Chapter 1

1. \([AB, CD] = ABCD - CDAB = ABCD + ACBD - ACDB + ACDB + CDB - CDB - CDAB = A(C, B)D - AC(D, B) + (C, A)DB - C(D, A)B.\)

2. (a) \(X = a_0 + \mathbf{I}a_x \sigma_x\), \(\text{tr}(X) = 2a_0\) because \(\text{tr}(\sigma_x) = 0\). Next evaluate
\[
\text{tr}(\sigma_k X) = \text{tr}(\sum_L a_L \sigma_L \sigma_k) = \sum_L a_L 2 \delta_{Lk} = 2a_k \quad \text{(where we have used}
\]
\[
\text{tr}(\sigma_i \sigma_j) = \text{tr}(\lambda_i \sigma_i \sigma_j + \sigma_j \sigma_i) = 2 \delta_{ij}. \quad \text{Hence } a_0 = \frac{1}{4} \text{tr}(X), \quad a_k = \frac{1}{4} \text{tr}(\sigma_k X).\]

(b) \(a_0 = \frac{1}{2}(X_{11} + X_{22}), \) while \(a_k\) can be explicitly evaluated from \(a_k = \frac{1}{4} \text{tr}(\sigma_k X)\) with \(X = [X_{ij}]\) and \(i, j = 1, 2\). The result is \(a_1 = \frac{1}{4}(X_{11} + X_{21})\), \(a_2 = \frac{1}{2}(-X_{21} + X_{12})\), and \(a_3 = \frac{1}{2}(X_{11} - X_{22})\).

3. \(\hat{\sigma} \cdot \hat{a} = \sigma_x a_x + \sigma_y a_y + \sigma_z a_z = \begin{pmatrix} a_z & a_x - ia_y \\ a_x + ia_y & -a_z \end{pmatrix},\)

\[
\text{det}(\hat{\sigma} \cdot \hat{a}) = -|\hat{a}|^2.\]

Without loss of generality, choose \(\hat{n}\) along positive \(z\)-direction, then \(\exp(\mathbf{i} \sigma_z \hat{n} \phi/2) = \mathbf{1} \cos \phi/2 + \mathbf{i} \sigma_z \sin \phi/2\), and if \(B\) is defined to be \(B = \cos \phi/2 + \mathbf{i} \sin \phi/2\), then
\[
\exp(\mathbf{i} \sigma_z \phi/2) \hat{\sigma} \cdot \hat{a} \exp(-\mathbf{i} \sigma_z \phi/2) = \begin{pmatrix} a_z B^* B & (a_x - ia_y) b^2 \\ (a_x + ia_y) b^2 & -a_z B^* B \end{pmatrix}.\]

Since \(B^* B = \cos^2 \phi/2 + \sin^2 \phi/2 = 1\), \(\det(\exp(\mathbf{i} \sigma_z \phi/2) \hat{\sigma} \cdot \hat{a} \exp(-\mathbf{i} \sigma_z \phi/2)) = - (a_z^2 + a_x^2 + a_y^2) = -|\hat{a}|^2\), that is determinant is
Invariant under specified operation. Next we note
\[
\begin{pmatrix}
 a_z' & a_{x'-ia_y}' \\
 a_{x'-ia_y}' & a_z'
\end{pmatrix}
\begin{pmatrix}
 a_z \\
 a_x + ia_y
\end{pmatrix}
= \begin{pmatrix}
 a_z \\
 a_x - ia_y
\end{pmatrix}
(\cos \phi + i \sin \phi)
\begin{pmatrix}
 \frac{a_z}{a_x - ia_y} \\
 \frac{a_{x'-ia_y}}{a_x + ia_y}
\end{pmatrix}
(\cos \phi - i \sin \phi)
\]

hence \(a_z' = a_z \), \(a_x' = a_x \cos \phi + a_y \sin \phi \), \(a_y' = a_x \cos \phi - a_y \sin \phi \). This is a
counter-clockwise rotation about \(z \)-axis through angle \(\phi \) in \(x-y \) plane.

4. (a) Note \(\text{tr}(XY) = \sum_a <a' | X | a''> <a'' | Y | a'> \) (by
closure property) = \(a', a'' <a'' | Y | a'> <a' | X | a''> \) (by rearrangement) =
\(\sum_a <a'' | X | a''> \). Since \(a'' \) is a dummy summation variable, relabel \(a'' = a' \),
\(\text{hence \(\text{tr}(XY) = \text{tr}(YX) \).} \)

(b) \(<(XY)^+a'|a''> = <a' | (XY)^+ | a''> = <a' | XY | a''> = <X^+a'|Y|a''> \)
\(= <Y^+X^+a'|a''>. \) Therefore \((XY)^+ = Y^+X^+. \)

(c) Take \(\exp[i\theta(A)]a> = (1 + i\theta(A)_{\frac{\theta(A)}{2}!} + \ldots) |a> \)
\(= (1 + i\theta(a)_{\frac{\theta(a)}{2}!} + \ldots) |a> = \exp[i\theta(a)] |a>, \) where we
\(\text{assume that } A |a> = a |a>. \) Therefore \(\exp[i\theta(A)] = \)
\(\exp[i\theta(a)] |a><a|, \) where closure property of the complete set
\(\{|a>\} \) has been used.

(d) \(\sum_a \psi_a (x') \psi_a^*(x'') = \sum_a <x' | a'> <x'' | a'> = \sum_a a' |x'> x'' \)
\(<x'' | a'> = \sum_a <x'' | a'> a' |x'> = <x'' | x'>. \)

5. (a) \(|a><\beta| = \sum_a \sum_{a''} a' |a'><\beta|a''><a''|a'> \)
\(= \sum_a \sum_{a''} a' |a''><\beta|a''><a''|a'> \times
\(<a' |a'><a''|\beta>*). \) Hence \(|a><\beta| = [<a'|a> <a'|\beta>*], \) where
expression inside square bracket is the \((i,j)\) matrix element.

(b) \(|a> = |s_z = \frac{\hbar}{2} = |>\), \(|b> = |s_x = \frac{\hbar}{2} = \frac{1}{2}\chi(|> + |>)\).

Hence

\[
|a><b| = \begin{pmatrix} \langle +|a><b^* & \langle +|a><b^* \\ \langle -|a><b^* & \langle -|a><b^* \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}
\]

6. Given \(A|> = a_1|>\) and \(A|j> = a_j|j>\). The normalized state vector \(|> + |j>\) is of form \(|\psi> = \frac{1}{2\chi}(|> + |j>)\). Hence \(A|\psi> = (1/\sqrt{2})[a_1|> - a_j|j>\) where \(a_1, a_j\) are real numbers if \(A\) is Hermitian; but for \(a_1 \neq a_j\) clearly r.h.s. is a state vector distinct from \(|\psi>\). However under the condition that \(|>\) and \(|j>\) are degenerate (i.e. \(a_1 = a_j = a\)), then \(A|\psi> = a[(1/\sqrt{2})(|> + |j>) = a|\psi>\) and \(|\psi>\) or \(|> + |j>\) is also an eigenket of \(A\).

