, the signal of quantum spin liquid in real
correlated materials may be obscured by the inevitable
disorders and impurities.

Rather than the parent Hamiltonian, one can instead
focus on the spin liquid wave function. One standard
construction of spin liquid wave function is the so-called
Gutzwiller projected state [7–13]:

|SL→ =
∏

i

P̂(n̂i,→ + n̂i,↑ = 1)|fi,→, fi,↑→, (1)

where |fi,→, fi,↑→ is a simple spin-1/2 fermion state, and it
can be often taken as a free fermion state with on average
one fermion per-site. The projection P̂ ensures that there
is one and only one fermion per site, which matches the
onsite Hilbert space of a spin-1/2 system.

Though the Gutzwiller projection is broadly used as a
trial mean field wave functions of spin liquids, it is never
exactly realized in condensed matter systems. In this
work we demonstrate that the Gutzwiller wave function

can be realized in a completely di!erent set-up: it can be
constructed as the steady mixed state of a Lindbladian
evolution, or as the ensemble created by strong measure-
ments of local operators, starting with a simple fermion
wave function. The mixed state density matrix obtained
from both constructions in the doubled Hilbert space (the
Choi-Jamio”lkowski representation [14, 15]), becomes ex-
actly a Gutzwiller wave function. Predictions of the con-
structed mixed state will be made based on our theoret-
ical understanding of quantum spin liquids.

We also demonstrate that, sometimes the constructed
mixed state density matrix is expected to become a su-
percondutor in the doubled Hilbert space, which corre-
sponds to the “strong-to-weak” spontaneous symmetry
breaking, a subject that has attracted great interests
very recently [16–21]. These theoretical predictions and
expectations can be tested using experimental protocols
designed in the supplementary material (SM).

II. BASIC FORMALISM

A. Construction with Lindbladian

We consider the nonunitary Lindbladian evolution of a
density matrix. Let us assume that the density matrix at
t = 0 corresponds to a pure quantum state ω0 = |#0→↑#0|
of fermions. For simplicity we will start with a non-
interacting spinless fermion wave function |#0→, and we
assume that |#0→ is the ground state of a Hamiltonian
H0 on a d↓dim lattice: H0 =

∑
↓i,j↔ ↓tijc

†
i cj + h.c. We

will first assume that H0 is a gapless free fermion tight-
binding model, later we will discuss interactions in H0.

We consider the situation where the jump operators
are the local fermion density operators Li = n̂i = c†i ci.
The nonunitary evolution of a density matrix under a
general Lindbladian reads (we assume that the unitary
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part of the evolution is absent)

εtω(t) =
∑

i

LiωL
†
i ↓

1

2

(
L†
iLiω+ ωL†

iLi

)
. (2)

Exploring physics of mixed-states using the Choi-
Jamio”lkowski isomorphism of the density matrix, i.e. rep-
resenting the density matrix as a pure quantum state in
the doubled Hilbert space [14, 15], has attracted a great
deal of interests [22–30]. The Choi-Jamio”lkowski isomor-
phism maps a density matrix ω =

∑
n pn|ϑn→↑ϑn| to a

state |ω→→ ↔
∑

n pn|ϑn,L→|ϑn,R→. In our current case it is
also convenient to take the Choi-Jamio”lkowski represen-
tation of the density matrix. The evolution of the Choi
state in the doubled Hilbert space is given by

|ωt→→ ↔ etL|ω0→→, (3)

where

L =
∑

i

n̂i,Ln̂i,R ↓ 1

2
(n̂2

i,L + n̂2
i,R)

=
∑

i

↓1

2
(n̂i,L ↓ n̂i,R)

2. (4)

Here L and R label two copies of fermionic modes in
the doubled Fock space of the Choi-Jamio”lkowski iso-
morphism of the density matrix. The initial Choi state
|ω0→→ for the pure state ω0 = |#0→↑#0| is the free fermion
state with the parent Hamiltonian

H0 = H0(ci,L) +H↗
0 (ci,R)

=
∑

↓i,j↔

↓tijc
†
i,Lcj,L ↓ t↗ijc

†
i,Rcj,R + h.c.. (5)

In the limit t ↗ ↘, the steady state |ω↘→→ satisfies the
constraint n̂i,L ↓ n̂i,R = 0.

To more explicitly reveal the implication of the con-
straint n̂i,L ↓ n̂i,R = 0, let us perform a particle-hole
(PH) transformation on ci,R, and formally relabel the
fermions in the L, R spaces as “≃” and “⇐”:

ci,L ↗ fi,→, ci,R ↗ ϖif
†
i,↑,

n̂i,L ↗ n̂i,→, n̂i,R ↗ 1↓ n̂i,↑, (6)

where ϖi = ±1 can be chosen to depend on the sites i.
Then in the limit t ↗ ↘, the constraint n̂i,L ↓ n̂i,R = 0
becomes

n̂i,→ + n̂i,↑ = 1, (7)

which is precisely the Gutzwiller projection. In this case,
the steady Choi state is mapped to a spin wave function
in the standard spin liquid literature:

|ω↘→→ =
∏

i

P̂(n̂i,→ + n̂i,↑ = 1)|ω0→→, (8)

where P̂(n̂i,→ + n̂i,↑ = 1) is the projector onto the sub-
space with single occupation. Since now on every site

there is one and only one fermion fi,ω, the projected
wave function |ω↘→→ lives in an e!ective spin-1/2 Hilbert
space, with spin-1/2 operators Ŝµ

i = 1
2f

†
i,ωϱ

µ
ωεfi,ε . Un-

der certain conditions, for example, (1) the fermions in
|#0→ are at half-filling, i.e. there are on average 1/2
fermions per site; and (2) under particle-hole transfor-
mation H↗

