PHYSICAL REVIEW B, VOLUME 64, 235113

Electrical current carried by neutral quasiparticles
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The current should be proportional to the momentum in a Galilean-invariant system of particles of fixed
charge-to-mass ratio, such as an electron liquid in jellium. However, strongly-interacting electron systems can
have phases characterized by broken symmetry or fractionalization. Such phases can have neutral excitations
which can presumably carry momentum but not current. In this paper, we show that there is no contradiction:
“neutral” excitationsdo carry current in a Galilean-invariant system of particles of fixed charge-to-mass ratio.
This is explicitly demonstrated in the context of spin waves, the Bogoliubov—de Gennes quasiparticles of a
superconductor, the one-dimensional electron gas, and spin-charge separated systefnslimensions. We
discuss the implications for more realistic systems, which are not Galilean invariant.
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I. INTRODUCTION Clearly, there is some tension, if not an outright contra-
diction, between these two papers of conventional wisdom.
Conventional wisdom holds that, in a Galilean-invariantThe resolution, which we describe in this paper, is that “neu-
system of particles of fixed charge-to-mass ration, the tral” quasiparticles do carry current according tal(x)
local current density is proportional to the local momentum=(e/m)P(x) in a Galilean-invariant system. However, even
density,J(x) = (e/m)P(x). The conservation of total momen- a small explicit breaking of Galilean invariance can have
tum then implies conservation of the total curret/dt)J  drastic consequences for this relation. As a result, even a
=0. This is a stronger condition than charge conservationsmall density of impurities or a weak periodic potential can
(d/dt)p+V-J=0, since it implies that the real part of the resultin a state in which neutral quasiparticles carry momen-
conductivity is given byo(w)=(ne*/m)&(w), wheren is  tum but no current and the dc conductivity is zero rather than
the particle density. One might imagine that this hypotheticainfinity.
situation has some applicability to extremely clean real sys- The current carried by neutral quasiparticles can be un-
tems in which the effects of the lattice are unimportant be-derstood as arising from a Doppler shift interaction between
cause the Fermi surface is far from any nesting vector anthem and the charge carriers. The latter are always gapless in
the electron-phonon coupling is very weak. In such a caseg Galilean-invariant system, and they mediate the coupling
one would be tempted to forget about impurities and théetween the electromagnetic field and the neutral quasiparti-
lattice of ions altogether and focus on the electrons, whicteles. We will illustrate our thesis in a number of different
have a fixed charge-to-mass ragtm. contexts: spin waves, the Bogoliubov—de Gennes quasiparti-
On the other hand, we have become accustomed to quagles of a superconductéwhich carry momentum but are not
tum number fractionalization, particularly in the context of charge eigenstatgsthe one-dimensional electron gas, and
quasi-one-dimensional materidisthe fractional quantum spin-charge separated systems i 2 dimensions. Finally,
Hall effect? and theories of high-temperature superconducwe will comment on our results and their applicability to
tivity and frustrated quantum magnéts® Spin-charge sepa- realistic systems, which do not have Galilean invariance.
ration is one possible pattern of quantum number fractional-
ization. It leads to charged, spinless quasiparticles—often Il. SPIN WAVES IN AN ELECTRON LIQUID

called “holons”—and neutral, spin-1/2 quasiparticles—often _ . . . .
P . P As mentioned in the Introduction, one might think that the

called “spinons.” Conventional wisdom would lead us to dox is alread ifest in th f spi
expect that the latter, being neutral, would carry no currentPa@radox IS airéady man est in the context of spin wales
even when endowed with nonzero momentum. This isother collective excitationswhich can carry momentum but

merely the most extreme and exotic case of a general ph@udht not—if we are to think of them as neutral

nomenon: the low-energy quasiparticles of a strongly inter€Xcitations—carry current. Since a spin wave is composed of
acting system need not evince much resemblance to the u n electron an_d a hole, it is, indeed, r!eutral. At a formal
derlying electron. This is truea fortiori if the low- €Vel the creation operator for &=1 spin wave,
temperature phase of the system exhibits fractionalization or
broken symmetry. In particular, there is no reason why the
quasiparticle charge-to-mass ratio shoulddfe. A more is invariant under a gauge transformatiorg,(x,t)
familiar, but no less dramatic example is given by spin waves—e'**¢_(x,t). Consequently, such an operator does not
in a ferromagnet—neutral spin-1 excitations which carrycouple to the electromagnetic field through minimal cou-
momentum but, presumably, no current. pling.

