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Andreev current in finite-size carbon nanotubes
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We investigate the effect of interactions on Andreev current at a normal-superconductor junction when the
normal phase is a Luttinger liquid with repulsive interactions. In particular, we study the system of a finite-size
carbon nanotube placed between one metallic and one superconducting lead. We show that interactions and
finite-size effects give rise to significant deviations from the standard picture of Andreev current at a normal-
superconductor junction in the nearly perfect Andreev limit.
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In recent years, the behavior of superconductors~SC! in
contact with Luttinger liquids~LLs! has commanded atten
tion in both theory1,2 and experiment.3,4 Josephson junction
made by sandwiching a Luttinger liquid between two sup
conductors have led to intriguing results such as critical c
rents orders of magnitude larger than expected.3 Experimen-
tal study of Andreev physics at a niobium superconducto
carbon nanotube junction4 has yielded significant deviatio
at low temperatures from the standard picture of Andre
current in a noninteracting one-dimensional electron g
superconductor junction.5 As it has been predicted6 and
shown7 that single-walled metallic carbon nanotubes~NT!
exhibit Luttinger liquid behavior, systematic analyses of a
setup involving their electronic properties would require ta
ing into account the effect of interactions.

Here we study the Andreev physics8 in a SC–NT–
metallic lead junction, focusing on the effects of the stro
repulsive interactions and of the finite size of the nanotu
We focus on energy scales well below the energy gapD of
the superconductor. Thus, throughout the energy rang
interest~i.e., for all the values of temperature or of the a
plied voltages we consider!, the only excitations allowed to
exit or enter the superconductor are Cooper pairs and
single electrons. In particular, we focus on the limit of almo
perfect Andreev reflection at the SC-NT interface~i.e., very
low normal backscattering!. We also assume that th
nanotube-metal contact is ideal and that the nanotube co
ues adiabatically into the metallic lead. Under these assu
tions we study how a small amount of backscattering at
SC-NT interface would influence the electrical properties
the junction, in particular, the behavior of the conductanc

The treatment we use to obtain the value of the curren
a function of the applied voltage is a nonequilibrium Keldy
technique, perturbative in the bare backscattering stren
u.9,11 Characteristic of Luttinger liquids, the amount of bac
scattering can strongly increase when the energy at which
system is probed decreases. Hence, perturbation theory h
good only above an energy scaleEc'e0(u/e0)2/(12g), where
g measures the interaction strength (g51 in the absence o
interactions!. For metallic nanotubese0'1 eV is the sub-
band spacing,6 andg'0.25,6,7 corresponding to strong repu
sive interactions. In the setup considered here, the effec
the finite lengthL of the nanotube becomes important belo
the finite-size energy scale\v/L. Here,v5vF /g is the ve-
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locity of the charge-carrying quasiparticles in the nanotu
where vF'106 m/s is the Fermi velocity. Effects of finite
size can be captured in the perturbative approach, as d
here, provided\v/L@Ec .

To summarize our results, a numerical analysis reve
that at zero temperature, the conductance shows a ma
drop with decreasing voltage as a consequence of LL ph
ics, consistent with renormalization-group arguments sim
to the ones derived in Ref. 2. At voltages much smaller th
the finite-size energy\v/L, the conductance levels off to
constant. In addition, it exhibits small spikes with a volta
spacing ofp\v/2L ~about 2–3 meV for a nanotube of m
cron length!, reminiscent of resonance peaks from qua
bound states for charge carriers confined within the length
the tube.

We now present the explicit calculation yielding the co
ductance as a function of applied voltage for the SC-N
metal system described above. Thes wave SC lies in the
region x,0 and we assume it to be ideally contacted to
finite-size nanotube of lengthL in the region 0,x,L which
continues adiabatically into a metallic lead forx.L. We
model the system in the semi-infinite regionx.0, as a four
channel LL with interaction parameters appropriate for
nanotube up tox5L, and appropriate for no interactions fo
x.L. The bosonized Hamiltonian for this system in the a
sence of any normal backscattering is given by

H05E
0

`

dx(
a

va~x!F 1

ga~x!
~]xua!21ga~x!~]xfa!2G .

