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The effects of dissipation and quantum fluctuations on the onset of superconductivity are dis-
cussed. A model for a granular superconductor is considered which consists of a d-dimensional ar-
ray of resistively shunted Josephson junctions with charging energy incorporating the long-ranged
Coulomb interaction. In one dimension the model exhibits a T=0 dynamical transition into a state
with vanishing resistivity at a critical value of the shunt resistance, Rs. Most surprisingly the system

is always statically disordered even in the superconducting state.

For d >2 both the dynamical

response and static ordering depend sensitively on Rs. Specifically, for Rs less than a critical value
of order the quantum of resistance, & /4e?, the dissipation suppresses quantum fluctuations enabling
the array to order at T=0 for arbitrarily weak Josephson coupling. Above this critical resistance and
for weak coupling, the order parameter suffers phase slips due to quantum tunneling driving the sys-

tem normal.

I. INTRODUCTION

In recent years there has been a resurgence of interest
in understanding the onset of superconductivity in disor-
dered systems.'”® In granular superconductors it has
been appreciated for some time that charging effects might
play an important role.® Indeed, considerable theoretical
effort’ 1! has been devoted to analyzing the effects of
quantum fluctuations on the ordering of superconducting
arrays.

In a recent experiment on thin granular Sn films, Orr,
Jaeger, Goldman, and Kuper!? observed the presence of
an apparently universal resistance threshold for the onset
of superconductivity. Only those samples with a normal-
state sheet resistance smaller than about h /4e’ became
superconducting. They suggested that this threshold was
due to the effect of dissipative processes on the quantum
fluctuations of the order parameter. Following this sug-
gestion several authors'>!* analyzed the properties of su-
perconducting arrays with dissipation introduced phenom-
enologically by shunt resistors between grains. It was
found that in the presence of quantum fluctuations both
the system’s thermodynamics and dynamics depended
sensitively on the shunt resistance Rg changing qualita-
tively at a value of order h/4e%. Reasonable agreement
with experiment was obtained thus highlighting the im-
portance of incorporating dissipation in understanding
granular superconductors.

The purpose of this paper is to study in further detail
the effects of dissipation and quantum fluctuations on the
onset of superconductivity in granular systems. Attention
will focus on both the static ordering and the dynamical
response, specifically the resistivity. The resistivity, in
contrast to the static ordering, is only well defined (i.e.,
not infinite) in the presence of dissipative processes. The
analysis is based on a model consisting of an array of
resistively shunted Josephson junctions. As usual, the
phase of the order parameter on each grain is treated as a
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quantum operator canonically conjugate to the Cooper-
pair number.!® In contrast to previous theoretical work,
though, a form of the charging energy is chosen which in-
corporates the long-ranged Coulomb interaction. Conse-
quently, the linearized version of the theory supports a
dispersionless plasma wave. This has a significant effect
on the system’s behavior, particularly in the one-
dimensional (1D) case. In Sec. II the model is introduced
and discussed in detail.

Owing to the choice of charging energy the theoretical
analysis for the one-dimensional chain is relatively simple.
As shown in Sec. III, several unexpected results emerge in
this case. At T =0 the chain exhibits a dynamical super-
conducting phase transition into a zero resistance state at
a critical value of the dissipation. Specifically, the transi-
tion occurs when the shunt resistance Rs is equal to the
quantum of resistance Rgp=h /4e?. A simple physical ar-
gument, based on the noncommutivity of the phase with
the Cooper-pair number, is presented which explains the
origin of the transition at Rp. It is found that the chain is
always statically disordered, even in the regime with van-
ishing resistivity Rs <Rgp. Thus, most surprisingly, the
model exhibits, simultaneously, static short-range order
and an infinite conductivity. This result provides a con-
crete counterexample to the conventional wisdom'® that
static long-range phase coherence is tantamount to vanish-
ing resistivity. Moreover, in the resistive state at T =0,
the value of the chain resistance is completely insensitive
to the static correlation length, which can be made arbi-
trarily large by tuning an appropriate parameter. This ap-
parent decoupling of the static and dynamical behavior
arises only because the system’s constituents are quantum
mechanical.

The array resistivity p in higher dimensions is analyzed
in Sec. IV by deriving a formally exact Kubo-formula ex-
pression. The resistivity is evaluated perturbatively in the
Josephson coupling between grains which, while inade-
quate for studying explicitly a superconducting transition,
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does provide nontrivial information. As for the d =1
chain, the shunt resistance emerges as a critical parame-
ter. Specifically, for Rs larger than a threshold value of
order A /(2e)?, the array resistivity is found to vary non-
monotonically with temperature, initially falling upon
cooling but rising again at low temperatures and ap-
proaching a finite (nonvanishing) limit as 7—0. The
low-temperature behavior is due entirely to phase slippage
of the order parameter mediated by quantum tunneling.
In contrast, for Rs below the threshold the dissipation is
sufficiently strong to suppress this quantum tunneling and
p(T) falls monotonically upon cooling. The temperature
variation of p(T) in the two regimes compares favorably
with the resistivity measurements by Orr ef al.'?

The system’s static ordering in higher dimensions is
studied in Sec. V by analyzing the quantum-mechanical
partition function. Upon combining a perturbative renor-
malization group with heuristic arguments a static phase
diagram is obtained. Not surprisingly, Rs enters once
again in an important way. For Ry less than the critical
threshold the array orders at T'=0 for arbitrarily weak
Josephson coupling, much as it would were the phases
treated classically. In contrast, when Rg is above the
threshold, the dissipation is insufficient to suppress the
important quantum fluctuations and for weak coupling
the system remains disordered down to 7 =0.

Finally, the static and dynamical behavior for d >2 is
compared. It is speculated that in a particular range of
parameters the system might exhibit concurrently static
long-ranged order yet a nonvanishing resistivity.

II. THE MODEL

The model consists of a d-dimensional hyper cubical ar-
ray of superconducting islands interconnected to nearest-
neighbor islands by Josephson junction links. Associated
with each island is a phase ¢,. Amplitude fluctuations of
the order parameter are ignored. Each junction is
modeled by the so-called resistively shunted junction mod-
el'” with associated capacitance C and shunt resistance
R, as depicted in Fig. 1. For simplicity each junction is
assumed identical. A classical Langevin equation for the
dynamics of the phases &, can be written by observing
that the total current into a given node (see Fig. 1) must
vanish:

c
—
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FIG. 1. The model consists of a cubic lattice with the sites
representing the superconducting islands and the links the inter-
connecting Josephson junctions. Each junction is modeled as an
ideal Josephson element, with associated critical current
(2e /A)E,, shunted by a capacitance C and resistance Rs.
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Here v denotes a nearest-neighbor unit vector
(X1, ...,%4). The voltage on the island at site r, V,, is
given in terms of ¢, by the Josephson relation

V,=(#/2e)d, (2.2)

The fluctuating noise term §&, +, is associated with current

fluctuations through the shunt resistor on the link adjoin-

ing site  to ¥ =v and satisfies the usual white-noise form
2k T

(&, (1E,,(0)) = 8(t) .

Rs (2.3)

The classical dynamics of the system is fully specified by
Egs. (2.1)-(2.3).

