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Quasiparticles in the 111 state and its compressible ancestors
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We investigate the relationship of the spontaneously interlayer coherent ‘‘111’’ state of quantum Hall bilay-
ers at total filling factorn51 to ‘‘mutual’’ composite fermions, in which vortices in one layer are bound to
electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111
state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as amecha-
nism for interlayer coherence leads naturally to two candidate states with nonquantized Hall conductance: the
mutual composite Fermi liquid and an interlayer coherent chargee Wigner crystal. The experimental behavior
of the interlayer tunneling conductance and resistivity tensors are discussed for these states.

DOI: 10.1103/PhysRevB.66.155401 PACS number~s!: 73.21.2b, 11.15.2q, 14.80.Hv, 73.20.Mf
o
i

s-
b

d
gn

nc
s
a
h

n
d

e
e
po

b
io
w

er
r

lin

at

du
a

nc
n
n

or
S
re

10.
neu-

ate

is
peri-
edi-
ten-
the
os-

uc-
d
low

el
and

sed
site
s

ion

tum
is
Double-layer quantum Hall systems exhibit a wealth
fascinating behavior, among the most beautiful of which
the integer quantum Hall effect attotal filling fraction n
51.1,2 In the absence of interlayer tunneling~which can be
tuned to be arbitrarily small experimentally!, the mere exis-
tence of the quantum Hall effect at this filling factor is po
sible only due to strong Coulomb interactions, which sta
lize the so-called 111 state~see below!. As discussed
theoretically by Girvinet al., this state may also be viewe
as an easy-plane pseudospin quantum Hall ferroma
~QHFM!, having spontaneously broken the U~1! symmetry
corresponding to the conservation of the charge differe
between the two electron gases. A remarkable richnes
behavior was predicted to arise in response to in-plane m
netic fields and changes in temperature, much of which
indeed been verified experimentally.3,4

The 111 state occurs for small interlayer separationd
,dc , in which the Coulomb interactions between electro
in opposite layers are strongest. Much less well understoo
the behavior of bilayers atn51 for larger separations. In th
limit d→`, the layers become decoupled, and it is believ
that each layer forms an independent compressible com
ite Fermi liquids5 ~ICFL’s!. For intermediated.dc , the
ground state is not known. Moreover, in this range such
layers exhibit unexplained and somewhat puzzling behav
Coulomb drag measurements show a surprising lo
temperature saturation of the trans-conductivity, quite diff
ent from the predictions for the ICFL state. Recent expe
mental measurements of the nonlinear interlayer tunne
conductance show considerable structure ford.dc .3 Sur-
prisingly, most of this structure is preserved ford,dc , being
modified only in a narrow range of low voltage bias.

In this paper, we exploit the equivalence of the 111 st
to a p-wave superconductor~pSC! of mutually composite
fermions ~MCF’s!, postulated earlier by Morinari.6 This
equivalence was also explored recently in Ref. 7, while
ality techniques used in Ref. 8 are related to our later m
nipulations. The MCF’s themselves are similar to but disti
from the usual composite fermions, and in particular in a
of themselves already embody strong interlayer correlatio
We explore the MCF formulation in more detail than pri
treatments, demonstrating that the Lagrangian of the p
state isdual to the earlier FM picture. The 111 state therefo
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provides an explicit realization of the~211!-dimensional
bosonization and duality formulation espoused in Ref.
Our results deepen the understanding of the charged and
tral sectors of the 111 state, and their coupling to~pseu-
do!spin. Finally, this analysis provides two natural candid
ground states ford*dc : the mutual composite Fermi liquid
~MCFL! of unpaired MCF’s, and a chargee Wigner crystal
with coincident pseudospin superfluidity. The latter state
one of several phases suggested in Refs. 7,8. As an ex
mental means of searching for these two possible interm
ate states, we investigate the corresponding resistivity
sors and the interlayer tunneling conductances, finding
former in agreement with Refs. 7,8 where comparison is p
sible. The MCF liquid hasmetallic intralayer longitudinal
resistivity and a constant finiteHall drag at low tempera-
tures, but a pseudogap in the interlayer tunneling cond
tance. The chargee Wigner crystal is insulating, but shoul
exhibit a sharp interlayer tunneling conductance peak at
temperatures due to interlayer phase coherence.

