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Fractionalization in an easy-axis Kagome antiferromagnet
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We study an antiferromagnetic spin-1/2 model with up to third nearest-neighbor couplings on the Kagome
lattice in the easy-axis limit, and show that its low-energy dynamics are governed by a four-siteXY ring
exchange Hamiltonian. Simple ‘‘vortex pairing’’ arguments suggest that the model sustains a novel fraction-
alized phase, which we confirm by exactly solving a modification of the Hamiltonian including a further
four-site interaction.In this limit, the system is a featureless ‘‘spin liquid,’’ with gaps to all excitations, in
particular: deconfinedSz51/2 bosonic ‘‘spinons’’ and Ising vortices or ‘‘visons.’’ We use an Ising duality
transformation to express vison correlators as nonlocal strings in terms of the spin operators, and calculate the
string correlators using the ground state wave function of the modified Hamiltonian. Remarkably, this wave
function is exactly given by a kind of Gutzwiller projection of anXY ferromagnet.Finally, we show that the
deconfined spin-liquid state persists over a finite range as the additional four-spin interaction is reduced, and
study the effect of this reduction on the dynamics of spinons and visons.
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I. INTRODUCTION

It has now been almost 15 years since Anderson s
gested that two-dimensional~2D! spin-1/2 antiferromagnet
might condense into a featureless ‘‘spin-liquid’’ quantu
ground state.1 In close analogy with the one-dimension
Heisenberg antiferromagnetic chain, the 2D spin liquid w
posited to support deconfined spinon excitations
‘‘particles’’ carrying s51/2 in stark contrast with thes51
triplet excitations of more familiar non-magnetic phases s
as the spin-Peierls state and with theSz51 magnon excita-
tions of the 2D Nee´l state.2 Early attempts to demonstrate th
existence of the 2D spin-liquid focused on quantum dim
models3 motivated directly by resonating valence bo
~RVB! ideas,4 slave-Fermion mean field theories5 and large
N generalizations6 of the spin models. While the topologica
character of the spin liquid was mentioned in some of th
pioneering studies,7 generally the focus was on character
ing the spin liquid by an absence of spin ordering and spa
symmetry breaking. In the past few years, it has been
phasized that the precise way to characterize a 2D spin-liq
phase8—as with other 2D fractionalized phases—is in term
of ‘‘topological order,’’ a notion introduced by Wen in th
context of the fractional quantum Hall effect.9 Central to the
notion of topological order in 2D is the presence of vorte
like excitations with long-ranged statistical interactions.7,10

In the simplest 2D spin liquid these pointlike excitatio
have been dubbed ‘‘visons’’ since they carry an Ising orZ2
flux.10 Upon transporting a spinon around a vison, t
spinon’s wave function acquires a minus sign. A theoreti
description of this long-ranged statistical interaction is m
readily incorporated in the context of a gauge theory wit
discrete Ising symmetry, in which the visons carry theZ2
flux and the spinons theZ2 charge.10,11The Z2 gauge theory
can be dualized into a vortex representation, wherein
topological order follows from the notion of ‘‘vortex
pairing.’’12
0163-1829/2002/65~22!/224412~8!/$20.00 65 2244
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Efforts to identify microscopic spin Hamiltonians tha
might actually exhibit such topologically ordered phas
have focussed on strongly frustrated 2Ds51/2 antiferro-
magnets. Due to the ‘‘sign problem’’ these efforts have be
essentially limited to exact diagonalization studies on v
small lattices. Nevertheless, such numerics do identify a
models which appear to be in a spin-liquid phase:
Kagome antiferromagnet with near neighbor interaction13

and a triangular lattice model with 4-spin ring exchan
terms.14 The importance of multispin ring exchange pr
cesses in driving 2D fractionalization is also apparent wit
the Z2 gauge theory formulation.10 In an important recent
development, Moessner and Sondhi15 have compellingly ar-
gued that a particular quantum dimer model on the triangu
lattice is in a featureless liquid phase, closely analogous
the desired ‘‘spin -liquid’’ phase of a spin Hamiltonian.

