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Andreev current in finite-size carbon nanotubes
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We investigate the effect of interactions on Andreev current at a normal-superconductor junction when the
normal phase is a Luttinger liquid with repulsive interactions. In particular, we study the system of a finite-size
carbon nanotube placed between one metallic and one superconducting lead. We show that interactions and
finite-size effects give rise to significant deviations from the standard picture of Andreev current at a normal-
superconductor junction in the nearly perfect Andreev limit.
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In recent years, the behavior of superconduct&®) in locity of the charge-carrying quasiparticles in the nanotube,
contact with Luttinger liquidgLLs) has commanded atten- wherevg~1° m/s is the Fermi velocity. Effects of finite
tion in both theory? and experiment? Josephson junctions size can be captured in the perturbative approach, as done
made by sandwiching a Luttinger liquid between two superhere, providediv/L>E..
conductors have led to intriguing results such as critical cur- To summarize our results, a numerical analysis reveals
rents orders of magnitude larger than expectBoperimen- that at zero temperature, the conductance shows a marked
tal study of Andreev physics at a niobium superconductor-drop with decreasing voltage as a consequence of LL phys-
carbon nanotube junctiérhas yielded significant deviation ics, consistent with renormalization-group arguments similar
at low temperatures from the standard picture of Andreevo the ones derived in Ref. 2. At voltages much smaller than
current in a noninteracting one-dimensional electron gas-he finite-size energyiv/L, the conductance levels off to a
superconductor junction.As it has been predictédand constant. In addition, it exhibits small spikes with a voltage
showrl that single-walled metallic carbon nanotub@sT) spacing ofrrhiv/2L (about 2—3 meV for a nanotube of mi-
exhibit Luttinger liquid behavior, systematic analyses of anycron length, reminiscent of resonance peaks from quasi-
setup involving their electronic properties would require tak-bound states for charge carriers confined within the length of
ing into account the effect of interactions. the tube.

Here we study the Andreev physicin a SC—NT- We now present the explicit calculation yielding the con-
metallic lead junction, focusing on the effects of the strongductance as a function of applied voltage for the SC-NT-
repulsive interactions and of the finite size of the nanotubemetal system described above. Thevave SC lies in the
We focus on energy scales well below the energy §agf  regionx<<0 and we assume it to be ideally contacted to a
the superconductor. Thus, throughout the energy range dinite-size nanotube of lengthin the region G<x<L which
interest(i.e., for all the values of temperature or of the ap-continues adiabatically into a metallic lead fRrL. We
plied voltages we considgrthe only excitations allowed to model the system in the semi-infinite regirk-0, as a four
exit or enter the superconductor are Cooper pairs and nathannel LL with interaction parameters appropriate for the
single electrons. In particular, we focus on the limit of almostnanotube up tx=L, and appropriate for no interactions for
perfect Andreev reflection at the SC-NT interface., very  x>L. The bosonized Hamiltonian for this system in the ab-
low normal backscattering We also assume that the sence of any normal backscattering is given by
nanotube-metal contact is ideal and that the nanotube contin-
ues adiabatically into the metallic lead. Under these assump- o 1 5 )
tions we study how a small amount of backscattering at the Ho= fo dxé va(X) m(axea) +0a(X)(dxha)”|-

SC-NT interface would influence the electrical properties of 2 1)
the junction, in particular, the behavior of the conductance.

The treatment we use to obtain the value of the current aBor simplicity, we have set the constarits e=kg=1. Note
a function of the applied voltage is a nonequilibrium Keldyshthat a=p. ,o. correspond to the four free sectors of the
technique, perturbative in the bare backscattering strengttheory and are obtained by linear transformations from the
u.% Characteristic of Luttinger liquids, the amount of back- spin-channel indiceél 1, 1 |, 2 7, 2 |).° The relation be-
scattering can strongly increase when the energy at which thaveen the bosonic fields;,, ¢, (i=1/2a=1/]) and the
system is probed decreases. Hence, perturbation theory holdsginal chiral right-/left-moving electron field¥ s, , are
good only above an energy scéile~ e,(u/ €)1 "9, where  expressed through the bosonization procedure via the trans-
g measures the interaction strength=(1 in the absence of formation ¥ g, ,~€'(%ia=%4)_ In the nanotube region<Ox
interaction$. For metallic nanotubegy,~1 eV is the sub- <L where interactions are present in the net charge density
band spacin§,andg~0.25%" corresponding to strong repul- p+, we takeg, , (x) =g~0.25, andg,,_ ,.=1. Also, in the
sive interactions. In the setup considered here, the effect afoninteracting regiorx>L, we takeg,(x)=1 for all a’s.
the finite lengthL of the nanotube becomes important belowThe velocities of the free modes are given by(x)
the finite-size energy scafev/L. Here,v=vg/g is the ve-  =uvg/g,(x). The total charge density jgq=20 0, /.
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In the almost perfect Andreev limit, the electrons incident do o
from the nanotube side on the SC-NT interface reflect back  So= J 27 2
as holes with opposite spin¥; ;, (0)= ‘I’lRm(O) and

