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Quasiparticles in the 111 state and its compressible ancestors
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We investigate the relationship of the spontaneously interlayer coherent “111” state of quantum Hall bilay-
ers at total filling factorvr=1 to “mutual” composite fermions, in which vortices in one layer are bound to
electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111
state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationshieealsaa
nismfor interlayer coherence leads naturally to two candidate states with nonquantized Hall conductance: the
mutual composite Fermi liquid and an interlayer coherent chaiyégner crystal. The experimental behavior
of the interlayer tunneling conductance and resistivity tensors are discussed for these states.
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Double-layer quantum Hall systems exhibit a wealth ofprovides an explicit realization of thé+1)-dimensional
fascinating behavior, among the most beautiful of which isbosonization and duality formulation espoused in Ref. 10.
the integer quantum Hall effect dotal filling fraction v Our results deepen the understanding of the charged and neu-
=1.12In the absence of interlayer tunnelifighich can be tral sectors of the 111 state, and their coupling(pseu-
tuned to be arbitrarily small experimentagllfhe mere exis- do)spin. Finally, this analysis provides two natural candidate
tence of the quantum Hall effect at this filling factor is pos- ground states fod=d: the mutual composite Fermi liquid
sible only due to strong Coulomb interactions, which stabi<MCFL) of unpaired MCF’s, and a chargeWigner crystal
lize the so-called 111 stat¢see below As discussed Wwith coincident pseudospin superfluidity. The latter state is
theoretically by Girvinet al., this state may also be viewed one of several phases suggested in Refs. 7,8. As an experi-
as an easy-plane pseudospin quantum Hall ferromagn#&iental means of searching for these two possible intermedi-
(QHFM), having spontaneously broken thély symmetry ate states, we investigate the corresponding resistivity ten-
corresponding to the conservation of the charge differencgors and the interlayer tunneling conductances, finding the
between the two electron gases. A remarkable richness dormer in agreement with Refs. 7,8 where comparison is pos-
behavior was predicted to arise in response to in-plane magible. The MCF liquid hasmetallic intralayer longitudinal
netic fields and changes in temperature, much of which haggsistivity and a constant finitelall drag at low tempera-
indeed been verified experimentafl§. tures, but a pseudogap in the interlayer tunneling conduc-

The 111 state occurs for small interlayer separation tance. The charge Wigner crystal is insulating, but should
<d., in which the Coulomb interactions between electronsexhibit a sharp interlayer tunneling conductance peak at low
in opposite layers are strongest. Much less well understood #&mperatures due to interlayer phase coherence.
the behavior of bilayers at=1 for larger separations. Inthe ~ Simple algebraic manipulations of lowest Landau level
limit d— o, the layers become decoupled, and it is believedvave functions suggest a relation between the 111 state and
that each layer forms an independent compressible compoBCF's. Similar considerations have been successfully used
ite Fermi liquidS (ICFL's). For intermediated>d., the to relate the 331 state to a pSC phase of ordinary composite
ground state is not known. Moreover, in this range such bifermions? The simplest description of the QHFM is in terms
layers exhibit unexplained and somewhat puzzling behavio©f the 111,

Coulomb drag measurements show a surprising low-

temperature saturation of the trans-conductivity, quite differ- _H (22
ent from the predictions for the ICFL state. Recent experi- 11 b
mental measurements of the nonlinear interlayer tunneling

conductance show considerable structure dord,.? Sur- ~ where W g=ex —=;(|z[*+|w[*)/41?], and| is the magnetic
prisingly, most of this structure is preserved ébrd., being  length, andz,w=x+iy. Using the useful identity]; ;[ (z;
modified only in a narrow range of low voltage bias. —Zz;)(w;—w;) /T (zi—w;) =def 1/(zi—w;) ], this can be

In this paper, we exploit the equivalence of the 111 stategewritten as
to a p-wave superconductofpSO of mutually composite
fermions (MCF's), postulated earlier by Morinafi.This
equivalence was also explored recently in Ref. 7, while du-
ality techniques used in Ref. 8 are related to our later ma-
nipulations. The MCF’s themselves are similar to but distinctThe latter rewriting demonstrates that the 111 wave function
from the usual composite fermions, and in particular in ands the product of a BCS pair wave functidthe def1/(z
of themselves already embody strong interlayer correlations-w;)] facton) and a phase-carrying factdﬁij(zi—wj)z.

