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Quantum Entanglement in Carbon Nanotubes
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With the surge of research in quantum information, the issue of producing entangled states has gained
prominence. Here, we show that judiciously bringing together two systems of strongly interacting elec-
trons with vastly differing ground states —the gapped BCS superconductor and the Luttinger liquid —can
result in quantum entanglement. We propose three sets of measurements involving single-walled metallic
carbon nanotubes which have been shown to exhibit Luttinger liquid physics, to test our claim and as
nanoscience experiments of interest in and of themselves.
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Entangled pairs are quantum entities consisting of two
components sharing a common wave function; a mea-
surement on one component predetermines the state of
the other [1]. Such pairs are a basic resource for quan-
tum information processing, and recent years have begun
to see many promising approaches to their production in
small numbers (e.g., [2]). For large scale implementation
of quantum information technology, a realization of en-
tanglement in solid state systems and an appropriate means
of transporting the components of the entangled pair over
long distances are essential. While the constituent Cooper
pairs of a gapped BCS superconductor have been studied
as a possible natural source of such pairs [3], the ques-
tion of separating and transporting them requires further
investigation. Here we show how electron-electron inter-
actions in one dimension enable sequential injection of en-
tangled pairs from a superconductor into two single-walled
metallic carbon nanotubes (SWNT). The SWNTs, in turn,
would allow for the transport of entangled states over ap-
preciable distances.

SWNTs, essentially long conducting cylinders of
nanoscale diameters and lengths “L” of several microns,
are indeed well suited to transport spin states in a coherent
fashion. They are extremely pure systems with large Fermi
velocities of yF � 106m�s, and are known to exhibit
ballistic transport over long distances [4]. In particular,
at low energies compared to the subband spacing e0 �
1 eV, transport is characterized by four ballistic modes
propagating with linear dispersion. At temperatures T &

Tf � h̄yF�kBL (which is of the order of a few kelvin),
electrons can thus travel the entire length of the tube
without losing coherence due to thermal effects. More-
over, nanotubes are expected to be nearly ideal spin
conductors [5], and current experiments indicate that the
spin-flip scattering length �sf in multiwalled nanotubes
is at least 130 nm [6]. In SWNTs, we expect this length
to be longer than the elastic mean free path, so at least
�sf . 1 mm. While all these features bode well for
transport and usage of entangled pairs, as detailed in what
follows, the actual injection and separation of these pairs
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into the two tubes rely on the fact that nanotubes have
demonstrated Luttinger liquid behavior characteristic of
electrons interacting in 1D [7].

The basic setup we consider consists of two nanotubes
A and B, end contacted well within a coherence length of
each other to a gapped singlet-paired superconductor as in
Fig. 1. Each wire can be described in bosonized language
by a four channel Luttinger liquid Hamiltonian [8,9]
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FIG. 1. Setup of two nanotubes A and B end contacted to a
superconductor. Voltage drops VA and VB may be preferentially
applied across tubes A and B, respectively, and currents through
each of them may be measured.
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the noninteracting channels a � �r2, s6�, while for
the charge sector gr1 has the value gr1 � g � 0.25
[7,8]. The velocities of the free modes ya are given
by ya � yF�ga.

As it is desirable to inject entangled pairs individually,
we focus on the case of high resistance contacts where
successive Cooper pairs hop sequentially from or into the
superconductor. This limit corresponds to almost perfect
backscattering at the superconductor-nanotube interface,
whence c

i
nLa�0� � c

i
nRa�0� where i � A, B denotes the

wire and n refers to the channel indices 1 and 2. In the
bosonized language, these boundary conditions become
ui

a�0� � 0 for i � A, B and all a � r6, s6.
In this setup we analyze perturbatively the effects of

a small amount of Cooper pair tunneling between the
superconductor and the two wires. The corresponding
Hamiltonian Ht for such processes is given by Ht �P

i�A,B Ht
ii 1 Ht

AB where Ht
ii describes the tunneling of

whole pairs into wire “i,” and Ht
AB describes processes in

which one electron of the pair tunnels into the tube A and
the other one into the tube B. Thus
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where c
y
isb are creation operators for electrons in wire “i”

with corresponding spin s and flavor b � 1R, 1L, 2R,
and 2L. The coefficients Tii and TAB are the bare tunneling
amplitudes.

