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Electrical current carried by neutral quasiparticles
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The current should be proportional to the momentum in a Galilean-invariant system of particles of fixed
charge-to-mass ratio, such as an electron liquid in jellium. However, strongly-interacting electron systems can
have phases characterized by broken symmetry or fractionalization. Such phases can have neutral excitations
which can presumably carry momentum but not current. In this paper, we show that there is no contradiction:
‘‘neutral’’ excitationsdo carry current in a Galilean-invariant system of particles of fixed charge-to-mass ratio.
This is explicitly demonstrated in the context of spin waves, the Bogoliubov–de Gennes quasiparticles of a
superconductor, the one-dimensional electron gas, and spin-charge separated systems in 211 dimensions. We
discuss the implications for more realistic systems, which are not Galilean invariant.
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I. INTRODUCTION

Conventional wisdom holds that, in a Galilean-invaria
system of particles of fixed charge-to-mass ratioe/m, the
local current density is proportional to the local momentu
density,J(x)5(e/m)P(x). The conservation of total momen
tum then implies conservation of the total current, (d/dt)J
50. This is a stronger condition than charge conservat
(d/dt)r1¹•J50, since it implies that the real part of th
conductivity is given bys(v)5(ne2/m)d(v), wheren is
the particle density. One might imagine that this hypotheti
situation has some applicability to extremely clean real s
tems in which the effects of the lattice are unimportant
cause the Fermi surface is far from any nesting vector
the electron-phonon coupling is very weak. In such a ca
one would be tempted to forget about impurities and
lattice of ions altogether and focus on the electrons, wh
have a fixed charge-to-mass ratioe/m.

On the other hand, we have become accustomed to q
tum number fractionalization, particularly in the context
quasi-one-dimensional materials,1 the fractional quantum
Hall effect,2 and theories of high-temperature supercond
tivity and frustrated quantum magnets.3–16 Spin-charge sepa
ration is one possible pattern of quantum number fraction
ization. It leads to charged, spinless quasiparticles—o
called ‘‘holons’’—and neutral, spin-1/2 quasiparticles—oft
called ‘‘spinons.’’ Conventional wisdom would lead us
expect that the latter, being neutral, would carry no curre
even when endowed with nonzero momentum. This
merely the most extreme and exotic case of a general
nomenon: the low-energy quasiparticles of a strongly in
acting system need not evince much resemblance to the
derlying electron. This is truea fortiori if the low-
temperature phase of the system exhibits fractionalizatio
broken symmetry. In particular, there is no reason why
quasiparticle charge-to-mass ratio should bee/m. A more
familiar, but no less dramatic example is given by spin wa
in a ferromagnet—neutral spin-1 excitations which ca
momentum but, presumably, no current.
0163-1829/2001/64~23!/235113~7!/$20.00 64 2351
t

n,

l
-
-
d
e,
e
h

n-

-

l-
n

t,
s
e-
r-
n-

or
e

s

Clearly, there is some tension, if not an outright cont
diction, between these two papers of conventional wisdo
The resolution, which we describe in this paper, is that ‘‘ne
tral’’ quasiparticles do carry current according toJ(x)
5(e/m)P(x) in a Galilean-invariant system. However, eve
a small explicit breaking of Galilean invariance can ha
drastic consequences for this relation. As a result, eve
small density of impurities or a weak periodic potential c
result in a state in which neutral quasiparticles carry mom
tum but no current and the dc conductivity is zero rather th
infinity.

The current carried by neutral quasiparticles can be
derstood as arising from a Doppler shift interaction betwe
them and the charge carriers. The latter are always gaple
a Galilean-invariant system, and they mediate the coup
between the electromagnetic field and the neutral quasip
cles. We will illustrate our thesis in a number of differe
contexts: spin waves, the Bogoliubov–de Gennes quasip
cles of a superconductor~which carry momentum but are no
charge eigenstates!, the one-dimensional electron gas, a
spin-charge separated systems in 211 dimensions. Finally,
we will comment on our results and their applicability
realistic systems, which do not have Galilean invariance.