7. (a) Let \(|\xi> \in \{a'>\}\) and \(A|a'> = a'|a'>\). Then since \(\Pi_a (A - a')|\xi>\) is a product over all eigenvalues, and \(|\xi> = \frac{1}{a'} |a'>a'\xi>\) must therefore satisfy \(\Pi_a (A - a')|\xi> = 0\). Hence \(\Pi_a (A - a')\) is the null operator.

(b) \(\Pi_a (A - a') \frac{(a'-a')}{(a'-a')} |a'> = \Pi_a \frac{(a'-a')}{(a'-a')} |a'> = |a'>\).

Hence \(\xi >= \frac{1}{a'} \frac{(A-a')}{(a'-a')} |a'>a'\xi> = |a'>a'\xi>\). The operator therefore projects out of ket \(|\xi>\), its \(|a'>\) component.
(c) Let \(\mathbf{A} = S_z \), then \(\mathbf{a}, (S_z - a') = (S_z - \mathbf{A}/2)(S_z + \mathbf{A}/2) \). Hence evidently

\[a' \mathbf{A}/2 (S_z - a') |\pm> = 0. \]

This verifies (a) above. For case (b)

we have \(\theta_+ = (S_z + \mathbf{A}/2)/\mathbf{A}, \theta_- = -(S_z - \mathbf{A}/2)/\mathbf{A} \) and \(S_z = \mathbf{A}/2(\pm |+> + |-> \times

<+|) \) while ket \(|\xi> = |+><+||\xi> + |->><-||\xi> \). Hence \(\theta_+ |\xi> = <+<|\xi> \leftrightarrow \) and \(\theta_- |\xi> = <-<-|\xi> \leftrightarrow \) and \(\theta_0 \) are the projection operators of \(|\xi> \) to \(|\pm> \) states.

8.

The orthonormality property is \(<+|+> = <-|-> = 1, <+|-> = <-|+> = 0. \)

Hence using the explicit representations of \(S_i \) in terms of linear combinations of bra-ket products, we obtain by elementary calculation

\([S_i, S_j] = ic_{ijk} S_k \) and \(\{S_i, S_j\} = (\mathbf{A}/2)\delta_{ij}. \)

9.

Let \(\mathbf{a} = n_x \mathbf{x} + n_y \mathbf{y} + n_z \mathbf{z} \), then \(n_x = \sin \beta \cos \alpha, n_y = \sin \beta \sin \alpha, n_z = \cos \beta \) and \(\mathbf{a} = \sin \beta \cos \alpha S_x + \sin \beta \sin \alpha S_y + \cos \beta S_z \). Also due to

completeness property of the ket space \(|\mathbf{a};+> = a|+> + b|-> \) where \(|a|^2 + |b|^2 = 1 \) (normalization). Therefore the relation \(|\mathbf{a};+> = (\mathbf{A}/2)|\mathbf{a};+> \) [taking advantage of explicit representations \(S_x = \mathbf{A}/2(\pm |+> \times

<+| + |-|\times|+|), S_y = \mathbf{A}/2(\pm |+| \times

<- + |->\times|+|), S_z = \mathbf{A}/2(\pm |+| \times

-> \times|->|) \)]

leads to:

\[
\begin{align*}
\sin \beta \cos \alpha - i \sin \beta \sin \alpha &= a \\
\sin \beta \cos \alpha + i \sin \beta \sin \alpha &= b
\end{align*}
\]

Together with the normalization condition \(|a|^2 + |b|^2 = 1 \), we find

\(a = \cos(\beta/2)e^{i\theta} \) and \(b = \sin(\beta/2)e^{i\theta} \). From equation (1a) we have

\(a = \frac{\sin \beta e^{-i\alpha}}{1 - \cos \beta} \), hence \(e^{i(\theta - \theta_a)} = e^{i\alpha} \). Choose \(\theta_a = 0 \), then \(\theta_b = \alpha \), and

\(|\mathbf{a};+> = \cos(\beta/2)|+> + \sin(\beta/2)e^{i\alpha}|-> \).
10. \(H = a(\lvert 1\rangle\langle 1\rvert - \lvert 2\rangle\langle 2\rvert + \lvert 1\rangle\langle 2\rvert + \lvert 2\rangle\langle 1\rvert) \). Let \(\lvert 1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lvert 2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \lvert 1\rangle = (1,0) \) and \(\lvert 2\rangle = (0,1) \), \(H \) can be explicitly written using the outer product of matrices as \(H = a \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \).

The eigenvalues and corresponding eigenkets are obtained from \((H - \lambda I)X = 0 \) where \(X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \) are eigenvectors and \(\lambda \) are corresponding eigenvalues determined from secular equation \(\det (H - \lambda I) = 0 \). This leads to \(\lambda = \pm \sqrt{2a} \) and \(x_2 = (\sqrt{2} - 1)x_1 \), hence \(X = x_1 \begin{pmatrix} 1 \\ \sqrt{2} - 1 \end{pmatrix} \) and by normalization of \(X \) we have \(x_1 = \frac{1}{\sqrt{2(2 - \sqrt{2})}} \). Thus eigenvectors and eigenvalues are

\[\begin{align*}
|\psi_+\rangle &= \frac{\lvert 1\rangle + (\sqrt{2} - 1)\lvert 2\rangle}{\sqrt{2(2 - \sqrt{2})}}, \lambda = \sqrt{2a} \\
|\psi_-\rangle &= \frac{\lvert 1\rangle - (\sqrt{2} + 1)\lvert 2\rangle}{\sqrt{2(2 + \sqrt{2})}}, \lambda = -\sqrt{2a}
\end{align*} \]

