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Fractionalization in an easy-axis Kagome antiferromagnet
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We study an antiferromagnetic spin-1/2 model with up to third nearest-neighbor couplings on the Kagome
lattice in the easy-axis limit, and show that its low-energy dynamics are governed by a foXr¥siteg
exchange Hamiltonian. Simple “vortex pairing” arguments suggest that the model sustains a novel fraction-
alized phase, which we confirm by exactly solving a modification of the Hamiltonian including a further
four-site interaction.In this limit, the system is a featureless “spin liquid,” with gaps to all excitations, in
particular: deconfine®*=1/2 bosonic “spinons” and Ising vortices or “visons.” We use an Ising duality
transformation to express vison correlators as nonlocal strings in terms of the spin operators, and calculate the
string correlators using the ground state wave function of the modified Hamiltonian. Remarkably, this wave
function is exactly given by a kind of Gutzwiller projection of &Y ferromagnet.Finally, we show that the
deconfined spin-liquid state persists over a finite range as the additional four-spin interaction is reduced, and
study the effect of this reduction on the dynamics of spinons and visons.
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[. INTRODUCTION Efforts to identify microscopic spin Hamiltonians that
might actually exhibit such topologically ordered phases
It has now been almost 15 years since Anderson sudhave focussed on strongly frustrated 23-1/2 antiferro-
gested that two-dimension&D) spin-1/2 antiferromagnets magnets. Due to the “sign problem” these efforts have been
might condense into a featureless “spin-liquid” quantum essentially limited to exact diagonalization studies on very
ground staté. In close analogy with the one-dimensional small lattices. Nevertheless, such numerics do identify a few
Heisenberg antiferromagnetic chain, the 2D spin liquid wasnodels which appear to be in a spin-liquid phase: the
posited to support deconfined spinon excitations—Kagome antiferromagnet with near neighbor interactidns
“particles” carrying s=1/2 in stark contrast with the=1  and a triangular lattice model with 4-spin ring exchange
triplet excitations of more familiar non-magnetic phases suchierms'* The importance of multispin ring exchange pro-
as the spin-Peierls state and with tBe=1 magnon excita- cesses in driving 2D fractionalization is also apparent within
tions of the 2D Nékstate? Early attempts to demonstrate the the Z, gauge theory formulatiotf. In an important recent
existence of the 2D spin-liquid focused on quantum dimerdevelopment, Moessner and Sorlditiave compellingly ar-
model$ motivated directly by resonating valence bondgued that a particular quantum dimer model on the triangular
(RVB) ideas! slave-Fermion mean field theorfeand large lattice is in a featureless liquid phase, closely analogous to
N generalizatiorfsof the spin models. While the topological the desired “spin -liquid” phase of a spin Hamiltonian.
character of the spin liquid was mentioned in some of these In this paper we revisit the=1/2 Kagome antiferromag-
pioneering studie§generally the focus was on characteriz- net, in the presence of second and third neighbor exchange
ing the spin liquid by an absence of spin ordering and spatiahteractions. By passing to an easy-axis limit of this model,
symmetry breaking. In the past few years, it has been emsubstantial analytic and numerical progress is possible both
phasized that the precise way to characterize a 2D spin-liquith establishing the presence of a fractionalized spin liquid
phasé—as with other 2D fractionalized phases—is in termsand of directly analyzing its topological properties. Specifi-
of “topological order,” a notion introduced by Wen in the cally, in the easy-axis limit we map the model exactly onto
context of the fractional quantum Hall effét€entral to the an XY Hamiltonian consisting solely of a local 4-spin ring
notion of topological order in 2D is the presence of vortex-exhange interaction. Since the sign of the ring exchange term
like excitations with long-ranged statistical interactidiS. is “bosonic’— opposite to the sign obtained upon cyclically
In the simplest 2D spin liquid these pointlike excitations permuting four underlying s=1/2 fermions (e.g.,
have been dubbed “visons” since they carry an IsingZer  electron$*—the Hamiltonian doesot suffer from a sign
flux.l® Upon transporting a spinon around a vison, theproblem and so should be amenable to quantum Monte
spinon’s wave function acquires a minus sign. A theoreticalCarlo. Furthermore, if the two levels of the spin-1/2 on each
description of this long-ranged statistical interaction is mostite of the Kagome lattice is reinterpreted as the presence or
readily incorporated in the context of a gauge theory with aabsence of aquantum dimer living on a bond of a triangu-
discrete Ising symmetry, in which the visons carry the lar lattice, the model can be reinterpreted as a quantum dimer
flux and the spinons th&, charge'®! The Z, gauge theory model which is very similar to that considered by Moessner
can be dualized into a vortex representation, wherein thand Sondht? the distinction being that three, rather than
topological order follows from the notion of “vortex one, dimers emerge from each site. This realization allows us
pairing.”*? to exploit the important work of Rokhsar and KivelSamho
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identified an exactly soluble point of a generalized square
lattice quantum dimer model. With a similar generalization,
our model also possesses an exact zero energy wave func- J1

tion: an equal weight superposition of all allowed spin con-
figurations in the low-energy singlet sector. We show that < "-.“J3><A
12