S, (x,t)=cl(x,t),c (1), 1)
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Nevertheless, a spin wawdescarry current. When the A
vector potentialA vanishes, the current takes the form

3= kel (ki (k). @
k M

The current operator has this form irrespective of the

electron-electron interaction terms, so long as they are Gal-

ilean invariant—i.e., so long as they are momentum indepen- S S

dent and translationally invariant. O N_
Consider the operator which creates a spin wave of mo-

mentumg:

S.(q)=>, cl(k+qg)c, (k). 3
+(@) ; T( D i( ) @ FIG. 1. The diagrams which contribute to the coupling between

. . spin waves and the electromagnetic field.
In so doing, it actually creates current as well, as may be

seen by taking its commutator with the current operator the coupling ofS. to A is, indeed, nonlocal. It may be ob-

e tained by computing the diagrams of Fig. 1 and takes the
[J.S+(a)]=+.0aS:(a). (4 form

Hence spin waves carry current. This is a purely kine- £A=E
matic statement which follows from the form of the current m
operator(2) which, in turn, follows from Galilean invariance. |, this equationAT denotes the transverse partf which
Our conclusion holds whether or not the electron liquid or-jg given in momentum space by
ders electronically.

However, it may be difficult to see how this electrical q-A(Q)
current appears in an effective field theory of spin waves in, AT(q)=A(q)—q > (8
for instance, the ferromagnetic state. Suppose we take our q

Galilean-invariant electronic Lagrangian,

AT-S.iVS_. (7)

This is both nonlocal andjauge invariantsince a gauge
1 transformation,
L=cl(ig—eA)c,+ —cl(iV—eA)%c,+ Lin, (5
‘ 2m " A(9)—A(Q)+d $(0), ©
and decouple;,; with a Hubbard-Stratonovich fielwhich  with ¢(q) arbitrary, leave#\"(q) unchanged. Sincg, VS_
couples linearly tocl 0,5 Cg. We can integrate out the is also invariant under a gauge transformation, the entire
electrons and expand the resulting action about a ferromaderm (7) is gauge-invariant, which is a cause for some relief.

netic state which is ordered in thedirection. On general Note that spin waves were empowered with the ability to
grounds, we expect that the resulting effective action will becary @ current by the gapless charge degrees of freedom

of the form with which they interact. In an insulating ferromagnet, spin

waves will not carry a current proportional to their momen-

Lo=S,i0S_.—DVS,-VS_+ ... . (6) tum. Since insulating behavior will only occur when a sys-

o ) tem is not translationally invariant, there is no contradiction
As we noted aboveS$. is invariant under a gauge transfor- pere.

mation, so it is hard to imagine how it can be coupled to the
electromagnetic fieldA. On the other hand]=dL/JA, so

. . . IIl. QUASIPARTICLES IN A SUPERCONDUCTOR
there will be no current carried .. in the absence of such Q

a coupling. The Bogoliubov—de Gennes quasiparticles of a supercon-
The resolution is that there is a couplingAohidden in  ductor are coherent superpositions of electrons and holes.
the “...”"in Eq. (6). If it is difficult to guess the form of Hence they do not have a well-defined charge. As the Fermi

this term, this is because we would be wrong in assumingurface is approached, a Bogoliubov—de Gennes quasiparti-
that it is local. Since we have integrated out gapless fermiele becomes an equal superposition of electron and hole; thus
onic degrees of freedom in obtaining E@), we should one might be tempted to assign it zero charge in this limit.
actually expect nonlocal terms. There are no nonlocal term$his is not an academic question in an unconventional super-
in the spin dynamics of Eq6) because the up- and down- conductor such as one dfz_,> symmetry—as the higfi,