II. SPIN WAVES IN AN ELECTRON LIQUID

As mentioned in the Introduction, one might think that t
paradox is already manifest in the context of spin waves~or
other collective excitations! which can carry momentum bu
ought not—if we are to think of them as neutr
excitations—carry current. Since a spin wave is compose
an electron and a hole, it is, indeed, neutral. At a form
level, the creation operator for anSz51 spin wave,

S1~x,t !5c↑
†~x,t !,c↓~x,t !, ~1!

is invariant under a gauge transformation,ca(x,t)
→eif(x,t)ca(x,t). Consequently, such an operator does
couple to the electromagnetic field through minimal co
pling.
©2001 The American Physical Society13-1
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Nevertheless, a spin wavedoescarry current. When the
vector potentialA vanishes, the current takes the form

J5(
k

e

m
kca

†~k!ca~k!. ~2!

The current operator has this form irrespective of
electron-electron interaction terms, so long as they are G
ilean invariant—i.e., so long as they are momentum indep
dent and translationally invariant.

Consider the operator which creates a spin wave of m
mentumq:

S1~q!5(
k

c↑
†~k1q!c↓~k!. ~3!

In so doing, it actually creates current as well, as may
seen by taking its commutator with the current operator

@J,S1~q!#5
e

m
qS1~q!. ~4!

Hence spin waves carry current. This is a purely kin
matic statement which follows from the form of the curre
operator~2! which, in turn, follows from Galilean invariance
Our conclusion holds whether or not the electron liquid
ders electronically.

However, it may be difficult to see how this electric
current appears in an effective field theory of spin waves
for instance, the ferromagnetic state. Suppose we take
Galilean-invariant electronic Lagrangian,

L5ca
†~ i ] t2eAt!ca1

1

2m
ca

†~ i¹2eA!2ca1Lint , ~5!

and decoupleLint with a Hubbard-Stratonovich fieldS which
couples linearly toca

† sab cb . We can integrate out the
electrons and expand the resulting action about a ferrom
netic state which is ordered in theẑ direction. On genera
grounds, we expect that the resulting effective action will
of the form

Leff5S1i ] tS22D¹S1•¹S21 . . . . ~6!

As we noted above,S6 is invariant under a gauge transfo
mation, so it is hard to imagine how it can be coupled to
electromagnetic fieldA. On the other hand,J5]L/]A, so
there will be no current carried byS6 in the absence of suc
a coupling.

The resolution is that there is a coupling toA hidden in
the ‘‘ . . . ’’ in Eq. ~6!. If it is difficult to guess the form of
this term, this is because we would be wrong in assum
that it is local. Since we have integrated out gapless fer
onic degrees of freedom in obtaining Eq.~6!, we should
actually expect nonlocal terms. There are no nonlocal te
in the spin dynamics of Eq.~6! because the up- and down
spin Fermi wave vectors are different as a result of the
velopment of ferromagnetic order; consequently spinful
citations of the Fermi surface have a minimum wave vec
However, the charged excitations extend down toq50, and
23511
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the coupling ofS6 to A is, indeed, nonlocal. It may be ob
tained by computing the diagrams of Fig. 1 and takes
form

LA5
e

m
AT

•S1i¹S2 . ~7!

In this equation,AT denotes the transverse part ofA, which
is given in momentum space by

AT~q!5A~q!2q
q•A~q!

q2
. ~8!

This is both nonlocal andgauge invariantsince a gauge
transformation,

A~q!→A~q!1q f~q!, ~9!

with f(q) arbitrary, leavesAT(q) unchanged. SinceS1¹S2

is also invariant under a gauge transformation, the en
term ~7! is gauge-invariant, which is a cause for some reli

Note that spin waves were empowered with the ability
carry a current by the gapless charge degrees of free
with which they interact. In an insulating ferromagnet, sp
waves will not carry a current proportional to their mome
tum. Since insulating behavior will only occur when a sy
tem is not translationally invariant, there is no contradicti
here.