0 becomes H0 with a certain choice of ϖi, then
the parent tight-binding Hamiltonian of |ω0→→ in the dou-
bled Hilbert space enjoys a full e!ective SU(2) “spin”
symmetry. For example, if H0 is a tight-binding model
on a bipartite lattice with nearest neighbor hopping, then
choosing ϖi = ↓1 on one sublattice will result in a SU(2)
symmetric H0 in Eq. 5.

B. Construction with measurements

When the jump operators are Hermitian and all com-
mute with each other, the steady state density matrix
also describes the ensemble of wave functions generated
by strong measurements on the jump operators without
post-selection. For example, when we perform strong
measurement of local densities n̂i on a pure fermion quan-
tum state |#0→, without post-selecting the measurement
outcomes, the density matrix of the ensemble becomes

ω =
∑

n

P̂nω0P̂n, (9)

where n represents a configuration of fermion numbers
n̂i, and P̂n is a projection operator to the particular con-
figuration. Such an ensemble can be obtained in fermi gas
microscope with high spatial resolution [31–37]. The SM
includes a detailed experimental protocol for verifying
the predictions made in this work based on ω generated
by measurement.
We also note that, construction of spin liquids as the

doubled state representation of a mixed state was dis-
cussed before [28–30], but to the best of our knowledge,
the general connection to the Gutzwiller wave function,
which is a broadly used construction of spin liquids, has
not been explored.

III. DIRAC SPIN LIQUID

A spin liquid state typically involves an emergent dy-
namical gauge field [7–13, 38], and the exact gauge group
depends on the projection operator, as well as the “mean
field” state before the projection. When the emergent
gauge symmetry is U(1), and the fermions fi,ω have Dirac
nodes at the Fermi level, the low energy action describ-
ing the spin liquid is a QED3 with Dirac fermion matter
fields coupled to a U(1) gauge field [39]
QED3 Dirac spin liquids have attracted great inter-

ests [8, 9, 12, 38, 40–44]. The dynamical gauge field Aµ

may lead to confinement and hence destabilize the spin
liquid states. In our construction, to ensure a decon-
fined phase of the gauge field, one can start with a state



3

FIG. 1. The staggered spin-spin correlation of the projected
ω-flux state on the square lattice (24 → 24 torus), which is a
Dirac spin liquid constructed with N = 1 and N = 2 species
of fermions on the square lattice with ω↑flux. The power-law
exponent is considerably enhanced compared with the unpro-
jected wave function (dashed line), consistent with predictions
of spin liquid theory.

|#0→ that is the ground state of N flavors of degenerate
fermions ci,I at half-filling, where I = 1 · · ·N . For exam-
ple, one can start with a state of the alkaline earth cold
atoms, which enjoy a large flavor symmetry [45]. Then
eventually the e!ective Gutzwiller projection imposed on
the mixed state in the doubled space is

∑

I=1···N
n̂i,I,→ + n̂i,I,↑ = N, (10)

which ensures that |ω→→ is a wave function of an e!ective
SU(2N) spin system, with self-conjugate representation
of SU(2N) on each site.

Assuming the dispersion of |#0→ has Dirac nodes in
the momentum space with N↓fold flavor degeneracy, the
spin liquid that |ω→→ simulates is described by the follow-
ing theory:

S =

∫
d2xdς

Nv∑

v=1

2N∑

a=1

ϑ̄a,vφµ(εµ ↓ iAµ)ϑa,v +
1

4e2
F 2
µϑ .

(11)
Here v labels the Nv Dirac nodes/valleys in the momen-
tum space. For example, if |#0→ is the ground state of a
nearest neighbor tight binding model on the honeycomb
lattice at half-filling, or on the square lattice with ↼↓flux
per square, then Nv = 2, i.e. there are two independent
Dirac cones in the momentum space. It is known that for
large enough N , Eq. 11 describes a stable algebraic liquid
state which is also a (2 + 1)d conformal field theory. We
refer to this liquid state in the doubled Hilbert space as
the algebraic Choi-spin liquid.