11. Rewrite \(H \) as \(H = \frac{1}{2}(H_{11} + H_{22})(\lvert 1\rangle\langle 1\rvert + \lvert 2\rangle\langle 2\rvert) + \frac{1}{2}(H_{11} - H_{22})(\lvert 1\rangle\langle 2\rvert + \lvert 2\rangle\langle 1\rvert) \), where the three operator terms on the r.h.s. behave like \(I, S_z, \) and \(S_x \) respectively. Note that \(\frac{1}{2}(H_{11} + H_{22}) \) is simply the "center of gravity" of the two levels. Because the identity operator \(I \) remains the same under any change of basis, we ignore the \(\frac{1}{2}(H_{11} + H_{22}) \) term for the moment. Compare now with the spin \(\frac{1}{2} \) problem (Problem 9 above). \[\hat{S}.\hat{n} = \frac{\hbar}{2} n_x (\lvert +\rangle\langle +\rvert + \lvert -\rangle\langle -\rvert) + \frac{\hbar}{2} n_y (\lvert -\rangle\langle +\rvert + \lvert +\rangle\langle -\rvert) + \frac{\hbar}{2} n_z (\lvert +\rangle\langle +\rvert - \lvert -\rangle\langle -\rvert). \] The analogy is: \((\hbar/2)n_x \rightarrow H_{12}, \)
\[\frac{\hbar}{2} \gamma \rightarrow 0 \ (\gamma = 0), \ \frac{\hbar}{2} n_z + H_1 (H_{11} - H_{22}). \] So one of the energy eigenkets is \(\cos(\beta/2) |1\rangle \) + \(\sin(\beta/2) |2\rangle \) where \(\beta \), analogous to \(\tan^{-1}(n_x/n_z) \), is given by \(\beta = \tan^{-1}\) \[\frac{2H_{12}}{H_{11} - H_{22}}. \]

The other energy eigenket can be written down by the orthogonality requirement (or by letting \(\beta = \beta + \pi \)) as \(-\sin(\beta/2) |1\rangle + \cos(\beta/2) |2\rangle \). The energy eigenvalues can be obtained by diagonalizing

\[
\begin{pmatrix}
\frac{1}{2}(H_{11} - H_{22}) & H_{12} \\
H_{22} & -\frac{1}{2}(H_{11} - H_{22})
\end{pmatrix}.
\]

But they can also be obtained by comparing with the spin \(\frac{1}{2} \) problem:

\[
\left(\frac{\hbar}{2} n_x \right)^2 + \left(\frac{\hbar}{2} n_z \right)^2 = \hbar^2/4 \rightarrow \text{eigenvalue } \hbar/2,
\]

so by analogy the eigenvalue in our case is \([\frac{1}{2}(H_{11} - H_{22})^2 + H_{12}^2]^{1/2} \). We must still add to this the center of gravity energy. The final answer is

\[
\frac{1}{2}(H_{11} + H_{22}) + [\frac{1}{2}(H_{11} - H_{22})^2 + H_{12}^2]^{1/2}
\]

where \(z \) is the analogue of parallel (anti-parallel) spin direction to \(\hat{n} \). For \(H_{12} = 0 \), we get \(\gamma = 0 \) or \(\pi \). The eigenvalues are \(\frac{1}{2}(H_{11} + H_{22}) \pm [\frac{1}{2}(H_{11} - H_{22})^2 + H_{12}^2]^{1/2} \)

a very reasonable result.

12. Here \(\hat{S} \cdot \hat{n} |\hat{n} \rangle \rangle = \frac{\hbar}{2} |\hat{n} \rangle \rangle \) and \(|\hat{n} \rangle \rangle = \cos(\gamma/2) |\rangle \rangle + \sin(\gamma/2) |\rangle \rangle = \left(\begin{array}{c}
\cos(\gamma/2) \\
\sin(\gamma/2)
\end{array} \right) \). It is easily seen that the eigenket of \(S_x \) belonging to eigenvalue \(\pm \hbar/2 \), is \(\frac{1}{2} \left(\begin{array}{c}
1 \\
1
\end{array} \right) \).

Thus (a) probability of getting \(\pm \hbar/2 \) when \(S_x \) is measured is \(\frac{1}{2} \left[\frac{1}{2} \left(\begin{array}{c}
\cos(\gamma/2) \\
\sin(\gamma/2)
\end{array} \right) \right]^2 \)

\[
= \frac{1+\sin \gamma}{2}.
\]

(b) \(<S_x> = \frac{\hbar}{2} (\cos \gamma, \sin \gamma) \left(\begin{array}{c}
0 \\
1
\end{array} \right) \left(\begin{array}{c}
\cos(\gamma/2) \\
\sin(\gamma/2)
\end{array} \right) = \frac{\hbar}{2} \sin \gamma. \)

Hence \(<S_x^2> = <S_x>^2 = \frac{\hbar^2}{4} - (\frac{\hbar^2}{4}) \sin^2 \gamma = (\frac{\hbar^2}{4}) \cos^2 \gamma. \)

Answers are entirely reasonable for \(\gamma = 0, \pi \) (parallel and anti-parallel to \(OZ \)), and for \(\gamma = \pi/2 \) (along \(OX \)).
13. Choosing the S_z diagonal basis, the first measurement corresponds to the operator $M(\mp) = |+\rangle\langle+|$. The second measurement is expressed by the operator $M(\mp;\hat{n}) = |+\rangle\langle+;\hat{n}|$ where $|+\rangle\langle+;\hat{n}| = \cos(\theta/2)|\rangle\langle+| + \sin(\theta/2)|\rightarrow\rangle\langle-|$ with $\theta = 0$. Therefore

$$M(\mp;\hat{n}) = (\cos^2_{\theta}|\rangle\langle+| + \sin^2_{\theta}|\rightarrow\rangle\langle-|) + \cos^2_{\theta}\sin^2_{\theta}|\rangle\langle+;\hat{n}| + \sin^2_{\theta}|\rightarrow\rangle\langle-;\hat{n}|.$$

The final measurement corresponds to the operator $M(-) = |\rightarrow\rangle\langle-|$, and the total measurement $M = M(-)M(\mp;\hat{n})M(\mp) = |\rightarrow\rangle\langle-| (\cos^2(\theta/2)|\rangle\langle+| + \sin^2(\theta/2)|-\rangle\langle-| + |\rangle\langle+| + \sin^2(\theta/2)|-\rangle\langle-|) |\rangle\langle+| = \cos^2_{\theta}\sin^2_{\theta}|\rangle\langle+|$. The intensity of the final $S_z = -\frac{\hbar}{2}$ beam, when the $S_z = \frac{\hbar}{2}$ beam surviving the first measurement is normalized to unity, is thus $\cos^2(\theta/2)\sin^2(\theta/2) = (\sin^2\theta)/4$. To maximize $S_z = -\frac{\hbar}{2}$ final beam, set $\theta = \pi/2$, i.e. along OX, and intensity is $\frac{1}{4}$.

14. (a) The eigenvalues and eigenvectors of 3×3 matrix representation

$$A = (1/\sqrt{2}) \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

can be obtained by solving $\det[A - \lambda I] = 0$ and normalized eigenvectors $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ where $[A-\lambda I]\mathbf{x} = 0$ and $x_1^2 + x_2^2 + x_3^2 = 1$. The eigenvalues are $+1$, 0, -1 and the corresponding eigenvectors are respectively

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

There is no degeneracy. (b) These are the eigenvalues and eigenvectors of $J_\perp = \hbar A$ for a spin 1 particle.