In this paper we revisit thes51/2 Kagome antiferromag
net, in the presence of second and third neighbor excha
interactions. By passing to an easy-axis limit of this mod
substantial analytic and numerical progress is possible b
in establishing the presence of a fractionalized spin liq
and of directly analyzing its topological properties. Spec
cally, in the easy-axis limit we map the model exactly on
an XY Hamiltonian consisting solely of a local 4-spin rin
exhange interaction. Since the sign of the ring exchange t
is ‘‘bosonic’’— opposite to the sign obtained upon cyclical
permuting four underlying s51/2 fermions ~e.g.,
electrons!14—the Hamiltonian doesnot suffer from a sign
problem and so should be amenable to quantum Mo
Carlo. Furthermore, if the two levels of the spin-1/2 on ea
site of the Kagome lattice is reinterpreted as the presenc
absence of a~quantum! dimer living on a bond of a triangu
lar lattice, the model can be reinterpreted as a quantum di
model which is very similar to that considered by Moessn
and Sondhi,15 the distinction being that three, rather tha
one, dimers emerge from each site. This realization allows
to exploit the important work of Rokhsar and Kivelson3 who
©2002 The American Physical Society12-1
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identified an exactly soluble point of a generalized squ
lattice quantum dimer model. With a similar generalizatio
our model also possesses an exact zero energy wave
tion: an equal weight superposition of all allowed spin co
figurations in the low-energy singlet sector. We show t
this wave function can be viewed as an exact version of
popular variational state consisting of the Gutzwiller proje
tion of a superfluid/superconductor.16 Finally, we are able to
implement an exact duality transformation which enables
to identify the operators which create both the spinon ex
tation and the topological vison excitation. Employing t
exact wave function, we compute numerically the vison tw
point correlation function, and show that it is exponentia
decaying—the hallmark of a 2D fractionalized phase.10 We
thereby demonstrate that the~gapped! spinons are genuine
deconfined particlelike excitations.

The paper is organized as follows. In Sec. II we introdu
a generalizeds51/2 Kagome antiferromagnet and show ho
it can be mapped onto a bosonic ring model in the easy-
limit. With a slight further generalization, we identify an e
actly soluble point in Sec. III and obtain an exact spin-liqu
ground state wave function. In Sec. IV we exploit an ex
duality transformation which maps the Kagome spin mo
onto aZ2 gauge theory living on the dual lattice to identi
the spinon and vison excitations. The vison two-point cor
lation function is then evaluated numerically using the ex
wave function in Sec. V, and we demonstrate that it is sh
ranged thereby directly establishing the presence of fract
alization in the spin-liquid ground state. Finally, Sec. VI
devoted to a brief discussion of the implications of th
finding.

II. MODEL

We consider a spin-1/2 Heisenberg antiferromagnet o
Kagome lattice with Hamiltonian

H5(
i j

Ji j SW i•SW j . ~1!

Since the Kagome lattice consists of corner sharing triang
the nearest-neighbor exchange interaction, denotedJ1, is
strongly frustrating. Here we extend this standard ne
neighbor model to incude further neighbor interactio
J2 ,J3, which act between pairs of sites on the hexagons
the Kagome lattice~Fig. 1!. Specifically, two spins on the
same hexagon separated by 120 degrees are coupled vJ2,
and J3 is the coupling between two spins diametrica
across from one another on the hexagon.

Instead of the usual nearest-neighbor Kagome antife
magnet~with J25J350), we specialize instead to the ca
with equal exchange interactions,J15J25J35J. This gen-
eralized Kagome antiferromagnet can be cast into a sim
form

H5J(̋ SW
˝
•SW

˝
, ~2!
22441
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where the summation is over all hexagons on the Kago
lattice andSW

˝
5( i 51

6 SW i is the sum of the six spins on eac
hexagon. A similar form was obtained by Palmer a
Chalker17 for a Heisenberg model on the ‘‘checkerboard
lattice, with the Hamiltonian expressed as a sum over
total spin living on elementary square plaquettes, square

As for the nearest-neighbor model, the generaliz
Kagome antiferromagnet described by Eq.~2! has a non-
trivial classical limit. There is a thermodynamically large s
of classical ground states, which includes any configurat
for which the classical vectorSW

˝
50 for each hexagon. The

breaking of this degeneracy by quantum fluctuations co
give rise to ‘‘order-by-disorder.’’ For the spin-1/2 case
interest, however, Eq.~2! is essentially intractable analyti
cally. To make progress, we retain SU~2! spins withS51/2
on each site, but generalize the Hamiltonian to allow
anisotropic exchange interactions. Specifically, we cons
an ‘‘easy axis’’ limit, with the exchange interaction along th
z axis in spin space larger than in thex-y plane:Jz.J' . In
the extreme easy-axis limit, one can first analyze theJz terms
alone, and then treat the remaining terms as a perturba
H5H01H1 with

H05Jz(̋ ~S
˝

z !2 ~3!

and

H15J'(̋ @~S
˝

x !21~S
˝

y !223#, ~4!

where the subtraction of 3 was included for convenience
an eigenbasis ofSi

z5S561/2, the HamiltonianH0 de-
scribes a classical spin system. The classical ground s
consists of all spin configurations which have zero (z-axis!
magnetization on each and every hexagonal plaquette:S