III. QUASIPARTICLES IN A SUPERCONDUCTOR

The Bogoliubov–de Gennes quasiparticles of a superc
ductor are coherent superpositions of electrons and ho
Hence they do not have a well-defined charge. As the Fe
surface is approached, a Bogoliubov–de Gennes quasip
cle becomes an equal superposition of electron and hole;
one might be tempted to assign it zero charge in this lim
This is not an academic question in an unconventional su
conductor such as one ofdx22y2 symmetry—as the high-Tc
cuprates are believed to be—since, in the absence of a
gap, quasiparticles will be thermally excited down to ze
temperature and their ability to carry current will have
impact on the superfluid density.

FIG. 1. The diagrams which contribute to the coupling betwe
spin waves and the electromagnetic field.
3-2
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For the sake of concreteness, let us consider a t
dimensionaldx22y2 superconductor and focus on its nod
quasiparticles. We assume that the system is Galilean inv
ant so that the order parameter spontaneously breaks
tional symmetry when it chooses nodal directions. The eff
tive action for a superconductor is of the form

S5E
ky.0

d2k

~2p!2
dtC†~k,t !@~ i ] t2tzeAt!

2tz@e~k1tzeA!2m#2t1D~k!

2t2D†~k!#C~k,t !, ~10!

where we have used the Nambu-Gorkov notation

Caa~kW !5F ck↑
c2k↓

†

ck↓
2c2k↑

†

G ~11!

and thet i are Pauli matrices which act on the particle-ho
index a. If we consider the four-component object as co
posed of two two-component blocks, the upper and low
blocks, then thet i mix the components within a block. Ther
are also Pauli matricess i which act on the spin indicesa
and mix the upper block with the lower block.

We will linearize this action about the nodes ofD(k)
5D0(coskxa2coskya). We must retain two fermion fields
one for each pair of antipodal nodes, but these pairs of no
are not coupled to each other in the low-energy limit, so
will often focus on just one. By linearizing about the node
we are approximating the momentum of an electron bykF
and discarding the deviation from the Fermi surface. He
we will verify that the relationJ5(e/m)P is satisfiedto this
level of approximation, which meansJ5(e/m)NqpkF , where
Nqp5C†C is the difference between the number of ele
trons at one node and the number at the antipodal node. I
kept the full Galilean-invariant expressione(k)5k2/2m,
then we could verifyJ5(e/m)P exactly. We will do this in
one dimension, where it is particularly instructive. For no
we will content ourselves with a crude verification.

We align our coordinate system along the nodal dierec
and linearize the single-particle dispersion:e(k)2m
'(kF /m)kx , wherekx is the momentum perpendicular t
the Fermi surface, measured away from the node. A sim
expression holds for the other pair of nodes, withkx replaced
by ky . We also linearize the gap about the nodes,

Dt1'vDt1eiew/2~2 i ]y!eiew/2, ~12!

whereeiew is the phase of the superconducting order para
eter. Some care was needed in obtaining the correct orde
of derivatives andw ’s; for details, see Refs. 13 and 17. Int
grating out the electronic states far from the nodes and
fluctuations of the amplitude of the order parameter, we
tain the action
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S5E C†F ~ i ] t2tzeAt!1tz
kF

m
~ i ]x2tzeAx!

1vDtseiesw/2i ]ye
iesw/2GC1

1

2
rsE F 1

vc
2 ~] tw12At!

2

2~] iw12Ai !
2G1 . . . , ~13!

wheres56, andrs and vc are the bare superfluid densit
and velocity. The ‘‘ . . . ’’ includes the action for the othe
pair of nodes and higher-order terms, which we neglect.

Following Ref. 13, we can simplify this action by definin
neutral quasiparticlesx according to18

x5exp~2 iewtz/2!C. ~14!

The action now takes the form

S5E x†F i ] t1tz
kF

m
i ]x1vDtxi ]yGx

2
1

2E Fex†tzx~] tw12At!1ex†x
kF

m
~]xw12Ax!G

1
1

2
rsE F 1

vc
2 ~] tw12At!