Simple algebraic manipulations of lowest Landau lev
wave functions suggest a relation between the 111 state
MCF’s. Similar considerations have been successfully u
to relate the 331 state to a pSC phase of ordinary compo
fermions.9 The simplest description of the QHFM is in term
of the 111,

C1115)
i , j

~zi2zj !~wi2wj !)
i j

~zi2wj !CG , ~1!

whereCG5exp@2(i(uziu21uwiu2)/4l 2#, and l is the magnetic
length, andz,w5x1 iy . Using the useful identity) i , j@(zi
2zj )(wi2wj )#/) i j (zi2wj )5det@1/(zi2wj )#, this can be
rewritten as

C1115)
i j

~zi2wj !
2 det@1/~zi2wj !#CG . ~2!

The latter rewriting demonstrates that the 111 wave funct
is the product of a BCS pair wave function~the det@1/(zi
2wj )# factor! and a phase-carrying factorP i j (zi2wj )

2.
This phase factor can be interpreted in the usual quan
Hall fashion in terms of flux attachment. In particular, th
factor is equivalent to attaching two flux quanta~or more
©2002 The American Physical Society01-1
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precisely vortices! of layer-1 flux to the electrons in the se
ond layer, and vice versa. Since an even number of
quanta are attached to each particle, the composite objec
formed remain fermionic.

We next turn to a field-theoretic formulation of this flu
attachment. Denoting the microscopic electron~annihilation!
fields ca(x) @where a5↑,↓ indexes the two pseudospi
components~layers!#, we define MCF operatorsca(x)
5exp@iKab*d2x8Q(x2x8)nb(x8)#ca(x). Here Q(x) is the
angle of the vectorx in the plane@spatial ~2D! vectors are
indicated in boldface#, the matrix K52s1 @we denote the
Pauli matrices sm5(sz,sx,sy) for m50,1,2#, and na

5ca
†ca . In terms of thec variables, standard technique

give the Euclidean Lagrange density for the systemL5Lc
1La , with

Lc5c̄a~]02m2 i ã0
a!ca1

1

2m*
u~] j2 i ã j

a!cau2, ~3!

La5
i

4p
Kab

21emnlam
a]nal

b , ~4!

where Greek and Latin subscripts indicate three vector
two vectors, respectively@]m5(]t ,“), ] i5“], am

a com-
prise a pair of Chern-Simons~CS! gauge fields, andm is the
chemical potential~usually taken positive!. We use the nota-
tion that a gauge field with a tilde indicates the difference
CS and external gauge fields, e.g.,ãm

a5am
a2Am

a , whereAm
a

is an external gauge field used both to include the magn
field and for generating correlation functions by different
tion. At the mean-field level,̂ãm

a&50 atn51—we consider
fluctuations about this limit. In Eq.~4!, we have dropped a
Coulomb interaction term which will turn out to be irreleva
for the qualitative physics within the 111 state—it will b
included when we return to the unpaired MCF liquid belo
Instead, we assume for the moment that the interactions
tween MCF’s~from both Coulomb and gauge sources! are
such that they favor a pSC.6,11 The BCS reduced Hamil
tonian contains the additional term

HD5E d2k

~2p!2
@Dk2ãsck↑

† c2k↓
† 1H.c.#, ~5!

where cka5*d2xeik•xca(x). In a pSC~more precisely, an
Lz50 triplet state! the pair field Dk5eiwv(k2)(kx1 iky),
wherew is the phase of the pair wave function, andv(k2) is
a smooth function of its argument. For simplicity, we w
takev(k2)5v constant, adequate foruniversalproperties. In
the wavevector-dependent gap in Eq.~5!, we have made the
replacementk→k2ãs, with am

c/s[(am
↑ 6am

↓ )/2 ~and similarly

for Am ,ãm). Essentially, this follows from gauge invarianc
the flux attachment introduces an unphysical gauge sym
try, but the Hamiltonian, being physical, must remain inva
ant under this. ‘‘Microscopically,’’ this can be understood
deriving Eq.~5! via the usual mean-field decoupling of som
density-density interaction. Because the density operato
automatically gauge invariant~i.e., the density of MCF’s is
equal to the electron density!, one actually has a choice o
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whether to decouple by defining a gauge-invariant order
rameter@including the gauge field as in Eq.~5!# or not ~not
including the gauge field!. However, Elitzer’s theorem tells
us that there can be no local order parameter that spont
ously breaks the U~1! gauge symmetry. Hence the latte
choice, without including the gauge field, will never lead to
consistent mean-field expectation value if gauge fluctuati
are properly taken into account. Thus one is forced to inclu
the gauge field in the pairing term. One can guess this in
itively by noting that thez’s andw’s in Eq. ~2! are electron
~not MCF! coordinates.

