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Ring exchange, the exciton Bose liquid, and bosonization in two dimensions
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Motivated by the high-Tc cuprates, we consider a model of bosonic Cooper pairs moving on a square lattice
via ring exchange. We show that this model offers a natural middle ground between a conventional antiferro-
magnetic Mott insulator and the fully deconfined fractionalized phase that underlies the spin-charge separation
scenario for high-Tc superconductivity. We show that such ring models sustain a stable critical phase in two
dimensions, theexciton Bose liquid~EBL!. The EBL is a compressible state, with gapless but uncondensed
boson and ‘‘vortex’’ excitations, power-law superconducting and charge-ordering correlations, and broad spec-
tral functions. We characterize the EBL with the aid of an exact plaquette duality transformation, which
motivates a universal low-energy description of the EBL. This description is in terms of a pair of dual bosonic
phase fields, and is a direct analog of the well known one-dimensional bosonization approach. We verify the
validity of the low-energy description by numerical simulations of the ring model in its exact dual form. The
relevance to the high-Tc superconductors and a variety of extensions to other systems are discussed, including
the bosonization of a two-dimensional fermionic ring model.
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I. INTRODUCTION

Despite intense experimental effort exploring the ph
diagram of the cuprates, the nature of the pseudogap reg
remains mysterious. In the very underdoped normal s
there are strong experimental hints of local pairing and
perconducting correlations,1–3 despite the absence of pha
coherent superconductivity. Within this picture,4 the pseudo-
gap regime supports a pair field with nonzero amplitude
with strong phase fluctuations which disrupt the superc
ductivity. A theoretical approach then requires disorder
the superconductivity by unbinding and proliferating vor
ces. Unfortunately, such an approach will likely face a m
worrisome dilemma. Proliferation and condensation of sin
hc/2e vortices necessarily leads to a confined insulat5

which should show sharp features in the electron spec
function in apparent conflict with ARPES experiments.3 On
the other hand, ifpairs of hc/2e vortices condense,5,6 the
pseudo-gap phase must necessarily support gapped unp
vortex excitations7–9 ~‘‘visons’’ !,10,11 which have yet to be
observed.12,13Is there an alternative possibility? In this pap
we find and explore a truly remarkable quantum fluid ph
of two-dimensional~2D! bosons, which we refer to as a
‘‘exciton Bose liquid’’ ~EBL!, which answers this question i
the affirmative. The EBL phase supports gapless charge
citations, but isnot superconducting—the Cooper pairs a
not condensed. Thehc/2e vortices are likewise gapless an
uncondensed. Being a stable quantum fluid with no bro
spatial or internal symmetries, the EBL phase has m
properties reminiscent of a 2D Fermi liquid—a 1D locus
gapless excitations~a ‘‘Bose surface’’!, a finite compressibil-
ity, an almostT-linear specific heat with logarithmic correc
tions.

Neutron scattering measurements in the undoped cup
have revealed a zone boundary magnon dispersion that
best be accounted for by presuming the presence of ap
ciable four-spin exchange processes.14 Recent theoretica
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work points to the importance of such ring exchange p
cesses driving fractionalization and spin-char
separation.6,15,16Motivated by these considerations, we foc
on a class of model Hamiltonians describing a square lat
of 2D bosons~Cooper pairs! with appreciable ring exchange
It is hoped that such microscopic models will be appropri
in describing the charge sector in the underdoped cupra
When the ring exchange processes are sufficiently strong
find that the EBL phase is the stable quantum ground sta

Lattice models of interacting bosons in two dimension
such as the Bose Hubbard model, have been studied q
exhaustively during the past several decades,17,18 primarily
as models for Josephson junction arrays and supercondu
films but also in the context of quantum magnets with
easy-plane U~1! symmetry and most recently in the conte
of trapped Bose condensates moving in an optical lattic19

Typically, the ground-state phase diagram consists of a
perconducting phase and one or more insulating states.17 At
fractional boson densities commensurate with the lattice,
at half filling, the insulating behavior is driven by a spont
neous breaking of translational symmetry. When acces
from the superconductor, such insulating states can be f
fully viewed as a condensation of elementary vortices.20 Very
recent work on a Kagome lattice boson model with ri
exchange16 ~which arises in the context of frustrated qua
tum magnets! has revealed the existence of a more exo
fully gapped insulating state with no broken symmetr
whatsoever. In this state the charged excitations are ‘‘fr
tionalized,’’ carrying one half of the bosons charge,21 and
there are also gapped vortex excitations called visons. H
we study the simpler system of bosons with ring exchan
moving on a 2D square lattice. Our central finding is t
existence of acritical gapless quantum phaseof 2D bosons
which is stable over a particular but generic parameter ran
This phase is in some respects very similar to the fami
gapless Luttinger liquid phase of interacting bosons and F
mions moving in one spatial dimension.22–24 Indeed, to de-
scribe this phase we introduce a 2D generalization
©2002 The American Physical Society26-1
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bosonization. Specifically, we introduce a new duality ma
ping that transforms a square lattice model of 2D bosons~in
a rotor representation! with ring exchange, into a 2D theor
of ‘‘vortices’’ hopping on the sites of the 2D dual lattice
Then, based on the symmetries we construct a low-en
effective description, in terms of the two~dual! phases of the
boson and vortex creation operators. The EBL phase h
Gaussian fixed point description in terms of these fields
addition, there are various nonquadratic interactions, wh
scale to zero in the EBL. Instabilities towards supercondu
ing and insulating states are triggered when one or mor
these interactions become relevant, closely analogous tokF
instabilities in a 1D Luttinger liquid.

Since this paper is quite long, the remainder of Introd
tion is devoted to a brief summary of the ring model Ham
tonian and the bosonized description of the EBL. The Ham
tonian we focus on describes 2D bosons in a ro
representation:

Hh5
U

2 (
r

~nr2n̄!22K(
r

cos~Dxyf r !, ~1!

with

Dxyf r[f r2f r1 x̂2f r1 ŷ1f r1 x̂1 ŷ . ~2!

Herer -label sites of the 2D square lattice andf r andnr are
canonically conjugate variables,

@f r ,nr8#5 id r ,r8 . ~3!

Representing the phase of the boson wave function,f r is
taken to be 2p periodic,f r5f r12p, so that the eigenval
ues of the conjugate boson number operatornr are integers.
The mean boson density is set byn̄, and we will primarily
focus on the case with half filling:n̄5 1

2 . The argument of
the cosine in the second term is a lattice second deriva
involving the four sites around each elementary squ
plaquette. This term hops two bosons on opposite corner
a plaquette, clockwise~or counterclockwise! around the
plaquette, and is anX-Y analog of the more familiar SU~2!
invariant four-site ring exchange term for spin one half o
erators@which arises in the context of solid 3-He~Refs. 25
and 26!#. Alternatively, we may view the bosons as ‘‘pa
ticles’’ and the vacancies as ‘‘holes’’ over a uniform bac
ground density. In this case, the ring-exchange process
bosons on a plaquette is just the propagation of a ‘‘partic
hole’’ pair ~exciton! from one edge of the plaquette to th
opposite edge. This motivates us to call the critical liqu
phase of this model as the exciton Bose liquid.

In addition to the conventional spatial, particle-hole, a
total number conservation symmetries~see Sec. III!, this ring
Hamiltonian has an infinite set of other symmetries. Spec
cally, the dynamics of the Hamiltonian conserves the num
of bosons on each row and on each column of the 2D sq
lattice—a total of 2L associated symmetries for anL by L
system. This is fewer than a gauge theory, which has
extensive number of local symmetries, but these symme
will nevertheless play a crucial role in constraining the d
namics of the model and stabilizing a new phase.
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We will also consider adding a near-neighbor Boson h
ping term,

Ht52t (
^r ,r8&

cos~f r2f r8!, ~4!

where the summation is taken over near-neighbor sites on
square lattice. This term breaks the 2L U~1! symmetries cor-
responding to conserved boson numbers on each row
column, leaving only the globally conserved total bos
number.

The remarkable result of this paper is that, over a parti
lar but generic parameter range, ring models of this ty
sustain the EBL phase. The effective description of the E
is in terms of low-energy ‘‘coarse grained’’ variablesw;f
and an additional fieldq ~see Sec. III!, which is related via
n2n̄;p21Dxyq to the long-wavelength density, and furth
can be used to construct a ‘‘vortex creation operator’’v
;eiq. To fix notation, we define thenr ,f r ,w r operators on
the sites of the original square lattice, with (x,y) coordinates
taking half-integer values, andq r ~with Nr ,u r operators to
be defined later! on the dual square lattice with integer (x,y)
coordinates. Thew,q fields are governed by an approx
mately Gaussian~Euclidean! effective actionS5*0

bdtL,
with L5L01L1, and t is imaginary time,b51/kBT. The
Gaussian part of the Lagrangian is

L05H0@w,q#1(
r

i

p
]tw r8Dxyq r , ~5!

where the sum is over sitesr , r 85r1 x̂/21 ŷ/2 on the dual
and original lattices, respectively, and the effective Ham
tonian is

H05E
k
FK~k!

2
u~Dxyw!ku21

U~k!

2p2
u~Dxyq!ku2G . ~6!

Here the momentum (k) integral is taken over the Brillouin
zone ukxu,ukyu,p, and (Dxyw)k denotes the Fourier trans
form of Dxyw r ~and similarly for Dxyq). The functions
K(k),U(k) are nonvanishing finite periodic, and analyti
Their values along thekx andky axes parametrize the Bos
liquid, much as the effective mass and Fermi liquid para
eters do in a Fermi liquid. Experts will note a strong sim
larity to the bosonized effective action for a one-dimensio
Luttinger liquid,23,24 which is explored in Sec. III. Like in a
Luttinger liquid, there are additional nonquadratic term
in the action. It is sufficient to keep only those of the for
L15L1w1L1q , with

L1q5(
r

(
q,s

tq
m,ncos@q~w r2w r1s!#, ~7!

with r on the original lattice, and
6-2
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L1w52(
r

H (
q51

`

y2qcos~2qq r1qQxy!

1(
qs

w2q
m,ncos@2q~q r2q r1s!

2qQ~nx1my1mn!#J , ~8!

with r on the dual lattice. In both Eqs.~7!-~8!, Q52pn̄, r
5(x,y), s5(m,n). Here,w2q

m,n5w2q
n,m gives the amplitude to

hop 2q vortices by the translation vector (m,n) @or (n,m)#,
and tq

m,n5tq
n,m gives the hopping amplitude for aq boson

along the same vector. In the EBL phase, all these terms
‘‘irrelevant,’’ i.e., give only perturbative corrections to phys
cal properties, though these corrections can be signific
Also, like in a Luttinger liquid, there is a nontrivial relatio
between microscopic quantities such as the energy and
ticle densities and the coarse-grained variables of the l
energy theory. In particular, for the energy and particle d
sities, one finds

dnx11/2,y11/2;c0
rDxyqxy1 (

q51

`

c2q
r Dxysin~2qqxy1qQxy!,

~9!

«xy;c0
«q̇xy

2 1 (
q51

`

c2q
« cos~2qqxy1qQxy!, ~10!

wheredn5n2n̄, « is the energy density, andc2q
r/« are non-

universal constants.
The paper is organized as follows. In Sec. II we treat

ring exchange term within a ‘‘spin-wave’’ approximation
This reduces the Hamiltonian to a quadratic form that can
readily diagonalized. Within the two-dimensional Brillou
zone there are gapless excitations along the lineskx50 and
ky50, which are associated with an infinite set of conser
tion laws possessed by the ring exchange model. Dual ‘‘v
tex’’ variables are then introduced via a new plaquette dua
transformation. This dual representation is well suited to
merical simulations since it is free of any ‘‘sign problems
We implement a quantum Monte Carlo simulation, and sh
that the EBL phase is present over appreciable regions o
phase diagram of the ring-exchange rotor model.

In Sec. III we construct the low-energy effective model
terms of the dual vortex fields, and extract the univer
properties of the EBL phase in Sec. IV. These properties
confirmed by the quantum Monte Carlo results. Section V
devoted to an analysis of the stability of the EBL pha
Remarkably, we find that for generic~incommensurate! bo-
son densities, there are regions of parameters where the
phase is stable towards all perturbations, even those
break the row/column symmetries. The situation is remin
cent of the Fermi liquid phase, whose ‘‘fixed point’’ descri
tion possesses an enormous set of ‘‘emergent symmetrie
the number of fermions on each patch of the Fermi surf
05452
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are independently conserved. At commensurate fillings
explore in some detail the instabilities of the EBL towar
various insulating states.

In Sec. VI we consider a ‘‘hard-core’’ version of the boso
Hamiltonian which allows us to obtain an exact zero-ene
wave function when the couplings are carefully tuned. W
then perturb away from the soluble point, and compute pr
erties of the adjacent quantum phase that we thereby ide
as the EBL. Finally, in Sec. VII we conclude with a discu
sion of how various ring exchange processes emerge fro
Z2 gauge theory formulation of interacting electrons and th
make some speculative remarks about the possible relev
of the EBL phase in the context of the underdoped cupra

II. SPIN WAVES AND PLAQUETTE DUALITY

A. Spin waves, massless modes, and symmetry

Here we consider a spin wave approximation to the m
croscopic ring Hamiltonian which leads to a harmonic a
soluble theory. The resulting energy spectrum vanishes a
two lines in momentum space. This remarkable feature
then shown to follow directly from the existence of the in
nite set of conservation laws of the ring Hamiltonian. As w
detail in later sections, such a harmonic description under
an effective theory of the EBL phase, in close analogy
bosonization of the 1D Luttinger liquid.

To this end, it is useful to employ a combination of pa
integral and Hamiltonian methods. A standard path integ
representation is constructed in the usual way usingf eigen-
states. In the time continuum limit, the partition function f
the pure ring Hamiltonian takes the form,

Z5Tre2bHh5E @df rt#expS 2E
0

b

dtLfD , ~11!

with the Lagrangian

Lf5(
r

F 1

2U
~]tf r !

21 i n̄]tf r2K cos~Dxyf r !G . ~12!

The resemblance of the above Lagrangian with that for
standard Bose-Hubbard model17 ~which has a single, rathe
than double, lattice derivative inside the cosine! suggests that
one might try expanding the cosine potential to quadra
order. Doing so gives a soluble Harmonic theory for the
tion, which can be readily diagonalized as,

Sspin wave5
1

2UE d2k

~2p!2E
2`

` dv

2p
@v21Ek

2#uf~k,v!u2,

~13!

with k5(kx ,ky) living in the first Brillouin zone,kx ,kyP
@2p,p#. Remarkably, the energy dispersion,

Ek54AUKusin~kx/2!sin~ky/2!u, ~14!

vanishes on both thekx andky axes. The presence of thes
gapless excitations can be traced directly to the existenc
the infinite set of symmetries of the ring Hamiltonian, whic
conserves the number of bosons on each row and on
6-3
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column of the 2D square lattice. Specifically, these symm
tries imply an invariance of the energy~and action! under

f r→f r1Fx~x!1Fy~y!, ~15!

for arbitrary functionsFx(x) and Fy(y). This invariance
dictates that in the Harmonic spin-wave form the ene
must vanish wheneverkx50 or ky50.