22~] iw12Ai !
2G1 . . . .

~15!

The quasiparticle annihilation operatorx is gauge invariant
since it is neutral, butw, which is charged, is not. The actio
~15! is gauge invariant becausex is only coupled to gauge
invariant quantities, such as the superfluid density and
rent, ]mw12Am .

These neutral excitations nevertheless carry current.
differentiating the Lagrangian of Eq.~15! with respect toAx ,
we find that the current in thex direction is

Jx52rs~]xw12Ax!1
e

m
kFx†x. ~16!

The first term is the supercurrent; it derives from the fin
line of Eq. ~15!. The second term comes from the third lin
of Eq. ~15!, and it states that the quasiparticles carry a c
rent which ise/m times their momentumkF :

Jx
qp5

e

m
kFx†x. ~17!

By differentiating Eq.~15! with respect toAt , we find that
the corresponding charge density isr522(rs /vc

2)(] tw
12At)1ex†tzx. The second term is the quasiparticle co
tribution. Although the quasiparticles are neutral in the se
of being gauge invariant, they contribute to both the cha
and current densities.

Suppose that we integrate out the fluctuations of the ph
of the superconducting order parameter. What does the
pling between the quasiparticles and the electromagn
field look like?
3-3
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To integrate outw, it is convenient to use the dual repr
sentation in whichw is replaced by a dual gauge fieldam . In
this dual representation, Eq.~15! takes the form~for details,
see Ref. 13!

S5E x†F i ] t1tz
kF

m
i ]x1vDtxi ]yGx2E 1

2rs
~emnl]nal!2

1S 2Am2
1

2rs
Jm

qpD emnl]nal1 . . . , ~18!

where we have chosen units withvc51 to facilitate the use
of ‘‘relativistic’’ notation. The dual gauge fieldam is related
to the total currentJm by

Jm5emnl]nal . ~19!

It only enters the action in this transverse combination wh
is automatically conserved. Furthermore, this means
emnl]nal is only coupled to the transverse parts ofAm and
Jm

qp. Since it appears quadratically, we can now integrat
out, obtaining

S5E x†F i ] t1tz
kF

m
i ]x1vDtxi ]yGx2E Am

TJm
Tqp1 . . . .

~20!

The coupling betweenAm andJm
qp is nonlocal because it only

couples their transverse parts, as in Eq.~7!. Again, since we
have integrated outam which is formally a gapless degree o
freedom whenAm is held fixed, we should not be surprise
by the appearance of a nonlocal coupling betweenAm and
Jm

qp through which only their gauge-invariant transverse co
ponents are coupled. Sinceam does not couple to the longi
tudinal parts ofAm and Jm

qp, it is not possible to generat
terms involving them.

Again, the ability of quasiparticles to carry a current d
pends on their interaction with gapless charged degree
freedom—in this case, a supercurrent. If the conductivity
sociated with this supercurrent~i.e., its Drude weight,not its
superfluid density,20 see Sec. V! is reduced, e.g., by the lo
calization of some electrons at impurities, then Bogoliubo
DeGennes quasiparticles will carry a reduced current as w

IV. SPIN-CHARGE SEPARATED ONE-DIMENSIONAL
ELECTRON GAS

The one-dimensional electron gas can be described c
pletely in terms of its spin and charge collective modes.1 The
electron itself is a combination of charge and spin carry
solitons—holons and spinons—in these collective mod
Because these collective modes have different velocities
charge and spin of an electron move apart in time. Both
charge and spin modes can carry momentum, but one m
assume that only the charged mode should couple to
electromagnetic field and carry current. Furthermore, the
locities vc andvs of these modes depend on the interact
strength; they are, in general, different fromkF /m, which
might lead one to expect that even the charged mode
carry a current which is not equal toe/m times its momen-
23511
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pectations.

The Hamiltonian density is often written in the Bosoniz
form

H5
1

2
vcFKc~]xwc!

21
1

Kc
~]xuc!