As in the single-junction case, in order to incorpo-
rate quantum fluctuations of the phases, it is desirable to
consider a system-plus-bath Lagrangian which, as far as
the motion of ¢, is concerned, is equivalent to (2.1),

18,19

L=> %V,_ Vo +E cos(dy — by 1)

_(Vr_Vr+v)2 k},vxjr,v +Losc . (24)
J

Here the voltage across each link, V, —V, ., is coupled to
an independent bath of harmonic oscillators, with posi-
tions {x/V}. The Lagrangian for the oscillator bath is
denoted L. The motion of these oscillators represent
the flow of normal current I§" thru the shunt resistors, '’

IfY = — 3 APi)Y . (2.5)
J

As usual,'® the coupling constants A; are chosen so that
the classical equation of motion which follows from (2.4),
after elimination of the oscillator degrees of freedom, is
precisely (2.1),
rvy2
2 ()k_/r‘), S(w_w;,v):RS-l .
jiomy

(2.6)

Here m; and w; refer to the oscillator masses and frequen-
cies, respectively.
The Hamiltonian corresponding to (2.4) is

H:% (Cil)rerrQ,'—EEJCOS(¢r_¢r+\')+H05c s
(2.7)
(2.8)

LV, nv r—v,2v_r—wv,v
Q,zZen,+2(7kj .Xj ——)\.J x]- ) N
J

where #in, is the angular momentum conjugate to the
phase ¢,. The capacitance matrix C,, is defined by the
condition that 13, ,.C,V,V, is equivalent to the first
term in (2.4); that is, the Fourier transform of C,_,
satisfies
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Cy=C 3 2(1—cosk,) . (2.9)

In a fully-quantum-mechanical treatment the commuta-
tion relations

[6,,n]=1i8,,

are imposed and, to be consistent, the harmonic oscilla-
tors are also treated quantum mechanically. The quan-
tized angular momentum #n, can then, up to an additive
constant be interpreted as the number of Cooper-pair
charges on each island. The total charge Q, in (2.8) is a
sum of the Cooper-pair charge and the normal charge
transferred to the island via the neighboring shunt resis-
tors.

Equations (2.6)—(2.10) fully specify the model. The be-
havior of the system will depend on the temperature T
and the parameters which enter the Hamiltonian, E;, C,
and Rg. At times it will be more convenient to express
results in terms of the charging energy

(2.10)

Ec=(2e)*/C (2.11)
and a dimensionless shunting conductance
a=Rgy/Rs, Ro=h/(2e)? (2.12)

rather than C and Rg. As usual the quantum behavior
described by this model should reduce to the classical lim-
it when #—0. Slight care is needed in the present case,
though, since # already appears in the classical equations
of motion (2.1). However, since # enters (2.1) only in the
combination #i/e, the classical limit follows by taking
#—0, keeping the ratio #i/e fixed. Notice that in this lim-
it Ec vanishes as #° and a diverges as 7~ .

The form of the charging energy in the Hamiltonian
(2.7) incorporates the long-range nature of the Coulomb
interaction. In particular,20 since Cx ~k? for k—0 from
(2.9), the inverse matrix (C '), falls off as 1/7 in d =3.
The capacitance matrix itself C,, is, however, short
ranged, corresponding to a nearest-neighbor form in the
Lagrangian (2.4). Physically, this near-neighbor form
amounts to the assumption that a charge on a given island
is completely screened out by the near-neighbor islands
alone. This is reasonable for bulk three-dimensional sam-
ples. In the past it has been standard practice to study
models with diagonal charging energies”‘13 C,=C8, .
For a bulk Coulombic system this is inappropriate since it
corresponds to a complete absence of screening by the
other islands in the array. For systems with short-range
interactions, such as helium, it may be appropriate. The
difference between these two forms of the charging energy
is most apparent in the system’s excitation spectrum
which follows by linearizing the sine term in the equation
of motion (2.1). For the present model one finds a
damped dispersionless plasma wave, which at weak damp-
ing has an associated complex frequency?

o(k)=w, +iy /2, (2.13)

with #iw,=(E;Ec)"? and y=(RsC)~'. In contrast, a
system with short-range interactions and diagonal capaci-
tance matrix supports a sound wave with linear dispersion
at long wavelengths, w(k)~k, and a k-dependent damp-
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ing, y(k)~k2.

It should be emphasized that the nonvanishing of w(k)
as k—0 in (2.13) implies that at temperatures smaller
than 7w, modes with arbitrarily long wavelength behave
quantum mechanically. The conventional arguments?!' on
the irrelevancy of quantum mechanics to a system’s
finite-temperature critical dynamics, which relies on the
fact that #iw(k) <<kpT, for k—0, does not apply in this
case. A correct analysis of the critical dynamics must
necessarily incorporate the effects of quantum fluctua-
tions, even for nonzero temperatures.

When the Hamiltonian (2.7) is treated quantum
mechanically, the Heisenberg operators é,(1) satisfy an
equation of motion, as in (2.1), except the fluctuating
current is an operator which depends on the initial state
of the oscillator bath. It is given by

Et)=i S halfiwa/2mg) Mage ““—ale'),  (2.14)
where @ and @ | are harmonic-oscillator raising and lower-
ing operators. Averaging over an initial Boltzman distri-
bution exp(—f8H o) and using (2.6) one finds

L({E(1),£0)}) =(#/R, )fi dw o coth(Bhiw /2)e ~'"

(2.15)
which reduces to the white-noise form (2.3) in the #—0
limit.

In the remaining sections we will be interested in ex-
tracting information concerning the system’s supercon-
ducting behavior. Emphasis will be placed on two physi-
cal quantities, the helicity modulus (or superfluid density)
(Ref. 22) and the dc resistivity. The helicity modulus, a
static property of the system, is defined as the coefficient
of 1/L? (L — &) in the excess free-energy density due to
antiperiodic boundary conditions imposed on a system of
length L. Antiperiodic boundary conditions correspond
to a constant phase difference of 7 maintained across the
system. Adequate information is obtained more easily by
studying the static spin-spin correlation function for an
infinite system. When this correlation function is short
ranged, decaying exponentially with distance, the helicity
modulus is zero since the sensitivity to antiperiodic
boundary conditions vanish like exp( —L /§). In the stati-
cally ordered state the helicity modulus is nonzero.

The dc resistivity, in contrast, is a dynamical property
of the system. To extract the resistivity it is necessary to
perturb the system by, for example, imposing an external-
ly applied current. To be specific, imagine feeding in an
external current, I(z), into each of the islands on one
plane of the system, say the x = — L plane. Furthermore,
consider grounding all of the islands on the x =+L
plane, assuring that their phases remain constant in time.
In the presence of the external current, the equations of
motion (2.1) for those islands on the x = — L plane pick
up a forcing term I(¢) on the right-hand side, which can
be thought of as an external torque on the phases. In the
Lagrangian (2.4) this corresponds to an additional piece of
the form Ly=-—3, V,(t)f’Idt, where the sum runs
only over sites on the x = —L plane. Since the phases at
x =L are held fixed in time this can alternatively be writ-
ten



1920

Lee=—3V,—V, o) [ Ttthdr", (2.16)

where the sum now runs over all sites between the two
planes and including the x = —L plane. When con-
venient the L — « limit can then be taken. The corre-
sponding modification to the Hamiltonian (2.7) is that for
sites on the x = —L plane the charge operator (2.8) is
modified by Q, —Q, + [‘I dt.

The resistivity follows from the system’s dynamical
response to this external perturbation, that is, to the exter-
nal torque on the phases. Of interest is the steady-state
voltage response to a time-independent torque. Since the
array is homogeneous the voltage drop across any x-
direction link is all that is required. The resistivity of the
array, p, is then defined as (V,—V, ;) /I as I—0 (the
lattice spacing has been set to 1).

It should be emphasized that the resistivity, in contrast
to helicity modulus, is only well defined in the presence of
the dissipative processes, represented by the oscillator
baths. The external current feeds energy into the system
which, in turn, must be dissipated if the system is to
maintain a steady-state response. Classically, it is cus-
tomary to model dissipative processes by a Langevin
description. The oscillator bath approach enables one to
extend the Langevin description of dissipation into the
quantum regime.

II1. ONE-DIMENSIONAL CHAIN:
STATICS AND DYNAMICS

It is instructive, initially, to specialize to a one-
dimensional chain of junctions. In this case the Lagrang-
ian (2.4) factorizes into a sum of independent Lagrang-
ians, one for each junction. The single-junction Lagrang-
ians depend on the phase difference between neighboring
sites and the associated oscillator baths. This factoriza-
tion is possible only when the charging energy incorpo-
rates the Coulomb interaction, i.e., is of a nearest-
neighbor form in the Lagrangian.

Consider first the system’s static behavior and, in par-
ticular, the static spin-spin correlation function

G(r—r')={cos(¢,—,)) .