Since the plaquette term involves a lattice second der
tive rather than an ordinary lattice gradient, however, it
clear that phase (f) fluctuations will be large in the ring
model, and the spin-wave expansion is suspect. Indeed,
in the classical limitU→0, one can readily see that ‘‘vor
tex’’ configurations in whichf r winds by 2p around some
plaquette@e.g., for a vortex with center atx5y50, fxy
5p/2Q(2x)Q(y)1pQ(2x)Q(2y)13p/2Q(x)Q(2y),
whereQ(z) is the Heavyside step function# arefinite in en-
ergy rather than logarithmic as in an ordinaryX-Y model.
Further, ‘‘double vortex’’ configurations in which this wind
ing is 4p can be smoothly deformed into zero-energy co
formations@e.g.,fxy5pQ(2x)1pQ(2y)#. This suggests
that for nonzeroU there will be substantial ‘‘vorticity’’ in the
low-lying states.

To address the legitimacy of the spin-wave expansion
is necessary to account for the periodicity of the cosine
tential. This is most readily accessed by transforming t
dual form, just as one transforms to a dual bosonized re
sentation for a system of 1D particles.24 Here we introduce a
new 2D quantum duality transformation27 that is specifically
tailored for the ring model.

B. Plaquette duality

We consider dual fields living on the sites of the du
lattice, denotedu r andNr , which are canonically conjugat
variables:

@Nr ,u r8#5 id r ,r8 . ~16!

Here we takepNr to be 2p periodic so thatu r /p has integer
eigenvalues. The reason for this unusual choice of norm
ization should become apparent below. For notational e
we are denoting the sites of both the original and dual squ
lattices asr . In analogy to Eq.~2!, it is convenient to intro-
duce an operator defined on the plaquettes of the dual la
~i.e., sites of the original lattice! as

Dxyu r[u r2u r1 x̂2u r1 ŷ1u r1 x̂1 ŷ . ~17!

These two new dual fields are related to the original fields
the relations

pNr85Dxyf r , Dxyu r5pnr8 , ~18!

wherer 85r1 x̂/21 ŷ/2. One can check that withNr andu r
as conjugate fields, the original variables satisfy the requ
commutation relations.

To interpret the new variables, consider now a vortex c
tered on some site (x,y) of the dual lattice~the ‘‘core’’!.
Classically, for the four sites on plaquette of the origin
lattice surrounding this site,
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D Nv

, ~19!

where a,b561, and Nv denotes the number of vortice
~vorticity! on this plaquette. Comparing to Eq.~18!, one
finds N5Nv ~mod 2!, so N can be interpreted as a vorte
number operator, modulo two. Sinceu andN are canonically
conjugate, the operatorse7 iu perform canonical ‘‘transla-
tions’’ of N, and hence can be regarded as vortex crea
and annihilation operators, respectively. Note that sinceu
PpZ, e2iu51, consistent with the ambiguity inN5Nv un-
der even integer shifts. Clearly, periodicity off in the origi-
nal variables is encoded in the discreteness ofu in the dual
description.

The plaquette Hamiltonian, when reexpressed in the d
variables, reads

Hh52K(
r

cos~pNr !1
U

2p2(
r

@Dxyu r2pn̄#2. ~20!

We will for the time being neglect the tunneling termHt ,
which will be returned to later. Note the strong similari
between the dual and original forms. To bring this out mo
clearly, and for the numerical simulations to be conside
shortly, it is useful to go to a path integral formulation.
particular, consider the partition function

Zh5Tre2bHh. ~21!

ExpandingZh in the usual Trotter fashion with a time slic
Dt5e→01, using the discrete basis of eigenstates ofu r ,
one finds~Appendix A!

Z5 (
$ur(t)%

expF2S e(
t

DLhG , ~22!

with the ‘‘Lagrangian’’

Lh@u#5(
r

H e

p2
lnS 2

eK D ~]tu r !
21

U

2p2 @Dxyu r2pn̄#2J ,

~23!

where]tu r5@u r(t1e)2u r(t)#/e. Thee dependence of the
time derivative term in Eq.~23! is familiar from the ‘‘time-
continuum limit’’ relating, e.g., the (d11)-dimensional clas-
sical andd-dimensional quantum transverse-field Ising mo
els. Note the strong similarity of Eq.~23! to Eq. ~12!, which
emphasizes their nearly self-dual nature.

The formulation in Eqs.~22!-~23! is quite convenient for
numerical simulations. For the simulations, we define
integer-valued ‘‘height’’ fieldũ r(t) through

Dxyu r~t!5pnr
(B)1pDxyũ r~t!, ~24!

where nr
(B)5@11(21)x1y#/2 is the background staggere

density, chosen such thatũ r(t) obeys periodic boundary con
ditions. In this language, we obtain a generalized~anisotrop-
ic! solid-on-solid model in 211 dimensions. The correlation
functions for theu fields are easily reexpressed~and numeri-
cally evaluated! in terms of these height variables, usin
6-4
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Monte Carlo methods. An indication of the sort of resu
obtained is shown in Fig. 1 which presents the phase diag
of this model as a function ofU/K and e, based on an
evaluation of the density correlations. For the simulatio
we worked on aLx3Lx3Lt lattice, with various system
sizes indicated in the paper. We used a Metropolis algori
with a single-site update,ũ r(t)→ ũ r(t)61, which corre-
sponds to a ring-exchange move for the boson density.
checked for equilibration of various quantities, and avera
the data over 104–106 sweeps of the lattice depending on t
correlation function and location in the phase diagram. N
tice that in the time continuum limit~e→0!, the simulations
reveal two phases as the dimensionless ratioK/U is varied,
separating an ordered charge-density wave state at largU
from the EBL phase when the ring exchange term is larg

Before obtaining an effective low-energy description, it
convenient to rewrite the dual partition function, Eq.~22! in
terms ofcontinuousu variables using the Poisson summati
formula

Z5E @du r~t!# (
sr(t)

expH(
r ,t

@2isr~t!u r~t!

2dusr~t!u!] J expS 2e(
t

Lh@u# D . ~25!

In Eq. ~25!, we have included a parameterd!1, which ‘‘soft-
ens’’ the discrete-u constraint ~exactly imposed ford50!.
Carrying out the sum over the integer-valuedsr(t) variables,
one finds

Z5Z0E @du r~t!#e2S02S1, ~26!

FIG. 1. The phase diagram of the time-discretized dual mode
a function of the two coupling constants, showing a compress
EBL phase and an incompressible phase that we identify as a~p,p!
charge-density wave. The compressibilityk was obtained from the
k→0 extrapolation of the density susceptibilityxnn(k→0,v50) on
838332 lattices, with some checks made on larger system si
As seen from the inset, the criticalU/K stays finite in the time
continuum limit eK→0 indicating a phase transition atU/K'2.4
60.4 in the quantum model.
05452
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whereZ0 is a constant~divergent ford→0),

S05(
t

eLh@u#, ~27!

S152(
rt

(
q51

`

v2qcos 2qu r~t! ~28!

and thev2q are O(1) coefficients whose precise values a
not important. It is convenient to drop the constant and
troduce infinitesimal source fieldshr, h«, for the density and
energy density, respectively,

Z@hr,h«#5E @du r~t!#e2S02S12Sh, ~29!

with

Sh52(
r ,t

@hr8
r

~t!~Dxyu r2pn̄!1hr
«~t!~]tu r !

2#, ~30!

wherer 85r1 x̂/21 ŷ/2.

III. EFFECTIVE MODEL

We now make an educated but perhaps bold guess a
the nature~and existence! of a low-energy effective descrip
tion. In the spirit of the renormalization group and effectiv
field theory, we imagine defining atemporallycoarse-grained
variableq in which the high-frequency modes ofu are av-
eraged over

q r~t!5@u r~t!# f2pn̄xy, ~31!

where the square brackets indicate an average over ‘‘f
high-frequency modes, and we have for convenience
moved the mean ‘‘curvature’’ inq by a nonfluctuating spa
tially dependent shift. Provided that we average only o
high-frequency modes, we expect that the resulting effec
description ofq will remain local both in space and~imagi-
nary! time. Inspection of Eq.~26! shows that the dual micro
scopic action foru can be written as a sum of a quadratic p
((t,reLh) and nonquadratic corrections. We postulate t
the low-energy effective action forq is a sum of a renormal-
ized quadratic term similar toLh and small nonquadratic
corrections. Although we have not implemented a detai
renormalization group treatment, the latter statement is
tamount to declaring that the system is controlled by a sta
Gaussian fixed point. Obviously, such a fixed point can h
at best a large finite basin of attraction, and we will return
the problem of determining the region of stability of th
Gaussian theory in Sec. V.

A. Symmetries

Formally, the above postulate of the effective-field theo
description can be formulated as the statement that the
erating functional can be approximated for low-frequen
source fields byZ@hr,h«#'Z0Z@hr,h«#, whereZ0 is an ir-
relevant constant, and

s
le

s.
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Z5E @dq r~t!#e2S0[q] 2S1[q] 2Sh[q] , ~32!

whereS0@q# is a renormalized quadratic form,S1 contains
small renormalized nonquadratic perturbations, andSh is lin-
ear inhr, h« ~we drop higher-order terms in the infinitesim
sources!. In general, we expect all three parts of the action
take the most general form possible consistent with loca
analyticity ~since only high-frequency modes are averag
over!, and the symmetries of the problem, which should
found from the microscopic partition function, Eq.~29!.
These are

~1! Row/column symmetry: ux,y(t)→ux,y(t)1p@mx(x)
1my(y)#, where mx(x) and my(y) are arbitrary integer-
valued functions. This corresponds to conservation of
number of vortices~modulo 2! on each row and column,
dual version of the conserved boson number on each r
column of the original lattice.

~2! Space and time translations: u r(t)→u r1R(t1t0),
whereR is an arbitrary lattice vector andt0 is an arbitrary
real number. Under this translation, the sources must als
translated,hr

r/«(t)→hr1R
r/« (t1t0).

~3! Reflections across a row or column containing a s
of the dual lattice (or bonds of the original lattice): ux,y
→ss8usx,s8y , where s,s8561. The sources transform a
hx,y

r →ss8hsx,s8y
r , hx,y

« →hsx,s8y
« .

~4! Reflections across a row or column containin
bonds of the dual lattice (or sites of the original lattice:
This is not independent, and can be obtained from
composition of a translation and a site reflection. B
for completeness, ux,y→ss8u1/21s(x21/2),1/21s8(y21/2) ,
hx,y

r →ss8h1/21s(x21/2),1/21s8(y21/2)
r ,

hx,y
« →h1/21s(x21/2),1/21s8(y21/2)

« .
~5! Time reversal: u r(t)→u r(2t), hr

r/«(t)→hr
r/«(2t).

~6! Four fold rotations: ux,y→uy,2x , hx11/2,y11/2
r

→2hy11/2,2x21/2
r , hx,y

« →hy,2x
« .

~7! Particle-hole symmetry: This is an invarianceonly for
integer or half-integer densities (2n̄PZ). For such values
the symmetry operation isuxy→2pn̄xy2uxy , hr

r→2hr
r ,

hr
«→hr

« .

B. Gaussian action

The form of S is dictated by these symmetries and t
relation between the microscopic and coarse-grained fie
Eq. ~31!. Note that the shift bypn̄xy implies thatq is not a
scalar. Consider firstS0. By space and time translationa
symmetry, it is diagonal in momentum and frequency spa

S05
1

2Ek
E

v
M~k,v!uq~k,v!u2, ~33!

where *k[*d2k/(2p)2, *v[*2`
` dv/(2p), and the mo-

mentum integral is taken over the Brillouin zoneukxu,ukyu
,p. By row/column translational symmetry,

M~kx50,ky ,v50!50 for all ky , ~34!
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and similarly for kx↔ky . The latter condition implies the
existence ofgaplessexcitations along thekx andky axes in
momentum space. These are the only such gapless s
mandated by symmetry, and we expect the low-energy ph
ics to be dominated therefore by momenta near these
and by low frequencies. Quite generally, the kernelM can
be expanded near the zero modes atkx5v50, and at lowest
order takes the form

M~k,v!5A~ky!v21B~ky!kx
2 , ~35!

where the expansion functionsA(ky) andB(ky) are even and
2p periodic inky . A similar expansion is of course possib
aroundky5v50, with the identical expansion coefficients
due to rotational symmetry. Analyticity atk50 further im-
plies B(0)50. A convenient representation ofM, which
satisfies these requirements, is

M~k,v!5
v21Ek

2

p2K~k!
, ~36!

with mode energy,

Ek[4AK~k!U~k!usin~kx/2!sin~ky/2!u. ~37!

Here,U(k) andK(k) are positive 2p periodic functions that
characterize the EBL phase, but it is only their behavior
kx!1 or ky!1 that determine the universal low-energ
properties of the theory.

C. Interaction terms

Consider next the interaction terms,S15*dtL1. Locality
requires that they couple combinations ofq r fields only with
nearby pointsr . Hence we consider a successive sequenc
terms,L15(mL1;m , couplingq fields at a total ofm distinct
points. We expect that theL1;m becomes~exponentially! in-
creasingly small with increasingm. First consider the single
site terms, which are highly constrained, particularly
translational invariance, under whichqxy1pn̄xy transforms
as a scalar. Generally,

L1;152(
xy

F (
q51

`

y2qcos~2qq1qQxy!

1 (
q52

`

K q
21~]tq!2qG , ~38!

whereQ52pn̄, and has the physical meaning of the sma
est reciprocal lattice vector of a one-dimensional lattice w
densityn̄ ~like 2kF for a charge-density wave!. The second
set of terms involve more time-derivatives than the ana
gous quadratic interactions inS0, and hence are negligible a
low frequency, so we will takeK q

2150 in the following. The
y2q terms will play an important role in Sec. V. Note tha
except when the density takes special commensurate va
~such as the interesting casen̄51/2), they are strongly os
cillatory in space.

Next consider two-site terms. Similar to theKq
21 terms in

Eq. ~38!, a variety of spatial~lattice! and time derivative
invariants are possible, but are negligible relative toS0, so
6-6
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we do not include them here. More interesting are sinuso
terms, which must take the form

L1;252 (
xy;m,n

(
qq8

„w2q,2q8,mn
2 cos@2qqxy22q8qx1m,y1n

1Q$qxy2q8~x1m!~y1n!%#1w2q,2q8,mn
1 cos@2qqxy

12q8qx1m,y1n1Q$qxy1q8~x1m!~y1n!%#…, ~39!

where rotational and reflection invariance requirew2q,2q8,nm
6

5w2q,2q8,mn
6 , and without loss of generality we may als

impose w2q8,2q,nm
6

5w2q,2q8,mn
6 . Like the y2q terms in Eq.