15. Yes! Proof uses completeness and orthonormality of $\{|a', b'>\}$, hence

$$[A, B] = \sum_{a', b', a'', b''} \epsilon_{a', b', a'', b''} (a'', b'')\langle a', b'| (AB-BA)|a', b'> <a', b'| (BA-AB)|a', b' > a', b' > = 0,$$

but $(AB-BA)|a', b'> = (a'b' - b'a')|a', b' > = 0$, hence $[A, B] = 0$. An alternative
16. \((A, B) = AB + BA = 0 \). This implies that \(\langle a'' | \{A, B\} | a' \rangle = \langle a'' | AB | a' \rangle + \langle a'' | BA | a' \rangle = (a'' + a') \langle a'' | B | a' \rangle = 0 \). In general \(a'' + a' \neq 0 \), so \(\langle a'' | B | a' \rangle \) must vanish for \(a'' = a' \) as well as \(a'' \neq a' \), hence it is not possible to have a simultaneous eigenket of \(A \) and \(B \). The "trivial" case is when \(a'' + a' = 0 \), then \(\langle a'' | B | a' \rangle \neq 0 \) necessarily, and simultaneous eigenket of \(A \) and \(B \) would appear to be possible. But note \(A|a', b'\rangle = a'|a', b'\rangle, B|a', b'\rangle = b'|a', b'\rangle + (AB + BA)|a', b'\rangle = (a'b' + b'a')|a', b'\rangle = 0 \). Hence \(a' = 0 \), or \(b' = 0 \), or \(a' = b' = 0 \). Thus nontrivial simultaneous eigenkets are possible but at the cost that the eigenvalues of one or the other (or both) of operators \(A \) and \(B \) are zero.

17. No degeneracy implies \(|n\rangle \) defined by \(H |n\rangle = E_n |n\rangle \) is unique, i.e. only one energy eigenstate when \(E_n \) is given. Now \([A_1, H] = 0 \Rightarrow [A_1, H] |n\rangle = 0 \) or \(H(A_1 |n\rangle) = E_n (A_1 |n\rangle) \), i.e. \(A_1 |n\rangle \) is an energy eigenket with eigenvalue \(E_n \). The non-degeneracy assumption then implies \(A_1 |n\rangle \) is proportional to \(|n\rangle \), viz. \(A_1 |n\rangle = a_1 |n\rangle \) and likewise \(A_2 |n\rangle = a_2 |n\rangle \). But we are given that \([A_1, A_2] \neq 0 \), hence \(A_1 A_2 |n\rangle \neq A_2 A_1 |n\rangle \) or \(a_2 a_1 |n\rangle \neq a_2 a_1 |n\rangle \), and this is clearly impossible, hence energy eigenstates are, in general, degenerate. Note however this proof fails if \(A_1 |n\rangle = 0 \) (or \(A_2 |n\rangle = 0 \)). For \(H = \frac{p^2}{2m} + V(x) \), \(L_x \) and \(L_z \) both commute with \(H \) and \([L_x, L_z] \neq 0 \), so energy eigenstates are usually degenerate (2\(z+1 \) fold degeneracy). The exception is for S-state (\(\ell = 0, m_\ell = 0 \)) where \(L_z |n, \ell = 0, m_\ell = 0\rangle = 0 \), hence there need not be degeneracy in this case.

18. (a) This is solved in (1.4.56) and (1.4.57) of text. Basically we set \(\lambda = -\langle \beta | a' \rangle / \langle \beta | \beta \rangle \) in \(\langle a' + \lambda \beta | \beta \rangle > 0 \), and obtain Schwarz inequality
\[<a'|b>|b\rangle \cdot |a|b\rangle = |a|b\rangle^2. \]

(b) The generalized uncertainty relation (1.4.59) is \(<\Delta A>^2<\Delta B>^2 > |<\Delta A\Delta B>|^2 \)

where according to (1.4.63) \(|<\Delta A\Delta B>|^2 = k|<[A,B]>|^2 + k|<[\Delta A,\Delta B]>|^2 \). From

(1.4.50) we know that \(\Delta A = A - <A> \) and \(\Delta B = B - \) and \(\Delta A|a> = \lambda \Delta B|a> = \lambda |a> \) as given.

An elementary calculation leads to \([A,B] = [\Delta A,\Delta B]\), hence \(<a|[A,B]|a> = <a| \times [\Delta A,\Delta B]|a> = \lambda^* <a|\Delta B|a> - \lambda <a|\Delta A|a> \). Choose next \(\lambda \) to be purely imaginary;

\[<a|[A,B]|a> = -2\lambda <a|\Delta B|^2|a> \]

while \(k|<A|[A,B]|a>|^2 = |\lambda|^2 <a|\Delta B|^2|a> \). It is also evident that for \(\lambda \) imaginary \(<a|[\Delta A,\Delta B]|a> = 0 \), therefore from (1.4.63) and the recognition that \(<a|[\Delta A|^2|a> = <a|\Delta B|^2|a> = |\lambda|^2 <a|\Delta B|^2|a> \)

we have equality in the generalized uncertainty relation (1.4.59).

(c) Since \(\Delta x = x - <x> \), we may express \(<x'|\Delta x|a> \) as \(\int dx'' <x'|x''><x''|\Delta x|a> = \int dx'' \delta(x''-x')x''|a> = \int dx'' 4\pi \delta(x''-x')x''|a> \)

where normalization \(<x'|x''> = \delta(x''-x') \) is chosen. For \(\Delta p = p - <p> \) where \(p = -i\hbar \frac{\delta}{\delta x} \), we have \(<x'|\Delta p|a> = \int dx'' <x'|x''><x'''|\Delta p|a> \)

and \(<x''|p|a> = -(i\hbar \frac{\delta}{\delta x} |x''|a> \). Hence \(<x'|\Delta p|a> = \int dx'' 4\pi \delta(x''-x')x''|a> \)

\(\times (-i\hbar \frac{\delta}{\delta x} |x''|a> - <p>) \int dx'' 4\pi \delta(x''-x')x''|a> \). Use next explicit expression for \(<x''|a> = \frac{1}{\sqrt{2\pi}} \exp \left[\frac{i<p|x''> - (x''-<x'>)^2}{\hbar} \right] \)

in above integral forms for \(<x'|\Delta x|a> \)

and \(<x'|\Delta p|a> \). We find

\[<x'|\Delta x|a> = \Lambda <x'|\Delta p|a> \]

where \(\Lambda = -2i\hbar |p> \) an imaginary number.