In the 1D case this factorizes into a product of single-
junction averages,

G(r)=({cos¢)) =e "%,

(3.1)

(3.2)

where ¢=¢, 1 —¢, is the phase difference between any
two neighboring islands. In terms of ¢, the Lagrangian
(2.4) describes a quantum pendulum with inertia C, exter-
nal field E;, and damping R !. At sufficiently high tem-
peratures the field is unimportant and {cos¢)~0. Upon
cooling the pendulum tends to align with the field, in-
creasing both (cos¢) and the correlation length £ in (3.2).
If the phase is treated classically {cos¢) approaches 1,
and {— oo, as T—0; the spins order at T =0. However,
in the quantum case due to the zero-point fluctuations &
never diverges, even at T =0. Specifically, in the large-E;
limit the zero-point fluctuations of the damped pendulum
can be bounded by the fluctuations in a harmonic poten-
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tial U(d)=—E,;(1—¢*/2):

(cosp) Sexp(—1(d*)o)~1—1(d%)0, (3.3)

where ($?)¢ is the variance of a damped quantum har-
monic oscillator,

(6*)o=(Ec/f) [~ 42

oo
— o0 &TT

(@47 |o| +wd) ', (3.4

y=(RsC)~', #iw,=(E;Ec)"*. (3.5)

The correlation length &, although always finite, will de-
pend sensitively on E;, C, and Rs. For example, it can be
made arbitrarily large by increasing the coupling E;, or
decreasing the charging energy Ec, appropriately. Never-
theless, since G (r) is always short ranged in 1D, the heli-
city modulus vanishes.

Consider next the system’s dynamics and, in particular,
the chain’s dc resistivity. Even in the presence of an
external current (2.16), the total Lagrangian factorizes
into a sum of independent, single-junction Lagrangians.
The current imposes a relative torque between adjacent
phases in the chain which tends to accelerate the phase
difference ¢(t)=¢, 1 —¢,. Since the voltage response is
simply a sum of the voltage drops across each of the junc-
tions, the chain resistance is also additive and one need
only consider the resistance of a single junction. Previous
results!*#?>24 for the dynamics of a single junction can
then be applied directly. In terms of the quantum pendu-
lum analog, the external current corresponds to an ap-
plied torque. The junction resistance R (T), defined as the
ratio of the voltage V ="#i$/2e to the current I as I —0, is
essentially the pendulum’s angular mobility. Extensive
calculations have shown?3~2’ that the dimensionless
shunting conductor a, defined in (2.12), is a critical pa-
rameter.?® There are two distinct regimes.?

(i) For a > 1, as the temperature is lowered R (T) falls
monotonically and vanishes identically at T =0, regard-
less of the other junction parameters such as E; and C.
The junction is superconducting at 7 =0.

(i) For a <1, R(T) also falls initially upon cooling, but
below some crossover the temperature rises, due to quan-
tum tunneling of the phase, and as T—0 approaches Ry,
the shunt resistance. At 7 =0 all of the conduction
through the junction is via the shunting resistor.

At first glance these results are indeed somewhat
surprising: the junction’s (and chain’s) T =0 resistance is
determined completely by the value of Rg, being equal to
zero for Ry <Rgp but equal to Rs for Rs > Rp. The cou-
pling energy E; and capacitance play no role. In Ref. 14
these single-junction results were used, in conjunction
with a percolation argument, to explain the observed
universal resistance threshold'? in granular films of Sn
and Ga. The observed threshold was, within experimen-
tal uncertainties, equal to the theoretical threshold, the
quantum of resistance Rg="/4e®. The presence of this
threshold and the insensitivity to E; and C can be under-
stood theoretically in terms of the following simple argu-
ment.

Consider the charge transported through the shunting
resistor when the phase difference ¢ changes by 27. The
motion of ¢ induces a small voltage V =#g/2e, which, in
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turn, forces a small current Iy (¢), through the shunt resis-
tor. The total charge transported through the resistor is
given by

AQy= [ dtIy(n=Rs" [ dit(#id/2e) . (3.6)

Under one cycle of motion, the integral f d dt can be set
equal to 27, giving

AQy=2e(Rp/Rs)=2ea . (3.7)
Now imagine a current incident on the junction. The
charge can either pass through the Josephson element in
units of 2e by Cooper-pair tunneling, get carried through
the shunting resistor in an average unit of 2e (Rgp/Rgs),
with an accompanying 27 phase slip in ¢, or remain on
the junction plates. Since storing charge at the junction
costs (charging) energy, it is energetically favorable to
keep this at a minimum. This is achieved by transporting
the charge through the junction in the smallest possible
units. For Rg <Ry the Cooper-pair channel is, in this
respect, favorable and all of the current should pass
through the ideal Josephson element. The junction
should carry current with no resistive losses. However,
when Rs> Ry it becomes favorable to transport charge
via the shunting resistor, and the Cooper-pair channel will
no longer contribute to the conduction. The junction will
be in a resistive state, with resistance equal to Rs.

The above argument relies implicitly on the noncom-
mutitivity of the phase with the Cooper-pair number
[¢,n]=1i, using the fact that the system is 27 periodic in ¢
and that the Cooper pairs come in quantized units. Had
the phase been treated classically, the angular momentum
n (i.e., the Cooper-pair number) would not take on quan-
tized integer values.

The static and dynamical results can best be contrasted
by considering the zero-temperature phase diagram, Fig.
2. The dimensionless coupling J=FE;/Ec is plotted
versus a. The static correlation function is short ranged
over the entire (J,a) plane. The static correlation length

J=EJ/EC
@
P#0 P=0
o a

FIG. 2. The T =0 phase diagram for the one-dimensional
chain. The line a=1 is a dynamical phase boundary separating
the superconducting state, with vanishing resistivity p=0, from
the resistive state p5£0. The chain is statically disordered in both
phases. For a>1 the system exhibits, simultaneously, static
short-range order and an infinite conductivity.
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does, however, vary appreciably throughout the plane,
growing arbitrarily large as J tends to «. In marked con-
trast, the system exhibits a dynamical superconducting
phase transition at a critical value of a, shown as the solid
line in Fig. 2. For a>1 the 1D chain has strictly zero
resistivity, whereas for a <1 it is resistive. Most surpris-
ingly, for a > 1 this model exhibits, simultaneously, static
short-range order and an infinite conductivity. Both the
helicity modulus and the resistivity vanish. The super-
conductivity persists for arbitrarily small J (when a>1)
despite the fact that in this limit the static spin-spin corre-
lation function falls off extremely rapidly with distance.

This coexistence of static short-range order and infinite
conductivity is possible only because the phase are quan-
tum degrees of freedom. It can be understood physically
by considering the quantum pendulum analog for each
junction in the chain. For small external field J, due to
the quantum zero-point motion, the static probability dis-
tribution of ¢ (on the interval [0,27]) will be only slightly
distorted from uniform, {cos¢) will be close to zero, and
the static correlation function (3.1) short ranged. The
junction’s resistance, in contrast, is determined not by
(cos¢) but by the pendulum’s angular mobility, a dynam-
ical feature of the system. In fact, as has recently been
shown,'” this angular mobility is formally equivalent to
the linear mobility of a damped quantum particle moving
in an extended washboard potential with ¢ defined on the
interval [ — «, 0 ]. For a>1 and T =0 the ground-state
wave function in this extended potential is, in fact, local-
ized.?»?* The discrete translational symmetry of the
cosine potential is broken by the coupling to the dissipa-
tive degrees of freedom. Consequently, in the presence of
an external force the mobility (and the junction’s resis-
tance) vanishes identically. The chain of junctions is su-
perconducting.