As the common wave function for each Cooper pair in
the bulk is peaked at its center of mass, in a noninteract-
ing model the transmission probability for a pair to enter,
e.g., wire A, tAA ~ jTAAj

2, is higher than the transmission
probability for the pair-splitting process, tAB ~ jTABj

2, i.e.,
tAA ¿ tAB. To make a quantitative estimate, we presume
the two nanotubes abut each other at the contact point to
the superconductor, so that their center-to-center distance
d � 1 nm, generally much shorter than the superconduct-
ing coherence length. The pair-splitting process is then
not exponentially suppressed. A clean-limit s-wave BCS
theory for a spherical Fermi surface and point contacts
gives tAA�tAB ~ �kFd�n [10], with n � 1 2 dependent on
the geometry of the contact and the superconductor. We
view this only as a rough guide, since nanotube contacts
are not pointlike on the scale of typical kF’s. Neverthe-
less, we expect that under optimal conditions for typi-
cal superconducting metals tAA�tAB * 10. Naively, then,
one might expect each Cooper pair to tunnel entirely into
one tube or the other. However, due to interactions, tun-
neling of charge into the ends of the nanotubes involves
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more than the mere overlap of electronic wave functions
between the tube and the superconductor. Addition of
one extra electron into a tube involves the coherent re-
arrangement of all electrons in its bulk. As a consequence
of this Luttinger liquid physics, we find that the single
electron tunneling density of states at a low energy E
compared to e0 goes as re�E� � e

21
0 �E�e0��1�4� ��1�g�21�

[7,11], while the density of states available to tunnel in a
Cooper pair is r2e�E� � e

21
0 �E�e0�1�g. We can now con-

sider two nanotubes raised to a voltage eV ø kBT with
respect to the superconductor. Given that the Cooper pair
density of states in the superconductor is a delta function
at the Fermi energy, Fermi’s golden rule reveals that the
rate GAA, at which entire Cooper pairs tunnel from the
superconductor into the end of one tube, is proportional
to eVr2e, and at any given temperature T , has the de-
pendence GAA � �eV�h� �kBT�e0��1�g�21. However, the
rate GAB, at which split entangled pairs are injected into
both tubes involves the single particle tunneling density of
states in each of them, and has the dependence GAB �
�eV�h� �kBT�e0��1�2� ��1�g�21�. Remarkably, this implies
that for the energy scales of relevance here, GAB ¿ GAA,
and thus almost all charge transfer occurs as split entan-
gled pairs. We now propose three sets of measurements
that capture these principles in a concrete manner.

The simplest experimental signature of the splitting of
Cooper pairs may be obtained from the transconductance
measured for two nanotubes as shown in Fig. 1. In re-
sponse to a voltage difference between the nanotubes and
the superconductor, we compute the resulting currents
flowing into the two wires. We start from the Hamiltonian
of Eq. (1) with the appropriate boundary conditions and,
along the lines of Ref. [12], we use a nonequilibrium
Keldysh technique [13] perturbative in the amount of
Cooper pair tunneling described by Eq. (2). To bring out
the physics of the Cooper pair splitting, we first consider
the specific case of applying a voltage drop VA across tube
A and none across tube B under the condition kBT ø

eVA & e0, D, where D is the superconducting gap. For low
Tc superconductors, with D � 1 meV we estimate probing
at voltages of a few tenths of an meV and at temperatures
of 10 100 mK. In tube A, the applied voltage would pro-
duce a current with two components —one due to entire
pairs tunneling in A, IAA � tAA��2e�2�h� �eVA�e0�2aVA,
and another due to the splitting of pairs into the two tubes,
IAB � tAB�e2�h� �eVA�e0�aVA, where a � �1�g 2 1��
2 � 1.5. Strikingly, the current IAB runs equally in both
tubes, in spite of the absence of a voltage drop across
tube B. The nonlinear behavior of current is a reflection
of the power laws in the density of states, and despite the
fact that tAB ø tAA, the contribution from the pair split
process clearly dominates at low voltages.