˝

z

50. There are many such configurations~note that unlike the
nearest-neighbor model, the generalized Kagome antife
magnet is unfrustrated in the easy-axis limit!, with a ground
state degeneracy that grows exponentially with system s
much like other fully frustrated classical spin models such
the triangular lattice Ising antiferromagnet. The full Ham
tonian,H, lifts this huge degeneracy, splitting the classica

FIG. 1. Kagome lattice and interactions. Two primitive vecto

aW 1 ,aW 2 are shown, as are the labels 1, . . . ,4 for thefour sites on a
bow tie. The ring term is generated both from the short-dashed
long-dashed virtual exchange processes.
2-2
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degenerate ground states into alow-energy manifold, still
characterized, however, by the good quantum numb
S
˝

z 50.
Some properties of this easy-axis limit are immediat

evident. For instance, all states in the low-energy manif
haveS

˝

z 50 for every hexagon, and there is a large gap
approximatelyJz to states with any nonzeroS

˝

z . Hence the
ground state has in this sense a ‘‘spin gap.’’ Thus the ea
axis generalized Kagome antiferromagnet has noXY spin
order, but translational symmetry breaking is not preclud
More subtle aspects of this model are less evident. In
ticular, we would like to ascertain the presence or absenc
more subtle ‘‘topological’’ order, and the types of ‘‘singlet
~more preciselySz50) and spinful (SzÞ0) excitations.

To proceed, we treatH1 as a perturbation withJ'!Jz ,
and project back into thislow energy manifoldof degenerate
classical ground states withS

˝

z 50. ~This procedure is very
much analogous to the derivation of the Heisenberg mo
starting from the Hubbard model witht!U. Indeed, in the
language of ‘‘hard core bosons’’ in which the boson numb
corresponds toSi

z11/2, the perturbing HamiltonianH1 de-
scribes boson hopping amongst a pair of sites on the s
hexagon.! Within second order degenerate perturbat
theory ~in J') for the low-energy manifold, there are tw
types of~virtual! processes which contribute, preserving t
vanishing magnetization on every hexagon. In the first, t
antiparallel spins within a single hexagon exchange and t
exchange back again. This ‘‘diagonal’’ process leads~within
the low-energy manifold! to a simple constant energy shi
E052(9/2)N

˝
J'

2 /Jz , where N
˝

is the total number of
hexagons. Because this trivial shift does not split the ext
sive degeneracy, we neglect it in what follows. More int
esting are off-diagonal processes, in which two pairs of
tiparallel spins on opposite sites of a five-site ‘‘bow-tie
plaquette exchange~see Fig. 1!. This process involves spin
on only four sites, and is an analog of electron excha
‘‘ring’’ moves. One can readily verify that such ‘‘ring’
moves on the bow tie leave invariant the (z axis! magneti-
zation on every hexagon.

Up to second order inJ' /Jz , within the low-energy
manifold, the full Kagome Heisenberg antiferromagnet
thereby reduced to the formH01Hring with

Hring52Jring(
q

~S1
1S2

2S3
1S4

21h.c.!, ~5!

where the labels 1, . . . ,4denote the four spins at the ends
each bow tie as labeled in Fig. 1. Here the ring excha
interaction Jring5J'

2 /Jz , and by assumption one hasJ'

!Jz . It is noteworthy that in this extreme easy-axis limit th
frustrated Kagome magnet doesnot have a sign problem, an
as such could be profitably attacked via quantum Mo
Carlo.

III. SOLUBLE SPIN LIQUID

We now useHring to address the nature of the spin-gapp
state of the easy-axis generalized Kagome antiferromag
Several arguments point to a spin-liquid phase which s
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ports fractionalized ‘‘spinon’’ excitations which carry spi
Sz51/2. Such a fractionalized state must also support v
texlike excitations, dubbed ‘‘visons,’’ which carry no sp
but have a long-ranged statistical interaction with spinon

A first suggestion to this effect comes from viewingHring
as a lattice boson model, and a spin-liquid state thereby
bosonic Mott insulator. Generally, such bosonic insulat
states can be regarded as quantum-mechanical conden
of vortices.18 To examine the vortex excitations, it is conv
nient to think of Si

6 as lattice boson raising and lowerin
operators. Formally, one may then expre
Si

65e6 if i—fluctuations in the U(1) phasesf i ~conjugate to
Si

z) are induced by the constraintSi
z561/2. It is then illu-

minating to re-express the bosonic ring term as

Hring522Jring (
q

cos~f12f21f32f4!. ~6!

Consider now a vortex centered on some site~the ‘‘core’’!.
Classically, for the four sites on the bow tie surrounding t
vortex core,f j5( j /4)2pNv , whereNv denotes the numbe
of vortices~vorticity! on this plaquette. The~core! energy of
this vortex configuration is proportional to

Evort52Jring~12cos~Nvp!!. ~7!