2G
1

1

2
vsFKs~]xws!

21
1

Ks
~]xus!

2G1vFkFA2

p
]xuc .

~21!

The final term is the Fermi energy~for a perfectly linear
spectrum! multiplied by the electron number. This term
cancelled by the chemical potential, but we have retaine
for purposes of comparison with the corresponding expr
sion for the momentum density. If the system respe
SU(2) spin-rotational symmetry, thenKs51. If Kc51 as
well, then the Hamiltonian describes free fermions. AsKc is
shifted away from 1 by the interactions, the charge of
fundamental charged soliton is also shifted away frome. wc
and uc are dual variables,vc]xuc5Kc] twc , as arews and
us . They are symmetric and antisymmetric combinations
left- and right-moving fields,uc5fcR2fcL , wc5fcR
1fcL . The charge and spin modes are symmetric and a
symmetric combinations of up- and down-spin modes,uc

5(u↑1u↓)/A2, us5(u↑2u↓)/A2, etc.
This Hamiltonian describes the physics of interacting f

mions with a spectrum which is linearized about the Fer
surface,6kF . The annihilation operator for a right-movin
spin-up electron is

cR↑5
1

A2pa
e2 iAp/2(wc1uc)e2 iAp/2(ws1us), ~22!

wherea is a short-distance cutoff. Similar relations hold f
down-spin, right-moving electrons and left-moving electro
of both spins. The right- and left-moving charge densities

rR,L5
1

A2p
]x~uc6wc!. ~23!

The right- and left-movingSz densities are given by a simila
expression withuc ,wc replaced byus ,ws .

The momentum can be obtained from the ener
momentum tensorTmn . While the Hamiltonian density is the
tt component,H5Ttt , the momentum density is given b
P5Ttx .

P5kFA2

p
]xwc1@~]xwc!~]xuc!1~]xws!~]xus!#.

~24!

Note that this takes a somewhat different form than is us
for relativistic scalar fields since excitations about the grou
state are centered at6kF ; the first term would not be presen
in an ordinary relativistic system at zero density, where lo
energy excitations are centered aboutk50. It is the counter-
part to the final term in Eq.~21!; it assigns momentum6kF
to each right or left mover. The second term accounts
possible changes in the local value ofkF .
3-4
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In order to determine the current operator, we modify
Hamiltonian via minimal coupling, which replaces]xwc with
]xwc2eA2/pAx . We now differentiate with respect toAx to
obtainJx52]H/]Ax . This coupling is dictated by the fac

that wc→wc2eA2/px when cR,La→eiexcR,La , Ax→Ax
2]xx. Sincevc]xuc5Kc] twc , it does not couple toAx .

However, before we do this, we need to exercise so
care with regards to Galilean invariance. We would like
consider only momentum-independent interactions. He
the interaction terms cannot have independent coeffici
lRR and lRL for the rRrR1rLrL interaction and therRrL
interaction. The only allowed local interaction betwe
charge densities is a simple density-density interaction of
form

lrr5l~rR1rL!25l~rRrR1rLrL!12lrRrL

5
2l

p
~]xuc!

2, ~25!

i.e., lRL52lRR. If lRLÞ2lRR, the Hamiltonian will con-
tain a term of the form (rR2rL)2, which is proportional to
the total momentum squared, in which case the Hamilton
is not Galilean invariant. This is the case for the edge sta
of a quantum Hall bar or quantum Hall line junction.19

Hence when we look at the charged sector of the Ham
tonian~21!, which arises by combining the free and intera
tion terms,

Hcharge5
1

2

kF

m
@~]xwc!

21~]xuc!
2#1

2l

p
~]xuc!

2

5
1

2
vcFKc~]xwc!

21
1

Kc
~]xuc!

2G , ~26!

we see thatvcKc5kF /m. In other words, in a Galilean
invariant system, the change in the charge velocity is p
cisely compensated by the change in the soliton charge
that their product, which will determine the current, is t
same as the free fermion value,kF /m.