More generally, at finite temperature T , and when volt-
age drops VA and VB are present across both tubes, one can
define an associated conductance matrix Gij � ≠Ii�≠Vj ,
where i, j stand for the tubes A and B. We find it to have
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the form
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with GBB obtained from GAA by interchanging A and B.
Here, the scaling function Fa�x� � ≠x�2 sinh�x�2�jG�1 1

a�2 1 ix�2p�j2� [where G�z� is the gamma func-
tion] and has the limits Fa�x� !x!0 jG�1 1 a�2�j2,
Fa�x� !x!` �1 1 a� �x�2p�a [11]. The dominance
of split Cooper pair injection in charge transfer is di-
rectly seen in Eqs. (3) and (4). In fact, for probing
energy scales of a few tenths of an meV, the ratio of
the unsplit to split process contributions is as small as
�GAA 2 GAB��GAB � 1024.

The transconductance experiment directly measures
the fact that charge is simultaneously injected into both
nanotubes. It is not, however, sensitive to the spin state
of these electrons. We next consider a Josephson current
measurement which verifies that spin 1�2 is added to each
wire. Here, as in Fig. 2, we consider two nanotubes A
and B, meeting at points X and Y separated by distance
“L” along the tubes.

At each junction, a superconducting lead makes a point
contact with both tubes. To probe the spin state of the
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FIG. 2. Setup of two infinite nanotubes A and B crossing at
points X and Y separated by a distance “L” along each tube.
Superconducting point contacts at junctions X and Y allow for
Cooper pair tunneling into the tubes.

electrons, tube A (tube B) is subjected to a magnetic field
�B � BAx̂� �B � BBx̂� . It may be convenient to choose
the field axis x̂ parallel to the junction so as to minimize
orbital effects. For this particular setup, the Hamiltonian
for each wire is similar to the one described in Eq. (1),
with the limits of integration extending over the entire
range in the position space, as opposed to the imposition
of hard boundary conditions of the previous setup. We
compute the free energy of the system perturbatively in
the tunneling of Cooper pairs at points X and Y described
by a tunneling term similar (but not identical) to Eq. (2).
We find that at temperatures T , Tf � h̄yF�kBL, the
nanotubes act as a Josephson weak link with associated
critical current
Ic �
eyF

L
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(5)
where dB � BA 2 BB, BT � BA 1 BB and b � �g 1

1�g��4 2 1�2. Also, d is the diameter of the tube and is
of the order of a few nanometers, g is the Landé factor, and
mB is the Bohr magneton. The dimensionless constants
t̃

�1�2�
ii , t̃

�1�2�
AB are proportional to the square of the (small)

bare transmission probabilities of Cooper pairs from the
superconductors to the nanotubes in the unsplit and split
processes, respectively. The index “1” refers to the injec-
tion of pairs of electrons with the same chirality (two right
movers or two left movers) into the wires, while the in-
dex “2” refers to the injection of pairs consisting of a left-
moving and a right-moving electron. Notice the highly
anomalous length dependence (with markedly different
power laws for the split and unsplit processes) compared
to the case of noninteracting wires, where the Josephson
current is inversely proportional to the separation length L.
Strikingly, as a function of either one of the applied mag-
netic fields BA and BB, contributions from Cooper pair
split processes oscillate with half the frequency of those
generated by unsplit pairs (t̃

�2�
ii ). We estimate the period of

these magnetic field oscillations to be in the Tesla range.
In an actual experiment, in which some flux between the
nanotubes is inevitable, the above critical current will give
the envelope for much faster Aharanov-Bohm oscillations
(on the scale of a few Gauss) in the critical current, but
the two types of oscillations can be easily distinguished by
their very different periodicities.