Viry (0)= \If”_m(O) wherei refers to the channel indices +J 0 v 0 (-
1 and 2. In the bosonized language, these boundary condi- 7 g(w) pt(@)6,1(— o)
tions becomep,..(0)=0 andé,..(0)=0.

1 hw ~ ’
g(w m cot ﬁ|9p+(w)|

The weak normal backscattering at the SC-NT junction n f Uo cothﬂ B (o)
can be modeled by modifying the Hamiltonian kb=H, 2w ¢ 27! 7p 1
+H’, with
do -
+f7w0p—(w)9p—(—w),
u
H'=5.2, 2 [Th(O¥ia(0)+He]
' slziuf dt{cog 67, (t)]cog 67 (1)]
=ucog6,+,(0)]cog 4,_(0)], )

—cog6,,(t)]cog 6, ()]},
where the bosonized form takes into account the Andreev
boundary conditions at the SC-NT interface. For simplicity, 2w -
we choose not to include the backscattering processes where SZ:J’ dw7[a(w)9p+(— w)+n(w),, (—w)].
particles can flip their band index since these terms do not

give rise to any new physics. _ _ whereg(w) is the analytically continued version §fw,) in
Following Ref. 11, we integrate out thgvariables in the  £q. (4) with |w,7| replaced byiw7. For all fields “A,” we

action, as well as the entiredependence away from=0.  paye used the real time Fourier transform convenfigm)

The resulting unperturbed imaginary time Euclidean action_ [dt A(t)e'“". The source field; allows for calculation of

becomes the current,l (t)=26, , (t)/ = (i/2m)[ 8 87(t)|,—ol. Av-
erage quantities may be derived by taking expectation values
with respect to the Keldysh generating functional.
E |0,,+(wn P+ E |0nl |6, (@)%, =/D[0*]D[6 Je®.
n Using the above Keldysh action, and treating the back-
(3) scattering to lowest nonvanishing order in perturbation, we
find the expectation value of the current to be
where B is inverse temperature. Here the imaginary time
Fourier transforms for all fieldsA” are defined in the stan- e?
dard fashionA(w,) = [Ed ' A(7')en™ | w,=2mn/B. The I=8V-lg, ©®)
spatial variations of the interaction parameiéx) and of the
velocity v(x) are reflected by the fact that the effective in- where from here on, we reinsert factorsepfi, andkg. The
teraction parametej(w,) is frequency dependent and has first term is associated with the constant conducta@Gge
the form, =8(e?/h) in the absence of backscattering. As expected, this
ideal Andreev conductance of the finite-size nanotube in the
presence of a metallic lead is that of a four mode noninter-
ool 4) acting one-dimensional electron ga¥.The backscattering
currentl g takes the form