Predictions for the Choi-spin liquid described above
can be made based on our understanding of the spin liq-
uid. Let us still start with a SU(2N) spin liquid on the
square lattice with ↼↓flux, whose low energy physics is

described by QED3 in Eq. 11. The local spin opera-
tor Ŝz

i =
∑

I=1···N n̂i,I,→ ↓ n̂i,I,↑ has a nonzero overlap
with the fermion-bilinear composite field ϑ̄Szµzϑ, where
µz = ±1 denotes the two Dirac valleys. ϑ̄Szµzϑ is an
SU(2N) Néel order parameter. Then at long distance the
spin correlation functions is given by

↑Ŝz
0 Ŝz

x→ ↔ (↓1)x
1

|x|2! + · · · . (12)

Note that the sign of the correlation function above oscil-
lates depending on the sublattice of x. With su$ciently
large N , the scaling dimension % can be computed using
the standard 1/N expansion, and it is smaller than the
scaling dimension of the free Dirac fermion [46]:

% = 2↓ 32

3NNv↼2
+O

(
1

N2

)
. (13)

There is also a non-oscillating (ferromagnetic) part of
the correlation in Eq. 12, but it decays with a larger
power %≃ = 2, which is the same as that of the free
Dirac fermion, as the ferromagnetic component of the
spin density is a conserved quantity.
It was shown that [47] a Gutzwiller-projected 1d free

fermion wave function with a SU(N) symmetry generates
accurate correlations predicted by (1+1)d conformal field
theories. And a Gutzwiller-projected ↼↓flux state on the
square lattice leads to enhanced power-law correlations,
qualitatively consistent with the prediction of QED3. We
have conducted numerical study on the Gutzwiller pro-
jected ↼↓flux state on the square lattice, indeed we see
a power-law scaling with a considerably smaller scaling
dimension compared with free Dirac fermion (Fig. 1),
which is again qualitatively consistent with field theory
predictions Eq. 13.
The SU(2N) spin correlation function above can be

used to make predictions for the following “Renyi-2” cor-
relation in the current context:

↑↑ω|↽n̂0,→ ↽n̂x,→|ω→→ ↔ ↑↑ω|Ŝz
0 Ŝz

x|ω→→

↔ tr
(
ω2↽n̂0 ↽n̂x

)
↔ (↓1)x

1

|x|2! . (14)

Here ↽n̂(x) = n̂(x) ↓ N/2, and we have used the fact
that ↽n→(x) ↔ Ŝz

x/2, since n̂→(x) + n̂↑(x) is a constant.
Since the Choi state |ω→→ has a SU(2N) symmetry, all the
SU(2N) spin correlation function should have the same
scaling as Eq. 14. For example,

tr
(
ω2 (Ô0)

I
J (Ôx)

J
I

)
(15)

is expected to decay in the same manner as Eq. 14 for
su$ciently large N , where ÔI

J = c†IcJ with I ⇒= J is a
SU(N) operator that operates on the index I = 1 · · ·N .
Note that Ô does not change the total number configura-
tion n. In the SM we describe the experimental protocol
to probe the correlation function predicted above.
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IV. SU(2) GAUGE SYMMETRY AND

SUPERCONDUCTIVITY

It is well-known in the field of spin liquid that (see for
example Ref. [48]), a U(1) projection may actually lead
to SU(2) gauge symmetry. In our context, for a class
of free fermion states |#0→ with N = 1 whose parent
Hamiltonian H0 only has real hopping tij , the seemingly

U(1) gauge projection in the doubled space
∏

i P̂(n̂i,→ +
n̂i,↑ = 1) would also lead to a SU(2) gauge symmetry. For
example, the ↼↓flux state with N = 1 in Fig. 1 actually
has SU(2) gauge symmetry.

To expose the explicit SU(2) gauge symmetry, we no
longer need the PH transformation of H↗

0 (ci,R). Instead,
we just need to (trivially) relabel L ↗ 1, R ↗ 2, then
the U(1) gauge projection n̂i,1 ↓ n̂i,2 = 0 automatically
implies a SU(2) gauge constraint:

c†i,ως
l
ω,εci,ε = 0, l = 1, 2, 3. (16)

The reason is that, in the fock space of ci,1 and ci,2, the
only states that survive the projection are |0, 0→i, and
c†i,1c

†
i,2|0, 0→i, both are singlets under a local SU(2) rota-

tion on [ci,1; ci,2].
There are a few important points to keep in mind:
(1) This SU(2) gauge structure only emerges whenN =

1, i.e. when the original state |#0→ is a spinless fermion
state, and there are two flavors of fermions in the doubled
Hilbert space.

(2) The SU(2) gauge symmetry is independent from
the e!ective SU(2) global spin symmetry, i.e. one can
explicitly break the SU(2) spin symmetry, but still keep
the SU(2) gauge symmetry.

(3) The gauge symmetry may be broken down to a
smaller gauge group, depending on the original state
|#0→, or its parent Hamiltonian H0 [48]. More specif-
ically, the parent Hamiltonians for |ω0→→ is H0(ci,L) +
H↗

0 (ci,R). If H0 is real (i.e. the hopping amplitudes tij
are real), then the SU(2) gauge symmetry is preserved in
the infrared.