While the proposed measurements establish that charge
enters from the superconductor in the form of separated
electrons with spin 1�2 each, they do not establish that
these electrons are actually in the (maximally) entangled
singlet state �j"�Aj#�B 2 j#�Aj"�B��

p
2. This entanglement

is encoded in correlations between the injected spins. As
a simple but revealing example, consider the joint prob-
ability P"" that both electrons in a given pair have spin
“up” along a selected axis ẑ. In the singlet case, illus-
trating the EPR “paradox,” once spin up is measured in
tube A, spin down is automatically selected in tube B, and
the probability is zero. Contrast this with the measure-
ment of an unentangled up-down pair j"�Am̂j#�Bm̂ along
an arbitrary direction m̂. If one attempts to preserve
037901-3
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spin-rotational invariance on average by choosing the axis
m̂ with uniform probability on the unit sphere, the prob-
ability P"" . 0 is nonvanishing, due to pairs that are not
oriented along ẑ.

We now propose a specific measurement to test the
presence of entanglement through current correlations,
i.e., noise. Specifically, in the transconductance setup
of Fig. 1, what is required is an experimental measure-
ment of the currents Iin̂ of electrons with a given spin
orientation (along n̂) in each nanotube, i � A, B. Experi-
mentally, this could be accomplished by a variety of spin-
filtering techniques, e.g., by attaching two oppositely
polarized half-metallic ferromagnets via ideal adiabatic
contacts to each nanotube (many other schemes, e.g.,
Ref. [14], are possible.) Consider measuring spin-filtered
currents along the ẑ axis in tube A and along an axis n̂
oriented at an angle u with respect to ẑ in tube B. When
a finite voltage drop VA is applied across tube A, the most
revealing measurements are those with no voltage drop
across tube B, since then all the current in it is due to pair
splitting processes.

In a manner similar to the one used to compute the
conductance matrix for the system described in Fig. 1 we
make use of a perturbative Keldysh approach [12,13] to de-
rive forms for the spin-filtered currents and current-current
correlations. For the case of singlet Cooper pair tunneling,
the spin-filtered current correlations at zero temperature
are found to be

	IA6ẑIB6n̂� � e sin2 u

2 	IBn̂� ,

	IA6ẑIB7n̂� � e cos2 u

2 	IBn̂� ,

	IBn̂� � 	IB2n̂� ,

(6)

where u is the angle between the n̂ and ẑ axes. From
Eq. (6) we see that when both measurements are made
along the ẑ axis (u � 0), as expected, correlations between
like spin currents in the two wires vanish. By contrast,
in the case considered above of tunneling of classically
random unentangled spin-up spin-down pairs, one would
expect zero temperature correlations of the form

	IA6ẑIB6n̂� �
e
3 �1 1 sin2 u

2 � 	IBn̂� ,

	IA6ẑIB7n̂� �
e
3 �1 1 cos2 u

2 � 	IBn̂� .
(7)

Though the correlations show an angular dependence
on u, their form is very different from the entangled
case of Eq. (6). Specifically, as anticipated for mea-
surements along the ẑ axis in both tubes (u � 0), we
have 	IA6ẑIB6ẑ� � e�3	IBẑ�, which is nonzero, in stark
contrast to the entangled case.

To conclude, in the vast search for physical realizations
of entanglement, we have described one method of extract-
ing singlet pairs from a superconducting source. If em-
ploying nanotubes for this purpose indeed proves tractable,
the next stage in the realm of quantum information would
involve new challenges such as probing information at
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the single electron level and building arrays of coupled
logic gates. In the fields of nanoscience and Luttinger
physics, attention, both theoretical [15] and experimental
[16], has fallen on bringing effectively one-dimensional
systems into contact with superconductors. Here we have
hoped to provide more food for thought in these fields by
describing two nanotubes in contact with a gapped BCS
superconductor.

While writing up this work we became aware of a re-
lated independent proposal by Recher and Loss [10]. The
analysis of [10] is based on a setup similar to the one we
describe here, yielding similar results with the ones we de-
rive in the first part of our paper.
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