Notice that plaquettes with an odd number of vortices,Nv ,
cost an energy 4Jring relative to the even-Nv plaquettes. In
particular, a single strength vortex is costly, but doub
strength vortices are cheap. The same conclusion can
shown more formally using an exact duality transformatio

Typically single strength vortices condense, but one c
also imagine insulating states which result from a conden
tion of composites made fromNv vortices.12 Such insulators
are necessarily fractionalized since they support deconfi
~but gapped! charge excitations with ‘‘boson charge’’Q
5Sz51/Nv . Based on the energetics of the ring term whi
tends to expel single vortices with double vortices being
ergetically cheaper, one expects that the insulating state
the Kagome ring model will have spinSz51/2
excitations—if it is fractionalized at all. If fractionalized, th
‘‘vison’’ can be understood as an unpaired vortex state in
vortex-pair condensate, a ‘‘dual’’ analog of a BCS quasip
ticle.

Further evidence that the ground state of this model mi
be fractionalized comes from its formal equivalence to a p
ticular quantum dimer model. Mapping to a dimer model
straightforward since the sites of the Kagome lattice can
viewed as the centers of the links of a triangular lattice. T
two Sz51(2)1/2 states on a site correspond to the prese
~or absence! of a dimer on the associated link on the tria
gular lattice. The ring term above corresponds directly to
elementary quantum dimer move on the triangular latt
considered recently by Sondhi and Moessner.15 The only dif-
ference with the standard dimer model is that in this insta
there arethreedimers coming out of every site of the trian
gular lattice instead of the usual one. Sondhi and Moess
considered an additional ‘‘diagonal’’ term~see below! in the
triangular lattice quantum-dimer model, and argued that
model was in a spin-liquid state in portions of the pha
2-3
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diagram. Central to their argument was an exactly solu
point of the model, first exploited by Rokhsar and Kivels
~RK!3 in the square lattice quantum-dimer model. The ad
tional term is diagonal inSi

z , and may be writtenHnf

5u4( r Pq
P̂flip(r ), where

P̂flip~r !5 (
s561

)
j Pr 51

4 S 1

2
1s~21! jSj

zD . ~8!

The operatorP̂flip(r ) is a projection operator onto the tw
flippable states of the bow-tie ringr. This term in the Hamil-
tonian can be combined withHring and written in the sugges
tive form

Hring1Hnf5(
r

P̂flip~r !H 2Jring)
j 51

4

2Sj
x1u4J . ~9!

Whenu45Jring one can write down exact ground state~s!
which have the product of 2Sx equalling one on all bow-tie
rings. One such state is theXY ferromagnet withSj

x51/2 on
every site. In the hard-core boson description, this co
sponds to a superfluid state~albeit an unusual one with n
zero-point fluctuations!. One must project back into the sub
space in which there are three bosons on every hexa
(S

˝

z 50), since otherwise this state will not be an eigenst
of H0. ~Actually, several distinct projections are genera
possible, onto different sectors disconnected from one
other under the action ofHring . These give degenerat
ground states.! This projection of a superfluid wave functio
to obtain a bosonic insulating state is analogous to
Gutzwiller projections of superconducting wave functions
obtain variational states for quantum spin models,16 but there
is an important difference. In the present instance, the c
straints~of three bosons on every hexagon! commutewith
the HamiltonianHring which hops the bosons, in contrast
the no-double occupancy constraint which does not comm
with the electron kinetic energy term in Hubbard-type mo
els. Thus, in our case the wave function after projection
still an exact eigenstate of the full Hamiltonian.

IV. DUALITY, VISONS, AND SPINONS

Before studying this wave function, it is convenient
expose the vison degrees of freedom via a duality trans
mation. Specifically, we will employ the standard 211 di-
mensional Ising duality which connects a global spin mo
to a Z2 gauge theory with gauge fields living on the links
the dual lattice.19 Ising duality transformations for quantum
dimer models have been extensively discussed in Ref. 11
our case the global spin model is the Kagome modelHring
1Hnf in Eq. ~9!, so that the dual lattice is the ‘‘dice’’ lattice
which can conveniently be constructed in terms of two int
penetrating honeycomb lattices as depicted in Fig. 2. On
operator level, the duality transformation is implemented
re-expressingSx and Sz directly in terms of the dual gaug
22441
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fields, s i j
m , a set of Pauli matrices living on the links of th

dice lattice

Si
x5

1

2 )
j l PL

s j l
z ~10!

and

~11!