We explore the MCF formulation in more detail than prior This phase factor can be interpreted in the usual quantum
treatments, demonstrating that the Lagrangian of the pSElall fashion in terms of flux attachment. In particular, this
state isdual to the earlier FM picture. The 111 state thereforefactor is equivalent to attaching two flux quar(@ more

w.—wpl} (z—w)V¥s, (D

\Pnl:l;<zi—wj>2det1/<zi—wj>]we. @)
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precisely vorticesof layer-1 flux to the electrons in the sec- whether to decouple by defining a gauge-invariant order pa-
ond layer, and vice versa. Since an even number of fluxameter[including the gauge field as in E¢)] or not (not
guanta are attached to each particle, the composite objects swluding the gauge fie)d However, Elitzer's theorem tells
formed remain fermionic. us that there can be no local order parameter that spontane-
We next turn to a field-theoretic formulation of this flux ously breaks the (1) gauge symmetry. Hence the latter
attachment. Denoting the microscopic electtannihilation choice, without including the gauge field, will never lead to a
fields c,(x) [where a=1,| indexes the two pseudospin consistent mean-field expectation value if gauge fluctuations
components(layerg], we define MCF operatorsy,(X) are properly taken into account. Thus one is forced to include
=exp:iKandzx’®(x—x’)nB(x’)]ca(x). Here ®(x) is the the gauge field in the pairing term. One can guess this intu-
angle of the vectok in the plane[spatial (2D) vectors are itively by noting that thez's andw’s in Eq. (2) are electron
indicated in boldfack the matrixK=20' [we denote the (not MCP coordinates.
Pauli matrices o#=(0%0%,0Y) for w=0,1,2], and n, We then perform the key step of a combined particle-hole
=c!c,. In terms of they variables, standard techniques transformation and phase rotation

give the Euclidean Lagrange density for the systém. . .
+ £, with Y Vo= 92y W =ele2yl ©6)

1 The phase rotation in E@6) apparently “neutralizes” thel

£¢,=Ja(ﬁo—ﬂ—i53)¢a+ 2—*|(ﬁj—i5f‘)¢a|2, (3)  fermions. Note, however, that the transformation becomes
m double valued in the presence &af27 vortices ing, which

has important consequences to which we will return shortly.

K;é waaz &Vaf, 4) Equation(5) can then be reexpressed in Lagrangian form.

£ Combining it with Egs.(3)—(4) gives L=Ly+ L+ Li,

“~Zn

where Greek and Latin subscripts indicate three vector an}’:}lIth

two vectors, respectivelyd,=(4,,V), ;=V], aj com- Lo=Tldn—iaS+ive (V—is)— wo?l¥ 7

prise a pair of Chern-Simon€9) gauge fields, ang is the v="Yldo~1as+ive( )T uo T, @

chemical potentia{usually taken positive We use the nota- i i

tion that a gauge field with a tilde indicates the difference of Lo=-—¢€e™a%0 as, L,.=—-—€e*"a%s,as, (8)
) - ac 471_ TR ) N as 471_ u VN

CS and external gauge fields, eg,=a; —A;, whereA}

is an external gauge field used both to include the magnetic

field and for generating correlation functions by differentia- ﬁirr:(glu(p_252)j#+8i*|vcp_2’éc|2q_,aoq,

tion. At the mean-field IeveKE;j}:O atv=1—we consider m

fluctuations about this limit. In Eq4), we have dropped a 11—, ~

Coulomb interaction term which will turn out to be irrelevant — o Yo (V—ia)* . 9

for the qualitative physics within the 111 state—it will be
included when we return to the unpaired MCF liquid below.Here £,=r,.+£,s and J°=Vic®¥/2, F=i[¥(V
Instead, we assume for the moment that the interactions be_-i:,;lg)\l,_(VJr iE\”)\I_f\If]/Zm*

tween MCF's(from both Coulomb and gauge sourtcese .
such that they favor a pS€! The BCS reduced Hamil-
tonian contains the additional term

An effective field theory is obtained by “coarse
graining”—i.e., integrating out gapped fermion modes at
largek. This reduces the ultraviolet momentum cutoffAo
and also generates a “kinetic” term for the charge sector

d?k tot
Hi= [ sl tHel,  ®)

