Problem Set 5 215B- Quantum Mechanics - Winter 2013

Due: Friday, March 15, 2013 by 5pm
Put homework in mailbox labelled 215B on 1st floor of Broida (by elevators).

1.) S-MATRIX SYMMETRY FOR 1D SCATTERING

Consider a particle of mass m moving in one-dimension, and incident on a potential barrier, $V(x)$, (non-zero near the origin, $x = 0$), at energy $E = \hbar^2 k^2 / 2m$. For this 1d problem the S-matrix is a 2 by 2 matrix, as defined in class.

A.) Show that conservation of probability implies that the S-matrix is unitary. How many (real) parameters are needed to parameterize the most general unitary (2 by 2) S-matrix?

B.) Use unitarity of the S-matrix to show that the transmission probability for a particle incident at energy E from the left (large negative x) is the same as for a particle incident from the right (large positive x).

C.) Show that time reversal invariance implies that the S-matrix is symmetric. How many parameters are needed to describe the most general unitary, symmetric (2 by 2) S-matrix?

D.) Assume that the potential is also parity invariant: $V(x) = V(-x)$. Derive any additional constraints on the form of the S-matrix. What is the most general form of the S-matrix in this case, and how many parameters are needed to parameterize it?

2.) CONDUCTANCE OF A ONE-CHANNEL QUANTUM WIRE

Consider a single-channel quantum wire, modelled in terms of a 1d system of (non-interacting) electrons, with states filled up to the Fermi energy, $E_F = \hbar^2 k^2_F / 2m$. Impurity scattering in the wire is described by a potential $V(x)$.

A.) For a single delta-function scattering potential,

$$ V(x) = V_0 \delta(x), \quad (1) $$

calculate the S-matrix as a function of the incident energy, E (or wave vector k). Verify that your result is consistent with the general form obtained in Problem 1D.

B.) Employing the Landauer formula, and your results from part (A), compute the conductance, G, of the quantum wire for a small bias voltage (linear response).

C.) Consider a double barrier structure in the wire, modelled via two delta-functions:

$$ V(x) = V_0 \delta(x + a) + V_0 \delta(x - a). \quad (2) $$

Compute the S-matrix as a function of energy, E. Here, you can perhaps use the general form from problem 1D to reduce the labor.

D.) Obtain the conductance, G, for this double barrier structure, again using the Landauer formula, and plot it (or sketch it) as a function of the Fermi energy E_F. Discuss any structure that appears in $G(E_F)$. Is the resistance of the double barrier structure ($R = 1/G$) twice as large as the single barrier resistance (that is, do the resistances “add in series”)? Why?

3.) INELASTIC SCATTERING FROM A HARMONIC OSCILLATOR

Consider a particle with mass m confined in a 3d Harmonic potential, with Hamiltonian

$$ H_{osc} = \frac{1}{2m} \vec{p}^2 + \frac{1}{2} m\omega_0^2 \vec{X}^2. \quad (3) $$
A particle with mass M (and position operator \vec{R}) is incident with wave vector \vec{k}, and interacts with the harmonically confined particle via a potential $V(\vec{X} - \vec{R})$ with

$$V(\vec{r}) = V_0 \exp(-\vec{r}^2 / 2a^2). \tag{4}$$

A.) Assuming the harmonically confined particle is initially in its ground state, use the Born approximation to compute the differential cross section, $d^2\sigma/d\Omega d\epsilon$, for the mass M particle to scatter off the confined (mass m) particle, as a function of the energy and momentum transfer.

[Two useful identities: (i) For any two operators A and B whose commutator $[A, B]$ is a c-number,

$$e^A e^B = e^{A+B} e^{\frac{1}{2}[A,B]} \tag{5}.$$]

(ii) For any operator A linear in the position and momentum operators of a 1d oscillator,

$$\langle 0 | e^A | 0 \rangle = e^{\langle 0 | A^2 | 0 \rangle} \tag{6},$$

where $|0\rangle$ is the harmonic oscillator ground state.]

B.) After the scattering process, what’s the highest excited state the oscillator can be in?