Here, the first product is taken around an elementary fo
sided plaquette on the dice lattice which surrounds the s
Si

x . The second product involves an infinite string whi
connects sites of the Kagome lattice, eminating from the
Si

z and running off to spatial infinity. For every bond of th
dual dice lattice which is bisected by this string, a factor
s i j

x is present in the product. To assure that this definition
independent of the precise path taken by the string, requ
imposing the constraint that the product ofs i j

x on all bonds
connected to each site on the dice lattice is set equal to u

Gi5)̂
j i &

s i j
x 51, ~12!

where herej labels the near-neighbor sites toi. These local
Z2 gauge constraints must be imposed on the Hilbert sp
of the dual theory. In the resulting dual gauge theory, th
constraints are analogous to Coulomb’s law (“•E50) in
conventional electromagnetism. The necessity of includ
the constraints can be simply seen by counting degree
freedom: there are twice as many~six! bonds per unit cell on
the dice lattice as sites~three! per unit cell on the Kagome

FIG. 2. Dice lattice shown as two interpenetrating honeycom
blue ~solid lines! and red~dashed lines!. A blue vison is created
geometrically by multiplying 2Si

z over the underlying Kagome site
~centers of parallelograms, shown by solid dots! through which the
‘‘string’’ indicated passes. In the dual variables, this product
given by the product of blue gauge fieldss i j

x cut by the string
shown. The ‘‘blueness’’ of the vison shown owes to the fact th
only a single spinSi

z is contained within the originating blue hexa
gon.
2-4
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lattice, hence to maintain the physical Hilbert space of
original spins~site variables! requires restricting the gaug
fields ~bond variables!.

The dual Hamiltonian takes the form

Hdual5(
r

P̂flip~r !H 2Jring)̋
r

sz)̋
b

sz1u4J , ~13!

where the products are taken around the two hexag
plaquettes of the dice lattice which surround the giv
Kagome siter. These products measure ‘‘magnetic flux’’~in
the dual gauge fields! through hexagons belonging to the tw
honeycomb sublattices. The flip term becomes

P̂flip~r !5 )
j Pr 51

4

~12s i j
x s j l

x !, ~14!

where the product is taken over pairs of bonds on the
ementary dice plaquette which both connect to the same
j.

One can readily verify that the operators which implem
a local gauge transformation,Gi in Eq. ~12!, commute with
this dual Hamiltonian. Equivalently, sinceGis i j

z Gi52s i j
z ,

the dual Hamiltonian is invariant under the generalZ2 gauge
transformation,

s i j
z →e is i j

z e j , ~15!

with arbitrarye i561. Remarkably, though, it turns out tha
this gauge theory actually has an additional set of localZ2
symmetries. In particular, it is possible to transform thesz

gauge fields living on the blue~or red! links separately, and
still leave the Hamiltonian invariant. Eqivalently, one c
define local red or blue gauge operators which commute w
the Hamiltonian

G i
r5)

^ i j &r

s i j
x , ~16!

with the product over red links which eminate from sitei,
and similarly for the blue links. On the dice lattice, for ea
six-fold coordinate site there corresponds both a blue and
local gauge operator, whereas the three-fold coordinated
are either red or blue.

The presence of this additional local symmetry can
directly traced to the conservation of the magnetizationS

˝

z

on each hexagon of the original Kagome lattice ring sp
model ~note that this is the conservation of dimer numb
emerging from each site on the equivalent triangular lat
dimer model!. Indeed, upon using Eq.~11!, one can show
that for the six-fold coordinate sites of the dice lattice

G i
red5G i

blue52exp@ ipS
˝,i
z #, ~17!

where the center of the hexagon is at sitei on the dice lattice.
The right-hand side of this expression can be interpreted
Z2 ‘‘charge’’ living on the six-fold coordinate sites of th
dice lattice, since it equals the~lattice! divergence of theZ2
‘‘electric fields.’’ For the ‘‘singlet’’ sector of the theory with
S
˝

z 50 for all hexagons, the right-hand side is simply min
one. But more generally, this expression indicates that he
22441
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gons with a nonzero~odd integer! value of the globally con-
served spin,S

˝

z 561, also carry both a red and a blueZ2

gauge charge.
This fact allows us to identify both the spinon and vis

excitations in the theory. Specifically, consider starting in
‘‘singlet’’ sector of the theory with zero magnetization o
every hexagon of the Kagome lattice, and flipping a sin
spin. Since each site of the Kagome lattice is shared by
hexagons, this creates two hexagons each withS

˝

z 51. By
adding a small near-neighbor spin exchange it is possibl
hop these two magnetized hexagons, and to spatially sep
them. As we demonstrated above, such magnetized hexa
also carry both a red and a blueZ2 charge. Provided the dua
gauge theory is in it’s deconfined phase, these magnet
hexagons can propagate as independent particles. Since
such magnetized hexagons were created when we a
spin-one to the system~by flipping the single spin!, each
magnetized hexagon must carry spinSz51/2, and we can
thereby identify these excitations as the deconfined spin