The second point which requires some care is the line
ization of the Hamiltonian. By linearizing our Hamiltonia
about the Fermi surface, we are approximating our system
a ‘‘relativistic’’ one. In a relativistic system, the current de
sity and momentum density cannot be proportional to e
other since the former is the spatial component of a vectoJm
and the other is a component of a tensorTmn ~the total mo-
mentum is the spatial component of vector, but this is o
tained by integrating the momentum density over the en
system!; a relation of the formJx5(e/m)Ttx would break
relativistic invariance. Hence we need to retain the ter
which break relativistic invariance and contain the inform
tion about Galilean invariance. While the linearized terms
the Hamiltonian are of the formvF(k2kF), the terms which
‘‘know’’ about Galilean invariance are of the form (k
2kF)2/2m. These terms actually couple the spin and cha
modes, thereby resulting in an electrical current carried
spinons.

To see this, consider a term in the Hamiltonian whi
gives a quadratic spectrum, (k2kF)2/2m, and its bosonized
form,
23511
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cR↑
† 1

2m
~ i ]x!

2cR↑5
1

3

1

2p

1

2m F]xAp

2
~wc1uc1ws1us!G3

1total derivative terms. ~27!

Hence, summing over both spins and over right and
movers, we have

cRa
† 1

2m
]x

2cRa1cLa
† 1

2m
]x

2cLa

5
1

2m
Ap

2
@~]xwc!

2~]xuc!

12~]xwc!~]xws!~]xus!#

1terms which do not containwc . ~28!

In a Galilean-invariant system, with single-particle kine
energyk2/2m, these are the only other terms which we mu
add.

Hence, going beyond linearization about the Fermi poi
and retaining the quadratic single-particle spectrum o
Galilean-invariant system, we have the following Ham
tonian:

H5
1

2 FkF

m
~]xwc!

21
vc

Kc
~]xuc!

2G
1

1

2
vsFKs~]xws!

21
1

Ks
~]xus!

2G
1

1

2m
Ap

2
@~]xwc!

2~]xuc!12~]xwc!~]xws!~]xus!#

1terms which do not containwc . ~29!

If we now apply minimal coupling, ]xwc→]xwc

2eA2/pAx and differentiate with respect toAx to obtainJx
52]H/]Ax , we find the current operator:

Jx5e
kF

m
A2

p
]xwc1

e

m
@~]xwc!~]xuc!1~]xws!~]xus!#.

~30!

Comparing this expression with Eq.~24!, we see that it sat-
isfies the relationJ5(e/m)P.

The charged field]xwc carries large momentumkF . The
spin field ]xws only carries the small momentum of devia
tions from the Fermi points~as do]xuc and]xus). Hence the
latter can get lost in the shuffle if we only keep the leadi
terms in a gradient expansion about the Fermi points. To
the relation between current and momentum, we must k
the quadratic terms in both.

Note that the conditionlRL52lRR as well as the con-
straints on the cubic terms in the Hamiltonian both follow
from Galilean invariance. Even a mild breaking of this i
variance such as that caused by a lattice which is far fr
any nesting condition could lead to a violation of these co
ditions and hence of the relation between the current and
momentum.
3-5
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V. SPIN-CHARGE SEPARATION IN 2 ¿1 DIMENSIONS

We will describe a spin-charge separated state as a q
tum disordered superconducting state13,14 which has the ad-
vantage, in the current context, of allowing us to take as
starting point the discussion in Sec. III of Bogoliubov
deGennes quasiparticles in a superconductor.

A quantum-disorderedd-wave superconductor can be d
scribed by an extension of Eq.~18! to include vortices:

S5E x†F i ] t1tz
kF

m
i ]x1vDtxi ]yGx2E 1

2rs
~emnl]nal!2

1S 2Am2
1

2rs
Jm

qpD emnl]nal1E u~ i ]m12am!Fhc/eu2

2V~Fhc/e!. ~31!

