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Critical dynamics of thermal conductivity at the normal-superconducting transition
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We study the effect of thermal fluctuations on the critical dynamics of the three-dimensional disordered
superconductor across the normal-superconducting transition. We employ a phenomenological hydrodynamic
approach, and in particular find the thermal conductivity to be smooth and nonsingular at the transition.

DOI: 10.1103/PhysRevB.64.134507 PACS number~s!: 75.10.Nr, 05.50.1q, 75.10.Jm
pe
rl
ic
n
th
e
n
e
po
da
in
n
e
ta

o
re
a
n
ri

e
tin
r
S
ns
al
is

p
a
-
or
s
O
he
y

a
uc

m
cl
s i

ng
i-
ic

en
ap-
t to
ef-

ne

per-
gy
sh-
—
mal
ate
ue
m-
tem
p-
the

c-
en-
y
n
ely
K.
I. INTRODUCTION

Some 15 years after the discovery of the cuprate su
conductors, many tantalizing puzzles remain, particula
with regards to ground-state and possible quantum crit
properties with varied doping. It has been difficult to dise
tangle consistent analyses faithful to experiment from
zoo of microscopic theories and models. In contrast, th
have been notable successes in understanding the phe
enology of the finite temperature transition into the sup
conducting phase, where quantum fluctuations are unim
tant and progress can be made employing classical Lan
Ginzburg approaches. In particular, at optimal doping
YBCO, the observed critical behavior in the electrical co
ductivity, specific heat, penetration depth, and oth
quantities1 appears to be consistent with theoretical expec
tions.

Recent attention has focused on thermal transp
experiments,2 which have shed light on the low-temperatu
transport of quasiparticles in the superconducting phase,
have revealed low-temperature violations of the Wiedema
Franz law in the normal state of the electron-doped mate
suggestive of a non-Fermi liquid ground state.3 Here, we
revisit the theory of thermal conductivity, focusing on th
critical behavior near the finite temperature superconduc
transition where progress is possible without the need fo
microscopic quantum model. Older works within a BC
framework generalizing the Aslamazov-Larkin calculatio
to thermal conductivity,4 have predicted a diverging therm
conductivity upon cooling into the superconductor, remin
cent of the behavior of4He at thel transition. This appears
to be at odds with experiment in the cuprates, which ty
cally show a finite and rather smooth thermal conductivity
one cools throughTc , with a large growth upon further cool
ing usually ascribed to quasiballistic-quasiparticle transp

Our study focuses on the three-dimensional disordered
perconductor, most appropriate to optimally doped YBC
which is the least two-dimensional cuprate. We follow t
phenomenological hydrodynamic approach to critical d
namics pioneered by Hohenburg and Halperin.5 Indeed, one
of the early successes of this dynamical scaling appro
was the correct description of the diverging thermal cond
tivity near thel transition in 4He. Here, we modify this
theory to account for impurities and long-ranged Coulo
forces appropriate to the superconductor. Our central con
sion is that rather than a divergent thermal conductivity a
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4He, the thermal conductivity is predicted to befinite and
exhibit smoothnonsingular behavior at the superconducti
transition. Surprisingly, the critical singularities that dom
nate the electrical conductivity and other thermodynam
properties are found to becompletelyabsent from the ther-
mal conductivity. There is effectively a decoupling betwe
the thermal and electrical-transport coefficients upon
proaching the superconducting phase, in strong contras
the universal Lorenz ratio relating these two transport co
ficients in a conventional metal.

II. THERMAL CONDUCTIVITY

The thermal conductivityk, relates the heat currentQW to
an applied thermal gradient“W T under the condition of no
particle flow,

QW 52k“W T, jW50, ~1!

where jW is the particle current. Within linear response o
has an Einstein relation for the thermal conductivity,

k5DTCV , ~2!

whereDT is the thermal diffusion constant, andCV the spe-
cific heat at constant volume.