~38!, most of the operators in Eq.~39! are highly oscillatory
for genericn̄. An important exception arises inw2q,2q,mn

2 for
rational densitiesn̄5z8/z, where z,z8 are integers. Then
these terms are nonoscillatory ifz8mq andz8nq arez times
integers. We consider in particular the casez851, for which
m,q andn,q can be chosen as all possible factors ofzl into
two integers, with arbitrary integerl. Keeping only these
terms, one has

L1;252(
xy

(
m•q5n•q5zl

w2q
m,ncos@2q~qxy2qx1m,y1n!#,

~40!

where,w2q
m,n5w2q

n,m by rotational invariance. Sinceeiq acts
as a vortex creation operator, the terms in Eq.~40! can be
thought of as hopping 2q vortices a distances5(m,n) on
the 2D dual lattice.

Finally, considerSh5*dtLh . As for L1, we expect that
the largest contributions will occur in terms involvingq r
fields at a small number of distinct pointsr . For simplicity,
we keep only the most local of these. Employing the sy
metries above, one finds

Lh5(
xy

H hx11/2,y11/2
r Fc0

rDxyqxy1 (
q51

`

c2q
r Dxysin~2qqxy

1qQxy!G1hxy
« Fc0

«q̇xy
2 1 (

q51

`

c2q
« cos~2qqxy

1qQxy!G J , ~41!

where c2q
r/e are constants determined by the high-ene

physics. Here we have kept only the single-plaquette te
in the charge density, and the single-site terms in the en
density. Note that the operators multiplyinghr involve sines
rather than cosines, which is a consequence of particle-
and reflection symmetries. Theform in Eq. ~41! can be de-
rived perturbatively inv2q using an explicit one-step coars
graining procedure.32 The quantitative reliability of this con
structive procedure is, however, limited to small barev2q , so
for the problem of interest the constantsc2q

r/« should be
viewed as phenomenological parameters. Equation~41!
should be interpreted analogously to the nontrivial boson
tion rules for, e.g., the charge density and other operator
one dimension. Very generally, a low-energy effective act
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must be accompanied by rules specifying theoperator con-
tent of various physical fields. In analogy to the notatio
used there, one may rewrite Eq.~41! as a scaling equality
between the microscopic and coarse-grained fields, as in
~9!.

D. Self-dual form—Bosonization analogy

Having established the form of the effective action for t
q variables, we are also interested in computing quanti
involving the boson phasew. Since the effective theory is
perturbative inS1, it is straightforward to reintroducew us-
ing Gaussianintegration. In particular, the quadratic actio
S0 in Eq. ~33! with the kernel in Eq.~36! can be transformed
into the form shown in Eq.~5! in Introduction using a
Hubbard-Stratonovich transformation,

expS 2
1

2Ekt

1

p2K~k!
u]tq~k,t!u2D

5E @dw#expS 2
1

2Ekt
K~k!u~Dxyw!ku2D

3expS E
t
(

r

i

p
]tq r8Dxyw r D , ~42!

where r 85r1 x̂/21 ŷ/2 as usual, and (Dxyw)k denotes the
Fourier transform ofDxyw r . After an integration by parts in
the last term on the right-hand side above, the full Gauss
part of the action takes a particularly transparent form,S0
5*tL0, with LagrangianL0 defined in Eqs.~5!, ~6!.

The partition function is now represented as a path in
gral over both sets of ‘‘low-energy’’ fields,w r andq r , in an
appealing self-dual form. The Gaussian theory above give
fixed-point description of the EBL phase. When augmen
by the operator content of the fields, as in Eq.~9!, together
with the irrelevant nonlinear interaction terms in Eqs.~38!,
~39!, it gives a complete description of the universal prop
ties of the EBL phase, as detailed in the following sectio

It will sometimes be convenient to integrate out the du
field q, leaving a Gaussian action just in terms of the pha
of the boson wave function,

S05
1

2Ek
E

v
Mw~k,v!uw~k,v!u2, ~43!

with kernel,

Mw~k,v!5
v21Ek

2

U~k!
, ~44!

and with Ek as given in Eq.~37!. Notice that this form is
identical to the Gaussian fixed-point theory in terms ofq in
Eq. ~33!, except thatU(k) has replacedp2K(k) in the de-
nominator of Eq.~44!.

The above self-dual representation makes particularly
parent the close analogy between this theory and boson
tion theory in one-dimension.24 In particular, underlying both
theories is a pair of dual scalar fields, one the phase of
wave function and the other related to the density. The L
6-7
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tinger liquid fixed point is a Gaussian theory in the tw
fields, and has a form that is nearly identical to the E
action above,

L1d5H1d1
i

pEx
]tf]xu, ~45!

with Gaussian Hamiltonian,

H1d5E
x
FK

2
~]xf!21

U

2p2
~]xu!2G . ~46!

Notice that the long-wavelength particle density in bosoni
tion theory,n;]xu/p, has simply been replaced by a~lat-
tice! second derivative in our (211)-dimensional theory:n
;Dxyq/p. The commutation relations between the two du
fields has also been modified, as is apparent by inspecting
Berry’s phase term involving both fields in the abo
Lagrangians. The expressions in Eq.~9! relating the bare
boson density and energy density to the low-energy fields
a generalization of the more familiar bosonization expr
sions, where, for example, the boson density near 2kF is
proportional to cos~2u!.

A key strength of bosonization in 1D is that it allows on
to study the instabilities of the Luttinger liquid towards va
ous types of ordered phases, such as a charge-density
state. Similarly, the above Gaussian representation of
EBL fixed point is particularly suitable for studying instabil
ties both towards insulating states with broken translatio
symmetry and towards a superfluid. But before undertak
this analysis, we explore the EBL phase in some detail.

IV. THE EXCITON BOSE LIQUID PHASE

We now turn to the physical properties of the EBL pha
using the effective low-energy theory developed in the p
vious section. For the present, we will assume stability of
EBL, so that all physical quantities are accessible via per
bation theory~in S1) around the Gaussian theory forw,q.
The validity of this assumption is discussed in Sec. V.

A. Thermodynamic properties

Consider first the thermodynamic properties of the EB
The simplest is the compressibilityk5]n/]m. This is trivi-
ally given from the Gaussian theory, and one findsk
51/U(k50). Numerically, the compressibility may be ob
tained from an extrapolation of the density-density corre
tion function,

xnn~k,vn!5(
r
E dt

1

p2
^Dxyu r~t!Dxyu0~0!&eivnt2 ik•x,

~47!

from whichk5xnn(k→0,v50). The compressibilityk de-
termined in this way from the simulations were used to
fine the phase diagram in Fig.~1!

Also interesting is the specific heat. Since the EBL
essentially a free boson theory, this is determined comple
from the density of states for thecollectivefree boson modes
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r~E!5E
k
d~E2Ek!, ~48!

where the boson energy is

Ek5V~k!4Usin
kx

2
sin

ky

2 U, ~49!

and V(k)5AU(k)K(k). Like an ordinary ~Fermi liquid!
metal, the density of states gets a large finite contribut
from the low-energy modes near the ‘‘Bose surface’’ alo
the coordinate axes in momentum space. Unlike a Fermi
uid, however, there is a weak logarithmic divergence ass
ated with the crossing point atkx5ky50. In particular,

r~E!;
1

p2V0

@ ln~1/e!1C01O~e!#, ~50!

whereV05V(0,0), e5E/V0 and

C054 ln 21E
0

p dk

sin k/2 S V0

V~k,0!
21D . ~51!

Note that the constant term in the density of states depe
upon the full form of the dispersionV(k,0)5V(0,k) all
along the Bose surface, while the logarithmic term depe
only upon the behavior atkÄ0. The specific heat is then

Cv5
T

4E0

`

dx
x2r~Tx!

sinh2x/2
, ~52!

which to the same accuracy gives

Cv;
T

4p2V0
F I 0 ln

V0

T
1C0I 01I 1G , ~53!

and I n5*0
`dxx2@ ln(1/x)#n/sinh2(x/2), or I 054p2/3, I 1

52(322gE)p2/318z8(2)'4.643, wherez(z) is the Rie-
mann function, andgE'0.5772 is Euler’s constant.

B. Boson correlation functions

It is interesting to contrast the large density of states
collective excitations with the tunneling density of states
the original bosons, which we will see is strongly su
pressed. In particular, consider

Gf~r ,t!5^eifr(t)e2 if0(0)&. ~54!

By symmetry, since the boson number is conserved on e
row and column,Gf(r ,t) can be nonzero only forrÄ0. To
further determine the behavior ofGf in the EBL, we must
relate the microscopic Bose creation/annihilation opera
to the low-energy modes. By symmetry,

eifr;eiwr@11A cos~2q r12pn̄xy!1•••#. ~55!

We expect the low-energy properties to be dominated by
first term, i.e., simply replacingf→w. Sincew is a Gaussian
variable,

Gf~r ,t!;e2Ff(t)d r ,0 , ~56!
6-8
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with

Ff~t!5 1
2 ^@w0~t!2w0~0!#2&5E

k

U~k!

2Ek
~12e2Ekt!.

~57!

Since Ek vanishes linearlyboth as kx→0 and as ky→0,
inspection of Eq.~57! shows thatFf(t) has adouble loga-
rithmic divergence ast→`. Indeed, a careful calculatio
shows that

Ff~t!;
F2

f

2
u ln V0tu21F1

fln~V0t!1••• ~58!

for V0t@1, with

F2
f5

1

2p2
AU0

K0
, ~59!

F1
f5

1

p2E0

p

dkFAU~k,0!

K~k,0!

1

2 sink/2
2AU0

K0

1

kG
2

1

2p2
AU0

K0
@2 lnp1gE#, ~60!

where U05U(0,0), K05K(0,0). The ln2V0t behavior of
Ff(t) at larget implies thatGf(t) decays faster than an
power law. This translates into a similar singular behavior
the tunneling density of states. Writing the boson Gree
function in a spectral representation,

Gf~0,t!5E
0

`

dEr tun~E!e2Eutu, ~61!

one finds using a simple saddle-point analysis that the ab
behavior at larget requires

r tun~E!;expH 2
a

2
ln2

V0

E
2 ln

V0

E S b ln ln
V0

E
1l D J ,

~62!

wherea5b5F2
f , l5F1

f212F2
f1 ln F2

f .
Thus, although the EBL possesses a large set of gap

modes, the density of states for adding a boson into the
tem vanishes at low energy. Again, this is analogous t
Luttinger liquid in 1D;24 the conservation of particles pe
row or column means that the added particle affects all
particles in a particular row or column, leading to a su
pressed amplitude for such tunneling events. Remarka
the tunneling density of states actually vanishesfasterthan in
a Luttinger liquid, indeed faster than any power law in e
ergy. This behavior can be roughly understood as aris
from two orthogonality catastrophes occurring simul
neously in the row and column in which the boson is add
or removed.

It is also instructive to consider the boson four-point c
relation function, for simplicity at equal times. Due to th
row/column symmetries this is nonvanishing only when
four points sit at the corners of a rectangle:
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Gf
(4)~x,y!5^eifoo(t)e2 ifxo(t)e2 ifoy(t)eifxy(t)&. ~63!

Upon replacingf with the low-energy fieldw, this can be
readily evaluated using the Gaussian EBL action. For a
fixed y, one finds power-law behavior inx @and vice versa
sinceGf

(4)(y,x)5Gf
(4)(x,y)#,

Gf
(4)~x,y!;

1

uxuh(y)
for uxu@1, ~64!

with

h~y!5
1

p2E0

p

dkAU~0,k!

K~0,k!

sin2~ky/2!

sin~k/2!
. ~65!

Note that Eq.~64! requires onlyuxu@1 and places no restric
tion ony. Hence it is also obtained whenbotharguments are
large, and thus

Gf
(4)~x,y!;expS 2

1

p2
AU0

K0
~ ln x!~ ln y!2C~ ln x1 ln y!D ,

~66!

asx,y→`, with

C5
1

p2
AU0

K0
~gE1 ln p!

1
1

p2E0

pSAU~0,k!

K~0,k!

1

2 sink/2
2AU0

K0

1

kD . ~67!

C. Vortex correlation functions

The exact plaquette duality makes it possible to defin
number of characteristic ‘‘vortex’’ correlators in terms of th
field eiu. As for the boson correlator above, the behavior
the EBL depends upon the expression for the vortex oper
in the low-energy variables. By symmetry, we expect t
leading terms~involving the smallest exponentials ofq) to
be

eiur;Re@Aeipn̄xyeiqr#, ~68!

where in generalA is complex. Note that, sinceu/p is an
integer, the microscopic vortex field satisfies expiu5exp2iu,
but this is not true forq. In the special case ofn̄51/2,
particle-hole symmetry~q→2q! further impliesA is real,
whence

eiur; n̄51/22A cosS q r1
p

2
xyD . ~69!

With this relation in hand, let us consider first the vort
two-point function,

Gu~r ,t!5^eiur(t)e2 iu0(0)&. ~70!

As for the boson correlatorGf , the vortex two-point func-
tions vanishes unlessr50 due to the dual row and colum
6-9
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symmetries. Evaluating it using Eq.~68! and the Gaussian
action, one finds similar results to the boson tunneling d
sity of states,

Gu~0,t!;expH 2
F2

u

2
u ln V0tu22F1

uu ln V0tuJ , ~71!

where

F2
u5

1

2
AK0

U0
, ~72!

F1
u5E

0

p

dkFAK~k,0!

U~k,0!

1

2 sin k/2
2AK0

U0

1

kG2
1

2
AK0

U0

3@2 lnp1gE#. ~73!

In fact, these coefficients are obtained directly from Eq.~59!
using the duality transformationK(k)↔U(k)/p2. In Fig. 2
we show numerical results for the two-point vortex corre
tion function obtained from the quantum Monte Carlo sim
lation in the parameter regime corresponding to the E
phase. The downward curvature of the data is consistent
a decay more rapid than a power law, and as shown in
inset can be fit to the form in Eq.~71! with U0 /K0'1.

Next consider the vortex four-point function, which due
the dual row/column symmetry is nonvanishing only wh
the four points sit at the corners of a rectangle,

Gu
(4)~x,y!5^eiuoo(t)eiuxo(t)eiuoy(t)eiuxy(t)&. ~74!

This can be reexpressed in terms of the low-energy fielq
using Eq.~68!, and then evaluated with the Gaussian E
action. For anyfixed y, one finds power-law behavior inx,

FIG. 2. Vortex correlation functionGu(0,t)5^eiu0(t)e2 iu0(0)& in
the EBL phase. The correlation function decays faster than a po
law ;exp(2 1

4AK0 /U0u ln V0tu2) at long times ~see text!. Inset
shows this decay in a finite-size scaling plot (L54 to L532) of
ln Gu(0,t) versus lnt for t5Lt/2, from which we extractU0 /K0

'1, nearly its bare value for these parameters.
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(4)~x,y!;

cos~pn̄xy!

uxuhv(y)
for uxu@1, ~75!

with

hv~y!5E
0

p

dkAK~0,k!

U~0,k!

sin2~ky/2!

sin~k/2!
. ~76!

Interestingly, one can see from Eq.~75! that for the casen̄
51/2, the four boson correlatorvanishesexactly whenever
x,y is odd as a consequence of particle-hole symmetry. T
behavior, and the associated power-law correlations,
shown in Fig. 3. In the limit when bothx,y→`, the vortex
four-point correlator vanishes faster than any power law,

Gu
(4)~x,y!;cos~pn̄xy!expS 2AK0

U0
~ ln x!~ ln y!