Motivated by experiments in candidate spin liquid ma-
terials, one of the spin liquid states discussed most is the
“spinon Fermi surface state” [7, 49–58]. A “spinon Fermi
surface” state can be naturally produced in our context
when the original state |#0→ is a spinless fermion state
with a Fermi surface. As we mentioned above, when its
parent Hamiltonian H0 is real, the spinon Fermi surface
state in the doubled Hilbert space is coupled to a SU(2)
gauge field. Note that in our current case, the Fermi
surface state after projection would most naturally have
a SU(2) gauge symmetry as long as H0 is real, rather
than a U(1) gauge symmetry as was often discussed in
the literature of spin liquids.

A (2 + 1)d Fermi surface coupled to a dynamical
bosonic field (e.g. a dynamical gauge field) is a chal-
lenging theoretical problem in general, and it has contin-
uously attracted enormous theoretical interests and ef-
forts [59–70].In our current case, intuitively, the SU(2)

gauge field would yield an attractive interaction between
c1 and c2, and this attractive interaction may lead to
pairing instability, i.e. in the doubled Hilbert space
there could be condensate of the Cooper pair operator
%̂ = c1c2. A Cooper pair condensate leads to the follow-
ing long-range correlation:

↑↑ω↘|(c1c2)0 (c1c2)
†
x|ω↘→→ = tr

(
c†0ω↘c0 c†xω↘cx

)

x⇐↘↓↓↓↓↗ Const. (17)

Superconductivity of matter fields coupled to a non-
Abelian gauge field is referred to as color superconduc-
tivity (for reviews, see Ref. [71, 72]). The superconduc-
tivity can be obtained through an ⇀-expansion in the-
ory [73, 74], and eventually an extrapolation to ⇀ = 1.
An experimental realization of the state in the quantum
simulator can serve as a test for this theoretical predic-
tion.
We have also numerically studied the projected Fermi

surface state with two flavors of fermions, and indeed we
observe a long range correlation of Cooper pairs (Fig. 2),
consistent with our theoretical prediction.

FIG. 2. The projected free fermion wave function with two-
flavors of fermions and a Fermi surface. There is a long range
correlation of Cooper pair, as expected. The numerics is per-
formed on a square lattice tight binding model with nearest
neighbor and 2nd neighbor hopping, t2/t1 = 0.2. We fix the
system size L → L, and measure Cooper pair correlation at
r = L/2.

In the doubled space, a Cooper pair condensate sponta-
neously breaks the charge U(1)e symmetry, which is also
the so-called “strong” U(1) symmetry of the density ma-
trix [75, 76]. The operator c†xωcx transforms nontrivially
under the strong U(1) symmetry, but invariant under the
“weak” U(1) symmetry. Hence the long-range correlation
of Eq. 2 implies a “strong-to-weak” spontaneous breaking
of the U(1) symmetry in the mixed state.

V. SUMMARY AND DISCUSSION

In this work, we demonstrated that starting with a
simple fermion wave function, the steady state density
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matrix of the Lindbladian evolution, or the ensemble gen-
erated from strong measurement of local densities, is a
Gutzwiller projected wave function in the doubled Fock
space. The Gutzwiller projection has been broadly used
as a numerical trial wave function of spin liquid. We pro-
pose that this new construction of spin liquids can be re-
alized in real experimental platforms, e.g. the Fermi gas
microscope. We also predict that in certain scenarios,
the constructed mixed state has a strong-to-weak spon-
taneous U(1) symmetry breaking, which corresponds to
a superconductor in the doubled Fock space. Predictions
made by our understanding of spin liquids, as well as
the detailed measurement protocol of our predictions are
described in the SM.

So far we have assumed that |#0→ is the ground state of
a free fermion tight-binding model. We expect most of
our predictions to be robust against a certain amount
of short-range interaction in H0. For example, when
H0 is a nearest neighbor tight-binding model of N fla-
vors of fermions cI on the honeycomb lattice at half-
filling, the Choi states |ω0→→ and |ω→→ should have an exact
SU(2N) symmetry, which guarantees that the correla-
tions in Eq. 14 and Eq. 15 take the same form. If H0

has weak short-range interactions, then the Choi states
no longer have an exact SU(2N) symmetry. We expect
the Dirac fermion ϑ in Eq. 11 to inherit extra inter-
actions from H0. But since short-range interactions in
Eq. 11 are perturbatively irrelevant for large enough N ,
the SU(2N) symmetry is expected to emerge in the in-
frared, and the correlations in Eq. 14 and Eq. 15 should
still have the same scaling dimension % for large x. For
smaller N , some short-range interactions can become rel-
evant due to the gauge fluctuation [77–82]. For a non-
interacting initial state ω0 = |#0→↑#0|, the correlator in
the spin liquid state |ω→→ actually stems from observables
in the free fermion wave function |ω0→→, which can be com-
puted on classical computers. For an initial gapless state
with short-range interactions, we propose a combined
classical-classical correlator and quantum-classical corre-
lator to make predictions on Eq. 14, Eq. 15 for smaller
N (please refer to the SM).