~1!

For simplicity, we have set the constants\5e5kB51. Note
that a5r6 ,s6 correspond to the four free sectors of th
theory and are obtained by linear transformations from
spin-channel indices~1 ↑, 1 ↓, 2 ↑, 2 ↓!.6 The relation be-
tween the bosonic fieldsu ia , f ia ( i 51/2,a5↑/↓) and the
original chiral right-/left-moving electron fieldsC iR/La are
expressed through the bosonization procedure via the tr
formationC iR/La;ei (f ia6u ia). In the nanotube region 0,x
,L where interactions are present in the net charge den
r1, we takegr1(x)5g'0.25, andgr2,s651. Also, in the
noninteracting regionx.L, we takega(x)51 for all a’s.
The velocities of the free modes are given byva(x)
5vF /ga(x). The total charge density isr tot52]x ur1 /p.
©2002 The American Physical Society11-1
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In the almost perfect Andreev limit, the electrons incide
from the nanotube side on the SC-NT interface reflect b
as holes with opposite spin:C iL↑/↓(0)5C iR↓/↑

† (0) and
C iR↑/↓(0)5C iL↓/↑

† (0), wherei refers to the channel indice
1 and 2. In the bosonized language, these boundary co
tions becomefr6(0)50 andus6(0)50.

The weak normal backscattering at the SC-NT junct
can be modeled by modifying the Hamiltonian toH5H0
1H8, with

H85
u

8 (
i 51,2

(
a5↑,↓

@C iRa
† ~0!C iLa~0!1H.c.#

5u cos@ur1 ,~0!#cos@ur2~0!#, ~2!

where the bosonized form takes into account the Andr
boundary conditions at the SC-NT interface. For simplic
we choose not to include the backscattering processes w
particles can flip their band index since these terms do
give rise to any new physics.

Following Ref. 11, we integrate out thef variables in the
action, as well as the entirex-dependence away fromx50.
The resulting unperturbed imaginary time Euclidean act
becomes

S0
E5

1

b (
n

uvnu
g̃~vn!

uur1~vn!u21
1

b (
n

uvnuuur2~vn!u2,

~3!

where b is inverse temperature. Here the imaginary tim
Fourier transforms for all fields ‘‘A’’ are defined in the stan-
dard fashionA(vn)5*0

bdt8A(t8)eivnt8, vn52pn/b. The
spatial variations of the interaction parameterg(x) and of the
velocity v(x) are reflected by the fact that the effective i
teraction parameterg̃(vn) is frequency dependent and h
the form,

g̃~vn!5
g~12y!2

124gy2y2 with y5S 12g

11gDe2uvntu. ~4!

Here t52L/v is the time it takes a charge-carrying qua
particle with velocityv to bounce back and forth between th
ends of the tube. The limitsL,vn→0 andL,vn→` retrieve
the expected formg̃(vn)51 and g̃(vn)5g for a semi-
infinite Fermi liquid and a semi-infinite nanotub
respectively.10

Along the lines of Ref. 11, we proceed to construct a r
time Keldysh action. We introduceua

6 fields running over
forward and backward paths in time. We defineua5(ua

1

1ua
2)/2 and ũa5ua

12ua
2 . The resulting action isS5S0

1S11S2 whereS0 is the unperturbed action,S1 describes
the effect of the weak backscattering at the SC-NT interfa
and S2 captures the effect of applying a chemical poten
differenceV5] ta. Thus
16541
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S05E dv

2p

v

2 F 1

g~v!
1

1

g~2v!Gcoth
v

2T
uũr1~v!u2

1E dv

p

v

g~v!
ũr1~v!ur1~2v!

1E dv

2p
v coth

v

2T
uũr2~v!u2

1E dv

p
vũr2~v!ur2~2v!,

S15 iuE dt$cos@ur1
1 ~ t !#cos@ur2

1 ~ t !#

2cos@ur1
2 ~ t !#cos@ur2

2 ~ t !#%,

S25E dv
2v

p
@a~v!ũr1~2v!1h~v!ur1~2v!#. ~5!

whereg(v) is the analytically continued version ofg̃(vn) in
Eq. ~4! with uvntu replaced byivt. For all fields ‘‘A,’’ we
have used the real time Fourier transform conventionA(v)
5*dt A(t)eivt. The source fieldh allows for calculation of
the current,I (t)52u̇r1(t)/p5( i /2p)@dS/dh(t)uh50#. Av-
erage quantities may be derived by taking expectation va
with respect to the Keldysh generating functional.Z
5*D@u1#D@u2#e2S.