-2
B

g(1-y)?
1-4gy-y*

-9

G(wn) = 1+g

i 1
with y:(

Here 7=2L/v is the time it takes a charge-carrying quasi- B:_(_>2f°c tsu_{z_\/t el =7(0)] sir[~R(t)]. )
particle with velocityv to bounce back and forth between the 2m\fh] Jo fi
ends of the tube. The limits, w,— 0 andL,w,— retrieve
the expected forn(w,)=1 andG(w,)=g for a semi- |n the above equationC(t)=3,-,. Cu(t) and R(t)
infinite Fermi liquid and a semi-infinite nanotube, =3 _ p=[Ra(—1t)=R,(t)1/2. For each modeC,(t) and
respectively?’ (t) are the correlation and response functions,
Along the lines of Ref. 11, we proceed to constructareakespecuvew with C,(1)=(0,(1)05(0))o and Ry(t)
time Keldysh action. We mtroducé— fields running over = —i(0,(t) 9a(0)>o- Their Fourier transforms are related by
forward and backward paths in time. We defilg=(6;  the fluctuation-dissipation theoremC,(w)=— cothfia/
+6)/2 and 6,= 6, — 6, . The resulting action iS=S;,  2kg T)Im[R,(w)]. Here averages are with respect to the un-
+$,+S, where S, is the unperturbed actiorg, describes perturbed action, and we haw,, (w)=—ing(w)/w and
the effect of the weak backscattering at the SC-NT interfaceR, _(w)=—i7/w
and S, captures the effect of applying a chemical potential We now make a series expansion @fw,) in Eq. (4),
differenceV=4g,a. Thus T(wn) =92 ,any". When analytically continued, this gives:
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i 1-g\" conductance roughly behaves as if the nanotube were semi-
g(m)zgz0 ap I+g e'ner, (8) infinite. Characteristics of Luttinger liquid physics, it thus
n=

drops asGgxu?(2geViey)? ! on average, as shown in Fig.
Substituting the above in Eq7) and taking the derivative 1(d). This limiting behavior can be seen directly in ) by
with respect to the applied voltage gives the following reduc-taking 7—. At low voltageseV<#/r, the associated time
tion in the conductance due to backscatterir@gg scale is long enough to capture the effect of the metallic lead

=dlg/dV, in the limit T—0, and of multiple backscattering events at its interface. With
decreasing voltage, the conductance ultimately levels off to a
e?lur\?ly « (k+1) constant, as per Ohm’s law for the metallic lead. This limit
Ge=211 7 ,(ZO sin 77,120 P fk dxx can be obtained in Eq9) by settingr=0.
A striking feature of the plots is the presence of spikes at
cog2eVrih] x\2 ~Bn probe valueseV=n#Aw/7, with “n” being an integer. As
X [1+ (ex7/h)2]P0 nﬂl (ﬁ) -1 ©  their magnitude is minuscule compared to the net variation in

conductance, it would be difficult to measure them in experi-

where the coefficients3,=g(a/2)[(1—g)/(1+g)]", for = ment. However, these resonances do exist, and are signatures
n>0, andB,=(1+g)/2. We have used the high-energy cut- of the quasibound states that one would expect within the
off €5 to evaluate the Fourier transforng,(t) and R,(t). nanotube region, given that here the interaction parameter
Here the terms involvinghr correspond to physical pro- and velocity are different from those of the metallic lead.
cesses oh bounces of the quasiparticles at the boundaries of As a variation of the above setup, let us now replace the
the nanotube. Note that besides the weak backscattering @anotube by a finite-size Luttinger liquid with only two
the SC-NT interface, the quasiparticles can also backscattéfansport channeispin1/|). Such a situation can be realized
at the nanotube—metallic lead junction even in the absence &y using, for instance, an etched quantum wire. The corre-
a barrier, solely as a result of the mismatch of the values o$ponding free modes carry net chaggand spino, and are
the net charge and velocity of the free modes in the nanotubéear combinations of the two spin species. Andreev bound-
and in the metal. ary conditions at the superconducting junction require

The most revealing analysis of E¢P) comes from nu- ¢,(0)=0, 6,(0)=0 in corresponding bosonized variables.
merical evaluation. We restrict the infinite sums of E).to  Thus, the system can be effectively described by a single
a finite number of terms, and introduce an explicit high-channel in thed variables. This allows for us to study the
energy cutoffey, in order to regulate singularities. We en- particular situation where the velocity of the charge mode in
sure that errors coming from both truncations are negligiblethe Luttinger liquidv =v /g would equal the Fermi velocity
In Fig. 1, we plot the net differential conductandé/dV v} in the metallic lead, i.eyr=v/g. Hence, we can focus
=Gy—Gg, as the one of experimental relevance. The conon the physics arising purely from the mismatch of the
ductance drops with decreasing voltage and levels off at volteharge of the elementary excitations in the Luttinger liquid
ages much smaller thaty7. To see why this might be ex- and the lead. This would not have been possible for the case
pected, notice that at large voltage¥>#/r, the time scale of the nanotube as it is described by two modes moving at
at which the system is probed is much shorter theend the  different velocities, and matching the velocity of one mode
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G= GO_ (}B in spite of the fact that there is no mismatch of velocities of
4.2 the free phonon modes in the Luttinger liquid and in the
metal. As expected, the phonons rebound at the Luttinger
liquid—metal interface solely due to the impedance mismatch
in the charge sector.