1 A2{
this wave function can be viewed as an exact version of the \>Q ><
: S

S1_S

popular variational state consisting of the Gutzwiller projec-
tion of a superfluid/superconductrFinally, we are able to 4 S
implement an exact duality transformation which enables us
to identify the operators which create both the spinon exci-
tation and the topological vison excitation. Employing the

. . : FIG. 1. Kagome lattice and interactions. Two primitive vectors
exact wave function, we compute numerically the vison two-- - .
a,,a, are shown, as are the labels.1. ,4 for thefour sites on a

gomt gorrelfg'o?] anCtlokn’fandzgh?W :.hat Ilt. ISdepr)’]%ggctlally bow tie. The ring term is generated both from the short-dashed and
ecaying—tne hallmark ot a ractionalized p € long-dashed virtual exchange processes.

thereby demonstrate that ttigapped spinons are genuine
deconfined pa_trhclehkg excitations. . where the summation is over all hexagons on the Kagome

The paper is organized as follows. In Sec. Il we introduce " = 6 2 . .
a generalized= 1/2 Kagome antiferromagnet and show how 1attice andSp=27_,S; is the sum of the six spins on each

it can be mapped onto a bosonic ring model in the easy-axigexagoflr}' A similar form was obtained E)y Palmer an”d
limit. With a slight further generalization, we identify an ex- Chalker” for a Heisenberg model on the “checkerboard

actly soluble point in Sec. Ill and obtain an exact spin-liquid'attice, with the Hamiltonian expressed as a sum over the
ground state wave function. In Sec. IV we exploit an exactet@l Spin living on elementary square plaquettes, squared.

duality transformation which maps the Kagome spin model AS for the nearest-neighbor model, the generalized
onto aZ, gauge theory living on the dual lattice to identify Ka@gome antiferromagnet described by Eg) has a non-
the spinon and vison excitations. The vison two-point correlrvial classical limit. There is a thermodynamically large set
lation function is then evaluated numerically using the exacP’ classical ground states, which includes any configuration
wave function in Sec. V, and we demonstrate that it is shortfor which the classical vectds, =0 for each hexagon. The
ranged thereby directly establishing the presence of fractiorPreaking of this degeneracy by quantum fluctuations could
alization in the spin-liquid ground state. Finally, Sec. VI is give rise to “order-by-disorder.” For the spin-1/2 case of
devoted to a brief discussion of the implications of thisinterest, however, Eq2) is essentially intractable analyti-
finding. cally. To make progress, we retain &)Y spins withS=1/2
on each site, but generalize the Hamiltonian to allow for
anisotropic exchange interactions. Specifically, we consider
Il. MODEL an “easy axis” limit, with the exchange interaction along the
axis in spin space larger than in tkey plane:J,>J, . In
the extreme easy-axis limit, one can first analyzeltherms
alone, and then treat the remaining terms as a perturbation:
H:H0+ Hl with

We consider a spin-1/2 Heisenberg antiferromagnet on
Kagome lattice with Hamiltonian

ij HOIng (Sé)z (3

Since the Kagome lattice consists of corner sharing trianglesdnd
the nearest-neighbor exchange interaction, dendtgdis

strongly frustrating. Here we extend this standard near-

neighbor model to incude further neighbor interactions, Hy=3, 2, [(S5)%+(S)2-3], (4)
J>,J3, which act between pairs of sites on the hexagons in o

the Kagome latticgFig. 1). Specifically, two spins on the
same hexagon separated by 120 degrees are coupldd, via

) . 7 o o
and J; is the coupling between two spins diametrically @0 €igenbasis o§'=S==1/2, the Hamiltonian?{, de-
across from one another on the hexagon. scribes a classical spin system. The classical ground state