9. (a) It is clear that

\[<a|S_x|a> = \sum_a \sum_a a|a><a |S_x|a><a|a>=\frac{\hbar^2}{4} <a|a>|^2 <a|S_x|a> \]

where \(\{|a>\} \) is a complete set of base kets. Since \(S_x = \frac{\hbar}{2} (|+><-|+><+|) \), evidently \(S_x^2 = \frac{\hbar^2}{4} (|+><-|+><+|) \). Take \(|a> = |+> \) then \(|+|S_x^2|+> = \frac{\hbar^2}{4} \) and \(|+|S_x^2|+> = 0 \). Therefore

\[++|<\Delta S_x>|^2|++> = |++|S_x^2|++> - |++|S_x|++|^2 = \frac{\hbar^2}{4}. \]

Also from \(S_y = \frac{\hbar}{2} (|+><-|+><+|) \), we have \(S_y^2 = \frac{\hbar^2}{4} (|+><|+><-|) \), hence it can be readily shown that \(|+|S_y^2|+> = \frac{\hbar^2}{4} \) and \(|+|S_y|+> = 0 \). Therefore \(++|<\Delta S_y>|^2|++> \)
\[[S_x, S_y] \|+\| = i\hbar \|+\| = i\hbar^2/2. \] The generalized uncertainty relation is therefore verified for the equality case.

(b) From \(|\tilde{\alpha};\|+\| = \cos^{\frac{\beta}{2}} |+\| + e^{i\alpha} \sin^{\frac{\beta}{2}} |-\| \) it follows for \(\beta = \pi/2 \) and \(\alpha = 0 \) we have
\[[S_x; \|+\| = \frac{1}{2}\hbar (|+\| + |-\|). \] Simple calculations lead to \(<S_x; |S_x|S_x; \|+\| = \hbar/2 \) and
\[<S_x; |S_x|S_x; \|+\| = \hbar^2/4, \] therefore \(<S_x; |(\Delta S_x)^2|S_x; \|+\| = 0. \) Again \([S_x, S_y] = i\hbar S_z \), hence \(<S_x; |S_y|S_x; \|+\| = 0 \) and \(<S_x; |(\Delta S_x)^2|S_x; \|+\| <S_x; |(\Delta S_y)^2|S_x; \|+\| \) both sides of generalized uncertainty relation being zero.

(20) Take the normalized linear combination \(|\tilde{\alpha};\|+\| = |\alpha;\|+\| + (1-\alpha^2)^{\frac{1}{2}} e^{i\beta} |\tilde{\alpha};\|+\| \), where \(\alpha \) is real and \(|\alpha| < 1 \). Then elementary calculations yield \(<(\Delta S_x)^2| = \frac{\hbar^2}{4} [1-4\alpha^2 (1-\alpha^2) \cos^2 \beta] \) and \(<(\Delta S_y)^2| = \frac{\hbar^2}{4} (1-4\alpha^2 (1-\alpha^2) \sin^2 \beta). \) The product
\[<(\Delta S_x)^2| <(\Delta S_y)^2| = \frac{\hbar^4}{16} [1-2\alpha^2 (1-\alpha^2)]^2. \] Maximum for \(\sin^2 \beta \) is when \(\beta = \pi/4 \), and r.h.s. becomes \(\frac{\hbar^4}{16} [1-2\alpha^2 (1-\alpha^2)]^2. \) It is clear that \(\alpha^2 = \frac{1}{2} \) is a minimum, and the maximum value \(\frac{\hbar^4}{16} \) is reached when \(\alpha^2 = 0 \), or \(\alpha^2 = 1 \). Hence the linear 'combination' that maximizes uncertainty product is \(e^{i\pi/4} |\tilde{\alpha};\|+\| \) or \(\tilde{\alpha} = \|+. \) That \(\tilde{\alpha} = \|+ \) does not violate uncertainty relation has been proved in Problem 19(a) above. For the \(e^{i\pi/4} |\tilde{\alpha};\|+\| \) case, we note that the phase factor \(e^{i\pi/4} \) cancels out in the scalar product, and \(<\tilde{\alpha} = (<S_x = <S_y = 0 \) while
\[<\tilde{S}^2_x| = <\tilde{S}^2_y| = \hbar^2/4. \] Again \(<\tilde{[S_x, S_y]| = <\tilde{i}\hbar S_z = \hbar/2 = -\hbar^2/2. \) Hence explicitly we have \(<\tilde{[S_x, S_y]| = <\tilde{[S_x, S_y]| = \hbar^4/16 = \hbar|<\tilde{[S_x, S_y]|^2, \) again no violation.
21. This is the rigid wall potential (one-dimensional box), c.f. (A.2.3) and (A.2.4) of Appendix A. The wave functions and energy eigenstates are \(\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a), \ n=1,2,3,\ldots, \) and \(E_n = \frac{n^2\pi^2}{2m^2}, \ n=1 \) is ground state \(n>1 \) are the excited states. Next note that
\[
\langle \Delta x \rangle^2 = \langle x^2 \rangle - \langle x \rangle^2, \quad \langle \Delta p \rangle^2 = \langle p^2 \rangle - \langle p \rangle^2
\]
where \(p = \frac{\hbar}{i\partial_x} \) and \(p^2 = -\hbar^2\partial^2/\partial x^2. \) For rigid wall potential, we have
\[
\langle x^2 \rangle = \frac{2}{a} \int_0^a x^2 \sin^2(n\pi x/a) \, dx = 2a^2 \left[\frac{1}{6} - \frac{1}{4n^2 \pi^2} \right] = a^2 \left[\frac{1}{3} - \frac{1}{2n^2 \pi^2} \right]
\]
\[
\langle x \rangle = \frac{2}{a} \int_0^a x \sin(n\pi x/a) \, dx = \frac{a}{n\pi}
\]
\[
\langle p^2 \rangle = \frac{\hbar^2}{a} \int_0^a \sin^2(n\pi x/a) \left(-\frac{\hbar^2}{a^2 \partial_x^2} \right) \sin(n\pi x/a) \, dx = \frac{\hbar^2}{a^2} \left[\frac{1}{3} \right]
\]
\[
\langle p \rangle = \frac{\hbar}{a} \int_0^a \sin(n\pi x/a) \left(-\frac{\hbar}{a^2} \right) \sin(n\pi x/a) \, dx = 0.
\]
Therefore the uncertainty product \(\langle \Delta x \rangle^2 \langle \Delta p \rangle^2 = \frac{a^2}{2} \left[\frac{1}{6} - \frac{1}{2n^2 \pi^2} \right] \frac{\hbar^2}{a^2} \left[\frac{1}{3} \right] = \frac{\hbar^2}{2} \left[(n\pi)^2/6 - 1 \right] \); for ground state \(n=1 \) for excited states \(n>1 \).