The behavior of the chain for a <1 and J large is also
somewhat surprising. As J increases the static correlation
length &£ increases as the phases attempt to order. Al-
though long-range order is only obtained in the unphysi-
cal limit J = o, § can be made arbitrarily large. Surpris-
ingly, the dynamics of the system at T =0 is unaffected
by this (growing) static correlation length. Indeed, for ar-
bitrary J, each junction in the chain is completely resistive
(for a < 1) with all of the incident current passing via the
shunt resistors. This regime can also be understood in
terms of the quantum pendulum analog. For large J the
pendulum aligns with the field with small zero-point fluc-
tuations. The static correlation function falls off slowly
with distance. Since J is proportional to the energy bar-
riers through which the pendulum must tunnel in order to
rotate, one might have expected the pendulum angular
mobility also to depend sensitively on J. This expectation,
however, relies on our intuition for incoherent quantum
tunneling. Crucial in the present case is quantum coher-
ence. In the absence of a shunt resistor (¢=0) the
pendulum’s states are coherent Bloch waves with band-
width proportional to exp(—J!/2). Under an external
torque the pendulum clearly accelerates indefinitely. The
dissipation cuts off this coherent runaway, leading to a
finite response, which, at T =0, is independent of band-
width.
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The above discussion for the 1D chain has indicated
that, upon inclusion of quantum fluctuations, the static
ordering may be completely unrelated to the dynamical
response such as the dc resistivity. Indeed the 7T =0
chain for a > 1, which is statically disordered but never-
theless superconducting, provides a concrete counterex-
ample to the conventional wisdom that static long-range
order is equivalent to infinite conductivity. In the
remainder of the paper the generalization to higher-
dimensional arrays is considered.

IV. ARRAY RESISTIVITY
IN HIGHER DIMENSIONS

In this section I consider the dynamical behavior of the
array of junctions for d >2. Specifically, an exact Kubo
formula for the resistivity of the array is obtained. The
resistivity is evaluated perturbatively in the coupling
strength E; (to second order) at arbitrary temperature.

The array Lagrangian is given in (2.4). In the presence
of an imposed current there is an additional term, Eq.
(2.16). It will be convenient to study, rather than this La-
grangian, a closely related model,

£(V,~V,+v) +Ejcos(d, — b, 1)

Ler=3,

nv

#
+1 e >,

r

—¢, . ) +Lyg , 4.1)

where

%’qu,t vy, nv
J

WjXj’
2
rnv
/2mj

and the notation ¢,,=¢,—¢,,, has been introduced.
Note that in (4.2), as in the original Caldeira-Leggett ap-
proach,'® the phase itself is now coupled to the oscillator
bath, rather than the voltage, ¢,, as in (2.4). Upon per-
forming a canonical transformation on the oscillators, in-
terchanging position and momenta, the Lagrangian (4.1)
differs from the original model only by a total time
derivative. Therefore the two models generate equivalent
classical dynamics for the phase {¢,}. Since Lcp is not
invariant under ¢, —¢, + 27 a quantum treatment is only
possible if the phases are treated as extended coordinates
— o0 <¢, < 0. It can be shown,?® however, that the for-
mal expression for the voltage response (é,) which follows
from Lcp with extended quantum phases is identical to
the voltage response of the Lagrangian (2.4) and (2.16)
with phases defined on the compact interval [0,27], pro-
vided the shunt resistance Ry is not infinite. For purposes
of computing the array resistivity it is therefore perfectly
valid to use L with extended phases.

A Kubo formula for the array resistivity can be ob-
tained by treating perturbatively the external current,
which enters the Hamiltonian (associated with L¢p) in the
form

Li=—3

rnv,j

—i—e—ikj-'" +Lose 4.2)

Hey=—(#i/2e 12 —é, . z). (4.3)
The resistivity p, defined by
@’ p=lim(V,—V, /T, (4.4)

measures the voltage response across an x-direction link.
Here, a is the lattice spacing which henceforth is set equal
to 1. A straightforward application of linear-response
theory then gives®

Ry
p=— lim lim iwkZD,(k,0+i0%)

27 w—0k—0 4.5)

where D;;(k,w) is the space-time Fourier transform of the
retarded phase-phase correlation function

iDyy(r —r'yt —t)=O(t —t'){[$,(1),6,(t)]) . (4.6)
Here, ,(1) is a Heisenberg operator in the absence of the
external current, and the angular brackets refer to an
equilibrium expectation value with respect to the system-
plus-bath Hamiltonian [corresponding to L¢ in (4.1)].

The above application of linear-response theory should
be contrasted with the more conventional approach which
expresses the conductivity (p~!) as a current-current corre-
lation function. Although this approach must clearly give
the same answer as (4.5), as can in fact be verified to or-
der E} by direct calculation,®! it is computationally less
convenient since the oscillator degrees of freedom enter
explicitly via the normal current operator (2.5). In con-
trast, the above expressions for p do not depend explicitly
on correlation functions for the bath degrees of freedom.

In general, the evaluation of the correlation function
(4.6) is an exceedingly complicated task due to the non-
linearities associated with the cosine term in (4.1). Since
the remaining terms in the model are quadratic the corre-
lation function can be computed in the E; =0 limit. The
aim here is to compute the resistivity to leading nonvan-
ishing order in powers of E;. Such a calculation was re-
cently performed for a single junction using Feynman-
Vernon theory?® and gave nontrivial information. The
single-junction results have since been rederived using an
elegant and compact Keldysh formalism.?’ I now general-
ize the Keldysh approach to the array. The calculation
will be sketched briefly. The interested reader is referred
to Ref. 27 for more details.

In the Keldysh approach one introduces a time contour
C with two branches, the first running from — « to
and the second from + o« back to — «. Heisenberg
operators, such as $,(t), acquire an additional index
B=1,2 to indicate which segment of the contour they lie
on. A time-ordering operator T¢ is also introduced
which orders along the contour — oo — + 00 — — o0; for
example,

TC¢r,1(t)¢r,2(t )=¢r,2(tl)¢r,l(t)

for all ¢,#’. It is useful also to perform a rotation in path-
index space and define operators

V1 =(bp1—b,2)/V2

and
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Vra=(d1+¢,2)/V2 .

As in Ref. 27, 1 introduce a generating functional
which can be used to generate expectation values as in
(4.6), namely

Q[F]=<TcexP ifw dtzFB(r’t)‘/’nB(”p .47
—w 2

For convenience it is assumed in taking this expectation
value that in the distant past, t = — o0, all of the phases
are aligned ¢,(— o« )=0 and the oscillator baths are in a
Boltzmann distribution at temperature 7. Various corre-
lation functions can be obtained from by functional
differentiation with respect to F,

5*Q[F]

4.
SFp(r,1)8F g (r',t') “.8)

DBB'(I‘ —r',t—t'")=i

F=0

From the definition (4.7) it follows that D,; corresponds

to the retarded correlation function defined in (4.6).
Moreover, Dy(r, t —t')=D,(r, t'—t), D;; =0, and
iDzz(r—r',t—t')=<{¢,(l),¢r’(t’)}> . 4.9)

The generating functional can, in turn, be related to the
bare generating functional when E; =0, denoted Q°. One
finds formally

Q[F]=exp |iSy Q[F], (4.10)

OF

with

. 1
SJ[l/J]:-(ZEJ/ﬁ)%f dtSll'l 7—2‘((/)”1—1//,-4.1/,1)}

X sin

1
‘/—E(d}r,z—d}r+v,2)

4.11)

The bare generating function, which can be computed ex-
actly since the Hamiltonian is quadratic when E;=0,
takes the form

QO[F]=exp —é'f dtdr’S 'S Fylr,1)
nr' BB

XDgg(r —r'yt —t')

XFg(rit) |,  (4.12)

where DJp are the correlation functions, as defined in
(4.6) and (4.9), evaluated for E;=0. These correlation
functions are most readily obtained by solving the system
of differential equations (2.1) with E;=0. A spatial
Fourier transform diagonalizes the set of equations, leav-
ing a first-order, linear inhomogeneous differential equa-
tion for the time dependence of each Fourier component.
After integration the averages in (4.6) and (4.9) can be
performed readily by using the operator representation of
the noise, Eq. (2.14). One finds
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DY (k,0)=D%(k, —w)
=214 —L— | (4.13)
a olo+iy)
DY, (k,w)=2i coth(B#w /2)ImD%, (k,w) , (4.14)

and DY, =0. Here, y=(RsC)~! and A4 (k) is a k-space
representation of the lattice Laplacian,

d
A(k)=3 2(1—cosk,) .

v=1

(4.15)

Equations (4.10)-(4.15) are a formally exact representa-
tion of the generating function from which the resistivity
of the array can, in principle, be extracted. When E;=0
the resistivity of the array should be simply p=Rg, since
in that limit the system reduces to an array of shunt resis-
tors alone. This can readily be checked by inserting (4.13)
into (4.5).