A 2D spin liquid with deconfined spinons must necess
ily support topological vortex like excitations—the visons10

The vison acts as a source ofZ2 ‘‘flux’’ for the spinon, whose
wave function changes sign as it is transported around a
son. In theZ2 gauge theory formulation of 2D fractionaliza
tion, the flux of the vison corresponds generally to
plaquette with)plaqs

z521. Since the spinons which hop o
the six-fold coordinated sites of our dice lattice carry both
red and a blueZ2 gauge charge, it is clear that this spin liqu
phase will support two flavors of visons—a red~blue! vison
corresponding to a flux penetrating one red~blue! hexagon of
the dice lattice.

Due to the long-ranged statistical interaction between
sons and spinons, it is not possible to have both excitati
present and freely propagating. In particular, if the visons
gapped excitations they will be expelled from the grou
state and the spinons will be deconfined. On the other ha
a proliferation and condensation of visons will lead to spin
confinement. Thus, in order to establish 2D fractionalizat
it is adequate to show an absence of vison condensatio
useful diagnostic for this is the vison two-point correlatio
function

V~r i2r j !5^v̂ i v̂ j&, ~18!

wherev̂ denotes a vison creation operator. When this cor
lation function is short ranged, the visons are not conden
and the system is fractionalized.

In order to evaluate this correlation function for th
Kagome spin model, it is necessary to express this vi
two-point function in terms of the original spin operators.
this end, we first note that from the definition in Eq.~11!, it
is apparent that the operator 2Si

z creates both a red and a blu

vison, 2Si
z5 v̂ i

r v̂ i
b , since it introduces aZ2 flux through the

red and blue hexagons of the dice lattice which enclose
spin. Sincev̂ i v̂ i51, a single~red! vison ~say! can be created
by stringing together an infinitely long product of spin o
erators Sz. This ‘‘string’’ starts at the given site of the
Kagome lattice and joins neighboring spins making on
2-5
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6300 turns eventually running off to spatial infinity, but oth
erwise is arbitrary. Explicitly, the vison two-point function
then

~19!

where u0& denotes the ground state, and the product in
~19! is taken, as described above, along some path on
Kagome lattice starting at sitei and ending at sitej, contain-
ing an even number of sites, and making only ‘‘630°’’ turns
left or right. Due to the constraintShex

z 50, the latter product
is path-independent up to an overall sign@hence the absolute
value in Eq.~19!#. We also define for convenience the phy
cally interesting spin-spin correlator

Ci j 5^0uSi
zSj

zu0&, ~20!

V. CORRELATORS AT THE SOLUBLE POINT

With V andC defined appropriately in terms of the spin
we are now in a position to evaluate them using the exact
wave function. Specifically, we consider exact ground st
wave functions~at the RK point! on the torus defined by
identifying sites connected by the two winding vectorsWW 1

5n1aW 1 andWW 25n2aW 2, wheren1 ,n2 are positive even inte
gers, andaW 1 ,aW 2 are primitive vectors~see Fig. 1!. The de-
generacies, etc., of such wave functions are nearly iden
to that discussed by Moessner and Sondhi, so we do no
into detail here. We focus on the wave functionu0&, which
has been projected onto a single topologically connected
tor.

The expectation values of interest can be evaluated
chastically using aclassical ‘‘infinite temperature’’ Monte
Carlo algorithm, which ‘‘random walks’’ through the variou
components of the wave function. Our numerical results
a torus withn15n2520 are shown in Fig. 3 plotting lnV,
ln C versus distance. Apart from a saturation due primarily
round-off error, both correlators clearly display exponen
decay, lnCij , ln Vij;2uri2r ju/j with apparently the same
correlation lengthj'1.

Short-range exponentially decaying correlations inCi j es-
tablish the absence of spin order, but do not preclude bro
translational symmetries such as plaquette or bond order.
exponential decay of the vison correlatorV, however, implies
that the phase is necessarily fractionalized with deconfi
Sz51/2 spinon excitations, regardless of the presence or
sence of broken translational symmetries. The exponen
spatial decay ofVi j is suggestive of a vison gap, i.e., th
existence of a minimum energy required to excite a vison
vison gap, however, strictly speaking requires exponen
decay of the vison correlator inimaginary time, not in space
at equal time. Conceivably, the latter condition could oc
in the absence of a vison gap, provided that these vis
were localized. Given the peculiarities of the present mo
we desire a direct argument for a vison gap. Fortunat
such an argument can also be made using the propertie
the RK point. Our construction closely follows and on
slightly refines an argument used in Ref. 20. We conside
22441
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family of models defined by singling out a single ‘‘centra
triangle of the Kagome lattice, and the associated three b
tie ring moves centered on the three sites of this triangle.
these three ring terms, we letu485Jring8 vary independently of
u45Jring for all other bow ties. Independent of the choice
Jring8 >0, the original, translationally invariantu0& state re-
mains a zero energy ground-state wave function. Howe
for the special caseJring8 50, we can find an additional exac
zero-energy eigenstate,

uv&5 v̂ i u0&, ~21!