spin Fermi wave vectors are different as a result of the deeuprates are believed to be—since, in the absence of a full
velopment of ferromagnetic order; consequently spinful ex-gap, quasiparticles will be thermally excited down to zero
citations of the Fermi surface have a minimum wave vectortemperature and their ability to carry current will have an
However, the charged excitations extend dowmmte0, and  impact on the superfluid density.
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For the sake of concreteness, let us consider a two- J Ke
dimensionald,z_,> superconductor and focus on its nodal S= | W' (id—T@A)+ 7" (idx— €A
guasiparticles. We assume that the system is Galilean invari-

ant so that the order parameter spontaneously breaks rota- A . 1 1
tional symmetry when it chooses nodal directions. The effec- +v eS¢ aye'ew’z ¥+ Epsj — (G + 2A,)?
tive action for a superconductor is of the form Ve
d2k —(die+2A)? |+ ..., (13
=f dt¥ T (k,O)[(i9,— e A)
ky>0 (277)2

. wheres= =, andps andv, are the bare superfluid density
—mle(k+7€A)—u]-7"A(k) and velocity. The“... " includes the action for the other
ot pair of nodes and higher-order terms, which we neglect.

T AR ]T(k, (10 Following Ref. 13, we can simplify this action by defining

where we have used the Nambu-Gorkov notation neutral quasiparticlesy according t6

x=exp —iepr2)V. (14
c
TkT The action now takes the form
. Ck
VoK) =| (11) I ke _
kfi S:f X' id+ TZHI(QX-FUATXI&}, X
—cly
. ) ) ) _ 1 ‘ ¢ ke
and the7 are Pauli matrices which act on the particle-hole —5| & Tx(dp+2A) +ex X (Oxe+2A)
index a. If we consider the four-component object as com-
posed of two two-component blocks, the upper and lower 1 1
blocks, then the' mix the components within a block. There + ZpSJ — (G +2A)? = (o +2A)% |+ ... .
are also Pauli matrices' which act on the spin indices Ve

and mix the upper block with the lower block. (15)

We will linearize this action about the nodes afk) o o ] ) )
= Ay(coska—cosk,a). We must retain two fermion fields, T_he q_ue_13|part|cle annlhllafuon_ operatgris gauge |nvar|ar_1t
one for each pair of antipodal nodes, but these pairs of nodednce itis neutral, bup, which is charged, is not. The action
are not coupled to each other in the low-energy limit, so wel15) is gauge invariant becauseis only coupled to gauge-
will often focus on just one. By linearizing about the nodes,invariant quantities, such as the superfluid density and cur-
we are approximating the momentum of an electronkpy €Nt d.¢+2A,. o
and discarding the deviation from the Fermi surface. Hence These neutral excitations nevertheless carry current. By
we will verify that the relationJ= (e/m)P is satisfiedto this  differentiating the Lagrangian of EL5) with respect toA,,
level of approximatiopwhich meansi=(e/m) Nk , where we find that the current in the direction is
Ngp="'V is the difference between the r)umber of elec- o
trons at one node and the number at the antipodal node. If we 3 =2pd(dp+2A) + —kex Ty (16)
kept the full Galilean-invariant expressioa(k)=k?/2m, m

then we could verifyd =(e/m)P exactly. We will do this in The first term is the supercurrent; it derives from the final

one dimension, where it is particularly instructive. For nOW, ;.o of Eq. (15). The second term comes from the third line

we will content ourselves with a crude verification. . i X
We align our coordinate system along the nodal dierectiory f Eq. (19), and it states that the quasiparticles carry a cur-