(2m)2 n

c¢=ﬁ(ao¢—2ag)2+ g—f;(v@— 2a%2. (10
where ¢, = [d?xe'* Xy, (x). In a pSC(more precisely, an v
LZ=0 triplet stat¢ the pair field A = e'¢v(k2)(kx+iky), In the theory with the reduced cutoff, power-counting can be
whereg is the phase of the pair wave function, ang?) is  applied. The terms i, [Eq. (9)] are irrelevant. They hence

a smooth function of its argument. For simplicity, we will lead only to quantitative renormalizations of the effects de-
takev (k%) =v constant, adequate faniversalproperties. In  scribed byLy + £,, and will be suppressed hereafter.

the wavevector-dependent gap in E8§), we have made the Doing so, the Lagrangian becomes explicitly spin-charge
replacemenk—k—a°, with a%/°=(a),=a.)/2 (and similarly ~ separated. The charge sector is governed’py L+ Lyc,

for A, ,a,). Essentially, this follows from gauge invariance: offering a physical interpretation as charge 2omposite

the flux attachment introduces an unphysical gauge symmd20Sons(Cooper pairsat an effective filling factom = 1/4.

try, but the Hamiltonian, being physical, must remain invari- ith the £4X 4a)ﬁ c[?n.dgctlwty tensor in the usual basis de-
ant under this. “Microscopically,” this can be understood by fined byE{"=pjj"J;", LIS convenient to introduce charge and
deriving Eq.(5) via the usual mean-field decoupling of some SPIN conductivitiesor; °= 2(oj' £ o"). The (charge Hall
density-density interaction. Because the density operator igonductivity is quantized tors, =e?*h=1/27 (in our unitg,
automatically gauge invariart.e., the density of MCF's is as seen by choosing the gauge-0 and integrating oua;
equal to the electron densjtyone actually has a choice of to obtain a CS term foAZ. The spin sector Lagrangian is
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Ls=Ly+ Ly, describing massive Dirac fermions coupled vortices in¢ are screened, cost finite energy, and therefore
to a spin CS gauge field. To analyZe, we integrate out the unbind at any finite temperature, giving activated contribu-
¥ fermions, which generates far>0 a CS term and nomi- tions to the Hall effect. The merons, however, are tied to spin
nally irrelevant Maxwell and higher-order in gradient correc-Vvortices which interact logarithmically and therefore exhibit

tions fora . Therefore thesffectiveLagrangian for the spin a Kosterlitz-Thouless transitior) at finite temperature. .
sectorL, Eeff We now turn to the connection of the above formalism to

the pseudospin magnetization approach of Refs. 13. To do
i 1 so, we return tols= L4+ L,s [EQs. (7),(8)]. Following the
L= 7 — €A% 0,a5 + ﬁ(e 2_b?)+0[5%a%]+ L,s, reasoning of Ref. 10, we argue that the CS gauge field
™ (12) “bosonizes” the Dirac fermions into relativistic charged
bosons. As in the much more establislige 1)-dimensional
where\ ~ (v?/(mu)+ g ) "1 is a nonuniversal “dielectric”  bosonization mapping, the expressions for currents in terms
constant, andej=v‘1(aj53—a05js), b= Gijf?iajs- The \q of bosons are much simpler than th(_)se for the fermion fields,
contribution to\ arises from integrating out the high-energy and we are presently unable to derive the latter. Instead, we

modes well above the gap, and is approximateiyndepen- will cjetermine _the form of the *bosonized” ITagrangien by
dent (though it does depend upofi,). Significantly, the requiring that it produce the same generating function for

coefficient of 1/47 in the CS term above is a factor of two Current-current correlat_o_rs. Thus_we seek an equivalent rep-

larger than what might naivelyand incorrectly be expected resentation for the partition function

from the massive Dirac fermion in E¢7). This is a conse- a,

quence of the fact that}, is a nondissipative quantity, and ~ Z,[A}]= J [dWd¥][da]e [, Ls— g=Jd

generally dependent on not only the low-energy excitations (13)

of a system. Indeed, in a Kubo calculation, the proper result

requires taking into account the decay of the superconducReferring back to Eq(12), we recognize that the first term in

ing gapA, at large momentunt? In any case, the 1#is a Le“ is readily obtained from the usual “Higgs” mechanism

robusttopological feature of thek,+ ik, state, and is inde- if AS is minimally coupled to a (I) boson which condenses.