where v̂ i is the ~string! vison creation operator emergin
from any of the sites of the central triangle. Thus forJring8
50, there is no vison gap. We interpret this result to me
that by reducing the ring couplings on the central triangle
vison has beenboundto this triangle, with a binding energy
that exactly equals its gap in the bulk. To test this hypothe
we calculate the first-order energy shift asJring8 is increased
from zero to positive values using perturbation theory.
leading order, one finds that

Ev5^vuH8uv&5^0uv̂ iH8v̂ i u0&56Jring8 ^0uP̂flipu0&, ~22!

whereH8 is the sum of ring terms for the three sites of t
triangle. To obtain the final result, we usev̂ iSj

xv̂ i56Sj
x ,

where the minus~plus! sign obtains ifj is ~is not! on the
string. The energy of the no-vison stateE050 for all Jring8 .
Hence the gap in this approximation is proportional toJring8
multiplied by the probability that any given bow tie is flip

FIG. 3. Correlators for the (20,20) Kagome torus. The horizo

tal axis minuxWi2xW ju is the shortest distance between sitesi and j on
the torus, in units of the intersite distance. Large circles with er
bars show the logarithm ofVi j , while small circles represen
ln(Cij). Each small circle represents an average over all pairs
sites with a fixed separation, while the large circles with error b
represent the distribution of string correlators of pairs of sites c
nected by ahorizontalstring. Both correlators clearly decay expo
nentially, with apparently the same exponent, albeit with larger
merical errors for the string correlator, due presumably to the
that this data is less spatially averaged.
2-6
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pable. The latter probability is determined directly by t
classical Monte Carlo procedure, and we find^0uP̂flipu0&
'0.257, hence

Ev'1.54Jring8 . ~23!

Note that this is only the first-order approximation to t
vison gap. The naive extensionJring8 →Jring gives a reason-
able extrapolation~this is used in Ref. 20!, but there is no
obvious reason to expect it to be exact.

VI. DISCUSSION

We have demonstrated the equivalence of the genera
Kagome antiferromagnet in the easy-axis limit to anXY ring
model, and moreover shown that, with the addition of theu4
interaction, this model is in a topologically ordered phase
the RK point whereu45Jring . At this point, the model is a
true ‘‘short-range’’ spin liquid, insofar as there is evident
no order or broken symmetry, and all excitations are gapp
But more importantly by computing the vison two-poi
function we explicitly demonstrate that this spin-liquid pha
is fractionalized, and supportsSz51/2 spinon excitations
whose gap isO(Jz). Since the visons also are gapped—w
a gap ofO(Jring)5O(J'

2 /Jz)—this spin-liquid state is resil-
ient.

In particular, we may consider a variety of perturbatio
away from the special soluble model. Following similar a
guments to those of Moessner and Sondhi,15 the spin-liquid
state remains the ground state forA,u4 /Jring,1, whereA is
some unknown dimensionless number. IfA,0, then the
fractionalized phase persists to the pure ring model, but
possible that an intermediate phase~or phases! intervene~s!
such thatA.0. Quantum Monte Carlo simulations could b
useful in deciding this question.

Perhaps more novel perturbations consist in deviati
from the conditionJ15J25J3 imposed initially. Again, the
presence of a complete gap in the spectrum rules out
destruction of the spin liquid by these perturbations~pro-
vided they are weak!. It is interesting to consider the effect o
small changes inJ1, in particularJ1z5Jz1dJ1z , J1'5J'

1dJ1' . Viewing these deviations as perturbations, t
change in the easy-axis coupling can be rewritten as

dHz5dJ1z(̂
i j &

Si
zSj

z5
1

4
dJ1z(̂

i j &
v̂ i v̂ j , ~24!

where the sum in the first line is taken over nearest-neigh
site of the Kagome lattice, and is equivalent in the seco
line to a sum over hexagons that are nearest neighbors w
either the red or blue honeycomb sublattice of the dual d
lattice. Remarkably, the latter form, Eq.~24! corresponds to a
vison hopping or kinetic energy term. Because the visons
already gapped, this clearly will not destabilize the grou
state provided the kinetic energy gain remains small rela
to the vison gap, i.e.,dJ1z&Jring .

The change in the in-plane exchange can be written
22441
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2
dJ1'(̂

i j &
~Si

1Sj
21Si

2Sj
1!. ~25!