. . . . - . rent which ise/m times their momentunk; :
and linearize the single-particle dispersiore(k)—pu
~(kg/m)k,, wherek, is the momentum perpendicular to

e
the Fermi surface, measured away from the node. A similar IP=—kexTx. (17)
expression holds for the other pair of nodes, vkithreplaced m
by k, . We also linearize the gap about the nodes, By differentiating Eq.(15) with respect toA,, we find that
_ _ the corresponding charge density js= —2(p3/v§)(&tgo
Art~v,rred(—ig, )¢, (12 +2A)+ex r%x. The second term is the quasiparticle con-

. tribution. Although the quasiparticles are neutral in the sense
wheree'®? is the phase of the superconducting order paramef being gauge invariant, they contribute to both the charge
eter. Some care was needed in obtaining the correct orderirgnd current densities.
of derivatives andp’s; for details, see Refs. 13 and 17. Inte-  Suppose that we integrate out the fluctuations of the phase
grating out the electronic states far from the nodes and thef the superconducting order parameter. What does the cou-
fluctuations of the amplitude of the order parameter, we obpling between the quasiparticles and the electromagnetic
tain the action field look like?
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To integrate outp, it is convenient to use the dual repre- tum. However, we have come, by now, to distrust such ex-
sentation in whichp is replaced by a dual gauge figdgf . I pectations.

this dual representation, E(L5) takes the forn(for details, The Hamiltonian density is often written in the Bosonized
see Ref. 1B form
1 1
. ke : 1 H= v K(d )2+—a0)2}
S:J XT 10+ TZEI(?X‘I‘UATXI(?),}X— f Z_pS(G’“’)‘aVa)‘)z 2°¢ C( xPc Kc( xYc
1 o) K ago?+ — (3,097 |+ k\/iao
+|2A,— Z_PSJ?LD) €und@rt ..., (18 2Us s(9xps) Ks( x0s) VFRFE N ;%xVc-

. . . 21
where we have chosen units with=1 to facilitate the use . , ) ( )
of “relativistic” notation. The dual gauge field,, is related lhgcgﬂaml :T?LTI‘I II?efjhi ngg"el‘z%f:ggor:u?nggfefﬂ?; ltlgﬁiris
to the total currend,, by P P y :

cancelled by the chemical potential, but we have retained it
3= €2y - (19 for purposes of comparison with the corresponding expres-
sion for the momentum density. If the system respects
It only enters the action in this transverse combination whicht§U(2) spin-rotational symmetry, thel;=1. If K.=1 as
is automatically conserved. Furthermore, this means thakell, then the Hamiltonian describes free fermions.Kasis
€,.1.d,, is only coupled to the transverse partsAf and  shifted away from 1 by the interactions, the charge of the
ij’. Since it appears quadratically, we can now integrate ifundamental charged soliton is also shifted away fron,
out, obtaining and 6. are dual variablesy d,6.=K.d;¢., as areps and
. 0s. They are symmetric and antisymmetric combinations of
. F. . left- and right-moving fields, 6.= ¢.r— , =
S:f X'|iot TZE'aXJFUATX' ﬁy}x_f AITL‘]/TLquF e + ¢ - The gharge an?j spin moéesd)acfe s(f/?;mefrcic Z)r?g anti-
(200  symmetric combinations of up- and down-spin modes,
The coupling betweeA , andJﬂp is nonlocal because it only
couples their transverse parts, as in Ef). Again, since we
have integrated owt,, which is formally a gapless degree of

=(0,+0))I2, 05=(6,—0,)/2, etc.
freedom wherA , is held fixed, we should not be surprised

surface,* kg . The annihilation operator for a right-moving

This Hamiltonian describes the physics of interacting fer-
u spin-up electron is

mions with a spectrum which is linearized about the Fermi
by the appearance of a nonlocal coupling betwégnand

J%® through which only their gauge-invariant transverse com- 1 ) )
m . _ _ —iVT2(@e+ 0c) a— i NTI2(pg+ O) (22)
ponents are coupled. Sineg, does not couple to the longi- IRy \/ﬁe e ,
tudinal parts ofA, and Jff’, it is not possible to generate
terms involving them. wherea is a short-distance cutoff. Similar relations hold for