We then perform the key step of a combined particle-h
transformation and phase rotation

C↑5e2 iw/2c↑ , C↓5eiw/2c↓
† . ~6!

The phase rotation in Eq.~6! apparently ‘‘neutralizes’’ theC
fermions. Note, however, that the transformation becom
double valued in the presence of62p vortices inw, which
has important consequences to which we will return shor
Equation ~5! can then be reexpressed in Lagrangian for
Combining it with Eqs.~3!–~4! gives L5LC1La1Lirr ,
with

LC5C̄@]02 i ã0
s1 ivs•~“2 i ãs!2msz#C, ~7!

Lac5
i

4p
emnlam

c ]nal
c , Las52

i

4p
emnlam

s ]nal
s , ~8!

Lirr5~]mw22ãm
c !J m1

1

8m*
u“w22ãcu2C̄s0C

2
1

2m*
C̄s0~“2 i ãs!2C. ~9!

Here La5Lac1Las and J 05C̄ is0C/2, J5 i @C̄(“
2 i ãs)C2(“1 i ãs)C̄C#/2m* .

An effective field theory is obtained by ‘‘coars
graining’’—i.e., integrating out gapped fermion modes
largek. This reduces the ultraviolet momentum cutoff toL
and also generates a ‘‘kinetic’’ term for the charge sector

Lw5
nSF

2mv2 ~]0w22ã0
c!21

nSF

2m
~“w22ãc!2. ~10!

In the theory with the reduced cutoff, power-counting can
applied. The terms inLirr @Eq. ~9!# are irrelevant. They hence
lead only to quantitative renormalizations of the effects d
scribed byLC1La , and will be suppressed hereafter.

Doing so, the Lagrangian becomes explicitly spin-cha
separated. The charge sector is governed byLc5Lw1Lac ,
offering a physical interpretation as charge 2e composite
bosons~Cooper pairs! at an effective filling factorneff51/4.
With the (434) conductivity tensor in the usual basis d
fined byEi

a5r i j
abJj

b , it is convenient to introduce charge an
spin conductivitiess i j

c/s52(s i j
↑↑6s i j

↑↓). The ~charge! Hall
conductivity is quantized tosxy

c 5e2/h51/2p ~in our units!,
as seen by choosing the gaugew50 and integrating outam

c

to obtain a CS term forAm
c . The spin sector Lagrangian i
1-2
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Ls5LC1Las , describing massive Dirac fermions couple
to a spin CS gauge field. To analyzeLs , we integrate out the
C fermions, which generates form.0 a CS term and nomi
nally irrelevant Maxwell and higher-order in gradient corre
tions for ãm

s . Therefore theeffectiveLagrangian for the spin
sectorLs→L s

eff is

L s
eff5

i

4p
emnlãm

s ]nãl
s1

1

2l
~ ẽj

22b̃2!1O@]3ã2#1Las ,

~11!

wherel;(v2/(pm)1l0
21)21 is a nonuniversal ‘‘dielectric’’

constant, andẽj5v21(] j ã0
s2]0ã j

s), b̃5e i j ] i ã j
s . The l0

contribution tol arises from integrating out the high-energ
modes well above the gap, and is approximatelyv indepen-
dent ~though it does depend uponLirr). Significantly, the
coefficient of 1/4p in the CS term above is a factor of tw
larger than what might naively~and incorrectly! be expected
from the massive Dirac fermion in Eq.~7!. This is a conse-
quence of the fact thatsxy

s is a nondissipative quantity, an
generally dependent on not only the low-energy excitati
of a system. Indeed, in a Kubo calculation, the proper re
requires taking into account the decay of the supercond
ing gapDk at large momentum.12 In any case, the 1/4p is a
robust topological feature of thekx1 iky state, and is inde-
pendent of any approximations.