pendent of any approximations. To reproduce the secon@hern-Simonkterm in Ee“ we
Note that upon combining all the termsﬂﬁ“, there isa introduce in addition a massive Dirac field which also carries

cancellation of CS contributions for the fluctuating fie@j the U1) “charge” (actually spin. Thus

(but not the external field}). Now integrating oug;, gives

eff[ ,u]

dual
X, Lg ,

Z,IA;]= f [dyd7I[dg]e /@ (19

S

n ' S
LM=T[(A%+02(A 2]+ 2” AR GLAS,

2 where
(12)
: . . o n% n% _
whereng=\v?/47? is a spin superfluid densitistifiness, el 2mSvF2 (90— 2A3)%+ 2_;1F| V 90— 2A%2+ 7 dp—iAS

so that this state is a pseudospin superconductor—the
QHFM. Interestingly, this state also exhibits a hidden spin
Hall effect. The spin Hall conductance from E42) is oxy
#h°lh=1/2m=1/2m, the lack of quantization of, being (15

due to corrections from the nonunrveria[am] terms in From Eq.(15), we identify S"~¢e'?. In Eq. (15), in addition
Eq. (11). The nonuniversality o&iy is perhaps natural since to a Dirac Lagrangian of the usual form, we have also in-
the U1) symmetry generated B is spontaneously broken. cluded an “anomalous” coupling which exchanges the spin
Next consider the quasiparticle structure. For charge 2 between the boson andy fermions. Given only the single
bosons atv.4= 1/4, the quasiparticle excitations, which cor- physical U1) spin-rotation symmetry, such a coupling is al-
respond to thésmallest 27 vortices ing, carry the charge lowed and indeed is required to reproduce thguantized
Ve X 26=€/2, as can also be deduced directly from Ed). spin Hall conductivity in Eq(12).
Remarkably, owing to the implicit coupling in E¢), this Having established and explored the equivalence of the
excitation also carries spin. In particular, the fermions paired MCF state and the QHFM, we now turn to a discus-
experience a cutsf flux) upon encircling the vortex. Be- sion of possible “quantum disordered” ground states sug-
cause theXY spin operatolS™~W!W¥! is bilinear in fermi-  gested by this work. Specifically, we consider cases in which
ons, the charge/2 quasiparticle is thus tied to an2spin-  the(charge Hall resistance is unquantized, motivated by the
flux vortex (in S*) (see also beloy Moreover, because of experimental observation of poorly developed Hall plateaus.
the spin Hall conductivity, this flux induces a nonuniversal These phases can be described loosely by the proliferation in
moment(S?) =+ 7T<Tx We identify this excitation with the the ground state of charge vortices, i.e., point defects around
meron of Ref. 13(the moment arises in that picture from which $Vp-dr=2=N, with integer N. The two possible
pseudospin canting in the meron’s cprBven-flux vortices phases of interest correspond to the cases in wjchnly
in ¢ andS* leave Eq.(6) single-valued, and remain spin- vortices with everN proliferate, leavingd single valued and
charge separated. Due to the Higgs phenomenathe (ii) all vortices are unbound.