Again, the ability of quasiparticles to carry a current de-down-spin, right-moving electrons and left-moving electrons
pends on their interaction with gapless charged degrees @&f both spins. The right- and left-moving charge densities are
freedom—in this case, a supercurrent. If the conductivity as-
sociated with this supercurrefite., its Drude weightnot its
superfluid density’ see Sec. Vis reduced, e.g., by the lo-
calization of some electrons at impurities, then Bogoliubov— . . . . .
DeGennes quasiparticles will carry a reduced current as Welil.—he ”gh_t' anc_i left-movings, densities are given by a similar
expression withd;, ¢ replaced bydg, ¢.

The momentum can be obtained from the energy-
momentum tensor ,,,. While the Hamiltonian density is the

tt component,H=T,;, the momentum density is given by

The one-dimensional electron gas can be described con=Tix.
pletely in terms of its spin and charge collective mot@ke >
electron itself is a combination of charge and spin carrying P=k¢ \ﬁ(yx‘Pc'l'[((9x(Pc)(‘9x0c)+((9X(Ps)((9xas)]-
solitons—holons and spinons—in these collective modes. ™
Because these collective modes have different velocities, the (24)
charge and spin of an electron move apart in time. Both thélote that this takes a somewhat different form than is usual
charge and spin modes can carry momentum, but one miglior relativistic scalar fields since excitations about the ground
assume that only the charged mode should couple to thstate are centered atkg ; the first term would not be present
electromagnetic field and carry current. Furthermore, the vein an ordinary relativistic system at zero density, where low-
locities v, anduvg of these modes depend on the interactionenergy excitations are centered abk&t0. It is the counter-
strength; they are, in general, different frdg/m, which  part to the final term in Eq21); it assigns momentumnt kg
might lead one to expect that even the charged mode willo each right or left mover. The second term accounts for
carry a current which is not equal ®m times its momen- possible changes in the local valuelgf.

1
pR,L:\/T—ﬂ_ax( 0% ¢c). (23

IV. SPIN-CHARGE SEPARATED ONE-DIMENSIONAL
ELECTRON GAS
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o
Hamiltonian via minimal coupling, which replacése. with w;rn (19 %¢r1 =5 5— 5| \ﬁ(%*‘ O+ @st 0s)
. . . 2m 327 2m 2
dyp.—ev2lmA, . We now differentiate with respect #, to
obtainJ,= — dH/dA, . This coupling is dictated by the fact + total derivative terms. (27

_e.f iex
that gc—@c—ev2/my when Yo —€™ R o Ax2Ax Hence, summing over both spins and over right and left
—dyx- Sincevd,0.=K:di@., it does not couple té\,. movers. we have

However, before we do this, we need to exercise some

care with regards to Galilean invariance. We would like to 1 1

consider only momentum-independent interactions. Hence w&aﬁ&inaﬂL l/{aﬁﬁf%a

the interaction terms cannot have independent coefficients

Arr and Ay, for the prpr+p p. interaction and therp, 1 -

interaction. The only allowed local interaction between ==—\/ = (9x0c)%(9x0.)
e . . L . 2m vV 2

charge densities is a simple density-density interaction of the

form +2(dx@c) (dxps) (9x0s) ]

App=N(pr+pL)?=N(pror+pLPL) + 2N PROL +terms which do not contaip,.  (28)
=2—)\(¢9 0.)2 25 In a Galilean-invariant system, with single-particle kinetic

o Y energyk?/2m, these are the only other terms which we must

add.
Hence, going beyond linearization about the Fermi points
’%nd retaining the quadratic single-particle spectrum of a

i.e., \RL=2ARRr. If Ng_L#2\RR, the Hamiltonian will con-
tain a term of the form gg— p)?, which is proportional to
the total momentum squared, in which case the Hamiltonia
is not Galilean invariant. This is the case for the edge state
of a quantum Hall bar or quantum Hall line junctibh.
Hence when we look at the charged sector of the Hamil- K v
tonian(21), which arises by combining the free and interac- H= —[EF(&X%)% K—C(axec)z}
C