In this work we have focused on mixed states prepared
from initial fermion states |#0→ that are gapless. Gapped
fermion states can also be very interesting – even free
fermion insulators can have nontrivial topological nature,
e.g. the Chern insulator. The Choi-representation of the
Chern insulator in the doubled space is a quantum spin
Hall state, and the procedure proposed in this work will
lead to a Gutzwiller projection of the QSH wave function.
We leave the generalizations of our work to topological
insulators, including a discussion of the relation between
Gutzwiller wave function and gauge theory to a future
work.
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David Weld, and Muqing Xu for very helpful discussions.
C.X. is supported by the Simons Foundation Interna-
tional through the Simons Investigator grant. Y.B. and
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Y.B. is supported in part by the Gordon and Betty Moore
Foundation Grant No. GBMF7392 to the KITP. T.K. is
supported in part by the Gordon and Betty Moore Foun-
dation Grant No. GBMF8690 to the KITP.

Appendix A: Measurement of Rényi-2 correlation

In this appendix, we develop protocols to measure the
Rényi-2 correlations in the Gutzwiller projected doubled
state |ω→→,

↑↑ω|↽n̂0,→ ↽n̂x,→|ω→→ ↔ ↑↑ω|Ŝz
0 Ŝz

x|ω→→

↔ tr
(
ω2 ↽n̂0 ↽n̂x

)
, (A1)

here ↽n̂x = n̂x ↓ n̄. Our goal is to verify that |ω→→ is an
algebraic spin liquid state, meaning that the correlator
above decays as ↔ 1/|x|2!, and we would like to extract
the scaling dimension %.
If state |ω→→ is prepared from a free fermion state |#0→

after measuring the fermion density configurations, i.e.
ω is a free fermion state subject to complete dephasing,
the Rényi-2 correlator can be computed on a classical
computer. However, if |#0→ is an interacting fermion
state, directly computing the Rényi-2 correlator is gener-
ally challenging. We here provide a scheme to verify the
spin liquid prediction prepared from fermion states with
or without short-range interactions. We note that ex-
perimentally one can prepare two identical copies of the
state and measure the SWAP operator to evaluate Rényi-
2 quantities [83–85]. We would like to propose a di!erent
method that avoids duplicating the system, and it only
requires making measurement of local density configura-
tions.
Our protocol makes use of the decomposition of the

density matrix ω as an ensemble of pure states generated
by the measurements of local fermion occupation n̂i =∑

ω n̂i,ω

ω =
∑

n

qn |#n→↑#n| =
∑

n

P̂n |#0→↑#0| P̂n, (A2)

where n is a vector that labels the fermion occupation
on each site, |#n→ is the normalized post-measurement
state, P̂n is the projector onto the subspace with occu-
pation number n, and qn = ↑#0| P̂n |#0→ is the proba-
bility of measurement outcome n. To proceed, we need
to first define the “classical-classical” correlator, and the
“quantum-classical” correlator, motivated from Ref. [86].

1. The “classical-classical” correlator

We first consider a “classical-classical” (CC) correlator
defined with the projected free fermion state |ω̃→→

↑↑↽n̂0 ↽n̂x→→ϖ̃ =
tr ω̃2 ↽n̂0 ↽n̂x

tr ω̃2
=

∑
n p2n ↽n0 ↽nx∑

n p2n
, (A3)
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where ↑↑↽n̂0 ↽n̂x→→ϖ̃ := ↑↑ω̃|↽n̂0 ↽n̂x|ω̃→→, pn = ↑#̃0|P̂n|#̃0→
denotes the probability of outcome n in the free fermion
state |#̃0→. We stress that |#0→ in the previous subsection
is the ground state of a gapless Hamiltonian H0 (which
can include short-range interactions) for N↓flavors of
fermions cI with an SU(N) symmetry, while |#̃0→ is the
free fermion ground state of the non-interacting part
(fermion-bilinear part) of H0. Specifically, we first sam-
ple from |#̃0→ in the local occupation basis independently
for M times, which can be e$ciently performed on a clas-
sical computer [87–89]. Given the outcome nm obtained
in the m-th sample, we compute pnm . Taking M in-
dependent samples, one can obtain an estimate of the
CC-correlator, i.e.

↑↑↽n̂0 ↽n̂x→→ϖ̃ =

∑M
m=1 pnm↽n0,m ↽nx,m∑M

m=1 pnm

. (A4)

Using the same set of samples, we can compute
↑#̃0|P̂nm(Ô0)IJ (Ôx)JI |#̃0→ on the classical computer and
obtain the Rényi-2 correlator in Eq.14,

↑↑(Ô0)
I
J(Ôx)

J
I →→ϖ̃

=

∑M
m=1↑#̃0|P̂nm(Ô0)IJ(Ôx)JI |#̃0→∑M

m=1 pnm

. (A5)

Here, we use the fact that (Ôx)IJ = c†I,xcJ,x does not
change the fermion occupation n. In Eq. A4 and Eq. A5,
since both sampling and computation are performed on
classical computers, we refer to them as the classical-
classical (CC) correlator.

2. The “quantum-classical” correlator

As the second step, we consider the following
“quantum-classical” (QC) correlator, which is defined as
the Rényi-2 correlator in the doubled state associated
with

ϱ =
∑

n

P̂n |#0→ ↑#̃0|P̂n, (A6)

|ϱ→→ =
∏

i

P̂(ni,L = ni,R)|#0→L|#̃→R. (A7)

Note that in the doubled space, |#0→L is the experimen-
tally prepared gapless fermion state which can be inter-
acting; while |#̃→R is the free fermion state that is the
ground state of the noninteracting part of the parent
Hamiltonian of |#0→L. |ϱ→→ is a Gutzwiller projection on
2N flavors of fermions, but N flavors of the fermions (in
|#̃0→) are non-interacting.