22. Assume that the ice pick is equivalent to a mass point \(m \) attached to a light rod of length \(L \) the other end of which is balanced on a fixed hard surface. For small angle \(\theta \) departure of pick from vertical, the torque equation is \(mL^2 d^2 \theta/dt^2 = mgL \), and solution \(\theta(t) = \alpha \sqrt{g/L} \sin \left(\sqrt{g/L} \right) t \). The uncertainty relation at \(t=0 \) with \(\Delta x = L \theta = (a-b)L \), \(\Delta p = m\omega \sqrt{L} \\theta = m\sqrt{gL}(a-b) \) is \(\Delta x \Delta p = \hbar/2 \) (best we can do and realized for Gaussian packet). Now \(\Delta x \Delta p = \hbar/2 \) implies \(a^2 = b^2 + \hbar/(2m[gL^3]^3) \). The displacement at later time \(t \) is minimized by making \(a \) and \(b \) as small as possible. So set \(a = \sqrt{\hbar/(2m[gL^3]^3)} \), \(b = 0 \) (actually irrelevant for \(t >> \sqrt{g/L} \)). Displacement becomes noticeable when \(\theta \) becomes as large as \(\theta_f = \pi/100 \approx 2^o \). We have \(\theta_f = \alpha \sqrt{g/L} \) and taking for definiteness \(a = \sqrt{\hbar/(2m[gL^3]^3)} \), \(t_f = \sqrt{g/L} \left[\ln \theta_f + \sin^{-1}(\frac{gL^3}{\hbar}) \right] \). Use \(L = 10 \text{ cm}, m = 100 \text{ gm}, \) and \(g = 980 \text{ cm/sec}^2 \); we have \(t_f = 3.4 \text{ s} \). Actually this number is very insensitive.
to \(\lambda \) and \(\Theta_f \). For any reasonable value, we get \(t_f \approx 3 \) sec.

23. (a) The characteristic equation \(\det(b - \lambda I) = 0 \), leads to \((\lambda - b)^2(\lambda + b) = 0 \). Hence \(\lambda = \pm b \) and \(\lambda = b \) is a two-fold degenerate eigenvalue.

(b) Straightforward matrix multiplication gives

\[
AB = \begin{pmatrix}
ab & 0 & 0 \\
0 & 0 & \text{i}ab \\
0 & \text{i}ab & 0
\end{pmatrix}
\]

hence \([A, B] = 0\).

(c) The eigenvectors (eigenkets) of \(B \), together with \([A, B] = 0\), yield simultaneous eigenvectors of \(A \) and \(B \). Let \(\lambda_1 \) be eigenvalues of \(B \), and corresponding eigenvectors are

\[
u^1 = \begin{pmatrix} u^1_1 \\ u^1_2 \\ u^1_3 \end{pmatrix}, \text{ where } Bu^1_1 = \lambda_1 u^1_1, \text{ i.e., } u^1_{i=1,2,3}.
\]

For \(\lambda_1 = b \), we have \(Bu^1_1 = bu^1_1 \), \(iBu^2_2 = bu^1_3 \), and \(Bu^3_3 = u^1_1 \). Choose \(u^1_1 = 1, u^1_2 = u^1_3 = 0 \) as a basis.

For the degenerate \(\lambda_2 = b \), we have \(Bu^2_1 = bu^2_1 \) and \(iu^2_2 = u^2_3 \). But \(u^2 \) must be orthogonal to \(u^1 \), hence \(u^2_1 = 0 \). Therefore we choose \(u^2_1 = 0, u^2_2 = 1, u^2_3 = i \), and the normalized

\[
u^2 = \frac{1}{2\sqrt{i}} \begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix} = \frac{1}{2\sqrt{i}} (|2\rangle + i|3\rangle), \text{ where } |2\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } |3\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.
\]

For nondegenerate \(\lambda_3 = -b \), again \(u^3 \) must be orthogonal to \(u^1 \) and \(u^2 \), therefore \(u^3_1 = 0 \) and relation \(iu^3_2 = -u^3_3 \) can be satisfied by choosing \(u^3_2 = 1, u^3_3 = -i \). Together with normalization we have

\[
u^3 = \frac{1}{2\sqrt{i}} \begin{pmatrix} 0 \\ 1 \\ -i \end{pmatrix} = \frac{1}{2\sqrt{i}} (|2\rangle - i|3\rangle).
\]

In this new set \(u_i^k (i=1,2,3) \), evidently \(Au^1 = au^1, Au^2 = -au^2, Au^3 = -au^3 \), and there
is two fold-degeneracy w.r.t. eigenvalue $-\alpha$ of operator A.

24. (a) The rotation matrix [c.f. (3.2.44)] acting on a two-component spinor can be written as $\exp[-i\sigma_\alpha \hat{n}_d / 2] = \frac{1}{2} \cos \frac{\theta}{2} - i \sigma_\alpha \frac{\sin \frac{\theta}{2}}{2}$. For clockwise rotation about x-axis through $-\pi/2$, we have $\theta = -\pi/2$, hence $\exp[-i\sigma_x \hat{n}_d / 2] = \frac{1}{2} (1 - i \sigma_x)$.

(b) If we transform from base kets in S_z representation to eigenkets of S_y as base kets, i.e. rotate by angle $-\pi/2$ about x-axis, S_z is transformed into

$$\frac{1}{2} (1 - i \sigma_x) \hat{n}_z (1 - i \sigma_x) \hat{n}_z = -\frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

(This can be seen by noting that if $|c\rangle$ is S_z basis while $|b\rangle$ is S_y basis, than transformation is

$$\langle c''|S_z|c'\rangle = b''_c b''_c \langle c''|b''|S_z|b''\rangle.$$

25. Given $\langle b'|A|b''\rangle$ is real. Take another basis $|c\rangle$, then $|c\rangle = \sum b''_c |b''|c'\rangle$, hence $\langle c'|A|c''\rangle = (\sum b''_c \langle c'|b''\rangle A \sum b''_c \langle b''|c''\rangle) = b''_c \sum b''_c \langle c'|b''\rangle \langle b''|c''\rangle \times \langle b'|A|b''\rangle$. It is not necessary that $\langle c'|b'\rangle$ and $\langle b''|c''\rangle$ be real. Take the S_y and S_z cases of problem 24 above. Here $|b'\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |+\rangle$ while $|b''\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |--\rangle$. Hence $\langle c'|b'\rangle = 1/\sqrt{2} = \langle c''|b''\rangle$, but $\langle c''|b''\rangle = 1/\sqrt{2} = -\langle c'|b'\rangle$ are imaginary.