A perturbation expansion in powers of E; can be
developed by expanding the exponential in (4.10). All de-
tails are shown in the Appendix. Specifically, it is shown
there that, regardless of the lattice structure, the term
linear in E; vanishes and the leading correction to the
resistivity is of order E7. Moreover, for a hypercubic lat-
tice all odd terms in E; can be shown to vanish. Physi-
cally, this results from the fact that on a cubic lattice the
Hamiltonian is invariant under E;— —E; with a corre-
sponding shift ¢, —¢, +7 for » on one sublattice. Since
the correlation function (4.6) is invariant under this trans-
formation, the resistivity should be an even function of
E;.

To order E7 the final result for the array resistivity is

Lo 12T /nR [T 10 (0de+O(ED ,  (4.16)
Rs a 0
®F(t)=Imexp é[in(t)—sz]‘ , (4.17)

where Q,(?) is defined by
0,(1)= f0°° dw o~ '(1—coswt)coth(Bhw /2)f (0/y) ,
(4.18)

Q.(z) being the B—O0 limit of 1#B3,Q,(¢) and f(x)
=(1+4x%)~"'. For a cubic lattice the parameter z is equal
to d, the lattice dimensionality, but more generally can be
interpreted as the ratio

Z=R5/ﬁs N (419)

where Ry is the effective resistance measured between two
adjacent nodes in a network of resistors Rg. For the 1D
chain the resistivity reduces to the known single-junction
results?>?7 as expected, since in that case the dynamics of
each junction is independent as noted in Sec. III.

The parameter z arises in (4.17) as a k-space sum over
all of the modes of the system, which for a cubic array
takes the form

z7'=N"93 2(1—cosky)/ A (k) , (4.20)
k
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where NV is the number of sites in the array and the lattice
Laplacian A (k) is defined in (4.15). From this one sees
that each of the modes, including those at arbitrarily long
wavelengths, contribute in the same way to the resistivity,
at least at order E}. This would not be the case for a
model with diagonal charging energy. In that case®' the
damping ¥ in (4.18) is replaced by a k-dependent form
y(k)~k2  Then at sufficiently long wavelengths
#iy(k) <<kpT, and the coth in (4.18) can be expanded for
small argument. Since a ~ 1/7 these modes contribute an
#i independent factor in (4.17); in effect, the long-
wavelength modes are behaving classically. For the mod-
el (2.4), which incorporates the Coulomb interaction, since
v is independent of wavelength [see (2.13)], all of the
modes behave quantum mechanically for kg T < #y .

The low-temperature behavior of p(T,a) can be inferred
by replacing the soft cutoff f(x)=(1+x2)"" in (4.18) by
f(x)=exp(—x). Then the integrals can be performed
analytically for kpT <<y, giving a coefficient of the E}
term varying as 7 ~2!'=1/92 Aq in the d =1 case the
low-temperature resistivity depends critically on the di-
mensionless shunting conductance . More generally, the

S
0 T
(@) a<ac
P
N 7‘—?
e
0 T

(b) a>a¢

FIG. 3. Plot of the array resistivity p(7) to order E} obtained
from Egs. (4.16)-(4.18) in the text. When a <a.=1/z [with z
defined in (4.19)] the resistivity is enhanced at low temperatures
by a coherent quantum tunneling of the order parameter phase.
For a > a. the quantum coherence is suppressed and the resis-
tivity varies monotonically with temperature. In this case the
T—0 behavior cannot be extracted from the perturbation calcu-
lation.
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integrals can be performed numerically. The resulting
resistivity is plotted schematically as a function of T in
Fig. 3. For a smaller than a critical value a,=1/z, the
resistivity varies nonmonotonically with temperature, ris-
ing below a crossover temperature T and approaching R
as T—0. The crossover temperature is given by
T=g(a/a,)Ec/12z where g(z) is a monotonic function
which approaches 0 as x—1~ and 1 as x—0. In con-
trast, for a > a., the resistivity decreases monotonically
upon cooling. In this case as T—0 the coefficient of the
E} term diverges indicating a breakdown of the perturba-
tion expansion.

In the classical limit, #—0 with #/e held fixed, the
resistivity reduces to the result

palT)/Rs=1—2(E; /kpT)%eXK ~K+1y(K,K) ,

> (4.21)

where K =(2e /#)?kp TRZC /z and y(K,K) is the incom-
plete y function. This result also follows straightforward-
ly by solving perturbatively the equations of motions (2.1),
treating the phases {¢,} as classical ¢ numbers.

The classical result (4.21) gives a monotonic tempera-
ture dependence much as in the quantum case when
a>a. (it also breaks down as T—0). It is therefore ap-
parent that the nonmonotonicity of the resistivity for
a <a. is entirely due to the quantum-mechanical charac-
ter of the phases. Below some crossover temperature the
phases {¢,} can rotate more easily with respect to one
another due to quantum-tunneling-induced phase slips,
thus enhancing the voltage drop across the array in
response to the applied current. Most surprisingly, at
T =0 (and to leading order in E,) the phases are as free
to rotate as they are in the absence of the Josephson cou-
pling term, E;=0. The phases are apparently rotating
freely and coherently even in the presence of a nonzero
coupling.

In the 1D case the behavior of the resistivity for larger
E; can be inferred by studying the system’s dynamics in
the tight-binding (E;— o) limit.2>~2¢ As discussed in
Sec. III, it is found that for a > a. =1 the resistivity falls
monotonically upon cooling and vanishes identically at
T=0. For a<1 and in the large J =E,/Ec limit, p
drops drastically upon cooling but at exponentially low
temperatures,’?> kpT < (E;Ec)?exp(—J'/?), rises again
due to coherent quantum tunneling of ¢ and as 7T —0 ap-
proaches Rs. That is, regardless of the ratio E;/Ec, in
the 1D case, p(T =0, a <a.)=Rs.

For d >2 it is tempting to speculate as to the behavior
for larger E;. One is tempted to guess that, as in d =1,
the result p(7 =0,a<a.,)=Rg survives beyond the
order-E} term and remains true for arbitrarily strong E;.
Moreover, when a > a,, since the perturbation expansion
indicates that quantum tunneling has been suppressed, it
is reasonable to suppose that at sufficiently low tempera-
tures the resistivity should drop to zero. In any event, the
perturbative results indicate that a enters as a critical pa-
rameter in determining the behavior of p(T) at low tem-
peratures.

It is instructive to compare the above results for p(T)
with the resistivity measurements by Orr et al. on thin Sn
and Ga films. In these measurements the normal-state
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sheet resistance Ry emerged as the critical parameter for
the film’s superconductivity. For Ry SRg=h/4e* the
sheet resistance R (T') dropped monotonically into the su-
perconducting state upon cooling, whereas for Ry 2 Ry,
R (T) was generally nonmonotonic, rising, and tending to
a finite limit at the lowest temperatures measured.

A comparison with these experiments requires an as-
sumption about the temperature dependence of the shunt
resistance Rs. If Rg is associated with a thermally excit-
ed quasiparticle resistance, it would depend sensitively on
temperature, diverging as exp(A/kgT) for T—0, with A
the superconducting gap. This would, in turn, imply that
the sheet resistance of those films which were not (global-
ly) superconducting would grow exponentially at low tem-
peratures, in marked contrast to that observed experimen-
tally.!> In practice, however, real Josephson junctions
tend to exhibit a sizable shunt conductance even for tem-
peratures well below the gap. In particular, there is in-
direct evidence based on experiments on single
junctions'>® that the effective shunt at low temperatures
is roughly equal to the normal-state resistance of the junc-
tion. While the origin of this shunt resistance is not well
understood from a microscopic point of view, based on
this evidence it seems plausible to assume that Rg is
roughly independent of temperature.