In systems with a condensed ground state such as su
fluid 4He, the situation is a little more involved since ener
can couple to the order parameter in a nondissipative fa
ion. This leads to a ballistic wavelike propagation of heat
second sound—in the superfluid state, and an infinite ther
conductivity. In the normal state, while heat does propag
diffusively, its associated thermal conductivity diverges d
to critical fluctuations upon approaching the transition te
perature. As we shall discuss, in contrast to its sister sys
of superfluid 4He, the impure superconductor can only su
port a diffusive rather than an oscillatory heat mode, and
thermal conductivityk is finite at all temperatures.

In the high-Tc superconductors, the role of thermal flu
tuations near the superconducting transition is drastically
hanced relative to their low-Tc counterparts. Being generall
anisotropic, and strongly type II, the Ginzburg criterio
shows that critical fluctuations are present over a relativ
wide range of temperatures, perhaps as large as 5–106
©2001 The American Physical Society07-1
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Within this temperature window we can dispense with m
croscopic models, and appeal to a critical hydrodynamic
proach.

III. SUPERFLUID HYDRODYNAMICS REVISITED

To identify the appropriate model near criticality, we fo
low Ref. 5, and first focus on the hydrodynamics in the n
mal state. Since the frequencyv of the ‘‘slow’’ hydrody-
namic modes vanishes with wave vectorqW , one need only
study the dynamics of conserved densities that cannot r
rapidly on long length scales. We consider first an unchar
and pure fluid, such as4He. In this case there are five suc
conserved densities: three components of the particle cu
density jW and the energye, in addition to the particle numbe
densityr. Associated with these five conserved densities
five hydrodynamic modes: propagating first sound that
volves the density and longitudinal current density~counting
as two modes withv56cq) and three diffusive mode
~with v5 iDq2)—energy and two transverse current dens
modes. To see this, consider the continuity equation,

]r

]t
1“

W
• jW50, ~3!

and the Navier Stokes equation for current density conse
tion linearized for small current density:

] jW

]t
1

1

m
“
W p5n“2 jW, ~4!

wherep is the pressure,m the mass of the constituent4He
particle, andn the kinematic viscosity. One can also defi
the fluid velocity fieldvW , which satisfiesjW5rvW . Upon taking
the divergence of Eq.~4!, combining with the continuity
equation and linearizing for small current density and den
variations, one obtains first sound with velocity,c
5A1/m]p/]rus. Equation ~4! also implies two diffusive
transverse current density modes. In addition, the ene
densitye is conserved,

]e

]t
1“

W
•QW 50, ~5!

whereQW is the heat current. Upon combining Eq.~5! with
the expression that defines the thermal conductivity, one
tains the heat diffusion equation

] te5DT¹2e, ~6!

where we have usedCV5]e/]T and the Einstein relation
relatingk and the thermal diffusion coefficient,DT .

On approaching thel transition into the superfluid, on
must augment this hydrodynamics with the slow dynami
relaxation of the order parameter. This leads to six hydro
namic modes in the superfluid phase: first sound, sec
sound~involving the order parameter and predominantly e
ergy!, and the two diffusive transverse current dens
modes. In the superfluid one adopts a ‘‘two-fluid’’ descri
tion, in which the total density is decomposed into a sup
13450
-
p-

-

ax
d

nt

re
-

a-

y

y

b-

l
-

nd
-

r-

fluid and a normal fluid component:r5rs1rn . Moreover,
one introduces a second velocity field—the superfluid vel
ity vW s , in addition to the ‘‘normal’’ fluid velocity denoted

vW n , and the total current density is decomposed asjW5rsvW s

1rnvW n . The superfluid velocity field is taken to satisfy
Josephson relation

m
]vW s

]t
1“

W m50, ~7!

wherem is the chemical potential.7 Diffusion of energy in
the normal fluid is replaced by second sound oscillations
normal and superfluid. As the superfluid carries no entro
the oscillations involve an entropy wave associated with
normal fluid. This is easiest seen in the absence of diss
tion (n50,k50), where conservation of entropy densitys,
maybe expressed in terms of the associated entropy cu
svW n carried by the normal fluid as

]s

]t
1“

W
•~svW n!50. ~8!

