
Problem Set 2 223B Condensed Matter Physics, Winter 2017

Due: Thursday, February 16, 2017 by 11pm

Put homework in mailbox labelled 223B on 1st floor of Broida (by elevators).

1.) ANISOTROPIC FERROMAGNET

A simple model Hamiltonian for an anisotropic Heisenberg ferromagnet is

Ĥ = −
∑
〈rr′〉

[J(Ŝxr Ŝ
x
r′ + Ŝyr Ŝ

y
r′) + JzŜ

z
r Ŝ

z
r′ ], (1)

where r and r′ label sites of a d-dimensional (hyper-) cubic lattice, and the sum is over near neighbor sites. In this
problem we assume unequal ferromagnetic exchange couplings with, Jz > J > 0.

a.) What is a possible physical origin of the anisotropy in the exchange interactions?

b.) For arbitrary spin-S, show that the classical ferromagnetic ground state,

|G〉 =
∏
r

|Szr = S〉, (2)

is an exact ground state for the above quantum Hamiltonian.

c.) For large spin S use the Holstein-Primakoff transformation to obtain a quadratic magnon Hamiltonian that
describes the low energy spin waves,

Ĥ0 =
∑
k

ωkâ
†
kâk. (3)

Sketch the resulting magnon dispersion relation, ωk, as a function of kx (for ky = kz = 0) and show that it has
a gap in contrast to the gapless excitations in the isotropic ferromagnet. Describe the symmetry which has been
spontaneously broken, and discuss why the symmetry breaking does not lead to gapless excitations in this case.

d.) For low temperatures, kBT << Jz − J, J , calculate the deviation of the spontaneous magnetization from
saturation, ∆Mz(T ) = Mz(T = 0)−Mz(T ). Contrast your result with Bloch’s T 3/2 law. Why the difference?

2.) NON-MAGNETIC GROUND STATES and VALENCE BOND SOLIDS

Quantum spin models in low dimensions often exhibit ground states which are not magnetic, due to quantum
fluctuations. A classic example is the S = 1 Heisenberg antiferromagnetic chain, which would be expected to exhibit
a magnetically ordered ground state if the spin operators were replaced by classical fixed length vectors. The non-
magnetic ground state of this model can be understood by employing a Schwinger boson representation of the spin

operators. A single spin-S can be represented in terms of two Schwinger bosons, denoted â and b̂, as:

Ŝx + iŜy = â†b̂, Ŝx − iŜy = b̂†â, Ŝz =
1

2
(â†â− b̂†b̂), (4)

where the number of bosons is constrained to satisfy, â†â + b̂†b̂ = 2S.

a.) Using the boson commutation relations, (ie. [â, â†] = 1), show that the spin components Ŝα satisfy the standard
canonical spin-commutation relations.

Consider a (generalized) one-dimensional S = 1 Heisenberg antiferromagnet with Hamiltonian

Ĥ = J
∑
〈ij〉

P̂2(ij) ; P̂2(ij) ≡ ~Si · ~Sj +
1

3
(~Si · ~Sj)2 +

2

3
, (5)

where the sum is over nearest neighbors on a 1d lattice. Here, we have added a bi-quadratic term to the standard
Heisenberg Hamiltonian.
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b.) By introducing a bond spin operator, ~Jij = ~Si+ ~Sj , show that the operator P̂2(ij) projects ~Jij onto the subspace
with magnitude J = 2 (that is, it anihilates states with J = 0, 1). Using this, show that the Hamiltonian is positive
definite (ie. that the ground state energy EG ≥ 0).

Consider the state constructed in terms of Schwinger bosons:

|Ψ〉 =
∏
〈ij〉

(â†i b̂
†
j − b̂†i â

†
j)|0〉, (6)

where |0〉 denotes the vacuum state for bosons (ie. âi|0〉 = b̂|0〉 = 0). This state is constructed from “valence bonds”
connecting neighboring sites. One can show that the state |Ψ〉 is invariant under spin rotations. Thus, this state is
non-magnetic. It is usually referred to as a “valence bond solid”.

c.) In the state |Ψ〉, how many total bosons (â†i âi + b̂†i b̂i) are there on each site?

d.) In the state |Ψ〉 what is the largest value, Jmax, taken by Ĵzij? (Hint: Use Ŝzi = (â†i âi − b̂†i b̂i)/2).

e.) Since the state |Ψ〉 is spin-rotationally invariant, Jmax is also the largest value possible for the total bond

spin J . Using this fact, show that Ĥ|Ψ〉 = 0. Together with the positivity of Ĥ this establishes that the valence

bond solid |Ψ〉 is the exact ground state of Ĥ. It is possible to show that all spin correlations fall of exponentially
in this state (even at T = 0 !), so that the valence bond solid is sometimes referred to as a “quantum paramagnet”.
Quasi-one-dimensional S = 1 compounds have been found to exhibit this behavior.