Note that upon combining all the terms inL s
eff , there is a

cancellation of CS contributions for the fluctuating fieldam
s

~but not the external fieldAm
s ). Now integrating outam

s gives

L s
eff5

nSF
s

2
@~Aj

s!21v22~A0
s!2#1

isxy
s

2
emnlAm

s ]nAl
s ,

~12!

wherenSF
s 5lv2/4p2 is a spin superfluid density~stiffness!,

so that this state is a pseudospin superconductor—
QHFM. Interestingly, this state also exhibits a hidden s
Hall effect. The spin Hall conductance from Eq.~12! is sxy

s

Þ\2/h5\/2p51/2p, the lack of quantization ofsxy
s being

due to corrections from the nonuniversalO@]3ã2# terms in
Eq. ~11!. The nonuniversality ofsxy

s is perhaps natural sinc
the U~1! symmetry generated bySz is spontaneously broken

Next consider the quasiparticle structure. For chargee
bosons atneff51/4, the quasiparticle excitations, which co
respond to the~smallest! 2p vortices inw, carry the charge
neff32e5e/2, as can also be deduced directly from Eq.~10!.
Remarkably, owing to the implicit coupling in Eq.~6!, this
excitation also carries spin. In particular, theC fermions
experience a cut (p flux! upon encircling the vortex. Be
cause theXY spin operatorS1;C↑C↓ is bilinear in fermi-
ons, the chargee/2 quasiparticle is thus tied to a 2p spin-
flux vortex ~in S1) ~see also below!. Moreover, because o
the spin Hall conductivity, this flux induces a nonunivers
moment^Sz&56psxy

s . We identify this excitation with the
meron of Ref. 13~the moment arises in that picture fro
pseudospin canting in the meron’s core!. Even-flux vortices
in w and S1 leave Eq.~6! single-valued, and remain spin
charge separated. Due to the Higgs phenomena, the64p
15540
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vortices inw are screened, cost finite energy, and theref
unbind at any finite temperature, giving activated contrib
tions to the Hall effect. The merons, however, are tied to s
vortices which interact logarithmically and therefore exhi
a Kosterlitz-Thouless transition at finite temperature.

We now turn to the connection of the above formalism
the pseudospin magnetization approach of Refs. 13. To
so, we return toLs5Ld1Las @Eqs. ~7!,~8!#. Following the
reasoning of Ref. 10, we argue that the CS gauge fi
‘‘bosonizes’’ the Dirac fermions into relativistic charge
bosons. As in the much more established~111!-dimensional
bosonization mapping, the expressions for currents in te
of bosons are much simpler than those for the fermion fie
and we are presently unable to derive the latter. Instead
will determine the form of the ‘‘bosonized’’ Lagrangian b
requiring that it produce the same generating function
current-current correlators. Thus we seek an equivalent
resentation for the partition function

Zs@Am
s #5E @dC̄dC#@dam

s #e2*d3xmLs5e2*d3xmL s
eff[Am

s ] .

~13!

Referring back to Eq.~12!, we recognize that the first term i
L s

eff is readily obtained from the usual ‘‘Higgs’’ mechanis
if Am

s is minimally coupled to a U~1! boson which condenses
To reproduce the second~Chern-Simons! term in L s

eff we
introduce in addition a massive Dirac field which also carr
the U~1! ‘‘charge’’ ~actually spin!. Thus

Zs@Am
s #5E @dh̄dh#@du#e2*d3xmL s

dual
, ~14!

where

L s
dual5

n SF
s

2mv2 ~]0u22A0
s!21

n SF
s

2m
u“u22Asu21h̄@]02 iA0

s

1 ivs•~“2 iAs!2Msz#h1g@eiuh̄syh̄1H.c.#.

~15!

From Eq.~15!, we identifyS1;eiu. In Eq. ~15!, in addition
to a Dirac Lagrangian of the usual form, we have also
cluded an ‘‘anomalous’’ coupling which exchanges the s
between theu boson andh fermions. Given only the single
physical U~1! spin-rotation symmetry, such a coupling is a
lowed and indeed is required to reproduce theunquantized
spin Hall conductivity in Eq.~12!.