2Cv~ ln x1 ln y! D , ~77!

asx,y→`, with

Cv5AK0

U0
~gE1 lnp!

1E
0

pSAK~0,k!

U~0,k!

1

2 sink/2
2AK0

U0

1

kD . ~78!

With the exception of the cos(pn̄xy) prefactor in Eq.~77!, all
the results in this section can be obtained from those in
previous one by the duality transformationw↔q and
U(k)↔p2K(k).

er

FIG. 3. The four-point vortex correlation functionGu
(4)(x

51,y,t50), defined in the text, evaluated in the EBL phase. T
correlation function vanishes for odd values ofy due to particle-
hole symmetry atn̄51/2. The expected power-law decay of th
envelope is shown in the inset as a finite-size scaling plot, fr
which we extract the exponenthv(1)'1.960.1, close to its bare
value forU/K51.
6-10
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D. Collective correlation functions

Next, let us consider the correlations of ‘‘two-particle
operators such as the boson and energy densities. As a
we require the operator correspondences between the m
scopic and effective variables. These were already wor
out in Sec. III, and summarized in Eqs.~9! and ~10! in In-
troduction. For simplicity, we focus on the most interesti
case ofn̄51/2, for whichQ5p, and furthermore keep only
the lowest nontrivial harmonics withq51. In this limit, Eqs.
~9! and ~10! reduce to

dnx11/2,y11/2;c0
rDxyqxy

1c2
r (

a,b50,1
~21!(x1a)(y1b)1a1b

3sin~2qx1a,y1b!, ~79!

«xy;c0
«q̇xy

2 1c2
«~21!xycos~2qxy!. ~80!

First consider the density-density correlation function,

xnn~r ,t!5^dnx11/2,y11/2~t!dn1/2,1/2~0!&. ~81!

Substituting fordn using Eq.~79!, one obtains three contri
butions toxnn :

xnn~r ,t!;~c0
r!2xnn

00~r ,t!1~c2
r!2xnn

22~r ,t!1c0
rc2

rxnn
20~r ,t!.

~82!

The cross termxnn
20 is negligible. The first contribution

xnn
00(r ,t) is just the correlator between ‘‘coarse-graine

densities}Dxyqxy . This term is nonzero in the Gaussia
theory, and gives a smooth function ofr , with a power-law
behavior at large arguments. For instance, at equal times
large uxu,uyu@1,

xnn
00~r ,0!;AK0

U0

1

x2y2
. ~83!

More generally,xnn
00 has a smooth Fourier transform,

xnn
00~q,vn!5

p2

U~k!

Ek
2

vn
21Ek

2
. ~84!

Perturbative corrections fromS1 to xnn
00 do not modify this

qualitative behavior.
The remaining contribution to the density-density co

relator comes from the sin 2q terms in Eq.~79!. Naively, this
contribution is ultralocal~and hence uninteresting!, i.e., van-
ishes unlessuxu,uyu<1, as a consequence of the fact that t
discrete row/column symmetries are promoted to continu
ones at the Gaussian level. One may interpret this as m
ing that the ‘‘vorticity’’ on each row or column is conserve
exactly in the Gaussian model. This conclusion, howeve
incorrect once the nonquadratic corrections inS1 are taken
into account, since expanding factors ofy2(21)xycos 2q can
‘‘supply’’ vorticity in units of 2 to a particular site. Hence
05452
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xnn
22 becomes nontrivial at second order iny2. Provided

uxu,uyu.1, the appropriate second-order perturbative expr
sion is

xnn
22~r ,t!52

y2
2

8 (
abcd50,1

~21!(x1c2a)(y1d2b)1a1b1c1d

3Cx1c2a,y1d2b
(4) ~t!, ~85!

where

Cx,y
(4)~t!5E dt1dt2^exp$2i [qoo(0)1qxy(t)2qx0(t1)

2q0y(t2)] %&0 , ~86!

where the expectation value indicates an average calcul
in the Gaussian theory. At large distances,uxu,uyu@1, one
expects Cx1c2a,y1d2b

(4) (t)'Cx,y
(4)(t), independent of

a,b,c,d. In this limit, only the prefactor in Eq.~85! depends
upona,b,c,d, and the sums can be carried out explicitly. T
do so, it is convenient to employ the identity

~21!xy5 1
2 @11~21!x1~21!y2~21!x1y#, ~87!

valid for integerx,y. Applying this identity to Eq.~85!, only
the last term survives the sum, and gives

xnn
22~r ,t!'y2

2~21!x1yCx,y
(4)~t!, ~88!

for uxu,uyu@1. This indicates the presence of (p,p) correla-
tions in the boson density. More generally, if onlyuxu@1 but
uyu.1 but still of O(1), onefinds

xnn
22~r ,t!'

y2
2

4
~21!x1y

3 (
bd50,1

@12~21!y1d2b#Cx,y1d2b
(4) ~t!,

~89!

so atany fixed y the density-density correlator oscillates
wave vectorp as a function ofx ~and vice-versa by rota
tional symmetry!. To establish the range of these corre
tions, we must considerCx,y

(4)(t) in some detail. Using prop-
erties of Gaussian fields, we have

Cx,y
(4)~t!5E dt1dt2exp@2cx,y~t,t1 ,t2!#, ~90!

where

cx,y~t,t1 ,t2!52^@qxy~t!1q00~0!2qx0~t1!

2q0y~t2!#2&0 . ~91!

The calculation and analysis ofcxy is somewhat involved,
and is described in detail in Appendix B. There we derive
useful approximation forcxy which captures the behavior i
all the relevant limits (uxu@1,V0ut2t1u,V0ut2u, and uyu
,uxu),
6-11
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cxy;2hv~y!ln~x21Vy
2t2!

1AK0

U0
S FFV0ut2t1u

uyu G1FFV0ut2u
uyu G D , ~92!

whereVy;V0 @but in general depends weakly upon the f
form of K(0,ky),U(0,ky), andy# and the crossover functio
F(X) satisfies

F~X!'H 0 X!1

ln2X X@1.
~93!

Using Eqs.~90!, ~92!, ~93!, we find

Cxy
(4)~t!uxu@1̃S y

V0
D 2

e2(K0 /U0)1/4
~x21Vy

2t2!22hv(y),

~94!

and of course the same behavior withx↔y.
This power-law behavior ofCxy

(4) , and hencexnn(r ,t)
translates into singularities in the static structure factor,

Snn~k![(
xy

e2 i (kxx1kyy)xnn~r ,t50!, ~95!

for wave vectors nearp[~p,p!. In particular, letk5p1q,
and consider the limitqx!1 with qy fixed. In this limit the
singular behaviorof the structure factor is dominated b
large uxu but y of O(1). Hence we may apply Eq.~89! to
write

Snn~p1q!uqxu!1̃y2
2 (

odd y
cosqyy~1

1cosqy!(
x

eiqxxCxy
(4)~0!. ~96!

From the power-law behavior in Eq.~94!, one can readily see
that the Fourier transform inx leads to singularities for sma
qx . Indeed, if anyhv(y),1/4 for any oddy, xnn divergesas
qx→0 at fixed qy , while for 1/4,hv,3/4, the structure
factor remains finite but has a divergent second derivativ
qx50,

Snn~p1q!;Snn
0 ~q!1 (

odd y
Ay

r~qy!sgn~ay!uqxu2ay,

~97!

where Snn
0 (q) is a smooth function,ay5124hv(y), and

Ay
r(qy)}y2

2cosqyy(11cosqy) is a positive amplitude peake
at qy50. Hence the behavior for smallqx is dominated by
theminimum~over oddy) value ofhv(y) ~maximum ofay).

The zero-frequency susceptibility,xnn(k)[xnn(k,vn
50) has a similar but stronger divergence due to the e
time integration,

xnn~p1q!;xnn
0 ~q!1 (

odd y
Ãy

r~qy!sgn~ ãy!uqxu2ãy,

~98!
05452
at
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wherexnn
0 (q) is another smooth function,Ãy

r(qy)}Ay
r(qy),

and ãy5224hv(y)511ay signals the stronger diver
gence. The difference in exponents implies that ifSnn(p
1q) has a divergent slope atqx50, xnn(p1q) itself diver-
gences there. Conversely, ifx̃nn(p1q) has a slope diver-
gence atqx50 ~occurs for 1/2,hv,3/4), the static struc-
ture factor does not. Numerical results for the dens
susceptibility in the EBL phase are shown in Fig. 4, a
reveal a singular cusplike behavior at wave vectorp. This
form is consistent with that predicted by Eq.~98! with a
maximum value21,ãy

max,0.
Now consider the energy-energy correlation function,

x««~r ,t!5^«xy~t!«xy~0!&c , ~99!

where thec subscript indicates the cumulant expectati
value. As for the density-density correlator, we can emp
Eq. ~80! to expandx«« as

x««~r ,t!;~c0
«!2x««

00~r ,t!1~c2
«!2x««

22~r ,t!1c0
«c2

«x««
20~r ,t!.

~100!

As for the density case,x««
00 has a smooth Fourier transform

and x««
20 is negligible. We focus onx««

22 , which ~for uxu,uyu
.0) to second order iny2 is

x««
225

y2
2

8
~21!xyCxy

(4)~t!. ~101!

Using Eq.~87!, ~94!, one straightforwardly sees that there a
singularities inx««

22(k) askx(ky)→0 andkx(ky)→p. In par-
ticular,

FIG. 4. The density susceptibilityxnn(k,v50) in the EBL
phase, close to the phase boundary, along~0,0!→~2p,2p!. The cusp
at ~p,p! is due to subdominant power-law correlations in the EB
phase, which may be viewed as arising from corrections to
density operator in the Gaussian theory as discussed in the p
Inset shows the gray-scale plot of the susceptibility over the en
Brillouin zone, centered on~p,p! ~dark regions indicate large sus
ceptibility, and thekx50 and ky50 lines are omitted from the
gray-scale plot for clarity!. The singular cusp is visible along th
indicated~0,0!→~2p,2p! direction.
6-12
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S««~k!ukxu!1̃S««
0 ~k!1 (

eveny
Ay

«~ky! sgn~ay!ukxu2ay,

~102!

x««~k!ukxu!1̃x««
0 ~k!1 (

eveny
Ãy

«~ky! sgn~ ãy!ukxu2ãy,

~103!

and

S««~p1qx ,ky!uqxu!1̃S««
0 ~p1qx ,ky!

1 (
odd y

Ay
«~ky! sgn~ay!uqxu2ay,

~104!

x««~p1qx ,ky!uqxu!1̃x««
0 ~p1qx ,ky!

1 (
odd y

Ãy
«~ky! sgn~ ãy!uqxu2ãy,

~105!

where Ay
«(ky)}Ãy

«(ky)}coskyy. Similar formulas for ky

'0,p are obtained by rotation. Note that becauseAy
«(ky)

}coskyy is negative forky'p andy odd, the energy-energ
correlator has a singulardip neark5p and singularpeaks
near k5(0,0),(p,0), and (0,p). Numerical results for the
energy susceptibility in the EBL phase are shown in Fig
Notice the singular cusplike peaks at wave vectors (0,p) and
(p,0), as predicted in Eq.~105!. This is in qualitative agree

FIG. 5. The energy susceptibilityx««(k,v50) in the EBL
phase, close to the phase boundary, along~0,0!→~0,2p!. The cusp
at ~0,p! is due to subdominant power-law correlations in the E
phase which may be viewed as arising from corrections to
energy-density operator in the Gaussian theory as discussed i
paper. Inset shows the gray-scale plot of the susceptibility over
entire Brillouin zone, centered on~p,p! ~dark regions indicating
large susceptibility!. The singular features are most clearly visib
as peaks~dark spots! at the ~0,p! and ~p,0! points and as a dip
~white spot! near~p,p!.
05452
.

ment with a large (p,0),(0,p) energy susceptibility seen in
direct quantum Monte Carlo simulations of anS51/2 easy-
axis ring-exchange model.28

E. Electrical conductivity

We finally consider the electrical conductivity in the EBL
To obtain an expression for the current operator requires c
pling in a vector potential. The usual minimal coupling pr
scription for a lattice model of bosons would have one
place a discrete lattice derivative as

f r1m2f r→f r1m2f r1Ar
m , ~106!

with m5 x̂,ŷ, and define the current operator by differentia
ing with respect to the vector potential. For the boson r
model this prescription is ambiguous due to the second
rivative form, and a family of gauge inequivalent forms a
possible,

Dxyf r→Dxyf r1aDxAr
y1bDyAr

x , ~107!

whereDxf r[ f r1 x̂2 f r denotes a discrete derivative. Gau
invariance requiresa1b51, whence this can be reexpress
as,

Dxyf r→Dxyf r1DxAr
y1~a21!F, ~108!

whereF5DxA
y2DyA

x is the gauge invariant flux throug
the plaquette. If one derives the boson ring model by star
with a model of electrons reformulated in terms of aZ2
gauge field coupled to spinons and chargeons as detaile
Appendix D, one arrives at an appealing symmetric form
the ring term witha5b51/2.

Henceforth we focus on the zero wave-vector conduc
ity s~v!. In this case, the above ambiguity is irrelevant, sin
a spatially uniform vector potential does not enter for a
value ofa. But the vector potential will still of course ente
into the boson hopping term in Eq.~4!, and upon differentia-
tion generates the usual current operator,

I r
m5t sin~f r1m2f r !. ~109!

When we coarse grain the theory, we should write down
current operator in terms of the slow fieldw,

I r
m5cI t sin~w r1m2w r !1•••, ~110!

with cI being a dimensionless constant. The other contri
tions will include terms that hop a single boson several
tice spacings and terms that hop several bosons—gene
all local terms allowed by the symmetries. Such terms w
generically be subdominant at low frequencies, and so
retain only the leading contribution.

With the current operator in hand it is straightforward
obtain the conductivity from the usual Kubo expression:

s1~v!5Re s~ ivn→v!, ~111!

with

e
the
e
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PARAMEKANTI, BALENTS, AND FISHER PHYSICAL REVIEW B66, 054526 ~2002!
s~ ivn!5
21

vn
E dt(

r
e2 ivnt^I r

y~t!I 0
y~0!&. ~112!

We have dropped the diamagnetic contribution since it w
not contribute to the real part of the conductivity. Evaluati
the correlator using the Gaussian EBL action gives at z
temperature,

^I r
y~t!I 0

y~0!&0;t2dy,0~x21t2!2D, ~113!

with scaling dimensionD5h(1)/2 whereh(y) is given ex-
plicitly in terms of the Bose liquid parameters in Eq.~65!.
Performing the time integration and spatial summation gi
a power-law singular contribution,

vns~ ivn!52At2~21! int(D)vn
2D221S reg~ ivn!,

~114!

where A is a positive constant andS reg is analytic in its
argument and thus does not contribute to the real part of
conductivity. Analytic continuation to real frequencies giv
a singular contribution to the complex conductivity of th
form

s~v!5At2~21! int(D)~2 iv!2D231 is2~v!, ~115!

with real s2(v). We note that causality places strong co
straints on the phase angle29 from the singular contribution
consistent with the above form. Finally, taking the real p
gives the optical conductivity,

s1~v!5At2usin~pD!uuvu2D23. ~116!

