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Quantum theory of bilayer quantum Hall smectics
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Mean-field theory predicts that bilayer quantum Hall systems at odd integer total filling factors can have
stripe ground states, in which the top Landau level is occupied alternately by electrons in one of the two layers.
We report on an analysis of the properties of these states based on a coupled-Luttinger-liquid description that
is able to account for quantum fluctuations of charge-density and position along each stripe edge. The soft
modes associated with the broken symmetries of the stripe state lead to an unusual coupled-Luttinger-liquid
system with strongly enhanced low-temperature heat capacity and strongly suppressed low-energy tunneling
density of states. We assess the importance of the intralayer and interlayer backscattering terms in the micro-
scopic Hamiltonian, which are absent in the Luttinger liquid description, by employing a perturbative renor-
malization group approach which rescales time and length along but not transverse to the stripes. With inter-
layer backscattering interactions present the Luttinger-liquid states are unstable either to an incompressible
striped state that has spontaneous interlayer phase coherence and a sizable charge gap even at relatively large
layer separations, or to Wigner crystal states. Our quantitative estimates of the gaps produced by backscattering
interactions are summarized in Fig. 11 by a schematic phase diagram intended to represent predicted experi-
mental findings in very high mobility bilayer systems at dilution refrigerator temperatures as a function of layer
separation and bilayer density balance. We predict that the bilayer will form incompressible isotropic interlayer
phase-coherent states for small layer separations, sayd<1.5,. At larger interlayer spacings, however, the
bilayer will tend to form one of several different anisotropic states depending on the layer charge balance,
which we parametrize by the fractional filling factorn contributed by one of the two layers. For large charge
imbalances (n far from 1/2), we predict states in which anisotropic Wigner crystals form in each of the layers.
For n closer to 1/2, we predict stripe states that have spontaneous interlayer phase-coherence and a gap for
charged excitations. These states should exhibit the quantum Hall effect for current flowing within the layers
and also the giant interlayer tunneling conductance anomalies at low bias voltages that have been observed in
bilayers when theN50 Landau level is partially filled. When the gaps produced by backscattering interactions
are sufficiently small, the phenomenology observed at typical dilution fridge temperatures will be that of a
smectic metal, anisotropic transport without a quantum Hall effect. For stripe states in theN52 Landau level,
this behavior is expected over a range of bilayer charge imbalances on both sides ofn51/2.

DOI: 10.1103/PhysRevB.67.115330 PACS number~s!: 73.40.Gk, 73.43.Lp, 73.20.Mf
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I. INTRODUCTION

The recent discovery of strongly anisotropic transport
single-layer quantum Hall systems near half-odd integer
ing factors1–3 has attracted much experimental4 and
theoretical5 interest. Transport anisotropies have been
served in single two-dimensional~2D! electron gas layers a
half filling of Landau levels with indexN>2, i.e., at filling
factorsn59/2,11/2, . . . . This effect is commonly ascribe
to the formation of striped charge-density-wave phases,
dicted on the basis of the Hartree-Fock calculations by K
lakov et al.6 and by Moessner and Chalker7 with additional
theoretical support from subsequent exact diagonalizat8

and DMRG9 numerical studies. The stripe state is a con
quence of the form factors that arise in describing inter
tions between electrons in higher kinetic-energy Land
level orbitals and allow density waves to form in cyclotro
orbit-center coordinates that have a very small electr
density-wave amplitude, and therefore little electrosta
energy penalty.

The physics of quantum Hall systems is enriched by
additional degrees of freedom that appear in bila
0163-1829/2003/67~11!/115330~19!/$20.00 67 1153
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systems,10 in which two 2D electron layers have a separati
d small enough that their interactions have consequen
For total filling factornT51 and other odd integer total fill
ing factors, interlayer interactions can lead to a state w
spontaneous phase coherence11 between the layers and
charge gap that is revealed experimentally12 by the quantum
Hall effect. Further spectacular experimental manifestati
of spontaneous phase coherence were revealed very rec
in 2D to 2D tunneling and Hall drag experiments by Eise
stein and collaborators.13 In tunneling studies spontaneou
coherence is signaled by a sharp zero bias peak in the di
ential conductance between the layers. As the ratio ofd to
the magnetic length, is reduced experimentally, the condu
tance peak appears to develop continuously starting at a c
cal value ofd/, that is consistent with earlier experiment
anomalies12 attributed to spontaneous coherence and w
mean-field-theory estimates of the critical layer separatio12