+ive (V—=iAS—Mo?p+y[efpaY p+H.cl.
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The “doubly quantized” vortices in cas@) are conven- ence in the ground state simply destroys all effects of MCF
tional, insofar as they leave the singular gauge transformgpairing on long length and time scales. We are therefore led
tion in Eqg. (6) single valued. Hence these vortices interactto consider a simple model of MCF'’s without pairing, analo-
only weakly with the other excitations of the system. Theirgous (but distinct from the composite Fermi liquid. This
proliferation can thus be analyzed using conventional methMCF Liquid is described simply by the Lagrangien
ods. In particular, by performing @+ 1)-dimensional dual- =fd2x[£¢+ L,]+Lc, wherel, and L, are given in Egs.
ity transformation on th&X'Y model in Eq.(10), the prolifer-  (3),(4), and due to the nonvanishing MCF compressibility, it
ated state can be described as a condensate of (daiesto IS necessary a priori to include an additional long-range Cou-
the evenN condition of vortices (merong. (Dual) phase lomb interaction ternic (see Refs. 14-16
coherence of the vortex-pair wave function implies the quan- Drag betweenweakly coupledayers in nearly indepen-
tization of charge in units of half the composite boson chargélent»=1/2 composite Fermi liquid states has been consid-
or e. Thus the bilayer charge density efper areal? is ~ €red previously by many authors:”In that case, the drag
distributed into a Wigner crystal of chargeper unit cell.  'esistivity p'* is truly perturbative in the interlayer interac-
This chargee Wigner crystal is of course an electrical insu- fion-, and the formalism due originally to Zheng and
lator (with o5, 05, —0 asT—0 provided the sliding mode MacDonald .can”be ‘Z‘/gp“ed to yield a small longitudinal
is even infinitesimally pinned Because the paired vortex drag resistivity p, ~T* at low temperaturé. The inher-
condensate respects spin-charge separation, however, int§AtY strong interlayer interactions in the MCF liquid unfor-
layer phase coherencspin superfluidity is maintained. An ~ tunately preclude this approach, and one is reduced to a dia-
alternative picture for this phase is as a staggered bilayéjf@mmatic treatment as in Refs. 14,15. This diagrammatic
crystal in which vacancy-interstitial pairs made from oppo-treatment is much less satisfactory, but reasoning along the
site layers have Bose condensed. Thus(fiseuddspin con- |II’T1?S ozlgzefs. 14,15 suggests, and we .theref(.)re propose, that
ductances are very differenil, (w)=n%diw, so that the pyx~ 17 also obtains for the MCF I|q_U|d..UnI|ke, thg ICFL,
zero-bias spin conductivity is infinite, while;,, is a nonuni- however,“ the rand?mnphase appromma'ilaheat_jy_gwes a
versal constant. Note that this implig§—0 for T—0, so  nonzero “Hall drag”p,, =4, and we expect this is robust.
the single-layer resistivity! '~ p¢ does not manifest super- Thus the longitudinal drag r¢3|st|V|ty is small a}lso in this
fluidity. At strictly zero temperatures®, =, so that the drag case, and only the Hall drag is expected to deviate substan-

resistance would diverge. Far>0, it is natural to expect a ;E"lelyn frgg:“;hitgcn?e‘ Ir|1n?clr:e Fl\bljgrllelrm(')ae’sJ'[r:e'lell?tt?)rlﬁgetrotfu'S{e
peak inpll as a function ofd/I as a precursor effect. Be- Ny u : Iquid, simi

: ICFL state, is expected to exhibit a pseudogap due to or-

cause of interlayer phase coherence, however, the clearge . .

. e . . thogonality catastrophe and poorly screened Coulombic ef-
Wigner crystal should exhibit a zero-bias tunneling conduc-

; fects.

tance peak as in the QHFM.
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On physical grounds, however, we speculate that their pre9704005.

IFor reviews of the quantum Hall effect in double layer systems, Phys. Rev. B3, 205 315(2007).
see S. M. Girvin and A. H. MacDonald, iRerspectives in 8E. Demler, C. Nayak, and S. Das Sarma, Phys. Rev. Béit.
Quantum Hall Effectsedited by S. Das Sarma and A. Pinczuk  1853(2001.

(John Wiley, New York, 1997 Chap. 5; J. P. Eisensteiinid., 9T.-L. Ho, Phys. Rev. Lett75, 1186(1995.
Chap. 2. 10 Balents, M. P. A. Fisher, and C. Nayak, Phys. Re®6B 6307
2J. P. Eisensteiet al, Phys. Rev. Lett68, 1383(1992. (2000.
3M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. 1IN. E. Bonesteel, Phys. Rev. 483, 11 484(1993.
West, Phys. Rev. LetB8, 126804(2002. 12N. Read and D. Green, Phys. Rev6R, 10 267(2000.
4M. Kellogg, I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. 13K. Moon et al, Phys. Rev. B51, 5138(1995; K. Yang et al,
West, cond-mat/010840@inpublishedl ibid. 54, 11 644(1996.
5B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev4B 7312  %Y.-B. Kim and A. J. Millis, Physical E4, 171 (1999.
(1993. 153, sakhi, Phys. Rev. B6, 4098(1997).
T, Morinari, Phys. Rev. B9, 7320(1999. 18|, Ussishkin and A. Stern, Phys. Rev.38, 4013(1997.

7Y.-B. Kim, C. Nayak, E. Demler, N. Read, and S. Das Sarma,'’L. Zheng and A. H. MacDonald, Phys. Rev.4B, 8203(1993.

155401-4