Notice that the amplitude of this contribution vanishes
integerD. For these special cases, the higher-order contr
tions to the current operator should be kept, and will contr
ute a similar form but generally with larger scaling dime
sions.

As we discuss in the next section, stability of the EB
phase to boson hopping requires thatD.2, implying an op-
tical conductivity vanishing rapidly at low frequencie
s1(v);va with a.1. ForD,2, the EBL will be unstable
to superconductivity, but for small boson hopping amplitu
the transition temperature would be low. In that case,
optical conductivity aboveTc might still be well described
by the above power-law form.

One may also directly calculate the nonlinear dc cond
tivity, s(Ey ,T)5]^I y&/]Ey as a function ofEy andT. This
is mathematically complicated, but formally quite similar
the perturbative calculations of tunneling conductance
tween parallel Luttinger liquids, as carried out, e.g., in R
30. We forgo this calculation here for the sake of brev
quoting only the resulting scaling form

s~Ey ,T!5At2T2D23G~Ey /T!, ~117!

whereG(E)→1 asE→0, andF(E);E 2D23 for E@1. This
implies in particular that the dc~linear response! conductiv-
ity at nonzero temperature behaves ass(T);At2T2D23.
These results are for the pure ring model, but will doubtl
be altered somewhat in the presence of impurity scatter
This we leave for future study.
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V. INSTABILITIES OF THE EXCITON BOSE LIQUID

There are two classes of perturbations that one can ad
the EBL fixed point~described by the quadratic actionS0)
that can potentially destabilize the phase. The first are te
involving the hopping of bosons. When relevant, such bo
hopping terms ‘‘stiffen’’ the phase fluctuations of the boson
leading to off-diagonal long-range order and a supercond
ing state. As we shall see, the perturbative relevance of
boson hopping terms is determined by the Bose liquid
rameters that enter into the fixed-point action that charac
izes the EBL phase. There are regions of parameters w
all such boson hopping terms are irrelevant and the E
phase is stable to such superconducting perturbations, a
detail in Sec. V A below.

The second class of perturbations involve hopping or m
tion of vortices, conveniently expressed in the dual repres
tation. When relevant, these perturbations signal a conde
tion of vortices which typically leads to a breaking o
translational symmetry and drives the system into an inco
pressible insulating state. The presence of these instabil
and the precise form of the translational symmetry break
depend sensitively on the boson density, generally requi
boson densities commensurate with the underlying lattice
Sec. V B below we focus on half filling (n̄51/2), and study
the nature of the resulting commensurate insulating state

If the boson density is incommensurate with the lattice,
the other hand, small vortex-hopping terms are unimport
Provided the Bose liquid parameters are in the regime wh
boson hopping is likewise irrelevant, the EBL exists as
completely stable critical phase. The gapless EBL is the
2D analog of the stable 1D Luttinger liquid.

A. Boson hopping and superconductivity

Consider then the stability of the EBL phase in the pr
ence of boson hopping operators. To be general, we cons
processes whereq bosons hop along a displacement vectors:

Lt52(
r

(
q,s

tq
scos@q~w r2w r1s!#. ~118!

To assess the perturbative relevance of such processes
compute the two-point function of the tunneling operators

T q
s~r !5cos@q~w r2w r1s!#, ~119!

using the Gaussian action for the EBL. The row/colum
symmetries in the EBL phase greatly constrain the spa
dependence of these correlators. We consider first the sp
class of tunneling operators that hop bosons along thex or y
axes withs5(m,0) or s5(0,m). For this class of operator
one finds a power-law decay both in time and in one spa
dimension:

^T q
mŷ~r ,t!T q

mŷ~0,0!&05dy,0@x21v2t2#2Dqm, ~120!

with scaling dimension,
6-14
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RING EXCHANGE, THE EXCITON BOSE LIQUID, AND . . . PHYSICAL REVIEW B66, 054526 ~2002!
Dqm5
q2

2pE2p

p dky

2p
AU~0,ky!

K~0,ky!

sin2~mky/2!

usin~ky/2!u
5

q2

2
h~m!.

~121!

Notice that these scaling dimensions vary asq2,
and will generally increase~slowly 2Dqm; @ q2 / ( 2p2 ) #
AU0 /K0lnumu) with hopping distancem. As expected, these
scaling dimensions increase withU/K.

For the remaining boson tunneling operators with vectos
connecting two different rows and two different columns, t
correlator is further constrained by the row/column symm
try, being spatiallylocal,

^T q
s~r ,t!T q

s~0,0!&05G~t!d r ,0 for sxsyÞ0, ~122!

with G(t);utu22Dq
s
.

General renormalization group reasoning implies that
erators are irrelevant about a given fixed point when the
sociated scaling dimension exceeds the space-time dim
sion,D.D5d11, with dynamical exponentz51. But due
to the constrained form of the above correlators, which o
exhibits a power-law decay in a reduced set of space-t
dimensions,Dred , one expects that the condition for irre
evance should be modified to beD.Dred . Thus, when
Dq,m.2 and Dq

s.1, one expects that all of the boso
hopping operators should be unimportant as one scales d
in energy, and the EBL phase will be stable. This can alw
be achieved~in principle! by increasing the ratio ofU/K.

It is tempting to strengthen this expectation by constru
ing an explicit renormalization group~RG! transformation,
but this is somewhat problematic due to the peculiar e
tence of zero-energy states at bothkx50 andky50 in the
EBL phase. One could try to integrate out gapped mo
away from the zero-energy ‘‘cross’’ in the Brillouin zone
and then successively integrate out ‘‘shells’’ of modes pin
ing down onto the cross. A difficulty arises, however, in t
rescaling transformation of the momenta, because the ra
of both kx and ky—the interval @2p,p#—is not invariant.
Similar but less severe difficulties are encountered when
tries to implement a momentum shell RG procedure for a
Fermi surface, due to the possible modifications of the sha
size of the Fermi surface. It might be possible to circumv
this difficulty along the lines of Shankar,31 or by an RG
procedure in frequency space.32 Some insight can be gleane
by ignoring the zero modes along thekx50 axis, and con-
sidering a 1D RG transformation where the integration
over a shell of momenta inkx for all kyP@2p,p# and fre-
quency, and then rescaling bothkx andv ~i.e with z51) but
not ky . The resulting perturbative~linearized! RG equation
for the Boson hopping amplitude in they direction, tq,m

[tq
mŷ is then simply

] l tq,m5~11z2Dq,m!tq,m , ~123!

with z51 andDq,m the scaling dimension given explicitl
above. This argument indeed supports the expectation
weak boson hopping will be irrelevant providedDq,m
.Dred52. In the absence of a fully controlled 2D RG pr
cedure, we verify this conclusion by resorting to perturbat
05452
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theory. In Appendix C, we do just this by formally compu
ing corrections to the two-point function,^eiwr(t)e2 iwr(0)&
perturbatively in powers of the boson hoppingtq51,m51. Sta-
bility of the EBL phase requires that the long-time behav
be unmodified from that calculated within the Gauss
theory. Carrying out this expansion to second order int1,1,
we show explicitly that this is in fact the case provide
D1,1.2, thereby confirming the expected result. One a
obtains the same condition for perturbative stability using
self-consistent Gaussian variational action.33 This is similar
to the case of the sine-Gordon model in 111 dimensions,
where such an approach reproduces the exact RG resu
the location of the critical point where vorticity becomes
relevant perturbation.

When the scaling dimension of a single boson-hopp
term is sufficiently small,D1m,2, one expects the EBL
phase to be unstable to a superfluid state in which the bo
condense, witĥeiw&Þ0.34 If the original lattice bosons are
supposed to represent the Cooper pairs~say in a model of the
cuprates!, then this will of course be the superconductin
phase.

B. Vortex hopping and insulating states

1. Stability

We next consider the effects of the various nonlinear
teractions involving the vortex operators in Eq.~38! and
~39!, which can potentially destabilize the EBL phase. At
generic density, for whichn̄ is irrational, all these cosine
terms areoscillatory, and, if weak, cannot lead to any long
wavelength divergences. Hence we expect that away f
commensurate densities, and providedDqm.2 for all q,m so
that boson tunneling is irrelevant, the EBL is a stable ze
temperature phase of matter.

For rational densities, some of the vortex operators will
nonoscillatory, and must be considered more carefully.
particular, for very commensurate boson densities~i.e., n̄
equal to a small-denominator rational fraction!, it is not a
priori obvious whether the EBL can even in principle b
stable to both boson hopping and vortex operators. To d
onstrate the issues, we present a stability analysis for
special set of rational fillings,n̄51/z, wherez is a positive
integer.

At n̄51/z, the onsite terms take the form,

Lv52(
r

(
q51

`

y2qcosS 2qq1
2pq

z
xyD . ~124!

Note that although forqÞ jz, with integerj >1, these terms
are spatially varying, they are not wholly oscillatory, in th
sense that they all have a nonzero spatial average for
stant q, e.g., for primez, and qÞ jz, @cos($2pq/z%xy)#xy
51/z. Hence even forqÞ jz, they cannot be argued awa
simply on the grounds that they are oscillatory. Instead,
assess the importance of these perturbations, we again
sider the two-point function of these operators evalua
with the Gaussian EBL action,

Gq
2q~r ,t!5^ei2qqr(t)e2 i2qq0(0)&05d r ,0F~t!, ~125!
6-15
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PARAMEKANTI, BALENTS, AND FISHER PHYSICAL REVIEW B66, 054526 ~2002!
with F(t);exp(2q2AK0 /U 0ln2(t)) at large times. Due to
the dual row/column symmetry this correlator is spatia
local, and is also ‘‘short ranged’’ in time, vanishing fast
than any power law. The associated scaling dimension is
infinite, and these operators are strongly irrelevant and
not destabilize the EBL. However, as we shall see, they
play an important role in determining which of the vario
insulating phases is selected when the EBL is driven unst
by the two-site terms.

When the two-site terms in Eq.~39! are weak, we can
drop those that are spatially oscillating and focus on the
which take the form of vortex hopping and creation term

Lw52 (
r ,a,6

wa,6Oa,6~r !, ~126!

with operators,Oa,6(r )5cos(2qqr62q8q r1s), where ‘‘a’’
labels the various values of integersq,q8 and the hopping
vector s. Again, to establish the perturbative relevance
such terms in the EBL phase, we evaluate the two-point
relators with the Gaussian fixed-point action. For the ope
tors O1 , the dual row/column symmetry is especially r
strictive and we find that the associated correlator is o
again spatiallylocal

^Oa,1~r ,t!Oa,1~0,0!&05F~t!d r ,0 , ~127!

and ‘‘short ranged’’ in time withF(t);exp@2ca,qln
2(t)#

~with constantca,q), so that like the onsite terms, these o
erators cannot destabilize the EBL. A similar behavior
found forO2 , except for the special class of operators w
q5q8, which correspond physically to 2q vortices hopping
along a vectors. Of these, except for the special case w
s5(m,0) ands5(0,n), the two-point function is again spa
tially local, although it is now a power law in time,F(t)
;utu22D. While such operators could potentially destabili
the EBL if the powerD,1, they will generally be less sin
gular than the remaining class of operators with vortices h
ping along thex or y axis,

Lw52w2q,m(
xy

(
qm5 jz

$cos@2q~qxy2qx1m,y!#

1cos@2q~qxy2qx,y1m!#%. ~128!

The operators withqmÞ jz ~with integer j ) are truly oscil-
latory ~i.e., have zero spatial average for constantq) at n̄
51/z and have been dropped. We expect the coefficie
w2q,m to be positive since these operators will be genera
at second order from the irrelevant onsite terms;w2q,m

;y2q
2 .
For this last class of operators the two-point function

d-correlated in one-spatial direction but a power law in t
other and in time,

^O 2q,m
y ~r ,t!O 2q,m

y ~0,0!&0;dy,0~x21v2t2!2D2q,m
v

,
~129!

where O 2q,m
y (x,y)5cos@2q(qxy2qx,y1m)#. The associated

scaling dimension is given in terms of the Bose liquid p
rameters,
05452
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D2q,m
v 52q2E

0

p

dkyAK~0,ky!

U~0,ky!

sin2~mky/2!

sin~ky/2!
52q2hv~m!.

~130!

As for the boson-hopping operators, the vortex-hopping s
ing dimensions vary asq2, and also increase slowly with
increasing hopping distancem. In general, we expect that fo
largez the most relevant of these will bew2,z , with scaling
dimension D2,z

v 52hv(z);2AK0 /U0lnuzu, so for a suffi-
ciently large z this can be rendered arbitrarily large, an
henceall the vortex-hopping terms can be made irreleva
for any U(k),K(k). Thus for sufficiently largez, such that
D2q,m.Dred52 for all qm5 jz, there is certainly a domain
of stability for the EBL phase~i.e., where the Bose liquid
parameters are further tuned to make all hopping terms ir
evant!.

For small z, however, this is not clear. Indeed, it
straightforward to show that forz52 ~i.e., half filling, n̄
51/2), a choice ofuniform functionsU(k)5U0 ,K(k)5K0
does not lead to a stable regime. In particular, in this ca
the leading vortex-hopping operator has scaling dimens
D2,2

v 52hv(2)54AK0 /U0, while the leading boson-hoppin
operator has scaling dimensionD115(1/p2)AU0 /K0. Hence
D22

v D1154/p2, which implies min(D11,D22
v )<2/p,2, so

that at least one or the other operator is relevant. We have
determined whether a stable EBL phase might be possib
half filling when U(k),K(k) are momentum-dependent.

2. Instabilities

As indicated above, for smallz, either a vortex- or boson
hopping instability may be inevitable. In any case, it is inte
esting to study the nature of the state resulting from relev
vortex-hopping terms. Here, we briefly study the nature
the resulting phase for half filling, taking into account th
presence of the two most potentially relevant operators, w
q51,m52 andq52,m51. In general, at half filling, there
are Bose liquid parameters for which bothw22 and t1,1 are
relevant, and more complex behavior may well occur in t
regime. We will, however, neglect boson hopping co
pletely, as appropriate for largeU/K.