For the model considered here, in d =2 the normal-
state sheet resistance is simply equal to the shunt resis-
tance Rs. If Rg is indeed temperature independent, the
above results then imply that the low-temperature behav-
ior of p(T) depends sensitively on the normal-state sheet
resistance. Indeed, p(T) in the two regimes, Fig. 3, com-
pares favorably with the experiments. Theoretically, the
threshold resistance is Ry /z, with z =2 for a square lat-
tice, which is off by a factor of 2 from the experimental
value. However, in real granular films the grains do not
lie on an ordered lattice and, moreover, the interconnect-

¢, +2mm

z=["114¢, 3 [,
o5 {m,)

r

where L is the Euclidian Lagrangian which follows from
(2.4) by the replacement t— —ir. The harmonic-
oscillator path integrals are Gaussian and can be per-
formed exactly. This leaves an effective action just in
terms of the paths {¢,(7)}.

Upon integration over the harmonic-oscillator degrees
of freedom, a term is generated of the form

exp | — Z(m,—m,:)zF,,l s (5.4)
(rr')
with
Fy=a [“dow™ coth(Bhiw/2) . (5.5)
In (5.4) the sum is over nearest-neighbor pairs. Notice

that the factor F, is infinite due to a divergence at low
frequencies. Therefore all of the winding numbers {m, }
can be set equal, since the configurations in which they
differ are suppressed completely. This leaves a remaining

" T124,(» [ T I1 Dx}()exp [—(1/ﬁ)fo""erE] :
r v j

ing junctions will be inequivalent so that close quantita-
tive agreement is not expected.

V. ORDERING IN HIGHER DIMENSIONS

This section is devoted to a study of the static ordering
of the d-dimensional array. For this purpose it suffices to
analyze the partition function. In Sec. V A a path-integral
representation for the quantum partition function is ob-
tained. By combining a perturbative renormalization
group with heuristic arguments, a static phase diagram
will be constructed in Sec. V B. Finally, a brief discussion
of some remaining questions is given in Sec. V C.

A. Partition function

Consider then the quantum-mechanical partition func-
tion for the Hamiltonian (2.7), which can be written

Z=Tr [ T1d6,C18,) [ |(6,]), (5.1

where Tr,. denotes a trace over the harmonic-oscillator
degrees of freedom and the prime on the propagator
(¢ |ePH|¢) indicates that the phases {¢,] are restrict-
ed to the compact interval [0,27]. This propagator can
be written in terms of a propagator for noncompact vari-

ables,?® defined on the unrestricted interval [—,x], by
introducing a set of winding numbers {m, },

Z =Trgs foznnd(ﬁr 2 <{¢r+277'mr} |ekﬁHl {¢r}> .

{m,}
(5.2)

These winding numbers are integers running from — « to
co. It is convenient to express (5.2) in a path-integral rep-
resentation over paths {¢,(r)} and {x/"(7)},

(5.3)

[

sum over a single winding number, m, for the whole ar-
ray. This sum is a reflection of the fact that the array is
ungrounded. To ground the array it suffices to hold the
phase of one of the islands (say, on the edge of the array)
constant in time, so that V=ﬁ43/2e =0. Since the wind-
ing number of this grounded island is then identically
zero, only the m =0 term need be retained. Moreover,
since the Lagrangian is invariant under ¢, —¢, 427/, for
all integers {/,}, the endpoint integration from O to 27 in
(5.3) can, apart from an overall multiplicative constant, be
extended to run from — oo to . In this way the parti-
tion function can finally be expressed in the form

Z = [ [I D¢, (T)exp(—S) , (5.6)

with

S= 2 Srr‘ )
(rr)

(5.7
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S=1BH '3 D(wm) | rlwn)|?

—(E;/#) [P drcosp(r) (5.8)
0
and the function D defined by
D(0pn)=(a/27) |0y | +#iwk /Ec . (5.9)

The path integration in (5.6) is over all [3-periodic paths
with no restriction on the endpoints and the sum in (5.7)
runs over nearest-neighbor sites only. In (5.8) the short-
hand notation ¢, =¢, —¢, has been employed and
¢, (w,) denotes the coefficients in a Fourier decomposi-
tion of the paths ¢, (1),

2mTm

Op=—.

B#
(5.10)

—iw,, T

S(=BAH S e g (wm),

Notice that for the 1D chain the partition function fac-
torizes into a product of single-junction models since, via
a simple change of variables, the functional integration
over {¢,(7)} can be replaced by an integration over (in-
dependent) paths corresponding to the difference between
neighboring islands, ¢, ,.1=¢,—d&,,;. For d>2 the
paths ¢,,(7) with r and r’ nearest neighbors do not form
an independent set.

B. Static ordering

Consider the equal-time correlation function G (r),
defined in (3.11), which gives a measure of the static
stiffness of the phase. When G (r) is long ranged, the heli-
city modulus and superfluid density are nonzero. To
study the ordering of G (r) it is useful to consider a spin-
wave approximation. For large E; one expects that typi-
cally [¢,(T)—¢,+V(T)]2§1, so that the cosine term in
(5.8) can be expanded for small argument. Retaining the
quadratic term only, the action takes the form

S=1BW~'3 [ AKBwn) |dkw,)|?, (.11

where A (k) is the lattice Laplacian defined in (4.15) and
B(wn,)=(E;/f)+(a/27) | 0 | +Hwd, /Ec . (5.12)

As k—0, A (k) vanishes and there is no stiffness in the 7
direction. Within the spin-wave approximation, G (r) can
be evaluated, giving

G(r)=exp [—(I/Kl)fk A "Yk)(1—cosk-r) | , (5.13)
where K i ! is the variance of a damped quantum harmon-
ic oscillator,

Ki'=(¢?)o=BM""' 3 B lon) . (5.14)

m = — o

If K, is interpreted as an effective coupling constant, the
form (5.13) is identical to that for a spin-wave analysis of
a classical x -y model, also in d dimensions. As in the
classical case, for d > 2 the function G (r) is long ranged,
falls to zero algebraically in d =2, and is short ranged for
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d <2. Thus the helicity modulus is nonvanishing for
d >2, but vanishes in d =1, even in the spin-wave state.
The result (5.13) indicates that once the system has stati-
cally ordered into the spin-wave state, decreasing the tem-
perature further reduces (#%), and thus enhances the or-
der.

The spin-wave approximation should be valid provided
the nearest-neighbor phase-difference fluctuations are
small with respect to 1. These fluctuations can be es-
timated using the spin-wave action (5.11), giving

([ ()=, 4 (TP =(zK )L,

where z is the lattice coordination number defined in
(4.19). Thus when (zK;) ! <«<1 it is reasonable to con-
clude that for d >2 the system will be statically ordered.
At T =0 this inequality is satisfied when J =E,;/Ec >>1,
regardless of a. It is tempting to speculate that the transi-
tion into the disordered case occurs when the spin-wave
approximation breaks down, that is, roughly,

(¢2)0:1 .

Indeed, precisely this criterion was proposed by Abeles,®
and has since been used extensively by others.** When
applied here (5.16) gives a static boundary which depends
only weakly on the dissipation a. In particular, the re-
sulting 7' =0 phase boundary, J(a), is a smooth function
of a, approaching zero as a— « and a nonzero constant
as a—0. No special behavior is seen at the critical value
a., which emerged in the resistivity, Sec. IV. It will be
argued below that, in fact, the criterion (5.16) gives quali-
tatively incorrect results for the static boundary, particu-
larly when a > a..

It is worthwhile noting that the above spin-wave
analysis suggests that the static ordering transition will be
in the universality class of the d-dimensional classical x -y
model, even when 7 =0 in the quantum system. The
reason the T =0 quantum system will not order like a
d +1 classical system is due to the absence of stiffness in
the 7 direction: the Gaussian kernel in (5.11) varies as
k’[1+0(w)] and vanishes as k—0 regardless of w. This
lack of stiffness is a reflection of the long-range nature of
the Coulomb interaction which has been built into the
model (2.4) from the start. In contrast, a model with di-
agonal charging energy, appropriate for a system with
short-range interactions, has a Gaussian kernel of the
form k%+w? and presumably orders'! like a d 41 classi-
cal system at T =0.