The last line of Eq.~31! implements the Magnus force inte
action between vortices and the supercurrent. Here,Fhc/e is
the annihilation operator for a fluxhc/e vortex, which we
assume is the lightest vortex near the quantum-disord
state. If hc/2e vortices condense instead, then spin a
charge are confined.14 When superconductivity is destroye
through the condensation of fluxhc/e vortices, the resulting
state supports holons, which are spinless, charge-e solitons
in the vortex condensate, and nodons or spinonsx, which are
neutral spin-1/2 excitations.

When vortices condense, superconductivity is destro
because magnetic flux is no longer expelled. In other wo
the superfluid density vanishes. In the dual description
fered in Eq.~31!, chargese i j ] iaj enter the vortex condensa
in a lattice—a ‘‘holon Wigner crystal.’’13,14 However, in a
Galilean-invariant system, the Wigner crystal can sli
Hence, even though the superconductivity is destroyed w
the disappearance of the Meissner effect, the system is s
perfect conductor. Thus when we integrate outam , we will
still obtain a coupling betweenAm andJm

spinonwhich is of the
form

E Am^emab]aabengd]gad&Jn
spinon. ~32!

In the limit of q50, v→0, this is determined by the
conductivity— or Drude weight—which is the same as in t
superconducting case.~It is not determined by the Meissne
or diamagnetic response, which vanishes.! Hence, upon inte-
grating outam andFhc/e , we obtain the same induced co
pling between spinons and the electromagnetic fi
Am

TJm
Tspinon that we obtained for Bogoliubov–de Gennes qu

siparticles.
However, even infinitesimal translational symmetry

breaking, such as that caused by a small density of imp
ties, will pin the holon Wigner crystal. Consequently, t
system will be an insulator andam will be gapped. The cou-
pling between spinons and the electromagnetic field will n
be of the form13

Scoupling5E Am~]2Jm
spinon2]m]nJn

spinon!. ~33!
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In other words, spinons will be truly neutral since they
not carry a current proportional to their momentum dens
in contrast to the merely neutral spinons that do.

Note that holons are not necessarily bosonic. A boso
holon can form a bound state with an uncondensedhc/2e
vortex, or ‘‘vison,’’ thereby becoming Fermionic.21 In this
case, the holon Wigner crystal is not the only possible n
superconducting ground state because the holons could
a perfectly conducting Fermi liquid. If the spinons pair a
form a spin gap, then a spin-gapped metallic state can re
in which spinons carry a current proportional to their m
mentum density.

VI. DISCUSSION

The basic form of the interaction between neutral a
charged quasiparticles isJm

neutralJm
charged. It can be interpreted

as a Doppler shift by which the motion of the neutral qua
particles brings the charged ones along for the ride. A
result, the relationJ(x)5(e/m)P(x) is satisfied even in a
system with formally neutral quasiparticles. The facility wi
which the charge carriers can move along with the neu
quasiparticles follows as a consequence of Galilean inv
ance. However, even in the absence of Galilean invarian
the charge carriers can remain gapless; in such a case
neutral quasiparticles can carry a current, but it will not
fixed to the valueJ(x)5(e/m)P(x).

On the other hand, it is possible for a mild violation
Galilean invariance to have dramatic consequences for
relationship between current and momentum and hence
the conductivity. In the case of spin-charge separation i
11 dimensions, we saw that infinitesimal translation sy
metry breaking can make a perfect conductor into an ins
tor; as a consquence, neutral quasiparticles which car
current proportional to their momentum become truly neu
quasiparticles carrying no current. Similarly, spin waves in
Galilean-invariant electron system carry current, but s
waves in an insulating ferromagnet on a lattice do not ca
current. Thus the lattice has a large effect on the electr
properties of spin waves, even though it does not seem t
particularly important for the magnetic properties of the fe
romagnet phase. Even in 111 dimensions, in those situa
tions in which the effects of the ionic lattice are otherwi
mild because the Fermi surface is far from nested, the r
tion between current and momentum can be strongly viola
as a result of the effect of the lattice on interaction para
eters and ‘‘small’’ corrections to the band dispersion.
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