Using the above Keldysh action, and treating the ba
scattering to lowest nonvanishing order in perturbation,
find the expectation value of the current to be

I 58
e2

h
V2I B , ~6!

where from here on, we reinsert factors ofe, \, andkB . The
first term is associated with the constant conductanceG0
58(e2/h) in the absence of backscattering. As expected,
ideal Andreev conductance of the finite-size nanotube in
presence of a metallic lead is that of a four mode nonin
acting one-dimensional electron gas.1,10 The backscattering
currentI B takes the form

I B5
e

2p S u

\ D 2E
0

`

dt sinF2eVt

\ Ge@t~ t !2t~0!# sin@R̃~ t !#. ~7!

In the above equation,C̃(t)5Sa5r6 Ca(t) and R̃(t)
5Sa5r6@Ra(2t)2Ra(t)#/2. For each mode,Ca(t) and
Ra(t) are the correlation and response function
respectively, with Ca(t)5^ua(t)ua(0)&0 and Ra(t)
52 i ^ua(t) ũa(0)&0 . Their Fourier transforms are related b
the fluctuation-dissipation theorem,Ca(v)52coth(\v/
2kB T)Im@Ra(v)#. Here averages are with respect to the u
perturbed action, and we haveRr1(v)52 ipg(v)/v and
Rr2(v)52 ip/v

We now make a series expansion ofg̃(vn) in Eq. ~4!,
g̃(vn)5gSnanyn. When analytically continued, this gives
1-2
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FIG. 1. The net differential conductanceG
5dI/dV of the nanotube setup in units ofe2/h as
a function of applied voltageeV in units of \/t.
The values of the parameters areg50.25, u
5300(\/t), ande05105(\/t). ~a!, ~b!, and ~c!
show the conductance for different ranges of a
plied voltage. The log-log plot ofGB in ~d! shows
a constant at low voltages and a power lawGB

;Vg21 on average for high voltages, as indicate
by the dashed line.
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g~v!5g(
n50

`

anS 12g

11gD n

einvt. ~8!

Substituting the above in Eq.~7! and taking the derivative
with respect to the applied voltage gives the following red
tion in the conductance due to backscatteringGB
5dIB /dV, in the limit T→0,

GB52
e2

h S ut

\ D 2

(
k50

`

sinS p (
n50

k

bnD E
k

~k11!

dx x

3
cos@2eVt/\#

@11~e0xt/\!2#b0 )
n51

` US x

nD 2

21U2bn

, ~9!

where the coefficientsbn5g(an/2)@(12g)/(11g)#n, for
n.0, andb05(11g)/2. We have used the high-energy cu
off e0 to evaluate the Fourier transformsCa(t) and Ra(t).
Here the terms involvingnt correspond to physical pro
cesses ofn bounces of the quasiparticles at the boundarie
the nanotube. Note that besides the weak backscatterin
the SC-NT interface, the quasiparticles can also backsc
at the nanotube–metallic lead junction even in the absenc
a barrier, solely as a result of the mismatch of the values
the net charge and velocity of the free modes in the nano
and in the metal.

The most revealing analysis of Eq.~9! comes from nu-
merical evaluation. We restrict the infinite sums of Eq.~9! to
a finite number of terms, and introduce an explicit hig
energy cutoffe0 , in order to regulate singularities. We e
sure that errors coming from both truncations are negligib
In Fig. 1, we plot the net differential conductancedI/dV
5G02GB , as the one of experimental relevance. The c
ductance drops with decreasing voltage and levels off at v
ages much smaller than\/t. To see why this might be ex
pected, notice that at large voltageseV@\/t, the time scale
at which the system is probed is much shorter thant, and the
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conductance roughly behaves as if the nanotube were s
infinite. Characteristics of Luttinger liquid physics, it thu
drops asGB}u2(2geV/e0)g21 on average, as shown in Fig
1~d!. This limiting behavior can be seen directly in Eq.~9! by
taking t→`. At low voltageseV!\/t, the associated time
scale is long enough to capture the effect of the metallic l
and of multiple backscattering events at its interface. W
decreasing voltage, the conductance ultimately levels off
constant, as per Ohm’s law for the metallic lead. This lim
can be obtained in Eq.~9! by settingt50.