The Rényi-2 correlator of ϱ then takes the form

↑↑↽n̂0 ↽n̂x→→ϱ =
trϱ†ϱ ↽n̂0 ↽n̂x

trϱ†ϱ
=

∑
n qnpn ↽n0 ↽nx∑

n qnpn
,

(A8)

where qn is the probability of fermion occupation n in the
interacting wave function |#0→ prepared experimentally
in quantum simulator. The quantity can be evaluated by
first sampling from the interacting wave function |#0→ on
a quantum simulator (governed by the probability distri-
bution {qn}) and then computing the corresponding pn
in the free fermion state |#̃0→ on a classical computer. We
then have the following estimate of the quantum-classical
correlator

↑↑↽n̂0↽n̂x→→ϱ =

∑M
m=1 pnm↽n0,m↽nx,m∑M

m=1 pnm

. (A9)

3. Comparison between the CC and QC correlators

To make predictions regarding the desired quantity
Eq. A1, we will need both the CC-correlator Eq. A3 and
QC correlator Eq. A8. Here we argue that, if the QC
and CC correlators exhibit the same power-law scaling,
this strongly indicates that the experimentally generated
|ω→→ is also a spin liquid state, with the same power-law
correlations.
It is well-known that, for large enough N , all the per-

turbations of short-range four-fermion interactions in the
QED3 theory (Eq.11 of the main text) are irrelevant. But
with smaller N , some short-range interactions can be-
come relevant and destabilize the spin liquid described
by Eq.11. The scaling dimensions of the short-range in-
teractions depend on N , and also the symmetry of the
four fermion interactions [77–82].
Hence we need to compare the exact symmetry of

the CC-correlator generated by |ω̃→→, QC-correlator gen-
erated by |ϱ→→, and the quantum-quantum (QQ) corre-
lator Eq. A1 which corresponds to the experimentally
prepared |ω→→. As an example, let us still start with
a H0 with N flavors of fermions and nearest neighbor
hopping on the honeycomb lattice, as well as some local
density-density interactions preserving the SU(N) flavor
symmetry. The CC-correlator based on the projected
non-interacting state |ω̃→→ has an exact SU(2N) symmetry
on the lattice, as we discussed in the main text; the QQ-
correlator which corresponds to the projected interacting
state |ω→→ has an exact (SU(N)L ⇑ SU(N)R) ⊋ Z2 sym-
metry, where the Z2 exchanges the left and right space.
While the QC-correlator evaluated with the Choi state
|ϱ→→ has the lowest SU(N)L⇑SU(N)R symmetry. Though
all three kinds of correlators may correspond to field the-
ory Eq.11 with perturbations (extra four-fermion inter-
actions), since |ϱ→→ has the lowest symmetry, the field the-
ory corresponding to |ϱ→→ has the most four-fermion terms
in addition to Eq.11. If the QC and the CC-correlator
yield the same power-law decay with the same scaling
dimension, the only natural possibility is that the local
interactions in both QC and the CC-correlators are ir-
relevant; this would imply that the local interactions in
QQ-correlator are also irrelevant since the QQ-correlator
has higher symmetry than the QC-correlator, and must
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have fewer perturbations of local interaction. This means
that |ω→→ prepared experimentally should indeed be an
algebraic spin liquid state controlled by the fixed point
described by Eq.11.

We can also evaluate the Cooper pair correlation in
Eq. 17 in a similar way. For example, the CC-correlator
of Eq.17 reads

tr c†0ω̃c0c
†
xω̃cx

tr ω̃2
=

∑M
m=1 pn→

m∑M
m=1 pnm

, (A10)

where, for an outcome nm = (n0,m, · · · , nx,m, · · · ), n≃
m =

(n0,m+1, · · · , nx,m↓1, · · · ). In this case, we note that the
fermion on each site has a single flavor (N = 1), and the
mixed state ω̃ is classical, i.e. a diagonal matrix. The QC-
correlator of Eq.17 can be constructed accordingly. The
only di!erence is that, for an experimentally generated
configuration nm, we need to compute the probability
pn→

m
from a classical computer, for a slightly di!erent

configuration n≃
m.

4. Summary of Experimental Protocol

Here we make a summary of the proposed experimental
protocol for measuring the desired quantity Eq. A1:

• Prepare a fermion state |#0→ (cold atoms in opti-
cal lattice) that is the ground state of Hamiltonian
H0. H0 can have short-range interactions, and its
spectrum is gapless.

• In each experimental run, measure the fermion den-
sity on each site, obtain configuration nm.

• Input nm in computer, find pnm = ↑#̃0|P̂nm |#̃0→,
where |#̃0→ is the free fermion ground state of the
noninteracting part of H0.