at which coherence is expected to develop. These exp
ments are still not understood quantitatively and raise
number of interesting issues in nonequilibrium collecti
transport theory that have stimulated a growing body
theoretical14 work.
©2003 The American Physical Society30-1
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Since balanced bilayer systems at large odd integer t
filling factor (nT>9) are composed of 2D layers that,
isolated, would show stripe-state behavior, it is natural
consider the possible interplay and competition between
formation of striped phases in each 2D layer and the de
opment of spontaneous interlayer phase coherence. The
sues have been investigated in several recent theore
papers,15–17 and it has been argued17 that they may be rel-
evant for understanding a recent observation of resista
anisotropy at integer filling factor by Panet al.18 In the
present paper we extend earlier work by two of the pres
authors19 on smectic states in single layers to the case
bilayer systems. The approach we take is one that is inten
to be valid when quantum fluctuation corrections to the str
states predicted by the Hartree-Fock theory are weak on
croscopic length scales, although as we discuss at length
inevitably alter the ultimate physics at very low energies a
temperatures and the behavior of correlation functions
long distances. Since stripe states occur as extrema o
Hartree-Fock energy functional for any orbital Landau-le
index, not only forN>2 where the states are seen expe
mentally, and are in factalwaysunstable to the formation o
the Wigner crystal states in mean-field theory, it is evid
that we must appeal in part to experiment to judge when
starting assumption is valid.5,6,20

In describing stripe states it is convenient to use a Lan
gauge basis with single-particle states extended in the d
tion along the stripes, which we choose to be thex̂ direction,
and labeled by a one-dimensional wave vectork that is pro-
portional to the guiding center, along which the wavefun
tion’s y coordinate is localized,Y5k,2. For balanced bilay-
ers, the stripe states that occur in the Hartree-Fock theory
occupation number eigenstates in this representation,
the valence Landau-level Landau gauge states occupie
top and bottom layer electrons in alternating stripes. In
Hartree-Fock approximation, the low-energy excitations
the stripe states consist of coupled particle-hole excitati
along each edge of top and bottom layer stripes. These
grees of freedom are conveniently described using
bosonization techniques familiar from the theory of on
dimensional electron systems.21 Our approach is partly in the
spirit of Fermi-liquid theory in that we assume that the H
bert space of low-energy excitations can be placed in one
one correspondence with those that occur in the Hart
Fock theory. When quantum fluctuations are too strong
approach will not be useful; for example, it cannot pred
either the fact that the lowest Landau-level isolated lay
have composite-fermion liquid rather than stripe grou
states, or the likelihood ofbubble6 rather than stripe states fa
away from half filling. Our approach to stripe-state physics
similar to that taken first by Fradkin and Kivelson.22 For the
case of monolayers, the microscopic basis of the coup
Luttinger-liquid model for quantum Hall stripe states w
carefully examined by Lopatnikovaet al.23 and other prop-
erties of quantum Hall stripe states have been addresse
Barci et al.,24 Wexler and Dorsey,25 and Radzihovsky and
Dorsey.26