Instead of the usual nearest-neighbor Kagome antiferroc0nsists of all spin configurations which have zereakis)
magnet(with J,=J;=0), we specialize instead to the case magnetization on each and every hexagonal plaqu&fte:

where the subtraction of 3 was included for convenience. In

with equal exchange interactiony, = J,=J;=J. This gen- = 0. There are many such configuratidnste that unlike the
eralized Kagome antiferromagnet can be cast into a simplBearest-neighbor model, the generalized Kagome antiferro-
form magnet is unfrustrated in the easy-axis limwith a ground

state degeneracy that grows exponentially with system size,
much like other fully frustrated classical spin models such as
= the triangular lattice Ising antiferromagnet. The full Hamil-
H=J2, So-So, 2 . . ) e X
% 00 @ tonian,H, lifts this huge degeneracy, splitting the classically
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degenerate ground states intolav-energy manifold still ports fractionalized “spinon” excitations which carry spin
characterized, however, by the good quantum number§’=1/2. Such a fractionalized state must also support vor-
S, =0. texlike excitations, dubbed “visons,” which carry no spin

Some properties of this easy-axis limit are immediatelybut have a long-ranged statistical interaction with spinons.
evident. For instance, all states in the low-energy manifold A first suggestion to this effect comes from viewihgi,g
have S, =0 for every hexagon, and there is a large gap ofas a lattice boson model, and a spin-liquid state thereby as a
approximatelyJ, to states with any nonzerg, . Hence the bosonic Mott insulator. Generally, such bosqnic insulating
ground state has in this sense a “spin gap.” Thus the eas)ﬁtates_canlgbe regarded as quantum-mechanical condensates
axis genera“zed Kagome antiferromagnet hasXno Spin of vortices.® To ex%mlne the vortex excitations, it Is conve-
order, but translational symmetry breaking is not precludednient to think of §i as lattice boson raising and lowering
More subtle aspects of this model are less evident. In parperators. Formally, one may then  express
ticular, we would like to ascertain the presence or absence ¢ =e™'%—fluctuations in the U(1) phasef (conjugate to
more subtle “topological” order, and the types of “singlet” Sf) are induced by the constrai§f= +1/2. It is then illu-

(more precisely§*=0) and spinful §#0) excitations. minating to re-express the bosonic ring term as
To proceed, we tredt{; as a perturbation with, <J,,
and project back into thiw energy manifolaf degenerate Hring=—2Jring 2 COS by — byt s dby). (6)

classical ground states wi{,=0. (This procedure is very
much analogous to the derivation of the Heisenberg mode& . —_— »
onsider now a vortex centered on some §ite “core”).

starting from the Hubbard model witthh<U. Indeed, in the . . . .
o s . Classically, for the four sites on the bow tie surrounding the
language of “hard core bosons” in which the boson number

. o vortex core,. =(j/4)2wN,, whereN, denotes the number
corresponds t& + 1/2, the perturbing Hamiltoniatt, de- " - 1. L h? | v Th f
scribes boson hopping amongst a pair of sites on the sa of vortices(vorticity) on this plaquette. Thécorg energy o

fiis vortex configuration is proportional to
hexagon. Within second order degenerate perturbation g prop
theory (in J,) for the low-energy manifold, there are two Evort= 2Jying(1— CO{ N, 7). (7)
types of(virtual) processes which contribute, preserving the } .
vanishing magnetization on every hexagon. In the first, twdVotice that plaquettes with an odd number of vortidgs,
antiparallel spins within a single hexagon exchange and thef0St an energy 3,y relative to the evemN, plaquettes. In
exchange back again. This “diagonal” process leéalghin particular, a _smgle strength vortex is costly, bu.t double-
the low-energy manifoldto a simple constant energy shift strength vortices are cheap. The same_conclusmn can be
Eo= —(9/2)NoJf/Jz where N, is the total number of shown more formally using an exact duality transformation.
hexagons. Because this trivial shift does not split the exten- 1YPically single strength vortices condense, but one can
sive degeneracy, we neglect it in what follows. More inter-&/S0 imagine insulating states which reslglt from a condensa-
esting are off-diagonal processes, in which two pairs of antion of composites made from, vortices.” Such insulators
tiparallel spins on opposite sites of a five-site “bow-tie” € necessarily fract|0nalllze-d since they support deconfined
plaquette exchangesee Fig. 1 This process involves spins (Put gappedl charge excitations with *boson chargeQ

on only four sites, and is an analog of electron exchangé $’=1N, . Based on the energetics of the ring term which
“ring” moves. One can readily verify that such “ring” tends to expel single vortices with double vortices being en-

moves on the bow tie leave invariant the 4xi9 magneti- ergetically cheapc_er, one expects_that the insul_ating state for
zation on every hexagon. the Kagome ring model will have spinS*=1/2
Up to second order inJ, /J,, within the low-energy excitations—if it is fractionalized at all. If fractionalized, the

manifold, the full Kagome Heisenberg antiferromagnet is"vison” can be understood as an unpaired vortex state in the

thereby reduced to the forfty+ Hypng with vortex-pair condensate, a “dual” analog of a BCS quasipar-
ticle.