I now describe an approach, based on a perturbative re-
normalization group, which enables an approximate con-
struction of the static phase diagram. The resulting phase
diagram is very similar to that obtained for a closely relat-
ed model by Chakravarty et al.,’3 who used a variational
approach. The idea is to attempt to generate an effective
classical partition function from the quantum partition
function (5.6). One can then apply prior knowledge about
the ordering of classical x -y models. To this end consider
splitting each path ¢,(7) in (5.6) into a zero-frequency
component and a fluctuating component,

S(N)=d2+ BRS¢ T (0n) =00+ () .
o (5.17)

(5.15)

(5.16)
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Similarly, split the functional integration in (5.6) into a
product of a simple integration over ¢° and a functional
integration over the fluctuating pieces of the path,

[ Do)~ [* d¢? [ Dl(r) .

If the fluctuating pieces (i.e., the nonzero Matsubara fre-
quencies) are integrated out, an effective classical theory in
terms of the zero-frequency ¢ numbers {¢°} remains.

While straightforward in principle, this approach is en-
tirely nontrivial in practice. However, progress can be
made if one is willing to work perturbatively in E;. In
particular, if the exponential of the cosine term in the ac-
tion (5.8) is expanded to linear order, the remaining func-
tional integration is Gaussian and can be performed. In-
tegrating out the fluctuating pieces and reexponentiating
gives a classical ferromagnetic x -y model,

ch = f_m H d¢9€xp 2 KOCOS(QS? _¢9,) S

(5.18)

(5.19)

with an effective (renormalized) dimensionless coupling
constant given by

Ko=BE;{cos¢l (7)) .

Here the angular brackets refer to an average over the
fluctuating (w,,#0) degree of freedom, weighted by
exp(—Sp), where Sy denotes the quadratic terms in the
action (5.7) and (5.8).

This effective classical model could alternatively have
been obtained by performing a temporal renormalization
group; that is, integrating out a shell of high-frequency
modes, rescaling in 7, and obtaining an effective action
with renormalized couplings. After flowing for a time [3#
one obtains an effective classical model with appropriately
renormalized coupling constants. If the renormalization
group is implemented perturbatively in E;, the final re-
normalized model coincides precisely with (5.18) and
(5.19).

Performing the Gaussian average in (5.20), one finds

(5.20)

Ko=BE,exp —Elg(ﬁﬁ)‘l S D Nw,) |, (521

m=+-0

with z defined in (4.19). In the T— « limit the sum can
be evaluated, giving

K():ﬂEJ[l—(BEC)/24Z+ A ], kBT>>aEc,EC

(5.22)

where the relative corrections are of order Ec/kgT. In
the low-temperature limit one finds

Ko~(E;/kgT) kT /azEc)"*, kpT <<aEc . (5.23)

Low temperature corresponds to the scaling regime in the
temporal renormalization-group approach. Indeed, taking
a logarithmic derivative with respect to temperature in
(5.23) gives the (linear) flow equation

(5.24)

At high temperatures the coupling constant behaves clas-
sically, Ko~1/T. In the low-temperature regime, where
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quantum effects dominate, the behavior of Ky(T) depends
critically on a. In fact, as in the dynamical calculation of
the resistivity, the behavior changes sharply at a=qa,
=1/z. For a <a., Ko(T) is nonmonotonic, vanishing in
the zero-temperature limit, whereas for a>a,., Ko(T)
grows monotonically upon cooling and diverges as T —0.
Strictly speaking, this diverging behavior cannot be in-
ferred from (5.21) or (5.23) since these expressions were
derived perturbatively in E,. It is most plausible to as-
sume, however, that, for a>a., Ko(T) continues to in-
crease under the renormalization-group flows, even for
large Ky outside the perturbative regime (in one dimen-
sion this assumption is borne out by calculations in the
large-E; limit). One expects that the qualitative behavior
of K in (5.21) should be valid throughout the whole tem-
perature range.

The behavior of Ky can be understood in terms of the
fluctuating paths ¢,(7) that enter into the original parti-
tion function (5.6). At high temperatures (small 3%) the
paths do not have ample time to fluctuate appreciably and
are essentially independent of time; the time integration in
(5.8) can then be trivially performed, giving K¢=pE,.
Upon cooling the paths have more time to fluctuate and
can, in particular, phase-slip (rotate) by 27 as they move
in imaginary time. These 27 phase slips tend to decouple
the cosine of the zero-frequency components ¢° of near-
neighbor sites, reducing the effective coupling K,. At low
temperatures there is a competition between the entropy
of the phase slips and the logarithmic attraction (repul-
sion) between phase slips of different (the same) sign,
mediated by the a |w | term in (5.8). For a <a. the en-
tropy dominates, there is a predominance of phase slips at
low temperatures and Ky(7) is driven to zero as T—O0.
In contrast, when a > a, the logarithmic interaction dom-
inates and the phase slips tend to occur only in “charge-
neutral” pairs. In this case Ky(7) increases monotonical-
ly upon cooling.

For d >2 the effective nearest-neighbor classical model
(5.19) will order when K is equal to some constant of or-
der 1. The associated phase transition is that of a classi-
cal d-dimensional x -y model. Strictly speaking, however,
the nearest-neighbor form is valid only to leading order in
E;. At higher order, upon integration over the nonzero
Matsubara modes, further-neighbor interactions are gen-
erated. In the disordered state at high temperatures one
expects these interactions to fall off with distance, presum-
ably somewhat more rapidly than the spatial correlations
present in {#°}. Inclusion of these additional interactions
will, of course, modify the precise location of the transi-
tion. Nevertheless, one should be able to infer qualitative-
ly the location of the static boundary by examination of
the near-neighbor coupling only. Specifically, upon cool-
ing, one expects a transition into the ordered state to
occur at a temperature 7, satisfying

Ko(T.)=K. , (5.25)
with K. a constant of order 1 and K, defined in (5.21).
For a>a,, where Ko(T) increases monotonically upon
cooling, criterion (5.25) is unambiguous. In contrast,
when a <a,, since Ko(T) is nonmonotonic, (5.25) either
has no solutions, in which case the array is disordered



1928 MATTHEW P. A. FISHER 36

down to T =0, or two solutions. In the latter event does
the lower solution correspond to a reentrant transition? I
do not believe so. For temperatures below the upper solu-
tion, the effective interactions generated in the classical
model will be of infinite range (since the system is or-
dered), so that the near-neighbor form (5.19) cannot be
employed. Moreover, the spin-wave analysis indicated
that once in the ordered (or spin-wave) state, further cool-
ing tended to enhance the order. Therefore I expect the
system to remain ordered at all temperatures below the
upper solution of (5.25). In constructing the static bound-
ary it should then be understood that when two solutions
exist, only the higher-temperature solution corresponds to
a transition.

The criterion (5.25) gives a single constraint among the
three dimensionless variables J =E;/Ec, a, and T /Ec.
The static boundary can thus be represented as a two-
dimensional surface in this space. The phase with tem-
peratures above (below) the boundary is statically disor-
dered (ordered). A T =0 slice of this surface is shown
schematically in Fig. 4. The ordered state corresponds to
large J and a. The constant Jy in Fig. 4 is expected to be
of order 1, although its precise value cannot be inferred
reliably from the criterion (5.25). It should be em-
phasized that this T =0 static boundary, J(a), differs
qualitatively from that obtained from the criterion
(#*)o=1, Eq. (5.16). Specifically, (5.16) gives a nonzero
J(a), even for a > a..

The phase diagram obtained from (5.25) is similar to
that derived by Chakravarty et al.!> for a closely related
model. The variational method employed by these au-
thors can be trivially modified to the present model. The
resulting static boundary for d >2 is, in fact, very similar
to Fig. 4, with the same critical value a,. entering. How-
ever, when applied to the d =1 chain the variational
method gives several incorrect results. Specifically, a
transition is predicted at nonzero temperatures, in conflict
with the results of Sec. III. Moreover, at T =0 a phase
boundary as in Fig. 4 is obtained (with a.=1) which for
large J does not coincide with the (dynamical) phase dia-
gram obtained in Sec. III, Fig. 3.

R

FIG. 4. Schematic plot of the T =0 static phase diagram for
d >2, obtained from the criterion (5.25). The statically ordered
phase corresponds to large J and «a.