To summarize, we have looked at how the standard pic-
ture for Andreev current through a superconductor—metallic
wire junction gets altered in the Andreev limit in the pres-
ence of interactions and finite-size effects. The Andreev con-
ductance shows a reduction with decreasing voltage which
finally levels off at the lowest voltages. Finite-size effects
34 also give rise to resonances manifest as small spikes in the

: eV conductance.
3.3 . . o Finally, turning to experiment, while Luttinger liquid be-
o 1 2 3 4 5 6 7 8 9 .
havior in hanotubes contacted to normal leads has been ana-

FIG. 2. The net conductan€of the two-mode Luttinger liquid lyzed in great detaif,by no means has it been studied sys-
setup in units o&?/h as a function of applied voltageV in units of ~ tematically in the presence of superconducting leads. As seen
filr. The values of the parameters age-0.25,u=1.4(%/7) and  here, one would certainly expect Luttinger liquid effects to
€o=104%/7). yield significant deviations from the standard picture of An-

dreev physics for noninteracting one-dimensional wires.
to the Fermi velocity of the metallic lead would cause aConsistent with our assumptions such experiments can be
velocity mismatch in the other mode. We calculate the conperformed, for example, in superconductor-nanotube junc-
ductance as a function of applied voltage for this system in @ions, in which the superconducting gap energy is of the
manner completely analogous to the one described above ferder of several meV, while for a nanotube of a few microns,
the nanotube. The major difference here is that we have onlghe finite-size energy is in the range of a meV. At tempera-

one mode with effective interaction parameter tures of the order of 100 mK, thermal effects are expected to
be negligible. These conditions are well within experimental
B(w,)= 9 _ (10) reach, and systematic analyses of such setups could poten-
" 1-(1-g)exp(—|wnaT]) tially reveal rich physics arising from bringing Luttinger lig-

) ) o uids in contact with superconductors.
The resulting conductance is plotted in Fig. 2. The mag-

nitude of the resonances aV=n# /7 spans a larger frac- This work was supported by NSF grants DMR-9985255,
tion of the net variation in conductance compared to the casBMR-97-04005, DMR95-28578, PHY94-07194, and the
of the nanotube. It is noteworthy that these resonances exi§loan and Packard foundations.

IR. Fazio, F. W. J. Hekking, and A. A. Odintsov, Phys. Rev. Lett. M. Bockrathet al, Nature(London 397, 598(1999; Z. Yao, H.
74, 1843(1995; D. L. Maslov, M. Stone, P. M. Goldbart, and D. Postma, L. Balents, and C. Dekkdljd. 402 273 (1999; H.
Loss, Phys. Rev. B3, 1548(1996); Y. Takane, J. Phys. Soc. Postma, M. de Jonge, Z. Yao, and C. Dekker, cond-mat/0009055
Jpn.66, 537(1997; R. Fazio, F. W. J. Hekking, A. A. Odintsov, (unpublished

and R. Raimondi, cond-mat/98112Uuhpublished 8A. F. Andreev, Zh. Eksp. Teor. Fizi6, 1823 (1964 [JETP 19,
2|. Affleck, J.-S. Caux, and A. M. Zagoskin, Phys. Re\68 1433 1228(1964]; 49, 655(1965 [ 49, 455(1966)].

(2000. OL. V. Keldysh, Zh. Eksp. Teor. Fiz47 1515(1964) [Sov. Phys.
3A. Yu. Kasumovet al, Science284, 1508(1999. JETP20, 1018(1965]; M. P. A. Fisher and W. Zwerger, Phys.
4A. F. Morpurgo, J. Kong, C. M. Marcus, and H. Dai, Scie 288, Rev. B32, 6190(1985.

263(1999. 1°M. P. A. Fisher and L. I. Glazman, iMesoscopic Electron Trans-
5G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev2B, port, Vol. 345 of NATO Advanced Study Institute, Series E: Ap-

4515(1982. plied Sciencesdited by L. L. Sohn, L. P. Kouwenhoven, and G.
6C. L. Kane, L. Balents, and M. P. A. Fisher, Phys. Rev. L. Schon(Kluwer Academic Publishing, Dordrecht, 1997

5086(1997); R. Egger and A. Gogolinipid. 79, 5082 (1997). 1IC. L. Kane and M. P. A. Fisher, Phys. Rev. L&t, 724 (1994).

165411-4