o Further evidence that the ground state of this model might

Hiing= _Jringé ($1S, S35, +h.c), (5)  be fractionalized comes from its formal equivalence to a par-

ticular quantum dimer model. Mapping to a dimer model is
where the labels,1 . . ,4denote the four spins at the ends of straightforward since the sites of the Kagome lattice can be
each bow tie as labeled in Fig. 1. Here the ring exchang&iewed as the centers of the links of a triangular lattice. The
interaction Jrinngf/JZ, and by assumption one hak two S*= + (—)1/2 states on a site correspond to the presence
<J,. Itis noteworthy that in this extreme easy-axis limit the (Or absenceof a dimer on the associated link on the trian
frustrated Kagome magnet doest have a sign problem, and gular lattice. The ring term above corresponds directly to the

as such could be profitably attacked via quantum Montelementary quantum dimer move on the triangular lattice
Carlo. considered recently by Sondhi and Moessndihe only dif-

ference with the standard dimer model is that in this instance
there arethree dimers coming out of every site of the trian-
gular lattice instead of the usual one. Sondhi and Moessner
We now usefq to address the nature of the spin-gappedconsidered an additional “diagonal” tergsee belowin the
state of the easy-axis generalized Kagome antiferromagnetiangular lattice quantum-dimer model, and argued that the
Several arguments point to a spin-liquid phase which supmodel was in a spin-liquid state in portions of the phase

IIl. SOLUBLE SPIN LIQUID
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diagram. Central to their argument was an exactly soluble
point of the model, first exploited by Rokhsar and Kivelson
(RK)® in the square lattice quantum-dimer model. The addi-
tional term is diagonal inS’, and may be writtenH,;

=Ug2y i ISﬂip(r) , Where

. ‘1 .
Pip(n= > 11 (§+o<—1>18,-2). 8)

==*1jer=1

The operatof?ﬂip(r) is a projection operator onto the two
flippable states of the bow-tie rirg This term in the Hamil-
tonian can be combined with,;,y and written in the sugges-
tive form

4 FIG. 2. Dice lattice shown as two interpenetrating honeycombs:
Hring+ an=2 Isﬂip(r)[ —J,ingH 28}<+ u4], (9 blue (solid lines and red(dashed lines A blue vison is created
r =1 geometrically by multiplying & over the underlying Kagome sites
(centers of parallelograms, shown by solid datsough which the
Whenu,=J;i,, 0ne can write down exact ground stale “s_tring" indicated passes. In the dual_ variables, this prod_uct is
which have the product of® equalling one on all bow-tie 9iven by the product of blue gauge fielas; cut by the string
rings. One such state is theY ferromagnet wittS=1/2 on ~ SNoWn. The “blueness” of the vison shown owes to the fact that
every site. In the hard-core boson description, this Correpnly a single spirfsf is contained within the originating blue hexa-
sponds to a superfluid stataelbeit an unusual one with no
zero-point fl i ne m roj k into th - . . . L .
sSaocgoin twﬁi((::trlﬁth%?: Oars thlrjesé pbgjseé:ésbicn e\fgr; ?l;’)l::gghelds, cr{j‘, a set of Pauli matrices living on the links of the
(S5=0), since otherwise this state will not be an eigenstatéjlce lattice
of Hy. (Actually, several distinct projections are generally 1
possible, onto different sectors disconnected from one an- s=-]] &
other under the action oft,,. These give degenerate 2jlco
ground state$.This projection of a superfluid wave function d
to obtain a bosonic insulating state is analogous to the
Gutzwiller projections of superconducting wave functions to 1
obtain variational states for quantum spin mod&lsuyt there Si= ——H—> . (11
is an important difference. In the present instance, the con- '

straints (of three bosons on every hexagarommutewith ' .
( y g Here, the first product is taken around an elementary four-

the Hamiltoniant4;i,, which hops the bosons, in contrast to ided plaquette on the dice lattice which surrounds the spin
the no-double occupancy constraint which does not commutg, plaq : S . Sp
. The second product involves an infinite string which

with the electron kinetic energy term in Hubbard-type mod- ; ) A .
els. Thus, in our case the wave function after projection iconnects sites of the Kagome lattice, eminating from the site

still an exact eigenstate of the full Hamiltonian. S and running off to spatial infinity. For every bond of the
dual dice lattice which is bisected by this string, a factor of