To this end, let us assume thatw2,2 is the most relevant
operator, withD2,2

v ,2. We also assume thatw4,1 is the next
most relevant~it could be irrelevant, but still theleast irrel-
evant remaining operator!. Then, provided all bare coupling
are small, we imagine integrating down in energy untilw2,2
becomes comparable to the Gaussian terms inS0. This re-

quiresw2,2L
D2,2

v
;U(p,0)L2, which always occurs for suffi-

ciently smallL with D2,2
v ,2. At this point it seems appro

priate to minimize the potential2w2,2@cos(2qxy22qx12,y)
1cos(2qxy22qx,y12)#, simultaneously withS0. This minimi-
zation somewhat underestimates fluctuation effects, wh
will be commented upon later. The most general form
qxy which minimizes thew2,2 term and keeps the Gaussia
action small can be written as

q r5Q0~r !1~21!xQ1~r !1~21!yQ2~r !1
pax

2
1

pby

2
,

~131!
6-16



-

in
ju

m

th
ic

on
t

of

to
f

sit
.

eld

rgy

r
son
ing

e

er.
en-

m-

en
ich

t-
the

ing

o
6

W

at
ag-

RING EXCHANGE, THE EXCITON BOSE LIQUID, AND . . . PHYSICAL REVIEW B66, 054526 ~2002!
where Q0/1/2(r ) are slowly varying functions of space. In
serting this expression forq into the action includingS0 and
the w2,2 term only gives

S 0
eff5E

rt
H 1

p2K0

~]tQ0!21
1

p2Kp

@~]tQ1!21~]tQ2!2#

1
A2

2
~¹Q0!21

A2

2
~]xQ1!21

A1

2
~]yQ1!2

1
A1

2
~]xQ2!21

A2

2
~]yQ2!2J , ~132!

where Kp5K(p,0), A158U(p,0)/p2, A2;w22L
D2,2

v

;w
2,2
2/(22D2,2

v )
@U(p,0)#2D2,2

v /(22D2,2
v ), whereL is the reduced

low-energy momentum cutoff. Note that we are not rescal
any fields or coordinates in this schematic RG treatment,
taking into account the fluctuation corrections tow2,2. Thus
the low-energy continuous fluctuations around the mini
are described by three massless fieldsQ j ( j 50,1,2), which
unlike q in the absence ofw2,2 have an ordinary ‘‘relativis-
tic’’ dispersion. In addition to these continuous variables,
discrete degeneracy of distinct minima allowed by period
ity of the cosine is indexed by the integersa,b.

Having taken into accountw2,2 already in Eq.~132!, we
next include the effects of a weak, renormalizedw4,1 cou-
pling, that after renormalization becomes of orderw4,1

R

;w4,1L
D4,1

v
;w4,1@w2,2/U(p,0)#D4,1

v /(22D2,2
v ). If all the bare

nonlinear couplings are small, then after renormalizati
this will be thelargestremaining term, which is why we trea
it next. Inserting the decomposition of Eq.~131! into the
four-vortex-hopping term, one obtains

S 1
eff52w4,1

R E
rt

@cos 8Q11cos 8Q2#, ~133!

assuming small gradients ofQ1/2, as mandated by Eq.~132!.
Equations~132!, ~133! describe a 3D ‘‘height’’ model for
Q1 ,Q2. As is well known in such models, the fluctuations
the free scalar fieldsQ1 ,Q2 arebounded, so that the cosine
terms in Eq.~133! are always relevant and pin these fields
integer multiples ofp/4, which we can take, without loss o
generality, to be zero. Thus the net effect ofw4,1 is to leave
only Q0 as a low-energy mode.

Setting thereforeQ15Q250 in the pinned ~‘‘flat’’ !
phase, we have

e2iqx,y5e2iq0~21!ax1by. ~134!

Here, since the fluctuations ofQ0 are likewise bounded, we
have replaced it by its average~zero mode! valueQ0→q0 .
This average can be determined by minimizing the on
Lagrangian in Eq.~124!. In principle, the parameters in Eq
~124! should also be renormalized, e.g.,y2q→ ỹ2q;y2qexp
@2q2cqln

2$w2,2/U(p,0)%#. This gives,

e2iq05~21!ab, ~135!

for ỹ4.2 ỹ2/8 ~with ỹ2.0 assumed! and
05452
g
st

a

e
-

,

e

e2iq05~21!ab@~ ỹ2/8u ỹ4u!6 iA12~ ỹ2/8ỹ4!2#, ~136!

for ỹ4,2 ỹ2/8.
The spatial orderings that are implied by these mean-fi

solutions follow readily from the expressions in Eqs.~9!,
~10! relating the bare boson density and plaquette ene
density to the ‘‘low-energy’’ fieldq. In the former case
above, the boson density is uniform since sin(2qqx,y)50,
whereas there is a plaquette energy density wave with,

ex,y;c2
e~21!(x1a)(y1b). ~137!

The four states witha,b50,1 correspond to the fou
plaquette density wave states of the original lattice bo
model in which one out of every four plaquettes is resonat
more strongly.

Whenỹ4,2 ỹ2/8, on the other hand, since sin(2q)Þ0 the
plaquette energy density wave states~with reduced orderc2

e

→( ỹ2/8u ỹ4u)c2
e) are coexisting with a charge-density-wav

~CDW! state ordered at (p,p),

dnx11/2,y11/2;6c2
rA12~ ỹ2/8ỹ4!2~21!x1y. ~138!

In the limit in which ỹ4→2`, the amplitude of the
plaquette density wave vanishes, leaving only CDW ord
We believe that an absence of a pure CDW state more g
erally is an artifact of the mean-field treatment being e
ployed, which ignores all fluctuations in theq field. In par-
ticular, one can imagine domain walls forming betwe
domains of different plaquette-density-wave order, wh
cost an energyEwall;w2,2( ỹ2 / ỹ4)2 for small w2,2 and large
u ỹ4u. When this energy is small, fluctuations will undoub
edly disorder the plaquette-density-wave order, leaving
pure CDW.

Our quantum Monte Carlo simulations on the boson r
model in the dual representation reveal that in the largeU
limit with U/K.(U/K)c'2.5, the EBL phase is unstable t
the formation of a CDW state. This is apparent in Fig.
which shows that the density structure factor peak at (p,p)
grows asL2, indicating the presence of long-ranged CD

FIG. 6. Finite-size scaling of the density structure factor peak
(p,p), deep within the incompressible phase. The staggered m
netizationm clearly tends to a finite value as 1/L2→0, indicating a
nonzero (p,p) charge-density-wave order parameter.
6-17
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order. This order is, however, weak, with a staggered m
netizationm'0.09 ~see Fig. 6!, much smaller than the clas
sical valuem50.5. It is also instructive to examine the vo
tex two-point function in the CDW state, which is shown
Fig. 7. Notice that the vortex correlation function is lon
ranged indicating a ‘‘vortex condensation’’ (^eiu&Þ0), as
expected in such a conventional insulating state.

Both the plaquette- and charge-density-wave states wil
insulators, with a charge gap. This follows since in bo
cases the fieldq is ‘‘pinned’’ by the cosine potentials and i
not fluctuating. Since the bare boson density isn5Dxyu/p,
adding a particle at the origin can be achieved by shift
uxy→uxy1p for all x,y.0. This will cost a finite amount of
energy~coming from the plaquette at the origin! when the
field q is pinned.

VI. EXACT WAVE FUNCTION

In this section we consider a variant of the boson r
Hamiltonian which allows us to obtain an exact zero-ene
wave function when the couplings are carefully tuned.
then perturb away from the soluble point, using the ex
wave function to compute properties of the adjacent quan
phase. Specifically, we find a translationally invariant flu
phase with a finite compressibility, behavior consistent w
both a superfluid and the EBL. But a calculation of the bos
tunneling gap in a finite system shows a 1/L scaling as ex-
pected for the EBL, and inconsistent with the 1/L2 depen-
dence of a 2D superfluid. Thus, we confidently conclude t
the EBL phase exists over a finite portion of the phase d
gram adjacent to the soluble point.

The model we consider is a ‘‘hard-core’’ version of th
boson-ring model, in which only zero or one boson is
lowed per site,b†b50,1. In the usual way we represent th
hard-core bosons as Pauli matrices,

b†5s1, ~139!

FIG. 7. Vortex correlation functionGu(0,t) in the incompress-
ible CDW phase. The correlation function saturates as seen from
finite-size scaling plot in the inset indicating that the vortices c
dense, leading to a conventional insulating state.
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b5s2, ~140!

n5b†b5
1

2
~11sz!, ~141!

where sW is the standard vector of Pauli matrices, ands6

5 1
2 (sx6 isy). The Hamiltonian consists of two terms,

H1/25(
xy

$2J4~sx,y
1 sx11,y

2 sx11,y11
1 sx,y11

2 1H.c.!

1u4P̂flip~x,y!%, ~142!

where

P̂flip~x,y!5
1

16 (
a561

)
b,g561

~11abgsx11/21b/2,y11/21g/2
z !.

~143!

The first term withJ4.0 in Eq.~142! is the hard-core analog
of the ring-hopping term proportional toK in the rotor
model, Eq.~1!. The operatorP̂flip(x,y) is a projection opera-
tor onto the two flippable configurations of the squa
plaquette whose lower-left corner is at the site (x,y). For
u4.0, this term competes with the ring term bydisfavoring
configurations with flippable plaquettes.

Remarkably, the ground state ofH1/2 can be found exactly
for the special Rokhsar-Kivelson~RK! point u45J4, follow-
ing a general construction in the spirit of the Rokhs
Kivelson point of the square lattice quantum dimer mode36

and employed more recently in Ref. 16 for a similar sp
model on the Kagome lattice. The solution can be seen
rewriting H1/2 as

H1/25(
xy

P̂flip~x,y!H J4S 12 )
u,v50,1

sx1u,y1v
x D 2vJ ,

~144!

wherev5J42u4 measures the deviation from RK point. Fo
v50, an obvious~zero-energy! ground state ofH1/2 is the
fully polarized state

u0&5)
x,y

usxy
x 51&. ~145!

A useful alternate representation follows by rewritingusx

51&5(1/A2)(usz51&1usz521&), and expanding out the
direct product,

u0&5
1

2N/2 (
$sxy561%

)
xy

usxy
z 5sxy&, ~146!

which demonstrates thatu0& is a uniform real superposition
of all configurations in theSz ~boson number! basis.

This state, however, has uncertainsz ~boson number!, and
so can be decomposed into many distinct ground state
projection. In particular, at a given average^sxy

z &52^nxy&
215m, we may project onto spatially uniform states a
cording to

he
-

6-18
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u0;m&5
1

AZ̃
)

x,y51

L

P̂x~m!P̂y~m!u0&, ~147!

where Z̃ is a normalization constant, since the row/colum
projection operators,

P̂x~m!5E
0

2p du

2p
expF iux(

y
~sxy

z 2m!G ,
~148!

P̂y~m!5E
0

2pdf

2p
expF2 ify(

x
~sxy

z 2m!G ,
commute withH1/2 and amongst themselves, reflecting t
conservation of boson number on each row and column
the ring dynamics.

Of course, othernonuniformground states may be ob
tained by choosingm differently on different rows and col
umns. This vast degeneracy signals a pathology of the
point, which is in fact at the boundary of a first-order tran
tion to a phase-separated ‘‘frozen’’ regime, forv,0. We
therefore focus instead on the behavior for infinitesimav
.0, which splits this degeneracy. For boson densities n
half filling, i.e., umu!1/2, we expect that the uniform state
will be favored energetically asv is increased to slightly
positive values, since these states have in this density reg
more flippable plaquettes~see below!. For largerumu, this
assumption is certainly violated, however, since, e.g., at v
low boson density the ring moves clearly do not connect
possible configurations. Atm50, however, the set of uni
form configurations does form a single ergodic compon
under the ring move~as can be straightforwardly show
numerically35 and probably argued analytically!. So we ex-
pect the set of uniform states to be an adequate descrip
for small umu.

To make contact with the EBL fixed-point description, w
calculate some energetic properties for infinitesimal posi
v using first-order perturbation theory. From the splitting
the different projected states atO(v), we calculate two
quantities: ~1! the ground-state energy densitye(m)
5E(m)/L2 as a function of boson densityn5(m11)/2,
from which we obtain the compressibilityk(m), and~2! the
‘‘single-particle’’ gapD1(m,L) for a finite-sizeL3L system,
essentially the addition energy for a bosononto a particular
row and columnin the grand canonical ensemble, defin
more precisely below.

Consider first the ground-state energy density. For
projected state at magnetizationm, the first-order energy
shift is

E~m!52v(
xy

^0;muP̂flip~x,y!u0;m&

52
v

Z̃
(
xy

K 0U P̂flip~x,y! )
x,y51

L

P̂x~m!P̂y~m!U0L ,

~149!
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where the latter equality follows from the fact thatP̂ flip is
diagonal in thesz basis and hence commutes with the pr
jection operators. Using Eq.~145!, one readily sees that th
energy shift can be rewritten in a form reminiscent ofclas-
sical statistical mechanics,

E~m!52v(
xy

^Pflip~x,y;$s%!&$sxy%
, ~150!

where

^O&$sxy%
5

1

Z (
$sxy561%

O )
x,y51

L

Px~m;$s%!Py~m;$s%!.

~151!

Here Pflip , Px , and Py are the classical functions obtaine
from P̂flip , P̂x , andP̂y , respectively, by replacing the opera
tor sxy

z by sxy , andZ is chosen such that^1&$sxy%
51.

We see that Eq.~151! simply defines an expectation valu
for an ‘‘infinite-temperature’’ Ising model with a constraine
magnetization on each row and column. By proceeding al
similar lines, one can calculate the energy shift for a st
with an extra boson on a single particular row and colum
and hence obtainD1. Amusingly, both problems can b
solved exactly using a saddle-point technique~see Appendix
E!. The results demonstrate that the constraints are ‘‘ne
irrelevant,’’ and the lattice gas behaves nearly as its unc
strained counterpart in the large system limit. In particul
the energy density, asL→`, becomes

e~m!52
v
8

~12m2!2. ~152!

This can be easily understood by assuming that each si
completely independent, and that the only effect of the c
straint is to determine the relative probabilities of the tw
spin states, which may be understood to bep↑5(1
1m)/2,p↓5(12m)/2. On a given four-site plaquette, onl
the two ~of 16 total! configurations in which the spin alter
nates around the plaquette are flippable. Hence the ave
flippability per plaquette is 2p↑

2p↓
25(12m2)2/8, in agree-

ment with the result above.
The ‘‘single-particle’’ gap is somewhat less intuitive. T

be precise and avoid ambiguities due to an unspeci
chemical potential, we define

D1~m!5 1
2 @E1~m;11!22E1~m;0!1E1~m,21!#,

~153!

whereE1(m;l) is the ground-state energy of a state in whi
the number of bosons on row and columnx5y51 is in-
creased byl relative to the uniform state at magnetizationm,

u0;m,l&5
1

AZ8
P̂x51~m12l/L !P̂y51~m12l/L !

3 )
x,y52

L

P̂x~m!P̂y~m!u0&, ~154!
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andE1(m;l)52v(xy^0;m,luP̂flip(x,y)u0;m,l&. One finds

D1~m!5
2v
L

~12m2!1O~1/L2!. ~155!

These two quantities can be compared to the gen
predictions expected from our theory of the EBL pha
Consider first the compressibility. From Eq.~152!, one has
m52de/dn522de/dm5vm(12m2), and hence

k5
dn

dm
5

1

2v
1

123m2
. ~156!

Note that the compressibility diverges and becomes nega
for 1/A3,umu,1, indicative of an instability of the uniform
state well away from half filling. Forumu,1/A3, however,k
is finite, consistent with the EBL phase. Indeed, from o
general harmonic description of the EBL phase as in Eq.~6!,
we havek215U(k50).