• We average pnm↽n0,m↽nx,m over all experimental
runs like Eq. A9, and obtain the QC-correlator.

• We separately compute the CC-correlator using
|#̃0→. If the CC-correlator and QC-correlator have
the same power-law scaling, based on the argu-
ments in the previous subsection, we verify that the
experimentally prepared |ω→→ is a spin liquid state,
and its scaling is given by the QC and CC correla-
tor.

Appendix B: Other gapless liquid states

1. Spinon Fermi surface state

The proposed experimental protocol discussed in the
previous section also allows us to experimentally extract
information of other gapless liquid states, for example,

the spinon Fermi surface state, and the d-wave Bose liq-
uid phase [13, 90].
The spinon Fermi surface state is among the most

broadly studied spin liquid states, due to the compelling
potential connection to condensed matter experiments.
In our context, to access the physics of the gapless spinon
Fermi surface state, we can follow the following protocol:

• Prepare a spinless fermion state |#0→ that is a gap-
less state at half-filling with a Fermi surface, for
example, it can be chosen as the ground state of
the tight-binding model on the triangular lattice at
half-filling. |#0→ can have short-range interactions.

• Again, in each experimental run, measure the
fermion density on each site, obtain configuration
nm.

• For each experimentally produced configuration
nm, we define ñm, and ñx,m = 1↓ nx,m.

• Input ñm into computer, find pñm = ↑#̃0|P̂ñm |#̃0→,
where |#̃0→ is the free fermion ground state of the
noninteracting part of the parent Hamiltonian of
|#0→.

• We average pñm↽n0,m↽nx,m over all experimental
runs, and this quantity should converge to the spin
correlation function of the following state:

∑
m pñm↽n0,m↽nx,m∑

m pñm

↔ ↑↑ϱ|Sz
0 Sz

x|ϱ→→, (B1)

and state |ϱ→→ is

|ϱ→→ ↔
∏

i

P̂(ni,L + ñi,R = 1)|#0→L|#̃0→R. (B2)

We can view |#0→ and |#̃0→ as the wave function for
spin-up and spin-down spinons. |#0→ and |#̃0→ have the
same Fermi surface. If |#0→ is a free fermion state with
a finite Fermi surface, e.g. the ground state of a half-
filling tight-binding model on the triangular lattice, the
constructed |ϱ→ has a spin SU(2) symmetry. If |#0→ has
short-range interactions, |ϱ→→ is a special state where the
spin-up and down spinons have di!erent interactions, but
still the same Fermi surface.

2. d-wave Bose Liquid state

Ref. [13, 90] discussed an exotic d-wave Bose liquid
state for interacting bosons. The construction started
with a parton formalism

bi = di,xdi,y, (B3)

where di,x and di,y are fermionic partons with strong
hoppings along x and y directions respectively. The d-
wave Bose liquid state corresponds to the mean field state
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where the two partons each has their own Fermi surfaces
with anisotropic shapes.

Now let us assume that a state |#0,x→ is prepared in ex-
periment, which is a fermion state with stronger hopping
along the x direction, and weaker hopping along the y di-
rection. Again, in each experimental run, one measures
the fermion density |#0,x→ on each site, and obtain config-
uration nm. We then input nm in another state |#̃0,y→ in
computer, and find pnm = ↑#̃0,y|P̂nm |#̃0,y→. Here |#̃0,y→
is a state with stronger hopping along y, and weaker hop-
ping along x. We then average quantity pnm↽n0,m↽nx,m

over experimental runs, this quantity should converge to
the density correlation of the following state

|ϱ→→ ↔ P̂(n̂i,x,L = n̂i,y,R)|#0,x→L|#̃0,y→R. (B4)

|ϱ→→ is precisely the Gutzwiller construction of the d-wave
Bose liquid state.

Appendix C: More general QCD3 Choi-spin liquids

In the main text We have discussed that the QCD with
an emergent SU(2) gauge field may be realized in the
Choi state after a Lindbladian evolution when the jump
operators are local density operators. In this section, we
will demonstrate that QCD with a more general SU(k)
gauge field can also be realized in a similar manner, by
choosing a di!erent set of jump operators. Now let us
consider the initial state |#0→ which is a free fermion
state of kN flavors of fermions. We label the fermions as
ci,l,J , where l = 1 · · · k and J = 1 · · ·N . We choose the
jump operator as

Lµ
i = T̂µ

i = c†i,l,JT
µ
ll→ci,l→,J , (C1)

where Tµ with µ = 1 · · · k2 ↓ 1 are the generators of
SU(k). Please note that T̂µ

i are all Hermitian operators.
We can design the Lindbladian in the Choi-Jamio”lkowski
representation as

L =
∑

i,µ

↓1

2
(T̂µ

i,1 ↓ (T̂µ
i,2)

T )2 =
∑

i,µ

↓1

2
(T̂µ

i,1 ↓ (T̂µ
i,2)

↗)2.