O'ixj is present in the product. To assure that this definition is
independent of the precise path taken by the string, requires
imposing the constraint that the productaj’j on all bonds
Before studying this wave function, it is convenient to connected to each site on the dice lattice is set equal to unity
expose the vison degrees of freedom via a duality transfor-
mation. Specifically, we will employ the standard-2 di-
mensional Ising duality which connects a global spin model
to aZ, gauge theory with gauge fields living on the links of
the dual latticé?® Ising duality transformations for quantum- where herg labels the near-neighbor sites itoThese local
dimer models have been extensively discussed in Ref. 11. IA, gauge constraints must be imposed on the Hilbert space
our case the global spin model is the Kagome mddgl,  of the dual theory. In the resulting dual gauge theory, these
+H,¢ in EQ. (9), so that the dual lattice is the “dice” lattice, constraints are analogous to Coulomb’s laW-E=0) in
which can conveniently be constructed in terms of two interconventional electromagnetism. The necessity of including
penetrating honeycomb lattices as depicted in Fig. 2. On théhe constraints can be simply seen by counting degrees of
operator level, the duality transformation is implemented byfreedom: there are twice as mafsix) bonds per unit cell on
re-expressings® and S* directly in terms of the dual gauge the dice lattice as site@hree per unit cell on the Kagome

(10

IV. DUALITY, VISONS, AND SPINONS

gi=<]f[> of=1, (12)
ji
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lattice, hence to maintain the physical Hilbert space of thegons with a nonzer¢odd integey value of the globally con-
original spins(site variable requires restricting the gauge served spinS;,=+1, also carry both a red and a blidg
fields (bond variables gauge charge.
The dual Hamiltonian takes the form This fact allows us to identify both the spinon and vison
excitations in the theory. Specifically, consider starting in the
— B _1. z z “singlet” sector of the theory with zero magnetization on
Taua Er Pap(1) J””glc:[, 7 I;ID ottuar, (19 every hexagon of the Kagome lattice, and flipping a single

ﬁpin. Since each site of the Kagome lattice is shared by two
where the products are taken around the two hexagon%exa ons, this creates two hexagons each @ik 1. B
plaquettes of the dice lattice which surround the given gons, 9 - BY

Kagome siter. These products measure “magnetic flu adding a small near-neighbor spin exchange it is possible to

: ; hop these two magnetized hexagons, and to spatially separate
the dual gauge fieldshrough hexagons belonging to the two .
honeycomb sublattices. The flip term becomes them. As we demonstrated above, such magnetized hexagons

also carry both a red and a bldg charge. Provided the dual

. 4 gauge theory is in it's deconfined phase, these magnetized
Piip(r) = H (l—oﬁ o}‘,), (14 hexagons can propagate as independent particles. Since two
jer=1 such magnetized hexagons were created when we added

where the product is taken over pairs of bonds on the elSPin-one to the systertby flipping the single spip each

ementary dice plaquette which both connect to the same sité)agnetized hexagon must carry si#f=1/2, and we can

j. thereby identify these excitations as the deconfined spinons.
One can readily verify that the operators which implement A 2D spin liquid with deconfined spinons must necessar-

a local gauge transformatiog; in Eq. (12), commute with ily support topological vortex like excitations—the visdfis.

this dual Hamiltonian. Equivalently, sincg, Uiz,- Gi=- Uizj . Thevison actsas a sourc_eZ)j “flu_x’_’ for the spinon, whose _
the dual Hamiltonian is invariant under the genétalgauge ~ Wave function changes sign as it |s.transported arounq a vi-
transformation, son. In theZ, gauge theory formulation of 2D fractionaliza-
tion, the flux of the vison corresponds generally to a
o'izj — € a'izj €, (15 plaquette withl,,0“= —1. Since the spinons which hop on

, , ) the six-fold coordinated sites of our dice lattice carry both a
with arbitrary €= = 1. Remarkably, though, it turns out that o4 and a blug, gauge charge, it is clear that this spin liquid
this gauge theory actually has an additional set of laal  yhaqe will support two flavors of visons—a rélue) vison
symmetries. I.n.partlcular, it is possm.le to transform tife corresponding to a flux penetrating one tbtlie) hexagon of
gauge fields living on the bluéor red links separately, and e dice lattice.
stiII. leave the Hamiltonian invariant. Eqivglently, one can  pye to the long-ranged statistical interaction between vi-
define local red or blue gauge operators which commute withgns and spinons, it is not possible to have both excitations
the Hamiltonian present and freely propagating. In particular, if the visons are

gapped excitations they will be expelled from the ground
Gl= 11 gfj , (16)  state and the spinons will be deconfined. On the other hand,
i)y a proliferation and condensation of visons will lead to spinon
with the product over red links which eminate from site confinement. Thus, in order to establish 2D fractionalization

and similarly for the blue links. On the dice lattice, for each it is adequate to show an absence of vison condensation. A

six-fold coordinate site there corresponds both a blue and refisefgl diagnostic for this is the vison two-point correlation
local gauge operator, whereas the three-fold coordinated sit dnction

are either red or blue. L

The presence of this additional local symmetry can be V(ri—rj)=(vivj), (18
directly traced to the conservation of the magnetizan
on each hexagon of the original Kagome lattice ring spinwhereo denotes a vison creation operator. When this corre-
model (note that this is the conservation of dimer numberlation function is short ranged, the visons are not condensed,
emerging from each site on the equivalent triangular latticeand the system is fractionalized.