For any given bond on the Kagome lattice, the associa
term in Eq.~25! raisesS

˝

z of one hexagon by11 and lowers
S
˝

z of another by21. Clearly, acting upon the ground stat
this takes the system outside the low-energy manifold
S
˝

z 50. Hence due to the large spin gap, it generates o
weak second-order virtual processes that renormalize c
plings of the effective ring model. However, its effects a
more interesting on some of the excited states. In particu
for a single spinon excitation, one has fordJ1'50 a single
magnetized hexagon withS

˝

z 561. The spinon is com-
pletely localized, and there is an associated degenerac
these excited states reflecting translational invariance du
the arbitrariness of which hexagon is magnetized. ForJ1'

Þ0, this degeneracy is lifted, since Eq.~25! allows the mag-
netized hexagon to move. Thus Eq.~25! has the effect of
giving the spinons some kinetic energy, and the associa
states broaden into a band. Indeed, it is possible to form
rewrite Eq. ~25! explicitly as a spinon hopping term. A
above, because of the existing spinon gap, the ground sta
expected to be stable to this perturbation fordJ1'&Jz .

A universal aspect of fractionalized quantum spin liqui
is ground state degeneracy when the model is defined
nonsimply connected spaces, which is a signature of the
derlying topological order.8 In the phenomenological squar
lattice Z2 gauge theory model, this can be understood
arising due to the option of passing or not passing a vi
through each ‘‘hole’’~noncontractible loop!. For instance, on
a cylinder ~strip with periodic boundary conditions!, the
square latticeZ2 gauge theory predicts a twofold groun
state degeneracy. Following this argument, and the fact
the Kagome model studied here supports two ‘‘colors’’
visons, one might naively expect a fourfold ground state
generacy on the cylinder. This conclusion, however, ov
counts the physical degenerate states within the ga
theory. To see this, consider the operator which creates a
or blue vison through the hole of the cylinder,

~26!

where the product is taken over all red or blue bonds that
a loop making a full circumference of the cylinder. BothŴr

andŴb commute with the HamiltonianHdual. Next, consider
the duality transformation definings i j

x , Eq. ~10!, carried out
on a cylinder. For this tranformation to be invertible~and
hence not introduce unphysical decoupled states—and f
degeneracies—into the dual description!, one must require
that the full ‘‘string’’ ~product of s i j

x ) around the cylinder
equal unity. Hence

ŴrŴb51 ~27!

for all physical states. Thus if one finds a ground stateu0&,
another generally inequivalent one may be obtained
Ŵr u0&. Due to Eq.~27!, however, this state isidentical to
2-7
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Ŵbu0&, sinceŴr /b
2 51. The correct result is the same as th

of the Z2 gauge theory: we expect a twofold ground sta
degeneracy on a cylinder~and, e.g., a fourfold degeneracy o
a torus!.

We conclude with a comparison of our results to so
related discussions in the literature. An interesting aspec
the spinons in the generalized Kagome antiferromagnet
have considered is that they arebosonic. Despite the close
relation of the topologically ordered state described here
Gutzwiller-projected superfluid, this is in contrast to what
obtained by such projections on SU~2!-invariant supercon-
ducting states,16 as are naturally suggested by work arisi
from various slave-fermion theories.5 As in our work, the
large N approaches to the spin liquid6 also find bosonic
spinons.

One of the most intriguing aspects of the numerical
sults on the spin-1/2 nearest-neighbor Kago
antiferromagnet13 is the proliferation of a large number o
very low-energy singlet excitations. Our approach does
shed too much light on this phenomenon, since the spin
uid ground state found here is in fact fully gapped. It
however, true that in the easy-axis limit considered above
visons@which are ‘‘singlets’’ under U~1! rotations about the
Sz axis# have a much smaller gap (Jring5J'

2 /Jz!Jz) than the
spinons. Moreover, it is natural to expect in our effective ri
model that as the ratiou4 /Jring is decreased, some confin
22441
t

e
of
e
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e

ot
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e

ment transition should occur. At such a confinement tran
tion, provided it is second order, the vison gap must van
Should the pure ring model lie near to this critical point, o
would indeed expect a large number of low-lying sing
excitations, which on the deconfined side of the critical po
are understood as weakly gapped visons.

In light of these results it should be interesting to look
other bosonic ring models, well away from the integrable R
point. For instance, the properties of the pureXY ring model,
Eq. ~5!, defined on four-site plaquettes on diverse lattic
~Kagome, square, triangular, etc.! are very poorly under-
stood. With the insight that such terms strongly favor vort
pairing, these seem to be excellent candidate models
might exhibit quantum number fractionalization. A variety
numerical21 and novel analytical techniques22 might profit-
ably be applied to these systems.
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