In order to rule out a superfluid phase, we now comp
the single-particle gap,D1(L), using the EBL Gaussian
fixed-point theory to show that it varies as 1/L as in Eq.
~155!. This gap can be extracted from the spatially loc
correlator,

Gw~t!5^eiwr(t)e2 iwr(0)&, ~157!

evaluated in afinite L3L system. From the spectral repre
sentation, one has, at zero temperature,

D1~L !5 lim
t→`

2
ln Gw~t!

t
. ~158!

Performing the Gaussian integral using the effective actio
Eq. ~43!, one has

2 ln Gw~t!5E
2`

` dv

2p

1

L2 (
k

U~k!

v21Ek
2 ~12e2 ivt!,

~159!

where the wave-vector sum is over inequivalent values w
kx ,kyP(2p/L)Z in the first Brillouin zone, and with the
mode energyEk given explicitly in Eq.~37!. As t→`, thev
integral in Eq.~159! is dominated by those terms for whic
Ek50. This occurs along the Bose surface, i.e., forkx50 or
ky50. In the finite-size system there are 2L21'2L such
points ~for L@1), hence

2 ln Gf~0,t!;
2Ū
L E

2`

` dv

2p

1

v2
~12e2 ivt!, ~160!

where

Ū5
1

2 F E
2p

p dkx

2p
U~kx,0!1E

2p

p dky

2p
U~0,ky!G , ~161!

is the Bose surface average ofU(k). Thus, we finally have

2 ln Gf~0,t!;
Ūutu

L
, ~162!
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giving the 1/L behavior for the single-particle gap

D15
Ū
L

. ~163!

In a 2D superfluid, the single-particle gap is much smal
vanishing as 1/L2 in the large-L limit.

The agreement of the finite compressibility and 1/L scal-
ing of D1 between the soluble model and our fixed-po
theory of the EBL strongly argues that the ground state
H1/2 is the Bose liquid for 0,v!1 and umu,1/A3. If this
postulate is correct, certain combinations of the Bose liq
function U(k) can be obtained explicitly for the solubl
model. In particular, we find

U~k50!52v~123m2!, ~164!

Ū52v~12m2!. ~165!

VII. DISCUSSION

A. Fractionalization, the Z2 gauge theory, and the high-Tc

cuprates

In this paper we have described a remarkable phas
quantum matter, the EBL, which we argue occurs in a cl
of square-lattice boson-ring models withX-Y symmetry.
Having done so, it is reasonable to reflect upon the contex
which such models are physically appropriate and the con
quences perhaps observable. As discussed briefly in In
duction, the primary motivation for these models comes fr
the high-temperature cuprate superconductors. Both the
markably high critical temperatures and the strange beh
iors in the ‘‘normal’’ state of these materials motivated
number of theorists early on to the radical suggestion t
spin-charge separation might underly these peculiarities.37–40

In this picture, the electron charge, liberated both from
spin and its Fermi statistics as a ‘‘chargon’’~or ‘‘antiholon’’ !,
is relatively free to Bose condense to form a superconduc
state. At higher temperatures, or when the material is un
doped, the chargons and spin-carrying fermionic ‘‘spinon
form an unconventional fluid, which would no doubt beha
very differently from a normal metal.

Subsequent theoretical and consequent experimental w
has both advanced the status of these ideas and posed
vere challenge to their applicability to the cuprates. A rec
formulation6,10 of interacting electrons in terms of spinon
and chargons minimally coupled to aZ2 gauge field has
helped authors to support the concept of electron fractio
ization with a very concrete formal framework. The essen
elements of theZ2 gauge theory are reviewed in Append
D. As with earlier U~1! and SU~2! gauge theory
formulations,41–43 the ‘‘spinons’’ are taken as fermions ca
rying the spin of the electron but are electrically neutral. T
bosonic ‘‘chargons’’ carry the electrons’ charge. TheZ2
gauge theory provides a convenient phenomenology for
scribing a fractionalized phase in which the spinons a
chargons are deconfined, and live as well-defined part
excitations. Because of its concrete formulation, and the
tue that the Z2 gauge theory has a well-understoo
6-20
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confinement-deconfinement phase transition, it is possibl
calculate from it in a simple way the qualitative~universal!
properties of the fractionalized state. One of the most fun
mental of these properties is the existence of gapped to
logical excitations7–9 called ‘‘visons.’’ The visons act as
sources ofZ2 flux, and may be thought of as remnants
unpaired superconducting vortices in the fractionaliz
insulator,6 which in turn is viewed as a paired-vorte
condensate.5 Understanding these excitations led to a rat
direct proposal for a ‘‘vison trapping’’ experiment,10 de-
signed to trap and detect visons by cycling through
superconducting-normal transition. Current experiments12,13

apparently imply that the gap into such vison excitations
the insulator, if it is nonzero at all, is less than 190 K. Sin
the presence of a vison gap is a necessary condition for
existence of a true spin-charge separated ground state
unnaturally low-energy scale presents a difficult obstacle
theories of fractionalization as applied to at least these
ticular cuprate materials~samples of underdoped BSSC
and YBCO!.

The spin-charge separation scenario is nonetheless
tremely appealing theoretically, and it is interesting to co
sider the possibility of retaining some degree of this phys
locally. One may imagine, for simplicity, an undoped mod
that interpolates between one extreme being a conventi
‘‘Hubbard-like’’ insulator with gapped charge degrees
freedom and Heisenberg-interacting spins, and the other
treme being a fully fractionalized insulator. TheZ2 gauge
theory is well suited for this purpose. The interpolation b
tween the above two limits is accomplished in this model
varying a coefficientK, which controls the strength of fluc
tuations in the gauge field. The deconfined phase is obta
in the large-K limit, while we consider here the first devia
tions away fromK50, which is deep within the confined
Hubbard-like phase. As we show in Appendix D, when t
gauge theory is deep within its confined phase~with K
small!, the gauge fields can be formally integrated out a
one recovers a Hamiltonian expressible in terms of elec
operators and composites built from the electron such as
spin operator, together with a Cooper pair field. In the s
sector, we find that the leading terms obtained in this lim
are an antiferromagnetic nearest-neighbor Heisenberg
change~for K50) anda plaquette ring term,

Hh
s 5Jh

s (
h

R h
s , ~166!

with Jh
s ;O(K) @Jh

s 5K(ts
41D4)/(h1U)4, in terms of the

parameters in Appendix D#. Here, R h
s is a plaquette ring

operator defined in terms of the four spins on a giv
plaquette:25,26

R h
s 5 (

i , j 51

4

Si•Sj14~S1•S2!~S3•S4!

14~S1•S4!~S2•S3!24~S1•S3!~S2•S4!. ~167!

In the charge sector, toO(K) one finds the leading term
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Hh
c 52Jh

c (
h

R h
c , ~168!

with Jh
c ;O(K) @Jh

c 5Ktc
4/(h1U)4, derived in Appendix

D#. Here, R h
c is a ring operator in the charge sector e

pressed simply in terms of Cooper pair operators,eifr[br
2 as

R h
c 5 (

i , j 51

4

cos~f i2f j !1cos~Dxyf r !. ~169!

Notice that the second term above is precisely of the fo
taken in our starting Hamiltonian. AsK is increased from
zero, such ring-exchange processes play more and more
portant roles. We thus view the ring Hamiltonian studied
this paper as a suitable model that offers an intermed
ground between the fully spin-charge separated scenario
conventional phases of matter.

Should this bosonic ring model for the charge sector h
some relevance for the cuprates, what might be the co
quences and interpretation? As we have seen in Sec. V
ring model sustains the EBL phase for sufficiently repuls
interactions~largeU) andincommensurate densities. Indeed,
as we saw in Sec. V, a simplistic estimate indicates that th
is no stable regime for the EBL at half filling. Hence, if w
assume the strong interaction condition is obtained,
would expect an evolution from a conventional insula
with a charge gap at half filling to the EBL upon dopin
sufficiently away. If one further presumes~as seems natural!
that the generalized ‘‘stiffness’’K increases with doping
then one would expect further doping to lead to a superc
ducting~boson-hopping! instability. This scenario thus natu
rally associates the EBL with the pseudogap regime of
high-Tc cuprates.

B. Extensions

To determine if there is any truth to the above scena
requires considerable extensions of the present work. M
significantly, spin and quasiparticle degrees of freedom
important components of the high-Tc materials, and should
be incorporated into the description. It will be interesting
consider interactions of the fermionic quasiparticles with
strongly fluctuating collective modes of the EBL. It seems
us quite likely that the EBL can remain stable in the prese
of these interactions, while perhaps at the same time prod
ing rather strong modifications of the fermionic degrees
freedom. In any case, it should be possible to consider p
toemission spectra and local electron tunneling density
states in a model with the quasiparticles coupled to the E
modes.

We have also left a number of issues within the pur
bosonic description unanswered. To understand trans
measurements generally will require an understanding of
effects of disorder. Several experiments attempting to acc
the ‘‘normal’’ state of the cuprates employ large local
uniform magnetic fields to suppress superconductivity44

Such magnetic fields indeed tend to suppress the super
6-21
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ducting instabilities of the EBL, and one should explore t
ramifications of the EBL description for, e.g., transport me
surements in high fields.

There are a number of other possible applications of
present formalism to frustrated magnets with apprecia
ring exchange.15 Magnetic ring exchange processes are
lieved important, for instance, in the Wigner crystal phase
the two-dimensional electron gas45,46at r s*40. The effect of
such processes are generally difficult to analyze, but a
haps illuminating approach may be to consider the ea
plane limit of such spin-ring models. A straightforward ca
culation shows that such a limit recoversX-Y ring models of
the sort studied here~representing the spins by hard-co
bosons!. The plaquette duality constructed here for t
square lattice can be straightforwardly generalized to o
lattices, such as the triangular and Kagome cases. For
bosonic Kagome case, one can directly in this way const
a dual formulation from which it is straightforward to con
struct the visons and spinons of Ref. 16. Whether the spin
are confined or deconfined in the pureX-Y ring model on
this lattice can be easily established numerically using
dualu variables, and this investigation is underway.47 On the
triangular lattice with four-site~parallelogram! ring ex-
change, the plaquette duality shows that there is no st
metallic state in this case, but a numerical approach will
necessary to determine the ultimate nature of the gro
state.

On the purely theoretical side, we have introduced
mathematics necessary for a (211)-dimensional ‘‘bosoniza-
tion’’ scheme, applied here to ‘‘bosonize bosons’’ in terms
collective w,q modes. We expect it should be possible
bosonizefermionic ring models in a similar way. Conside
spinlessfermions$ f i , f j

†%5d i j ~not at this point to be asso
ciated with cuprate quasiparticles! living on the sites of the
original square lattice. One may formally define Jorda
Wigner hard-core bosons by introducing a ‘‘string’’Ŝ wind-
ing around the lattice,

f r5br Ŝr , ~170!

where

Ŝx11/2,y11/25 )
x8,x

~21!nx811/2,y11/2

3 )
y8.y

)
x8

~21!nx811/2,y811/2. ~171!

With this definition, the boson operators obey proper cano
cal commutation relations at different sites, and have a h
core interaction on the same site. For an ordinary dynam
this extremely nonlocal string presents unsolvable difficult
for analytic treatment. However, using the exact plaque
duality appropriate for ring dynamics, one finds that one c
write

Ŝx11/2,y11/25ei (ux,y112ux,y). ~172!

Here we have ignored any possible boundary terms. Up
this proviso, the string becomes local in theu variables.
05452
e
-

e
le
-
f

r-
y-

er
he
ct

ns

e

le
e
d

e

f

-

i-
d-
s,
s
e
n

to

Thus, in a rotor representation withb5eif ~this requires a
large Un(n21) term to maintain the hard-core constrain!,
one has

f x11/2,y11/25eifx11/2,y11/2ei (ux,y112ux,y), ~173!

which is directly analogous to the bosonization formula
spinless fermions in one dimension. This approach may l
to an understanding of non-Fermi liquid states in fermio
ring models.

Clearly, there are a range of applications to be explo
based on the present work. We hope that some of these
ultimately enhance our understanding of experimentally
cessible strongly correlated materials.
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APPENDIX A: TROTTER DECOMPOSITION

The usual Trotter decomposition ofZh gives

Z5 (
$urt%

)
t50

t5b K u rt1eUexpS eK(
r

cos~pNr ! D
3expS 2

eU

2p2 (
r

@Dxyu r2pn̄#2D Uu rtL , ~A1!

where we have usede!1 to separate the imaginary-tim
evolution operator into two factors. The second can be
rectly evaluated to give

Z5 (
$urt%

)
t50

t5b

expS 2
eU

2p2 (
r

@Dxyu rt2pn̄#2D
3)

r
^u rt1eueeK cos(pNr)uu rt&. ~A2!

The latter matrix element can be written as

^u8ueeK cos(pNr)uu&5^u8u11eKcos~pNr !uu&

5du8,u1
eK

2
~du8,u1p1du8,u2p!

5expF 1

p2
lnS eK

2 D ~u82u!2G , ~A3!

correct toO(eK). This leads directly to Eq.~22!.

APPENDIX B: ASYMPTOTICS

In this appendix we calculate the asymptotics of the c
relator cxy(t,t1 ,t2), introduced in Sec. IV. Using the gen
eral rules of Gaussian theories, one has
6-22
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cx,y~t,t1 ,t2!

52^~qxy~t!1q00~0!2qx0~t1!2q0y~t2!!2&0

52p2ReE
k
K~k!

21~e2Ekutu1e2Ekut12t2u!e2 i (kxx1kyy)2~e2Ekut1u1e2Ekut2t2u!e2 ikxx2~e2Ekut2u1e2Ekut2t1u!e2 ikyy

Ek
.

~B1!

The above integral was considered earlier for the special caset5t15t250, for which it was shown to grow logarithmi
cally with x at fixedy ~and vice versa!. This growthwith x andy persists whenV0utu,V0ut1u,V0ut2u!uxu ~or uyu). To see this,
we differentiate

]xcxy52p2ReE
k

ikxe
2 ikxxK~k!

Ek
@e2Ekut1u1e2Ekut2t2u2e2 ikyy~e2Ekutu1e2Ekut12t2u!#

;2E
0

p

dky

K~0,ky!

v~ky! F x

x21v2~ky!t1
2

1
x

x21v2~ky!~t2t2!2
2coskyyS x

x21v2~ky!t2
1

x

x21v2~ky!~t12t2!2D G ,

~B2!
or

-
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ur
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w

rm

ty
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re-

-
Eq.