dimer model. Indeed, upon using Edq11), one can show In order to evaluate this correlation function for the
that for the six-fold coordinate sites of the dice lattice Kagome spin model, it is necessary to express this vison
od - blue o, two-point function in terms of the original spin operators. To
gi =G; =—exfdinSs ], (170 this end, we first note that from the definition in E@1), it

where the center of the hexagon is at sitm the dice lattice. IS @Pparent that the operatog2creates both a red and a blue
The right-hand side of this expression can be interpreted as\@son, 2/=v{v?, since it introduces &, flux through the

Z, “charge” living on the six-fold coordinate sites of the red and blue hexagons of the dice lattice which enclose the
dice lattice, since it equals thattice) divergence of th&,  spin. Sincev;0;=1, a single(red) vison (say can be created
“electric fields.” For the “singlet” sector of the theory with by stringing together an infinitely long product of spin op-
S5, =0 for all hexagons, the right-hand side is simply minuserators S?. This “string” starts at the given site of the
one. But more generally, this expression indicates that hexd<agome lattice and joins neighboring spins making only
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+30° turns eventually running off to spatial infinity, but oth- 0
erwise is arbitrary. Explicitly, the vison two-point function is
then

V= (19 In(Cij)

>

(o 25310y

where|0) denotes the ground state, and the product in Eq.

(19) is taken, as described above, along some path on the i
Kagome lattice starting at siieand ending at sitg contain-

ing an even number of sites, and making onl 30°” turns

left or right. Due to the constrairgf,,= 0, the latter product

10 |

-15

is path-independent up to an overall s{¢rence the absolute 20 ‘ .
value in Eq.(19)]. We also define for convenience the physi- 0 10 o %0
. . . . |xi-xj| o Spin Correlator
cally interesting spin-spin correlator O'Strina Correlator
Cij =<O|S|ZSJ~Z|0), (20) FIG. 3. Correlators for the (20,20) Kagome torus. The horizon-

tal axis mirj)?i—ij\ is the shortest distance between sitesidj on

the torus, in units of the intersite distance. Large circles with error

bars show the logarithm oW¥;;, while small circles represent
With V andC defined appropriate'y in terms of the Spins’ In(C”) Each small circle represents an average over all pairs of

we are now in a position to evaluate them using the exact RJ8ites with a fixed separation, while the large circles with error bars

wave function. Specifically, we consider exact ground statéepresent the Qistributiop of string correlators of pairs of sites con-

wave functions(at the RK point on the torus defined by nected by ehorizontalstring. Both correlators clearly decay expo-

. o . . N nentially, with apparently the same exponent, albeit with larger nu-
identifying sites CO[‘”GCted by the two winding vectog merical errors for the string correlator, due presumably to the fact

=n;a; andW,=n,a,, whereny,n, are positive even inte- that this data is less spatially averaged.

gers, anda, ,a, are primitive vectorgsee Fig. 1 The de-

generacies, etc., of such wave functions are nearly identicdéhmily of models defined by singling out a single “central”
to that discussed by Moessner and Sondhi, so we do not goiangle of the Kagome lattice, and the associated three bow-
into detail here. We focus on the wave functif), which  tie ring moves centered on the three sites of this triangle. For
has been projected onto a single topologically connected sethese three ring terms, we lef=J/, ¢ vary independently of

V. CORRELATORS AT THE SOLUBLE POINT

rini
tor. Us=Jying for all other bow ties. Independent of the choice of
The expectation values of interest can be evaluated StQ]-r’ing;(), the original, translationally invariadd) state re-
chastically using eclassical “infinite temperature” Monte  mains a zero energy ground-state wave function. However,
Carlo algorithm, which “random walks” through the various for the special casa!, =0, we can find an additional exact
components of the wave function. Our numerical results forzero-energy eigensta?e,
a torus withn;=n,=20 are shown in Fig. 3 plotting M,

In C versus distance. Apart from a saturation due primarily to

round-off error, both correlators clearly display exponential [v)=0il0), (21)
decay, InCyj, InVjj~—[ri—r;|//¢ with apparently the same )
correlation lengthé~1. where v; is the (string vison creation operator emerging