Our paper is organized as follows. In Sec. II we revie
the coupled-Luttinger-liquid model for quantum Hall strip
11533
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states and discuss its application to the bilayer case.
model rests fundamentally on the assumption that the e
tation spectrum of bilayer stripe states may be placed in o
to-one correspondence with that of the Hartree-Fock pictu
for bilayers, this assumption implies that the degrees of fr
dom at each stripe edge are those of a one-dimensional
tron gas. Our analysis of the low-energy long-wavelen
physics examines this subspace of the microscopic ma
particle Hilbert space and includesforward-scatteringterms
in the Hamiltonian that create and destroy particle-hole
citations at the stripe edges, andbackscatteringterms that
scatter electrons between chiral one-dimensional elect
gas branches. Since the microscopic amplitude of ba
scattering processes is weak, they can often be neglecte
experimentally accessible temperatures. When only forwa
scattering terms are included, the Hamiltonian can be sol
exactly using bosonization and is formally equivalent to th
of a system of coupled one-dimensional electron gases.
quantum smectic broken symmetry character of the e
tronic state is reflected, however, in the coupled-Lutting
liquid interaction parameters and results in enhanced fluc
tions. The properties of this bilayer smectic state a
discussed in Sec. III. The behavior of the one-parti
Green’s functions at the smectic fixed point, carefully a
dressed by Lopatnikovaet al.23 for the single-layer case, is
discussed for the bilayer. We find that, as in the single-la
case, the one-particle Green’s function does not exhibit
power-law behavior that is generic for weakly-coupl
Luttinger-liquids and instead vanishes faster than any po
law at large distances, implying strongly suppressed tun
ing at low energies. The enhanced importance of quan
fluctuations is a consequence of the invariance of the mod
Luttinger-liquid Hamiltonian under a simultaneous trans
tion of all stripes. Backscattering interactions are addres
in Sec. IV, using a perturbative renormalization group~RG!
approach. As in the single-layer case we find that ba
scattering interactions are always relevant.The gapless
Hartree-Fock smectic state cannot be the true ground s
in either single-layer or bilayer quantum Hall systems.In-
stead, we conclude that except at relatively large layer se
rations, interlayer interactions induce a ground state that
spontaneous interlayer phase coherence. This state wou
signaled experimentally by the simultaneous occurrence
an integer quantum Hall effect and anisotropic finit
temperature transport, something that has not been see
single-layer systems. Where intralayer interactions are m
important, they drive the system to a state with an ani
tropic Wigner crystal in each layer. We argue that both typ
of interactions lead to charge gaps and to integer quan
Hall effects and estimate the size of the resulting ene
gaps. According to our estimates, the gap created by in
layer backscattering will be large enough to be observa
out to surprisingly large layer separations. The effect of fin
tunneling between the layers is also addressed in Sec
Finally in Sec. V we discuss several interesting theoreti
issues that arise from this work. We comment explicitly
inconsistencies between the conclusions that have b
reached by different researchers on the question of sme
state stability in the single-layer case. We also address
suggestion24 that the enhanced quantum fluctuations that f
0-2
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low from the broken translational symmetry of the starti
Hartree-Fock state may invalidate our perturbative renorm
ization group analysis for backscattering interactions.

II. THE MODEL

A. Coupled-Luttinger-liquid model energy functional

In Hartree-Fock theory the smectic bilayer state at to
filling factor nT51 is a single Slater determinant where t
occupation of guiding-center modes in a Landau-level of
dex NP$0,1,2, . . . % alternates between the layers with p
riod a, as depicted schematically in Fig. 1. The lower ind
Landau levels are assumed to be frozen in filled states
higher index in empty states, allowing them to be neglec
in the following. Each stripe has chiral left-moving an
right-moving branches of quasiparticle edge states, local
in opposite layers, allowing the low-energy degrees of fr
dom of each electron stripe to be mapped to those of a o
dimensional electron gas. We consider the general case
biaseddouble-layer system where the width of the stripes
one layer isan while that in the other layer isa(12n), n
P@0,1#. As indicated in the figure, fornÞ0.5 the system has
two types of stripe edges, distinguished by the direction
their closest neighbor. In the following we refer to a pair
chiral stripe edges one above the other in each layer
rung, and the two closest such rungs as arung pair.

Small fluctuations in the positions and charge densitie
the stripes can be described in terms of particle-hole exc

FIG. 1. Schematic illustration of the Hartree-Fock bilayer sm
tic state. The shaded areas are electron stripes whose edge
chiral Luttinger-liquids as denoted by the solid arrows. Each e
tron ~hole! stripe in one layer faces a hole~electron! stripe in the
other. The average filling factor of the highest occupied Land
level is n while that in the top layer is 12n, giving a total filling
factor nT51. In the convention used here, a rung pair consists
the edges of an electron stripe in the top layer and an hole strip
the bottom layer. The right-moving and left-moving chiral quasip
ticle branches of each element of a rung pair are localized in op
site layers and denoted byl51,2. The momentum-conserving bac
scattering interactions not present in the Luttinger-liquid mod
discussed in this section, include both interlayer and intralayer
cesses which have different behavior. The figure illustrates in
layer and intralayer backscattering processes with the smallest
sible momentum transfer.
11533
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tions near the stripe edges. The residual interactions, ign
in the Hartree-Fock theory, which act on energy states
into two classes:forward-scattering interactions which con
serve the number of electrons on each edge of every st
andbackward-scattering processes which do not. The qua
tum smectic model includes forward-scattering proces
only. Backscattering processes involve large moment
transfer and their bare matrix elements will be smaller
magnitude~see below!. We treat their effects perturbatively
using a renormalization group approach to account for
infrared divergences ubiquitous in quasi-one-dimensio
electron systems. The smectic state is stable only if the ba
scattering interactions are irrelevant.