BL

the
ex-
where v(ky)5V(0,ky)u2sin(ky/2)u, and in the second line
we assumed~as valid for largeuxu) the kx integral is domi-
nated by smallkx and integrated it in that regime. Hence f
uxu@V0utu1 ,V0utu, one has

cxy;4hv~y!lnuxu1 f ~t,t1 ,t2 ,y!, ~B3!

wheref is an unknown~but x-independent! function ofy and
the imaginary times. We expect thatcxy should cross over to
a ln2uV0tiu behavior if any of theV0ut i u becomes large com
pared to the spatial distances involved. However, it is unc
without further calculation whether this crossover occ
when the imaginary time argument becomes large comp
to thesmaller~e.g.,y above! or the larger ~e.g.,x above! of
the two spatial coordinates. To ascertain this information,
differentiate with respect to the largest time~which we
choose positive without loss of generality!, e.g., for t
.ut1u,ut2u,

]tcxy52p2E
k
K~k!@e2Ek(t2t1)2 ikyy1e2Ek(t2t2)2 ikxx

2e2Ekt2 i (kxx1kyy)#

'2p2E
k
K~k!e2Ek(t2t1)e2 ikyy, ~B4!

where in the last line we have kept the dominant te
for uxu@uyu,V0t. If we assume uyu;O(1), then for
V0(t2t1)@1, the integral is dominated byi'0 ~due
to the logarithmic singularity in the collective densi
of states!, and one may approximatee2 ikyy'1,
leading to ]tcxy;2AK0/U0lnuV0(t2t1)u/(t2t1), whence f
;AK0 /U 0ln2uV0(t2t1)u. More generally, one can show th
this behavior obtains providedV0(t2t1)@uyu. By identical
arguments,f also grows likeAK0/U 0ln2uV0t2u for V0ut2u
@uyu. Thus, the integral definingCxy

(4)(t) is dominated by
05452
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s
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e

t1't and t2'0. Hence, we can focus on this case, a
consider the behavior in general as a function ofuxu@1 and
t@1, but with no particular relation between them. O
finds

cxy~t,t,0!'4p2ReE
k

K~k!

Ek
~12e2 ikyy!~12e2Ekutu2 ikxx!.

~B5!

It is straightforward to see that this integral recovers the
sult, Eq. ~B3!, for uxu@utu, and conversely,cxy(t,t,0)
;4hv(y)ln t for utu@uxu. Putting all the above analyses to
gether, one arrives at the general approximate result of
~92! in Sec. IV.

APPENDIX C: RELEVANCE OF HOPPING

In this appendix we compute the corrections to the E
imaginary-time equal-space correlator,

G~t!5^eiwr(t)e2 iwr(0)&, ~C1!

to leading~quadratic! order in the boson-hopping term

St52tyE
t
(

r
cos~w r1 ŷ2w r !. ~C2!

Perturbing around the Gaussian EBL theory givesG(t)
5G0(t)1G2(t)1O(tx

4) with

G2~t!5
1

2
^eifr(t)2 ifr(0)S t

2&0,c , ~C3!

where the connected correlator is taken with respect to
Gaussian action. Using Wick’s theorem this can be re
pressed asG2(t)5tx

2G0(t)I (t) with
6-23
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I ~t!5 (
x1 ,x2 ,y1

E
t1 ,t2

D0~x12,y12!@e2A21#, ~C4!

where the functionA5A(x1 ,x2 ,y1 ,t1 ,t2 ,t) is given by

A5E
k,v

eik•r12 ivt1B~k,v,t!~12e2 ikxx121 ivt12!1H.c.,

~C5!

B~k,v,t!5U~k!
~eivt21!~12eiky!

v21Ek
2 . ~C6!

Here, x125x12x2 , t125t12t2 and D0(x,t);(x21t2)2D

is the two-point correlator for the tunneling operator eva
ated in the EBL. To isolate thet dependence ofI (t), we
rescalex1 ,x2 ,t1 ,t2 by t, and kx and v by 1/t ~leaving y
andky alone!. For larget this gives,I (t);t2(22D)I (1), or
equivalently,

G2~t!

G0~t!
;ty

2I ~1!t2(22D). ~C7!

We thus conclude that providedI (1) is finite, the large-t
behavior of the EBL correlator,G0(t), is unmodified if the
scaling dimensionD.2. To show thatI (1) is finite, it suf-
fices to expand the exponential to second order inA, which
gives

I ~1!58E
k,v

U~k!D~kx ,v!
@12cos~v!#@12cos~ky!#

~v21Ek
2!2 ,

~C8!

with

D~kx ,v!5E
x,t

D0~x,t!~12ei (kxx2vt)!. ~C9!

ProvidedD.1 the integrals overx and t converge, giving
D(kx ,v);(kx

21v2)D21. Inserting this into Eq.~C8!, one
readily sees that thek and v integrals are likewise conver
gent, confirming thatI (1) is finite wheneverD.1.

APPENDIX D: Z2 GAUGE THEORY AND RING
EXCHANGE

A recent formulation6 of interacting electrons in two di
mensions has been developed which reexpresses the ele
operator in terms of ‘‘spinons’’ and ‘‘chargons’’ which ar
minimally coupled to aZ2 gauge field. As with earlier U~1!
and SU~2! gauge theory formulations, the spinons are tak
as fermions carrying the spin of the electron but are elec
cally neutral. The bosonic chargons carry the electro
charge. TheZ2 gauge theory provides a convenient pheno
enology for describing a fractionalized phase in which
spinons and chargons are deconfined, and live as w
defined particle excitations. The deconfined phase is m
readily accessed by increasing the strength of a term in
gauge theory Hamiltonian~with coefficientK, below! which
suppresses the fluctuations in the gauge field. When
gauge theory is deep within its confined phase~with K
05452
-

tron

n
i-
s’
-
e
ll-
st
e

he

50), on the other hand, the gauge fields can be form
integrated out and one recovers a Hamiltonian expressib
terms of electron operators and composites built from
electron such as the spin operator, together with a Coo
pair field. Here, we show that upon integrating out the gau
field with small but nonzeroK, one generates ring-exchang
terms in the effective Hamiltonian. In the spin sector of t
theory, the leading-order ring term involves four-spin ope
tors around an elementary~square! plaquette, and is the fa
miliar quartic form shown explicitly below. But there ar
also ring terms generated in the charge sector, and the d
nant one takes precisely the form in Eq.~1!, where two Coo-
per pairs are destroyed on opposite corners of an elemen
square plaquette, hopping to the other two corners.

Consider then a Hamiltonian version of theZ2 gauge
theory:

H5Hc1Hs1Hs , ~D1!

Hc52tc (
^rr 8&

s rr 8
z

~br
†br81H.c.!1U(

r
~br

†br22n̄!2,

~D2!

Hs52K(
h

)
h

s rr 8
z

2h(̂
r j &

s rr 8
x , ~D3!

Hs52 (
^rr 8&

s rr 8
z

@ ts~ f r
†f r81H.c.!1D rr 8~ f r↑ f r8↓2 f r8↓ f r↑

1H.c.!#, ~D4!

wherer and r 8 denote sights of a 2d square lattice. Herebr
†

creates a chargon at siter while f ra
† creates a spinon with

spin a5↑,↓ at siter . The operatorbr
†br measures the num

ber of chargee bosons at siter , and the Hubbard-likeU term
sets the mean Cooper pair density,nr[br

†br/2, to ben̄. With
this convention, the half-filled electron model with chargee
per site corresponds ton̄51/2. The constantD rr 8 contains
the information about the pairing symmetry of the spino
Thes rr 8

z ,s rr 8
x are Pauli spin matrices that are defined on

links of the lattice. The full Hamiltonian is invariant unde
theZ2 gauge transformationbr→2br , f r→2 f r at any siter
of the lattice accompanied by lettings rr 8

z →2s rr 8
z on all the

links connected to that site. This Hamiltonian must
supplemented with the constraint equation

Gr5 )
r8Pr

s rr 8
x eip( f r

†f r1br
†br)51. ~D5!

Here the product overs rr 8
x is over all links that emanate

from site r . The operatorGr , which commutes with the full
Hamiltonian, is the generator of the localZ2 gauge symme-
try. Thus the constraintGr51 simply expresses the conditio
that the physical states in the Hilbert space are those tha
gauge invariant.

Generally, the gauge field dynamics is very complicat
but it simplifies considerably when eitherh or K greatly ex-
ceeds the strength of the couplings to the matter fields,tc ,ts ,
6-24
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andD rr 8 . For example, whenK→`, fluctuations ins rr 8
z are

suppressed completely, and one can choose a gauge wit
s rr 8

z
51 on every link. This corresponds to a deconfin

phase in which the spinons and chargons exist as bona
particle excitations. On the other hand, whenh→` one has
s rr 8

x '1, and it is convenient to integrate out the gauge fi
perturbatively. Focusing for simplicity on the Mott insulat
at half filling, and in the latter large-h limit, with n̄51/2 with
U→`, at lowest order ints andD one recovers the Heisen
berg spin model,

H25J2 (
^rr 8&

Sr•Sr8 , ~D6!

with J25(ts
21D2)/h. Here,Sr[1/2f ra

† sab f rb , with s a vec-
tor of Pauli spin matrices. Note that in theh,U→` limit the
gauge constraint becomes a single-occupancy constr

eip f r
†f r51. Upon inclusion of a small nonzero couplingK,

one generates the spin-ring exchange term in Eq.~166!, upon
integrating out the gauge field, withJh

s 5K(ts
41D4)/(h

1U)4. Notice that the strength of the four-spin ring e
change interactionJh

s is proportional to the gauge theor
couplingK. This suggests that spin models with apprecia
ring exchange interactions are good candidate models to
hibit fractionalized phases.

It is very instructive to examine the charge sector of
theory one generates upon integrating out the gauge fiel
similarly expanding perturbatively in smalltc . Generally,
one will generate various Cooper pair hopping processes
leading order inK the Cooper pair plaquette ring term of E
~168! is generated, withJh

c 5Ktc
4/(h1U)4.

APPENDIX E: RK MANIPULATIONS

We begin by inserting the integral representations ofPx/y
and the explicit representation ofPflip , inherited from Eqs.
~148! and Eq.~143!, respectively. The sums over$sxy% can
be explicitly performed, and we find

^Pflip~x,y;$s%!&$sxy%
5^Fxy@$u,f%#&$ux ,fy% , ~E1!

where

^O&$ux ,fy%5
1

Zuf
)
a51

L E
0

2pS dua

2p

dfa

2p DOe2s[ $ux ,fy%] .

~E2!

In these expressions, the transformed ‘‘flippability’’ functio
is

Fxy@$u,f%#5
1

8 )
u,v50,1

sec~ux1u2fy1v!, ~E3!

and the classical ‘‘action’’ is given by
05452
the

de

d

nt:

e
x-

e
by

To

s@$ux ,fy%#52 (
x,y51

L

ln cos~ux2fy!1 imL(
a51

L

~ua2fa!

1
M2

2 S (
a

ua2faD 2

. ~E4!

In Eq. ~E4!, we have added the finalM2 term to fix a redun-
dancy in the description. In its absence, the actions pos-
sesses a continuous translational symmetry inherited f
the definition of the projection operators,ux→ux1l, fy
→fy1l, for all x,y. This represents a redundancy in th
constraints due to the fact that the total particle number
the system is given both by the sum of the row parti
numbers and by the sum of the column particle numbers.
addition of theM2 term has no effect on physical quantitie
and has the benefit of lifting the unnecessary zero mode os.
We will in fact takeM2→` ultimately for simplicity at an
appropriate stage of the calculation.

Note theL prefactor in front of the second term in Eq
~E4!, which suggests a saddle-point approximation for la
L ~in the first term, note also that there areL2 components in
the sum but only 2L variables!. The saddle-point conditions
]s/]ux5]s/]fy50, are

(
y51

L

tan~ux2fy!52 imL2M2(
a

~ua1fa!, ~E5!

(
x51

L

tan~ux2fy!52 imL2M2(
a

~ua1fa!. ~E6!

These are solved by the uniform~imaginary! solution ux
52fy52 ih/2, with

tanhh5m. ~E7!

Next, expanding around this saddle, we letux52 ih/2
1 1

2 (c1x1c2x), fy5 ih/21 1
2 (c1x2c2x). Expanding the

action to cubic order inc6 , as justified by the following
analysis, one findss5s01s21s3, with

s05
1

2
L2S m lnF11m

12mG1 ln~12m2! D , ~E8!

s25
1

4
~12m2!FL(

a
~c1a

2 1c2a
2 !

1(
a,b

$~2M221!c1ac1b1c2ac2b%G , ~E9!

s352
i

12
m~12m2!FL(

a
~c2a

3 13c1a
2 c2a!

13(
a,b

~c2a
2 c2b1c1a

2 c2b22c1ac1bc2b!G .
~E10!

The constant terms0 drops out of the observables in whic
we are interested. The quadratic action,s2, governs small
6-25
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fluctuations ofc6 , treating cubic and higher-order terms
perturbations. The resulting Gaussian averages obey W
theorem, governed by the propagators that are obtaine
the usual way by inverting the quadratic form ins2,

Gab
1 5^c1ac1b&s2

5
2

12m2 S dab

L
2

1

L2D , ~E11!

Gab
2 5^c2ac2b&s2

5
2

12m2 S dab

L
2

1

2L2D , ~E12!

where in Eq.~E11! we have taken for simplicity theM2

→` limit. Equations~E11!–~E12! imply that the fluctuations
~variance! of individual ca6 fields are small@O(1/L)# and,
moreover, the correlations between fields at differentaÞb
are even smaller@O(1/L2)#.

For this reason, the energy densitye(m) is determined by
the saddle-point value alone, i.e.,

^Pflip~x,y;$s%!&$sxy%
5Fxy@u52f52 ih/2#, ~E13!

leading directly to Eq.~152!.
The ‘‘single-particle’’ gapD1 is slightly more involved,

since we need the energy up to terms of order 1/L. To cal-
culate it, we requireE1(m;l), which is obtained from the
expectation value of the flippability in a state withl addi-
tional bosons on row and column 1. This is obtained, acco
ing to Eq.~154!, by slightly modifying the projection opera
tors on this row and column. This amounts to adding
R

k,

ar

.

,

.E

05452
’s
in

-

n

additional source term to the action,s@$u,f%#→s@$u,f%#
12il(u12f1), but otherwise calculating the same expec
tion value as in Eq.~E1!. Transforming to thec6 variables
as before, this additional linear term can be removed fr
the action by shiftingca2→ca222ilGa1

2 , which ‘‘com-
pletes the square’’ in the action usings2 from Eq. ~E9!. De-
pendence uponl thereby moves intoF ands3:

E1~m;l!52v(
xy

K FxyFua52
i

2
h

1
1

2
~c1a1c2a22ilGa1

2 !,fa

5
i

2
h1

1

2
~c1a2c2a12ilGa1

2 !G L 8
, ~E14!

where the prime indicates the expectation value is as defi
in Eq. ~E2!, except that s3@c1a ,c2a# is replaced by
s38@c1a ,c2a#5s3@c1a ,c2a22ilGa1

2 #. This can be evalu-
ated by expandingFxy above inc6 and l ~the latter since
Ga1

2 !1), and further evaluating the expectation value p
turbatively ins3. A careful examination of these expansio
shows that there are only two contributions toD1. The first
comes atO(c6

0 ) from the pure saddle-point contribution t
Fxy , expanded to second order inl. The second comes from
expandingFxy to O(c6

2 ) at l50 and evaluating the expec
tation value in Eq.~E14! to first order ins3 @itself expanded
to O(l2c6)#. Adding the two gives the result in Eq.~155!.
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