C. Discussion and speculations

The T =0 phase diagram, Fig. 4, indicates that for
a>a,. the array orders at arbitrarily small coupling E;.
This can be traced to the fact that the effective coupling
constant Ky(7) increases monotonically upon cooling, so
that regardless of how small E; is, Ky exceeds unity as
T—0. The behavior of Ko(T) in this regime is rather
similar to the classical result, K§ =BE;, obtained by tak-
ing #i—0 in (5.21). In contrast, for a <a,., Ko(T) crosses
over from a high-temperature classical regime to a regime
dominated by quantum phase slips (in imaginary time)
which drive K, to zero as T—0. For small coupling E;
the quantum effects set in before the system has a chance
to order. For sufficiently strong coupling, though, the
system orders in the classical regime at temperatures
above where quantum phase slips dominate. As evident
from the spin-wave analysis, in this case quantum fluctua-
tions, which emerge at low temperatures, are insufficient
to disorder the system even as 7—0.

It is instructive to contrast these results for the d > 2
static ordering with the resistivity, calculated dynamically
in Sec. IV. This is particularly important in light of the
d =1 results showing that the static and dynamical order-
ing were unrelated. Recall from Sec. IV that the resistivi-
ty p(T) to second order in E; was found to depend sensi-
tively on «a, varying nonmonotonically and approaching
Rs as T—0 for a <a. and monotonically decreasing
upon cooling for a > a.. The threshold value a. is pre-
cisely the same as that which appears in the T =0 static
phase diagram, Fig. 4. The statically disordered phase,
a <a. and small E;/E¢, corresponds to the dynamically
resistive state. In the statically ordered phase, a > a., the
dynamical results for p(T) break down as T—0; however,
a vanishing resistivity in this limit seems quite plausible
(see Fig. 3). In contrast to the d =1 case, these results for
d >2 are not inconsistent with the usual assumption that
static ordering and vanishing resistivity coincide. There
is, however, a remaining question along these lines.

Is it possible that in addition to the static ordering tran-
sition, an additional transition is manifest in the partition
function? The answer is most probably yes, at least at
T =0. Consider the statically ordered phase (large J) at
T =0. In this phase each (imaginary) time slice in the
path-integral representation is ordered, {cosd,(r))=£0.
As a given phase ¢, moves in time, however, it will still
undergo an occasional 27 slip with respect to its neigh-
bors. In the absence of dissipation, a =0, each slip will
be essentially independent of those at earlier times, so that
at long times the phase difference between neighbors, ¢(7),
will undergo a random walk &(r)~7!"2, where
¢(7=0)=0 has been assumed. For weak dissipation,
a << 1, since successive slips interact logarithmically, one
has ¢(7)~Inr. Now for a single junction®® (or the d =1
chain) there exists a transition at a =1, with ¢(7) ~In7 for
a <1 and ¢(r) approaching a finite constant for a > 1.
This transition is precisely the dynamical transition de-
scribed in Sec. III. For the array one also expects, at
sufficiently strong dissipation, a temporal phase transition
into a state where ¢(7)—const as 7— «. Indeed, the
flow equations (5.24) would seem to suggest that this tran-
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sition occurs at a=a,.. In contrast to the static ordering
transition, which corresponds to a breaking of the symme-
try under global rotations, this transition would represent
a broken local symmetry in the ground-state wave func-
tion. Specifically, the Hamiltonian (2.5) is invariant under
the local transformation ¢,—¢, +2mm for each site. By
analogy with the single junction,?® I suspect that this
discrete translational symmetry is broken and a particular
integer value of m selected out.

How would the presence of such an additional transi-
tion manifest itself in the behavior of the array? In d =1
the transition is evident directly in the dynamics, with
p(T =0)=0 for a>1 and p(T =0)=Rys for a <1. One
might be tempted to speculate that for d >2 this also is
the case, with a resistive state for @ <a, and a supercon-
ducting state (p=0) for a>a.. Were this the case, the
regime a < a, and J large would be rather exotic, exhibit-
ing simultaneously static long-ranged order yet a finite
conductivity. Clearly, further work is necessary to estab-
lish more carefully and clarify further the role played by
such an additional transition.

An additional and perhaps related theoretical question
concerns the effects of the nonvanishing dispersion,
w(k—0)=w,, on the low-temperature k3T = #iw, dynam-
ical critical behavior. Since all of the modes, even as
k —0, behave quantum mechanically, the 740 dynamical
critical phenomena might possess interesting nonclassical
features.
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APPENDIX

In this Appendix a formal perturbation expansion for
the array resistivity (in powers of E;) is developed. The
approach follows closely that contained in Ref. 27 for the
single-junction resistance. The starting point is the exact
expression for the generating function, (4.10)—(4.15). The

Dyy(r —r',t —t") =D (r —r', t —t')—i f drdt 3 DS (r —R, ¢ —T)((pl(R,T)pz
R.R’

with the definition

(Alp]N=6.4(p)Q%p] . (A8)
In arriving at (A7) use has been made of the fact that
DY, =0 and that®” { 4 [p,]) = 4(0)

At this stage it is straightforward to evaluate the retard-
ed correlation function D3, (and resistivity) perturbatively
by simply keeping only those charge configurations corre-
sponding to the first two terms in (A1). The contribution
from the n =1 term vanishes so that the leading correc-
tion to the resistivity is of order Ef. The resulting expres-
sion is given in the text, (4.16)—(4.18).

idea is to simply expand the exponential in (4.10) as a
power series in E;. It is convenient to decompose the
sines in (4.11) into a sum of two exponentials by introduc-
ing a set of charges 0; (=%) and ¢; (==), where j runs

from one to n, at nth order in the expansion. Upon
defining a charge density
1 & o
pp(r,t)= sz;{( 7)6(t —¢;)(8,., v 8,,,j+vj) , (A1)
the exponential in (4.10) can be written
. S )
S, |—i—= | | =0 dt p(1)- A2
AP TSR cexp | [ dip() SF(1) (A2

where the dot product refers to a sum over r and f=1,2.
Here the operator &', defined by

acsi — UE; /280" n

performs a sum over different charge configurations. The
differential operator on the right-hand side of (A2), when
acting on the bare generating functional Q°[F], simply
shifts F—F+p,

8 1no 0
exp | [ dip—— SE |QIFI=0"F+p] . (A4)
Therefore the exact generating functional, defined in
(4.10), can be written
Q[F]=6.QF+p] . (AS)

The correlation functions of interest, defined via (4.8),
can then be expressed as derivatives with respect to the
charge density p, rather than the source fields,

8°Q°%p}
“ Spplr,t)opg(r'st’)

Dpgg(r —r',t —t')=iC (A6)
Inserting the Gaussian form for Qo{p}, (4.12), into (A6)
and performing the functional differentiation gives

LTOINDS(R —r, T 1), (A7)

The vanishing of the linear term in E; can be seen quite
generally by noting the following charge-neutrality con-
straint.”»?” The bare generating function when expressed
in Fourier space takes the form

f f )dpﬂkw)

Q%[pl=exp | —

XD%B'(k,w)pB'( —k,—w)

(A9)
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Since iD%,(k,w) diverges as w—0 [see (4.14)], the only
charge configurations which contribute to the average in
(A7) are those satisfying p,(k, w=0)=0 for all k, or
equivalently p,(r, ©=0)=0 for all sites . Using (A1) this
charge-neutrality condition can be written alternatively as

jglej(S,,,j——S,,,j+vj)=O, vr .
One sees immediately that for n =1, regardless of €y, r,
and v, the left-hand side of (A10) cannot vanish for all
sites . Therefore the contribution to D;; linear in E;
vanishes identically. More generally, it is convenient to

(A10)
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visualize each term in the parentheses in (A10) as a dipole
with positive charge at site »; and negative charge at a
neighboring site r;+v;. The condition (A10) is then
equivalent to the constraint that the dipoles must be ar-
ranged on the lattice in such a way that each site is charge
neutral. When n =2 the two dipoles must lie head to tail
canceling each other’s charge. For a cubic lattice it is ap-
parent that charge neutrality can only be maintained
when n is even. Therefore the resistivity will be an even
function of E;. In contrast, on a triangular lattice, for ex-
ample, odd terms in n (> 1) can and will contribute to the
resistivity.
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