One can combine Eqs.~3!, ~4!, ~7!, and~8!, and use the fact
that local changes in chemical potential are related to lo
thermal gradients via the thermodynamic relation

rdm52sdT1dp. ~9!

One then finds the superfluid velocity and the entropy p
ticipating in second sound motion with velocity

cs5A 1

rm

rss
2

rnS ]s

]TD .

First sound and the two diffusive transverse current d
sity modes are also present in the superfluid phase, giving
anticipated six hydrodynamic modes.

Turning next to the critical dynamics at thel transition,
one needs to take into account purely those hydrodyna
modes that go soft. Coming from the superfluid side,
only such mode is the second-sound mode since its velo
vanishes along with the superfluid density. The first-sou
velocity remains finite through the transition, so that fi
sound oscillates much more quickly than second sound a
same wave vector. One thereby argues that first sound sh
not enter into the low-frequency critical dynamics. Mor
over, couplings of transverse current density modes
found to be irrelevant.5 Thus for the critical dynamics, one
can focus on the conserved heat density and the order pa
eter, which together comprise second sound in the superfl
More precisely, the nondissipative coupling of energy a
the order parameter belowTc , which results in second
sound, is captured by the Poisson relationship

$c,M %;c, ~10!

whereM is the net combination of the energy and partic
number densities taking part in the oscillation, andc is the
complex order parameter. The critical dynamics of such
7-2
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CRITICAL DYNAMICS OF THERMAL CONDUCTIVITY . . . PHYSICAL REVIEW B 64 134507
system is described by a generalized time-depend
Ginzburg-Landau type model involving these two fields, a
was denoted as modelF in Ref. 5.

IV. COULOMB INTERACTIONS AND IMPURITIES

Turning to the case of the charged, pure fluid, which
appropriate in the normal phase for a pure metal, the p
ence of an electric fieldEW gives rise to acceleration. Thu
the right-hand side of Eq.~4! acquires a terme/mrEW , and
that of Eq.~7! acquires a termeEW , where ‘‘e’’ is the charge
of the electron. In addition, distortions of the charged flu
itself give rise to an electric field described by Poisso
equation,

“
W
•EW 54pedr, ~11!

wheredr corresponds to density distortions. Consequen
in three dimensions, the sound mode involving density a
longitudinal current density becomes a high-energy plasm
with frequencyvp5A4pe2r/m in the limit qW→0, and thus
drops out of the hydrodynamic description. The transve
diffusive current density modes remain. Importantly, ev
with the modifications associated with the presence
charge, one finds the diffusive heat mode aboveTc .

Below Tc , in the pure three-dimensional superconduc
the low-frequency, long-wavelength second-sound mode
vives because it involves no net density distortions. To
this, we note that due to the gapped plasmon the densi
not a hydrodynamic variable, so one can effectively setdr
50. Upon linearizing the continuity equation Eq.~3! for
small velocities, this implies that“•vW n52(rs /rn)“•vW s .
Upon inserting this into the linearized entropy conservat
Eq. ~8!, and combining with the divergence of the Josephs
relation Eq.~7!, one finds that

]2s

]t2
1

rss

rnm
“

2m50. ~12!

Finally, using the thermodynamic relation Eq.~9! one arrives
at the wave equation for the entropy density propaga
once more with velocity

cs5A 1

rm

rss
2

rnS ]s

]TD .

In addition to second sound, one expects the two diffus
transverse current density modes to be present in the cha
superfluid, just as in4He.