(C2)
Here (T̂µ

i,2)
↗ = c†i,l,J(T

µ
ll→)

↗ci,l→,J .
The fermions in the left and right spaces form a pair

of complex-conjugate representations of SU(k), and in
the long-time limit, the Lindbladian acts as a SU(k)
Gutzwiller projection in the doubled Hilbert space, as
it demands T̂µ

i,1 ↓ (T̂µ
i,2)

↗ = 0 on every site:

|ω→→ =
∏

i

P̂(SU(k))i|ω0→→, (C3)

where P̂(SU(k))i is a projection to the SU(k) singlet on
every site i. It is hence expected that the steady state
is a QCD with 2N flavors of fermions coupled with a
SU(k) gauge field. Note that in |ω→→ N flavors of the

fermions (each carrying a “color” index l = 1 · · · k) form
the fundamental rep of the SU(k), while the other N
flavors form an anti-fundamental representation.

Appendix D: Doubled space representation of

fermion density matrix

Here, we detail the mapping from the fermion density
matrix to the pure state in the doubled Fock space [91].
The mapping is slightly more complicated than mapping
the density operator in quantum spin models to the dou-
bled space because two copies of the fermionic operators
in the doubled Fock space have mutual fermionic statis-
tics.
We first express the fermionic density matrix in the

Fock basis as

ω(ci) =
∑

nL,nR

ωnL,nR |nL→ ↑nR|

=
∑

nL,nR

ωnL,nRO†
nL

|vac→↑vac| OnR , (D1)

where nL(R) = ({ni,L(R)}) is a binary vector represent-
ing the occupation number of fermionic modes, O†

nL
:=∏N

i=1(c
†
i )

ni,L , and OnR :=
∏1

i=N (ci)ni,R .
We now map the fermionic density matrix ω to a pure

state |ω→→ in the doubled Fock space which contains two
copies of the fermionic mode ci,L and ci,R. We iden-
tify the fermonic mode ci in ω with ci,L in the doubled
Fock space and obtain the doubled state |ω→→ by applying
ω(ci,L) as an operator to a reference state in the doubled
Fock space, i.e. |ω→→ := ω(ci,L)|I→→. Here, we choose the
following reference state

|I→→ :=
∑

n

N∏

i=1

(c†i,L)
ni(c†i,R)

ni |vac→→

=
N∏

i=1

(
1 + c†i,Lc

†
i,R

)
|vac→→. (D2)

Accordingly, the doubled state |ω→→ takes the form

|ω→→ =
∑

nL,nR

ωnL,nR

(
O†

nL

)
L

(
OT

nR

)
R
|vac→→. (D3)

Here, we introduce the transpose operation (·)T , which
acts linearly on the fermionic operators,

cTi = c†i , (c†i )
T = ↓ci, (D4)

(
∑

i

⇁ici + βic
†
i

)T

=
∑

i

⇁ic
†
i ↓ βici. (D5)

When acting on a product On1On2 with On1,2 individu-
ally being a product of fermionic operators defined above,
we have

(On1On2)
T = sgn(On1 ,On2)OT

n2
OT

n1
, (D6)
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where sgn(On1 ,On2) = ±1, it takes ↓1 value only if both
On1 and On2 are fermionic (i.e. contain odd number of
fermion operators). One can verify that for any operator
(OT )T = O. According to this definition, we have the
following relation for operators acting on the reference
state

OL|I→→ = (OT )R|I→→. (D7)

In this work, we focused on an initial pure Gaus-
sian (noninteracting) fermionic state evolved under the
Lindblad equation. Specifically, the initial pure state is
ω0 = |#0→↑#0| with

|#0→ =
N∏

k=1

(c†k)
nk |vac→ . (D8)

Here, c†k =
∑

i ⇁
↗
i c

†
i (ck =

∑
i ⇁ici) is a linear combi-

nation of fermionic creation operators on each site, e.g.
the creation operator of fermion with momentum k. The
corresponding doubled state is given by

|ω0→→ =
N∏

k=1

(
c†k,Lc

T
k,R

)nk

|vac→→. (D9)

Here, cTk =
∑

i ⇁ic
†
i . Accordingly, the Lindblad evolution

in the doubled Fock space is given by

εt|ω→→ =
(
∑

i

(Li)L(L
†
i )

T
R ↓ 1

2
(L†

iLi)L ↓ 1

2
(L†

iLi)
T
R

)
|ω→→.

(D10)

Before closing, we remark that the choice of the ref-
erence state is not unique. Alternatively, one can map
ω ⇓↗ ω(ci,L)|I ≃→→ with

|I ≃→→ :=
∑

n

∏N
i=1(c

†
i,L)

ni
∏N

i=1(c
†
i,R)

ni |vac→→. (D11)

However, such a choice is not convenient when consid-
ering the symmetry transformation that rotates between
c†i,L and c†i,R. More specifically, the reference state |I→→
has an SU(2) symmetry generated by Ŝµ :=

∑
i
1
2c

†
iϱ

µci,

where c†i = [c†i,L, c
†
i,R]. Such a symmetry would have to

act nonlocally in the alternative reference state |I ≃→→ due
to the mutual fermionic statistics between ci,L and cj,R.
To make this SU(2) symmetry explicit and draw a di-
rect connection to Gutzwiller projected wave function,
we choose the reference state |I→→ throughout this paper.
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