Having established and explored the equivalence of
paired MCF state and the QHFM, we now turn to a disc
sion of possible ‘‘quantum disordered’’ ground states su
gested by this work. Specifically, we consider cases in wh
the ~charge! Hall resistance is unquantized, motivated by t
experimental observation of poorly developed Hall platea
These phases can be described loosely by the proliferatio
the ground state of charge vortices, i.e., point defects aro
which r¹W w•drW52pN, with integer N. The two possible
phases of interest correspond to the cases in which~i! only
vortices with evenN proliferate, leavingu single valued and
~ii ! all vortices are unbound.
1-3
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The ‘‘doubly quantized’’ vortices in case~i! are conven-
tional, insofar as they leave the singular gauge transfor
tion in Eq. ~6! single valued. Hence these vortices intera
only weakly with the other excitations of the system. Th
proliferation can thus be analyzed using conventional me
ods. In particular, by performing a~211!-dimensional dual-
ity transformation on theXY model in Eq.~10!, the prolifer-
ated state can be described as a condensate of pairs~due to
the evenN condition! of vortices ~merons!. ~Dual! phase
coherence of the vortex-pair wave function implies the qu
tization of charge in units of half the composite boson cha
or e. Thus the bilayer charge density ofe per areal 2 is
distributed into a Wigner crystal of chargee per unit cell.
This chargee Wigner crystal is of course an electrical ins
lator ~with sxx

c ,sxy
c →0 asT→0 provided the sliding mode

is even infinitesimally pinned!. Because the paired vorte
condensate respects spin-charge separation, however,
layer phase coherence~spin superfluidity! is maintained. An
alternative picture for this phase is as a staggered bila
crystal in which vacancy-interstitial pairs made from opp
site layers have Bose condensed. Thus the~pseudo!spin con-
ductances are very different:sxx

s (v)5n SF
s / iv, so that the

zero-bias spin conductivity is infinite, whilesxy
s is a nonuni-

versal constant. Note that this impliesrs→0 for T→0, so
the single-layer resistivityr↑↑'rc does not manifest super
fluidity. At strictly zero temperature,rxx

c 5`, so that the drag
resistance would diverge. ForT.0, it is natural to expect a
peak inrxx

↑↑ as a function ofd/ l as a precursor effect. Be
cause of interlayer phase coherence, however, the chare
Wigner crystal should exhibit a zero-bias tunneling cond
tance peak as in the QHFM.

In case~ii !, by contrast, the strong statistical interaction
individual merons amongst themselves and with other e
tations renders their proliferation a strong-coupling proble
On physical grounds, however, we speculate that their p
s

k

K.

K.

a
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ence in the ground state simply destroys all effects of M
pairing on long length and time scales. We are therefore
to consider a simple model of MCF’s without pairing, anal
gous ~but distinct from! the composite Fermi liquid. This
MCF Liquid is described simply by the LagrangianL
5*d2xW @Lc1La#1LC , whereLc andLa are given in Eqs.
~3!,~4!, and due to the nonvanishing MCF compressibility,
is necessary a priori to include an additional long-range C
lomb interaction termLC ~see Refs. 14–16!.

Drag betweenweakly coupledlayers in nearly indepen
dentn51/2 composite Fermi liquid states has been cons
ered previously by many authors.14,16 In that case, the drag
resistivity r↑↓ is truly perturbative in the interlayer interac
tion., and the formalism due originally to Zheng an
MacDonald17 can be applied to yield a small longitudina
drag resistivityrxx

↑↓;T4/3 at low temperature.16 The inher-
ently strong interlayer interactions in the MCF liquid unfo
tunately preclude this approach, and one is reduced to a
grammatic treatment as in Refs. 14,15. This diagramm
treatment is much less satisfactory, but reasoning along
lines of Refs. 14,15 suggests, and we therefore propose,
rxx

↑↓;T4/3 also obtains for the MCF liquid. Unlike, the ICFL
however, the random phase approximation5 already gives a
nonzero ‘‘Hall drag’’rxy

↑↓54p, and we expect this is robus
Thus the longitudinal drag resistivity is small also in th
case, and only the Hall drag is expected to deviate subs
tially from the ICFL limit. Furthermore, the interlayer tun
neling conductance in the MCF liquid, similar to that of th
ICFL state, is expected to exhibit a pseudogap due to
thogonality catastrophe and poorly screened Coulombic
fects.
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