26. From problems 9 and 19, we have $|S_z;+\rangle = \frac{1}{2}(|\rangle+|--\rangle)$, i.e. $\alpha = 0, \beta = \pi/2$ in $|\hat{S}_z;\rangle$. Now $|S_z;--\rangle$ corresponds to axis of quantization in the $-x$ direction, i.e. $\alpha=\pi, \beta = \pi/2$, hence $|S_z;--\rangle = \frac{1}{\sqrt{2}}(|\rho\rangle+|--\rangle)$. Let $U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix}$ be the transformation matrix between S_z diagonal basis and S_x diagonal basis, i.e.

$$\begin{pmatrix} |S_z;+\rangle \\ |S_z;--\rangle \end{pmatrix} = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \begin{pmatrix} |+\rangle \\ |--\rangle \end{pmatrix} = U|\rangle$$

than evidently $U_{11} = U_{12} = 1/\sqrt{2}$ while $U_{21} = 1/\sqrt{2}$ and $U_{22} = -1/\sqrt{2}$. Take $|S_z;+\rangle$
27. (a) Matrix element \(\langle b'' | f(A) | b' \rangle = \frac{\pi}{4}, \langle b'' | f(A) | a' \rangle = \frac{\pi}{4}, f(a') = b''|a'\rangle = b''|b'\rangle \)
where \(a'|b' \rangle \) (likewise \(b''|a'\rangle \)) is an element of the transformation matrix from the \(a' \) basis to the \(b' \) basis. (b) The matrix element \(\langle \vec{p}'' | F(\vec{r}) | \vec{p}' \rangle = -i \hbar^2 \psi(\vec{r})^* \psi(\vec{r}) \times \langle \vec{p}'' | \vec{r}' \rangle \langle \vec{r}' | \vec{p}' \rangle \). Note that \(\frac{\psi(\vec{r})^* \psi(\vec{r})}{\hbar^2} = \frac{1}{2(2\pi \hbar)^2} e^{i q \cdot \vec{r}' / \hbar} \).
Suppose \(F(\vec{r}) \) is spherically symmetric, then (choosing \(\vec{z} \)-axis along \(\vec{p}' - \vec{p}'' \))

\[
\langle \vec{p}'' | F(\vec{r}) | \vec{p}' \rangle = \frac{2\pi}{(2\pi \hbar)^3} \int_0^{\infty} r^2 dr \sin(q r) e^{i q r / \hbar} \frac{\psi(\vec{r})^* \psi(\vec{r})}{\hbar^2} \theta(\vec{r}') \psi(\vec{r}')^* \psi(\vec{r}')\]
where \(q = |\vec{p}' - \vec{p}''| \). Integrate out the \(\sin \theta \) integration on r.h.s. we have

\[
\langle \vec{p}'' | F(\vec{r}) | \vec{p}' \rangle = \frac{1}{2\pi \hbar^2 q} \int_0^{\infty} r \sin(q r / \hbar) F(r) dr
\]

28. (a) \([x, F(p_x)]_{CL} = \frac{\partial x}{\partial x} \frac{\partial F}{\partial p_x} - \frac{\partial x}{\partial p_x} \frac{\partial F}{\partial x} = 0\), hence \([x, F(p_x)]_{CL} = \frac{\partial F}{\partial p_x}\).
(b) Now \([x, F(p_x)]_{QM} = i\hbar [x, F(p_x)]_{CL}\), hence

\[
[x, \exp[ip_x a/\hbar)]_{QM} = i\hbar \frac{\partial}{\partial p_x} \exp[ip_x a/\hbar] = -a \exp[ip_x a/\hbar].
\]
(c) Using (b) we have

\([x, \exp[ip_x a/\hbar)]_{QM} = -a \exp[ip_x a/\hbar] x\).

Hence \(x \exp[ip_x a/\hbar)]x\) = \(i x a \exp[ip_x a/\hbar] x\), and hence \(x \exp[ip_x a/\hbar)]x\) = \(a x \exp[ip_x a/\hbar] x\). This equation implies that \(\exp[ip_x a/\hbar)]x\) is an eigenvalue of coordinate operator \(x\), with corresponding eigenvalue \((x-a)\).

29. (a) We assume that \(G(p)\) and \(F(x)\) can be expressed as a power series

\[
G(p) = \sum_{n,m} a_{nm} p^n m l, F(x) = \sum_{n,m} b_{nl} x^n m l
\]
An elementary calculation yields \[x_1, p_1, \ldots, p_n \] = \[n! Kp_1^{n-1} p_2 \ldots p_n \] (use \(x_1, A \)) = \[x_1, A \] + \(A[x_1, B] + (AB)[x_1, C] \) and \[p_1, x_1, \ldots, p_n \] = \[-ni \hbar x_1, x_1^{n-1} p_2 \ldots p_n \]. These relationships \(x_1, p_1 \) = \[ni \hbar x_1 \] and \(p_1, x_1 \) = \[-ni \hbar x_1 \] can be easily proved by mathematical induction. Using the series form for \(G(\vec{r}) \) and \(F(\vec{r}) \), we get at once \(\{ x_1, C(\vec{r}) \} = i\hbar C(\vec{r}) / \partial x_1 \) and \(\{ p_1, F(\vec{r}) \} = -i\hbar F(\vec{r}) / \partial x_1 \).

(b) \([x^2, p^2] = [x^2, pp] = [x^2, p]p + p[x^2, p] \), but from \(p, x^2 = -2i\hbar x \), so \([x^2, p^2] = 2i\hbar xp + 2i\hbar px = 2i\hbar(x, p) \). The classical P.B. for \([x^2, p^2] \) is evaluated via \(\{ x^2, p^2 \} = 3x^2 \partial^2 / \partial p^2 - 3x^2 \partial^2 / \partial p \partial x = 2x(2p) = 4xp \). Since in the classical limit \(x, p \) \[x^2, p^2 \] \[\{ x^2, p^2 \} = 2xp \), we have \([x^2, p^2] = \{ x^2, p^2 \} \).

30. (a) \(\{ x_1, T(\vec{z}) \} = i\hbar T(\vec{z}) / \partial x_1 \) = \(i\hbar \) \[\partial x_1 \] \[\exp(-i\hbar \vec{z} / \hbar) \] = \(i\hbar (-i\hbar / \hbar) \exp(-i\hbar \vec{z} / \hbar) \) = \(\vec{z} \). (b) Noting that \(\{ x_1, a \} = a \{ x_1, \} \) where \(\{ a \} \) is a general state ket,

31. Given \(\{ x, T(d\vec{x}) \} = d\vec{x} \) or \(\{ x, T(d\vec{x}) \} = d\vec{x} + T(d\vec{x}) \), we study \(\{ a, T(d\vec{x}) \} \) substituting as we did in problem 30.