Short-range exponentially decaying correlation€jpes- ~ from any of the sites of the central triangle. Thus &
tablish the absence of spin order, but do not preclude broker 0, there is no vison gap. We interpret this result to mean
translational symmetries such as plaguette or bond order. THbat by reducing the ring couplings on the central triangle, a
exponential decay of the vison correlatgrnowever, implies  vison has beeboundto this triangle, with a binding energy
that the phase is necessarily fractionalized with deconfinethat exactly equals its gap in the bulk. To test this hypothesis,
S,=1/2 spinon excitations, regardless of the presence or alwe calculate the first-order energy shift a’;,:ﬁg is increased
sence of broken translational symmetries. The exponentidfom zero to positive values using perturbation theory. To
spatial decay olv;; is suggestive of a vison gap, i.e., the leading order, one finds that
existence of a minimum energy required to excite a vison. A
vison gap, however, strictly speaking requires exponential
decay of the vison correlator imaginary time not in space
at equal time. Conceivably, the latter condition could occur , . .
in the absence of a vison gap, provided that these vison‘é’_hereH s the s_um of r|.ng terms for the tAhree: sites of the
were localized. Given the peculiarities of the present modeltriangle. To obtain the final result, we usgSiv;==*S{,
we desire a direct argument for a vison gap. Fortunatelywhere the minugplus) sign obtains ifj is (is noy on the
such an argument can also be made using the properties 8#fing. The energy of the no-vison stdtg=0 for all Jji,g-
the RK point. Our construction closely follows and only Hence the gap in this approximation is proportionaUt‘qg
slightly refines an argument used in Ref. 20. We consider anultiplied by the probability that any given bow tie is flip-

Ev:<U|H’|v>:<o|aiHIai|0>:6Jr,ing<0|ﬁ)flip|0>v (22
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pable. The latter probability is determined directly by the

1
classical Monte Carlo procedure, and we fit@l ﬁ’ﬂip|0> 5HL:§5JM<% (S'I+SJ +S Sj+)' (29
~0.257, hence
For any given bond on the Kagome lattice, the associated
E,~1.54J/ (23 term in Eq.(25) raisesS;, of one hexagon by-1 and lowers

ring - Sg, of another by—1. Clearly, acting upon the ground state,

Note that this is only the first-order approximation to thethziS takes the system outside the low-energy manifold of

vison gap. The naive extensio]jinge\]ring gives a reason- S;=0. Hence due to_ the large spin gap, it generat_es only
able extrapolatiorithis is used in Ref. 20 but there is no weak second-order virtual processes that renormalize cou-

obvious reason to expect it to be exact. plings of the effective ring model. However, its effects are
more interesting on some of the excited states. In particular,
for a single spinon excitation, one has @¥,, =0 a single
V1. DISCUSSION magnetized hexagon witls,==1. The spinon is com-

We have demonstrated the equivalence of the generalize‘ﬁetmy Iogalized, and therg is an asspciatgd degeneracy of
Kagome antiferromagnet in the easy-axis limit to)a¥i ring these excited states reflecting translational invariance due to

model, and moreover shown that, with the addition ofuhe the arbitrariness of which hexagon is magnetized. JFr

interaction, this model is in a topologically ordered phase atio’ this degeneracy is lifted, since Hgs) allows the mag-

the RK point whereu,=J;jng. At this point, the model is a n.et.|zed hexagon to move..ThL.Js E@5) has the effect OT
true “short-range” spin liquid, insofar as there is evidently giving the spinons some Kinetic energy, and _the associated
no order or broken symmetry, and all excitations are gappecﬁtate_S broaden into a t_)and. Indeeql, Itis poss_lble to formally
But more importantly by computing the vison two-point rewrite Eq. (25 epr|C|tIy_ as a spmnon hopping term. As .
function we explicitly demonstrate that this spin-liquid phaseabove’ because of the existing spinon gap, the ground state is

is fractionalized, and support§8*=1/2 spinon excitations expected to be stable to this perturbation &5, =J,.

: : : : A universal aspect of fractionalized quantum spin liquids
whose gap i9(J,). Since the visons also are gapped—with. . !
a gap ofO(erg)=O(Jf/JZ)—this spin-liquid state is resil- is ground state degeneracy when the model is defined on

ent nonsimply connected spaces, which is a signature of the un-
Iﬁ articular, we may consider a variety of erturbationsderlying topological ordet.In the phenomenological square
awa F?‘rom the,s ecial )goluble model FoI)I/owinp similar ar_lattice Z; gauge theory model, this can be understood as
gum)énts to thosg of Moessner and éoﬁﬁhhe s%in-liquid arising due to the option of passing or not passing a vison
state remains the ground state 0 U /Jng< 1, whereA is through each “hole”(noncontractible loop For instance, on

