
Problem Set 4 223B Condensed Matter Physics, Winter 2017

Due: Monday, March 13, 2017 by 11pm

Put homework in mailbox labelled 223B on 1st floor of Broida (by elevators).

1.) LONDON THEORY

Ashcroft and Mermin Chapter 34 problem 2.

2.) BOUNDARY BETWEEN TYPE I AND TYPE II SUPERCONDUCTIVITY

Within Landau theory for a superconductor in a magnetic field, the Gibbs free energy (G = F − (1/4π)
∫
BH) for

the Meissner phase equals that for the normal phase when H = Hc. Using Landau theory, show that the free energy
per unit area of an interface separating these two co-existing phases can be expressed as:

γ =

∫ +∞

−∞
dx[(−b/2)|ψ|4 +

1

8π
(B −Hc)

2] (1)

with the coordinate x running normal to the interface. Using the Ginzburg-Landau differential equations, show that
when κ = λ/ξ = 1/

√
2, the interfacial energy γ is identically zero. Explain why this value of κ de-markates the

boundary between type I and type II superconductors. [ Hint: Take the magnetic field along the z-direction, and

choose a gauge with ~A = A(x)ŷ. The two Ginzburg-Landau equations are then differential equations for (real) ψ(x)
and A(x). Assuming the integrand in (1) vanishes, gives one a third differential equation for the two functions, ψ and

A. Show that these three differential equations can be simultaneously satisfied when κ = 1/
√

2. It is not necessary
to obtain explicit solutions for the equations.]

3.) ISOLATED VORTEX and Hc1

At the lower critical field Hc1, the Gibbs energy of a Type II superconductor with one isolated vortex line equals
the Gibbs energy with no lines present.

A.) Use this to show that

Hc1 = 4πε1/Φ0, (2)

where ε1 is the free energy per length of the vortex line.

B.) In the extreme Type II limit, ε1 is dominated by the region outside of the vortex core (of size ξ), where London
theory is valid (since ρs is a constant). Due to the singular structure at the vortex core, London’s equation in the
presence of a single vortex line should be modified:

(4πλ2/c)∇× ~J + ~B = Φ0ẑδ
2(x). (3)

Show that the magentic field distribution around a vortex satisfies

B(r) ≈ (Φ0/2πλ
2)ln(λ/r), (4)

for distances ξ << r << λ from the vortex, and B(r) ≈ exp(−r/λ) for r >> λ.
C.) The vortex line energy is a sum of field and kinetic energy contributions,

ε1 =
1

8π

∫
d2x ~B2 +

1

2
mρs

∫
d2x~v2s , (5)

where ~J = ρse
∗~vs. Using the modified London equation (3), show that this can be expressed as

ε1 =
1

8π
Φ0

∫
d2xBδ2(x) ≈ 1

8π
Φ0B(r = ξ), (6)

where in the second expression have approximated the delta function with value at core radius. Combining Eqn’s
2,4 and 6 gives an approximate expression for Hc1 in terms of penetration and coherence lengths. Evaluate Hc1 for
λ ≈ 1500 Angstroms and ξ ≈ 15 Angstroms - values typical for the High-Tc cuprates.