A striking feature of the plots is the presence of spikes
probe valueseV5n\p/t, with ‘‘ n’’ being an integer. As
their magnitude is minuscule compared to the net variation
conductance, it would be difficult to measure them in expe
ment. However, these resonances do exist, and are signa
of the quasibound states that one would expect within
nanotube region, given that here the interaction param
and velocity are different from those of the metallic lead.

As a variation of the above setup, let us now replace
nanotube by a finite-size Luttinger liquid with only tw
transport channels~spin↑/↓!. Such a situation can be realize
by using, for instance, an etched quantum wire. The co
sponding free modes carry net charger and spins, and are
linear combinations of the two spin species. Andreev bou
ary conditions at the superconducting junction requ
fr(0)50, us(0)50 in corresponding bosonized variable
Thus, the system can be effectively described by a sin
channel in theu variables. This allows for us to study th
particular situation where the velocity of the charge mode
the Luttinger liquidv5vF /g would equal the Fermi velocity
vF

l in the metallic lead, i.e.,vF
l 5vF /g. Hence, we can focus

on the physics arising purely from the mismatch of t
charge of the elementary excitations in the Luttinger liqu
and the lead. This would not have been possible for the c
of the nanotube as it is described by two modes moving
different velocities, and matching the velocity of one mo
1-3
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to the Fermi velocity of the metallic lead would cause
velocity mismatch in the other mode. We calculate the c
ductance as a function of applied voltage for this system
manner completely analogous to the one described abov
the nanotube. The major difference here is that we have o
one mode with effective interaction parameter

g̃~vn!5
g

12~12g!exp~2uvntu!
. ~10!

The resulting conductance is plotted in Fig. 2. The m
nitude of the resonances ateV5n\p/t spans a larger frac
tion of the net variation in conductance compared to the c
of the nanotube. It is noteworthy that these resonances e

FIG. 2. The net conductanceG of the two-mode Luttinger liquid
setup in units ofe2/h as a function of applied voltageeV in units of
\/t. The values of the parameters areg50.25, u51.4(\/t) and
e05104(\/t).
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in spite of the fact that there is no mismatch of velocities
the free phonon modes in the Luttinger liquid and in t
metal. As expected, the phonons rebound at the Luttin
liquid–metal interface solely due to the impedance misma
in the charge sector.

To summarize, we have looked at how the standard p
ture for Andreev current through a superconductor–meta
wire junction gets altered in the Andreev limit in the pre
ence of interactions and finite-size effects. The Andreev c
ductance shows a reduction with decreasing voltage wh
finally levels off at the lowest voltages. Finite-size effec
also give rise to resonances manifest as small spikes in
conductance.

Finally, turning to experiment, while Luttinger liquid be
havior in nanotubes contacted to normal leads has been
lyzed in great detail,7 by no means has it been studied sy
tematically in the presence of superconducting leads. As s
here, one would certainly expect Luttinger liquid effects
yield significant deviations from the standard picture of A
dreev physics for noninteracting one-dimensional wir
Consistent with our assumptions such experiments can
performed, for example, in superconductor-nanotube ju
tions, in which the superconducting gap energy is of
order of several meV, while for a nanotube of a few micro
the finite-size energy is in the range of a meV. At tempe
tures of the order of 100 mK, thermal effects are expected
be negligible. These conditions are well within experimen
reach, and systematic analyses of such setups could po
tially reveal rich physics arising from bringing Luttinger liq
uids in contact with superconductors.

This work was supported by NSF grants DMR-998525
DMR-97-04005, DMR95-28578, PHY94-07194, and t
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