Thus, essentially the sole effect of Coulomb interactio
on the superfluid hydrodynamics is the conversion of fi
sound into the nonhydrodynamic plasmon mode. Since
sound was argued in any event to decouple from the crit
dynamics at thel transition, the critical dynamics in th
charged superfluid is expected to be described by the s
theory—that is modelF, except with the densityM referring
to pure energy.
13450
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Consider next the case of an uncharged fluid in the p
ence of impurities~e.g., 4He absorbed in a porous medium!.
Impurities violate momentum conservation and this leads
a dramatic modification of the hydrodynamics. In particul
with only density and energy being conserved, one expe
two hydrodynamic modes aboveTc and three below. Ab-
sence of momentum conservation can be explicitly captu
by

] jWn

]t
52

jWn

t
, ~13!

where 1/t is the decay rate of current densityjWn . Then,
aboveTc , the first-sound mode involving longitudinal cu
rent density and density cannot propagate at low frequenc
It is replaced by a damped current density modev
52 i /t) and a diffusive density mode with diffusion con
stantDr5c2t, where ‘‘c’’ is the velocity of first sound in the
pure case. Energy continues to be a diffusive mode in
presence of impurities.

Below Tc , the uncharged impure system once again ha
superfluid component moving with velocityvs . The super-
fluid can couple to density in a nondissipative fashion, b
not to entropy, which is not even conserved, and is s
mainly associated with the normal fluid that can no long
propagate ballistically. We can thus simply drop the norm
fluid velocity from the continuity equation Eq.~3!, which
upon linearization and combination with the Josephson r
tion gives,] t

2r5(rs /m)“2m. This describes a fourth soun
mode involving purely superfluid oscillations propagati
with velocity

cimp5A rs

mS ]r

]m D .

In addition, the diffusive energy mode persists belowTc .
To model the critical dynamics one needs to reinterp

the conserved densityM in modelF as the particle numbe
density r and then augment the model with an addition
conserved energy density that is diffusive both above
below Tc . The conserved energy density will be coupled
the order parameterc via a term in the free energy of th
form eucu2. This will lead to a coupling in the resulting
time-dependent equations of motion.

Finally, we arrive at the case of interest—the impu
superconductor—that we model by the charged, impure
perfluid. The hydrodynamic modes may be obtained by
corporating the modifications described above for charge
impurities to the linearized hydrodynamic equations of t
4He system. The normal state describes an impure m
Due to the long-ranged Coulomb interactions the dens
although conserved, is gapped up at the plasma freque
and thus again drops out of the hydrodynamic descripti
Moreover, with impurities, the transverse current dens
modes are also damped. So aboveTc , in this system of the
impure metal, associated with the only remaining hydrod
namic variable one has a diffusive thermal mode.
7-3
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Below Tc , superconducting order gives rise to a seco
mode. As in the case of the uncharged, impure fluid,
order parameter cannot couple nondissipatively to heat.
unlike in this case, it cannot even do so with density, wh
as in the pure charged case, is no longer a hydrodyna
variable since its distortions cost electrostatic energy. A
result, there exist twodiffusivemodes related to the energ
and order parameter, and no oscillatory hydrodynam
modes.13,8,9

While our hydrodynamic treatment employed simple l
earized equations appropriate for mode analysis, an exh
tive study along the lines of the case of4He ~Ref. 10! may
prove useful for the case of the impure superconductor.

V. CRITICALITY

We are now equipped to model the critical dynamics
the dirty superconductor. We have seen that aboveTc , there
only exists a diffusive energy mode. BelowTc , in striking
contrast to superfluid4He, instead of a second-sound osc
latory mode, there exists one diffusive mode associated w
conserved energy density, and one diffusive mode assoc
with the order parameter, which takes the form of a comp
scalar. The simplest phenomenological model incorpora
these ingredients, and all possible relevant couplings, is
scribed by modelC of Ref. 5, and is analyzed in detail for it
critical dynamics in Ref. 11. It is defined by the following s
of equations of motion involving the complex order para
eterc and the conserved energy density:

]c

]t
52G0

dF0

dc*
1h, ~14!