alilean-invariant system, we have the following Hamil-

onian:

tion terms, 2
1 ke ) 5 2N 5 1 , 1 5
7_(chargezz E[(axﬁpc) +(9x0c)°]+ ?(5)(0(:) + Evs Ks(dxps)“+ K(axas)
1 ) 1 5 1 T )
=5Uc Kc(ax‘Pc) + _(ﬁxac) ) (26) + 5= —[(5XQDC) (ﬁxac) + 2((9X(Pc)((9x¢s)((9xas)]
2 Ke 2m V 2
we see that K.=krg/m. In other words, in a Galilean- +terms which do not contaig. . (29)

invariant system, the change in the charge velocity is pre-
cisely compensated by the change in the soliton charge so |f we now apply minimal coupling, dy@.— dy@e
that their product, which will determine the current, is the _ ¢ l2imA, and differentiate with respect t#, to obtainJ,

same as the free fermion value; /m. . _ =—3dHIoA,, we find the current operator:
The second point which requires some care is the linear-

ization of the Hamiltonian. By linearizing our Hamiltonian ke [2 e

about the Fermi surface, we are approximating our system by szem ;&X%er[(axgoc)(&xac)nL (dxps) (9409 ].

a “relativistic” one. In a relativistic system, the current den- (30)

sity and momentum density cannot be proportional to each

other since the former is the spatial component of a vefor Comparing this expression with E(24), we see that it sat-

and the other is a component of a ten3gy, (the total mo- isfies the relatiod= (e/m)P.

mentumis the spatial component of vector, but this is ob-  The charged field,¢. carries large momentui: . The

tained by integrating the momentum density over the entirespin field d,¢¢ only carries the small momentum of devia-

system; a relation of the formJ,=(e/m)T,, would break tions from the Fermi point&s dod, 6. andd,s). Hence the

relativistic invariance. Hence we need to retain the termdatter can get lost in the shuffle if we only keep the leading

which break relativistic invariance and contain the informa-terms in a gradient expansion about the Fermi points. To see

tion about Galilean invariance. While the linearized terms inthe relation between current and momentum, we must keep

the Hamiltonian are of the formg(k—kg), the terms which  the quadratic terms in both.

“know” about Galilean invariance are of the formk( Note that the conditiohg =2\grg as well as the con-

—kg)?/2m. These terms actually couple the spin and chargestraints on the cubic terms in the Hamiltonian both followed

modes, thereby resulting in an electrical current carried byrom Galilean invariance. Even a mild breaking of this in-

spinons. variance such as that caused by a lattice which is far from
To see this, consider a term in the Hamiltonian whichany nesting condition could lead to a violation of these con-

gives a quadratic spectrumk < kg)2/2m, and its bosonized ditions and hence of the relation between the current and the

form, momentum.
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V. SPIN-CHARGE SEPARATION IN 2 +1 DIMENSIONS In other words, spinons will be truly neutral since they do
We will describe a spin-charge separated state as a quanot carry a current proportional to their momentum density,

tum disordered superconducting staté which has the ad- IN contrast to the merely neutral spinons that do.

. . Note that holons are not necessarily bosonic. A bosonic
vantage, in the current context, of allowing us to take as OUL Sion can form a bound state with an uncondenset®e
starting point the discussion in Sec. Il of Bogoliubov—

S ) vortex, or “vison,” thereby becoming Fermionfé.In this
deGennes quasiparticles in a superconductor.

. case, the holon Wigner crystal is not the only possible non-
A quantum-disordered-wave superconductor can be de- ;
. : : S superconducting ground state because the holons could form
scribed by an extension of E(L8) to include vortices:

a perfectly conducting Fermi liquid. If the spinons pair and
form a spin gap, then a spin-gapped metallic state can result,
S= f X'
+

Ke 1 in which spinons carry a current proportional to their mo-
. KE. . [ )
T OxtuaT 8y}x f ZpS(E"“V)‘&Va)‘) mentum density.