32. Use of \(\{ x', a \} = \frac{1}{d^2} \exp(ikx' - x'^2/2d^2) \), we find by elementary calculation

\[\frac{2}{d^2} \frac{x'^2}{d^2} (1k-2x'/d^2) \exp(ikx' - x'^2/2d^2) + \frac{3}{d^2} \frac{x'^3}{d^2} \exp(ikx' - x'^2/2d^2) \] = \[\frac{1}{d^2} \frac{x'^2}{d^2} (1k-2x'/d^2) \exp(ikx' - x'^2/2d^2). \]
(a) \(\langle p \rangle = \int_0^{\infty} \langle a | x' > [-i \hbar \frac{\partial}{\partial x'}] < x' | a \rangle dx' = -i \hbar \int_0^{\infty} \frac{dx}{d} \exp(-x'^2/d^2)(ikx'/d^2)dx' \).

The odd term of integrand vanishes, and \(\langle p \rangle = \left(\frac{\hbar k}{d} \right)^{1/2} \int_0^{\infty} \exp(-x'^2/d^2)dx' = \frac{\hbar k d}{d^{1/2}} \).

Likewise \(\langle p^2 \rangle = \int_0^{\infty} \langle a | x' > x'^2 < x' | a \rangle dx' = \int_0^{\infty} \langle a | x' > \left(-\hbar^2 \frac{\partial^2}{\partial x'^2} \right) 2x'^2 < x' | a \rangle dx' = -\frac{\hbar^2}{d} \int_0^{\infty} \exp(-x'^2/d^2)\left[x'^2/d^4 - k^2 - 1/d^2 - 2ikx'/d^2 \right]dx' = \hbar^2/2d^2 + \hbar^2k^2 \), again dropping odd terms in integrand.

(b) \(\langle p | a \rangle = \frac{d}{\hbar k^{1/2}} \exp[-(p - \hbar k)^2 d^2/2\hbar^2] \). The expectation value \(\langle p \rangle \) using momentum space wave function is then:

\[\langle p \rangle = \int_0^{\infty} \langle a | p \rangle \langle p | a \rangle dp = \frac{d}{\hbar k^{1/2}} \int_0^{\infty} \exp[-(p - \hbar k)^2 d^2/2\hbar^2] dp. \]

Change variable to \(q = p - \hbar k \), we have \(\langle p \rangle = \left(\frac{d}{\hbar k^{1/2}} \right) \int_0^{\infty} \exp[-q^2 d^2/2\hbar^2] dq \), and dropping the odd integration contribution

\[\langle p \rangle = \left(\frac{d}{\hbar k^{1/2}} \right) \hbar k \left(\frac{d}{k^{1/2}} / d \right) = \hbar k. \]

Similarly

\[\langle p^2 \rangle = \int_0^{\infty} \left(\frac{d}{\hbar k^{1/2}} \right) p^2 \exp[-(p - \hbar k)^2 d^2/2\hbar^2] dp \]

and changing variable to \(q = p - \hbar k \) (hence \(p^2 = q^2 + 2q \hbar k + \hbar^2 k^2 \)), we have

\[\langle p^2 \rangle = \left(\frac{d}{\hbar k^{1/2}} \right) \int_0^{\infty} \exp[-q^2 d^2/2\hbar^2] dq \]

\[= \left(\frac{d}{\hbar k^{1/2}} \right) \left[\frac{k^3 \sqrt{\pi} / 2 d^3 + \hbar^2 \pi \hbar^2 k^2 / d!} = \hbar^2 / 2d^2 + \hbar^2 k^2. \]

33. (a) To prove (i) \(\langle p' | x | a \rangle = i \hbar \frac{\partial}{\partial p'}, \langle p' | a \rangle \), let us note that

\[\langle p' | x | p'' \rangle = \int \langle p' | x | x' > < x' | p'' \rangle dx' = \int \langle x | cp' | x' > < x' | p'' \rangle dx' \]

\[= \left[1/(2\pi \hbar) \right] / dx' x'e^{-i x' \cdot (p' - p'') / \hbar} \]

But \(\delta(p' - p'') = \left[1/(2\pi \hbar) \right] / dx' e^{-i x' \cdot (p' - p'') / \hbar} \), so \(\frac{\hbar}{3} \delta(p' - p'') = \int \frac{dx'}{2\pi \hbar} x'e^{-i x' \cdot (p' - p'') / \hbar} \).

hence \(\langle p' | x | p'' \rangle = i \hbar \frac{\partial}{\partial p'}, \delta(p' - p'') \). Express now \(\langle p' | x | a \rangle = \int dp'' \langle p' | x | p'' \rangle \langle p'' | a \rangle = \int dp'' i \hbar \frac{\partial}{\partial p'}, \delta(p' - p'') \rangle (p'' | a \rangle = i \hbar \frac{\partial}{\partial p'}, \langle p' | a \rangle. \)
For (ii) we perform an analogous procedure. Write

$$\langle \beta | x | \alpha \rangle = \int dp' \langle \beta | p' \rangle \langle p' | x | \alpha \rangle = \int dp' \langle \beta | p' \rangle \hat{W}^3_{p'} \langle p' | \alpha \rangle = \int dp' \phi^*_{\beta}(p') \hat{W}^3_{p'} \phi_{\alpha}(p').$$

(b) Consider momentum eigenket with eigenvalue p'. Then $p | p' \rangle = p' | p' \rangle$. Now consider the ket $| p', \Xi \rangle = \exp(i\Xi \hat{x}) | p' \rangle$. Is this a momentum eigenket and if yes what is the value? To see this let's operate with p, than

$$p | p', \Xi \rangle = p \exp(i\Xi \hat{x}) | p' \rangle = \{ \exp(i\Xi \hat{x})p + [p, \exp(i\Xi \hat{x})] \} | p' \rangle$$

and $[p, \exp(i\Xi \hat{x})] = -i\hat{W}(\exp(i\Xi \hat{x}))/\Xi x = -i\hat{W}(i\Xi \hat{x}) \exp(i\Xi \hat{x})$. So $p | p', \Xi \rangle = \exp(i\Xi \hat{x})p | p' \rangle + \Xi \exp(i\Xi \hat{x}) | p' \rangle = (p' + \Xi) | p', \Xi \rangle$. Hence $| p', \Xi \rangle$ is eigenket of p with eigenvalue $p' + \Xi$ and operator $\exp(i\Xi \hat{x})$ is momentum translation operator and x is the generator of momentum translations.