- . a cylinder (strip with periodic boundary conditionsthe
some unknown dimensionless number. A0, then the square latticeZ, gauge theory predicts a twofold ground

fractipnalized phqse persi_sts to the pure ring_ model, but it Btate degeneracy. Following this argument, and the fact that
possible that an intermediate phase phasesintervenes) the Kagome model studied here supports two “colors” of

such thah>0. Quantum Monte Carlo simulations could be visons, one might naively expect a fourfold ground state de-

USTIUIF'IH deciding this c1uest|tonk.) i ist in deviati eneracy on the cylinder. This conclusion, however, over-
erhaps more novel perturbations consist In deviaiong, s the physical degenerate states within the gauge

from the conditiond; =J,=J 'mposed initially. Again, the theory. To see this, consider the operator which creates a red
presence of a complete gap in the spectrum rules out th

destruction of the spin liquid by these perturbatidpso- 6 blue vison through the hole of the cylinder,

vided they are wegklt is interesting to consider the effect of . ®
small changes 4, in particularJ,,=J,+ 8J4,, J1, =J, W= ‘H—’ 051 (26)
+6J,, . Viewing these deviations as perturbations, the GDep

change in the easy-axis coupling can be rewritten as where the product is taken over all red or blue bonds that cut

1 a loop making a full circumference of the cylinder. Bath
_ zcz_ ~n andW, commute with the Hamiltoniat{y,,. Next, consider
oM, 5le<i2j> S5 5le<|2j> v 24 the duality transformation defining; , Eq. (10), carried out
on a cylinder. For this tranformation to be invertiklend
where the sum in the first line is taken over nearest-neighbdience not introduce unphysical decoupled states—and false
site of the Kagome lattice, and is equivalent in the secondlegeneracies—into the dual descripjioone must require
line to a sum over hexagons that are nearest neighbors withthat the full “string” (product of o7;) around the cylinder
either the red or blue honeycomb sublattice of the dual dicequal unity. Hence
lattice. Remarkably, the latter form, E@4) corresponds to a
vison hopping or kinetic energy term. Because the visons are W, W,=1 (27)
already gapped, this clearly will not destabilize the ground
state provided the kinetic energy gain remains small relativéor all physical states. Thus if one finds a ground sfafe
to the vison gap, i..4J1,<Jjing- another generally inequivalent one may be obtained as

The change in the in-plane exchange can be written ~ W,|0). Due to Eq.(27), however, this state iglentical to
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W,|0), since\fvf,bzl. The correct result is the same as thatment transition should occur. At such a confinement transi-

of the Z, gauge theory: we expect a twofold ground statetion, provided it is second order, the vison gap must vanish.
degeneracy on a cylindéand, e.g., a fourfold degeneracy on Should the pure ring model lie near to this critical point, one
a torus. would indeed expect a large number of low-lying singlet
We conclude with a comparison of our results to someexcitations, which on the deconfined side of the critical point
related discussions in the literature. An interesting aspect adre understood as weakly gapped visons.
the spinons in the generalized Kagome antiferromagnet we In light of these results it should be interesting to look at
have considered is that they dpesonic Despite the close other bosonic ring models, well away from the integrable RK
relation of the topologically ordered state described here to point. For instance, the properties of the pXPé ring model,
Gutzwiller-projected superfluid, this is in contrast to what isgq. (5), defined on four-site plaquettes on diverse lattices
obtained by such prOjeCtionS on &)J-invariant supercon- (Kagome’ square, triangu|ar, et(are very p00r|y under-
ducting states? as are naturally suggested by work arisingstood. With the insight that such terms strongly favor vortex
from various slave-fermion theori€@sAs in our work, the  pajring, these seem to be excellent candidate models that
large N approaches to the spin ligdicalso find bosonic might exhibit quantum number fractionalization. A variety of

spinons. o _ numericat' and novel analytical techniqu@smight profit-
One of the most intriguing aspects of the numerical r€-ably be applied to these systems.

sults on the spin-1/2 nearest-neighbor Kagome
antiferromagnét is the proliferation of a large number of

very low-energy singlet excitations. Our approach does not
shed too much light on this phenomenon, since the spin lig-
uid ground state found here is in fact fully gapped. It is, We are grateful to T. Senthil and Doug Scalapino for scin-
however, true that in the easy-axis limit considered above théllating discussions. L.B. was supported by NSF Grant No.
visons[which are “singlets” under 1) rotations about the DMR-9985255, and the Sloan and Packard foundations,
S* axis| have a much smaller gap,(,19=Jf/Jz<Jz) thanthe M.P.AIF. by NSF Grants Nos. DMR-97-04005, DMR95-

spinons. Moreover, it is natural to expect in our effective ring28578 and PHY94-07194, and S.M.G. by NSF Grant No.
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