1
. 2
2A,~ Z_pSJ?‘p) G#wﬂvax+j |(|¢~7M+ 2a#)d>hc,e| VI. DISCUSSION

~V(Phge)- (32) The basic form of the interaction between neutral and
charged quasiparticles #2359 It can be interpreted

The last line of Eq(31) implements the Magnus force inter- as a Doppler shift by which the motion of the neutral quasi-
action between vortices and the supercurrent. Hégg,, is  Particles brings the charged ones along for the ride. As a
the annihilation operator for a flukc/e vortex, which we  result, the relation)(x) = (e/m)P(x) is satisfied even in a
assume is the lightest vortex near the quantum-disorderegystem with formally neutral quasiparticles. The facility with
state. If hc/2e vortices condense instead, then spin andwhich the charge carriers can move along with the neutral
charge are confine. When superconductivity is destroyed quasiparticles follows as a consequence of Galilean invari-
through the condensation of flinc/e vortices, the resulting ance. However, even in the absence of Galilean invariance,
state supports holons, which are spinless, chargefitons the charge carriers can remain gapless; in such a case, the
in the vortex condensate, and nodons or spingnshich are neutral quasiparticles can carry a current, but it will not be
neutral spin-1/2 excitations. fixed to the valuel(x) = (e/m)P(x).

When vortices condense, superconductivity is destroyed On the other hand, it is possible for a mild violation of
because magnetic flux is no longer expelled. In other wordsGalilean invariance to have dramatic consequences for the
the superfluid density vanishes. In the dual description offélationship between current and momentum and hence for
fered in Eq.(31), chargess;; 9,a; enter the vortex condensate the conductivity. In the case of spin-charge separation in 2
in a lattice—a “holon Wigner crystal*** However, in a +1 dimensions, we saw that infinitesimal translation sym-
Galilean-invariant system, the Wigner crystal can slide metry breaking can make a perfect conductor into an insula-
Hence, even though the superconductivity is destroyed withor; as a consquence, neutral quasiparticles which carry a
the disappearance of the Meissner effect, the system is still @rrent proportional to their momentum become truly neutral

perfect conductor. Thus when we integrate ayt we will ~ guasiparticles carrying no current. Similarly, spin waves in a
still obtain a coupling betweef,, andJSP™"which is of the Galilean-invariant electron system carry current, but spin
form waves in an insulating ferromagnet on a lattice do not carry
current. Thus the lattice has a large effect on the electrical
f A €050 @€y y50,25) IO (32)  Properties of spin waves, even though it does not seem to be

pATRaBTaC Ry Ty ROy particularly important for the magnetic properties of the fer-

romagnet phase. Even in+ll dimensions, in those situa-
In the limit of g=0, w—0, this is determined by the tions in which the effects of the ionic lattice are otherwise
conductivity— or Drude weight—which is the same as in themild because the Fermi surface is far from nested, the rela-
superconducting casélt is not determined by the Meissner tion between current and momentum can be strongly violated
or diamagnetic response, which vanishétence, upon inte- as a result of the effect of the lattice on interaction param-
grating outa,, and®y,, we obtain the same induced cou- eters and “small” corrections to the band dispersion.
pling between spinons and the electromagnetic field
A, 3P that we obtained for Bogoliubov—de Gennes qua-
siparticles.
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ties, will pin the holon Wigner crystal. Consequently, the Foundation under Grant No. DMR-9983544 and the A.P.
system will be an insulator aral, will be gapped. The cou- Sloan Foundation. K.S. was supported by the Department of
pling between spinons and the electromagnetic field will nowEnergy under Grant No. DE-FG03-00ER45843. S.M.G. was
be of the form supported by the National Science Foundation under Grant
Nos. DMR-0087133 and PHY9907949. M.P.A.F. was sup-
ported by the National Science Foundation under Grant Nos.
DMR9704005 and PHY9907949.
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