]e

]t
52k0¹2S dF0

de
2d D1z, ~15!

F05E ddxS 1

2
r 0ucu21u0ucu41

1

2
u“W cu21g0ucu2e

1
1

2
C0

21e2D . ~16!

Here G0 and k0 are the bare transport coefficients for t
order parameter and the energy, respectively. An exte
source field,d has been included in Eq.~16!, andh andz are
Langevin noise sources appropriate forc ~complex! and e
~real!, respectively. The energy density and the superc
ducting order parameter are coupled together via the c
pling constantg0.

In equilibrium,c ande minimize the functionalF0. In a
functional integral formulation applicable for the equilibriu
distribution,11 one can integrate over the energy field,e. The
resulting functional of the order parameterc displays the
statics of three-dimensional 3DXY critical behavior, appro-
priate for an extreme type II superconductor~see, e.g., Refs
6 and 1!. The Harris criterion~see, e.g., Ref. 12! shows that
this holds true even in the presence of disorder. Thus,
pure 3DXY model provides an appropriate description f
critical static properties of the dirty superconductor.
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We next turn to the critical dynamics. To obtain the the
mal conductivity, one first defines the energy density line
response functionx(qW ,v), by the relation

^e~qW ,v!&d5x~qW ,v!d~qW ,v!. ~17!

Quite generally, in such a diffusive system, one expects
response function at low frequencies and wave vectors
take the standard form

x~qW ,v!5
kq2

2 iv1DTq2
, ~18!

wherek is the thermal conductivity andDT the thermal dif-
fusion constant. Thus, the thermal conductivity can be
tracted as

k5 lim
qW→0

q22F i ]x21~qW ,v!

]v
U

v50
G21

. ~19!

In the absence of coupling to the order parameter,x can
be readily computed from the~linear! equation of motion for
e which gives

x0
21~qW ,v!5

2 iv

k0q2
1C0

21 , ~20!

which has the general diffusive form as in Eq.~18! with the
identificationsk5k0 andDT5k0 /C0.

The effect of the fluctuating order parameter on the th
mal conductivityk, can be studied by treating the coupling
u0 andg0 perturbatively. Specifically, one can set up a p
turbative expansion for the ‘‘self-energy’’S that modifies the
thermal response function,

x21~qW ,v!5x0
21~qW ,v!1S~qW ,v!. ~21!

As is clear from Eq.~19!, a renormalization of the bare the
mal conductivityk0 requires a contribution to the self-energ
of the form S;2 iv/q2, which is divergent asq→0 for
fixed non-zerov. But as argued by Refs. 5 and 11, aw
from criticality, with r 0.0, the self-energy will be finite in
the q→0 limit at all orders in perturbation theory, bein
protected in the infrared byr 0 and in the ultraviolet by a high
momentum cutoff. Thus, these perturbations can generat
corrections tok, and the thermal conductivity will be given
exactly by the ‘‘bare’’ parameterk0.11 Sincek0 is a coupling
constant that depends on short distance physics only, it
necessarily be a smooth function of temperature. T
thereby establishes that the thermal conductivity should
nonsingular and smooth as one cools through the super
ducting transition.

It is worth emphasizing that although the thermal cond
tivity itself is nonsingular at the transition, critical singular
ties driven by the order-parameter flucutations will genera
enter into the dynamical relaxation of the energy. Smoo
ness of the thermal conductivity is intimately tied to the fa
that it is a zero-frequency, zero-wave-vector quantity. Inde
the dependence ofk on wave vector or frequency is expecte
to be singular at the critical point.
7-4
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To recapitulate and emphasize, fluctuations in the su
conducting order parameter will certainly affect the tim
dependent relaxation of the energy. However, the ther
conductivity—the transport coefficient associated with e
ergy propagation—remains smooth and finite across the t
sition.
, R
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