The classicalquadratic Hamiltonian which describes th
energetics of small stripe edge fluctuations has the follow
general form:19

H05
1

2,2E dxE dx8 (
j ,k52`

`

(
l,u51,2

(
a,b5R,L

@uj a
l ~x!Kab

lm

3~x2x8, j 2k!ukb
u ~x8!#, ~1!

where the indicesj and k label rung pairs,l and u are the
two different rungs within a rung pair,a andb are the right-
or left-moving chiral edges within a single rung, andx, x8
are positions along the stripes. In this equation,uj a

l is the
transverse displacement of the edge (j ,l,a) from its classi-
cal ground-state location.

In Eq. ~1!, the linear charge-density associated with
edge displacement isr j a

l (x)5anuj a
l (x), wheren is the two-

dimensional electron density inside the stripesn51/2p l 2

anda52,1, or L,R, for the left, right, moving fermions,
respectively. It follows from symmetry considerations th
the elastic kernel satisfies the following equalities,

Kab
lu ~ j !5Kba

lu ~ j !5K (2a)(2b)
lu ~ j !5Kab

lu ~2 j !, ~2!

which allow the Hamiltonian to be rewritten into sums a
differences of the positions of left- and right-going bran
edges,

H05
1

8l 4E dxE dx8 (
j ,k52`

`

(
l,u51,2

@@uj ,R
l ~x!1uj ,L

l ~x!#

3Kp
lm~x2x8, j 2k!@uk,R

u ~x8!1uk,L
u ~x8!#1@uj ,R

l ~x!

2uj ,L
l ~x!#Kc

lm~x2x8, j 2k!@uk,R
u ~x8!2uk,L

u ~x8!##,

~3!

where

Kp
lm~x, j !5,2(

ab
Kab

lm~x, j !, ~4!

Kc
lm~x, j !5,2(

ab
abKab

lm~x, j !. ~5!

We regard the first term in this Hamiltonian as the contrib
tion from fluctuations in thepositionof the rungs while the
second term is the contribution from fluctuations of th

-
are
-

-

f
in
-
o-

l,
o-
r-
os-
0-3



er
a

na
or

ich
w

g
n

n
e

les
s

e-
ng

ith

b
n

e

th

ol-

n

he

an

PAPA, SCHLIEMANN, MacDONALD, AND FISHER PHYSICAL REVIEW B67, 115330 ~2003!
charge densities.~The total filling factor varies locally when
left- and right-going branch edges do not move togeth!
These two terms are analogous, respectively, to current
charge terms in the effective Hamiltonian of a conventio
one-dimensional electron gas. The calculations we perf
here will require only the long-wavelength limits of thex
2x8 dependence of elastic kernel in this Hamiltonian, wh
we estimate using a weak-coupling approximation that
discuss below.

B. Bosonization

This Hamiltonian is quantized by recognizing that char
and position fluctuations result from particle-hole excitatio
at the edges of chiral quasiparticle branches, just as in
ordinary one-dimensional electron system. The real spi
frozen due to the presence of strong perpendicular magn
field and as a result we bosonize according to spin
bosonization scheme.21 It follows from standard argument
that

@r j ,a
l ~x!,rk,b

u ~x8!#5
i

2p
dl,uda,bd j ,k]xd~x2x8!. ~6!

In terms of Fermion creation and annihilation operators

r jR
l ~x!5:Rj

l†~x!Rj
l~x!:5Rj

l†~x!Rj
l~x!2^Rj

l†~x!Rj
l~x!&,

~7!

r jL
l ~x!5:L j

l†~x!L j
l~x!:5L j

l†~x!L j
l~x!2^L j

l†~x!L j
l~x!&,

~8!

with lP$1,2% denoting the rung in rung pairj and R, L,
labeling right and left movers at the stripe edges.

The low-energy Hamiltonian is more conveniently d
scribed in terms of boson fields. The right- and left-movi
fermionic fields on the left stripe edge of rung pairj are
given by

c j
1

R~x!5ei [b( j 21/2)2kF]xRj
1~x!, ~9!

while those on the right are given by

c j
2

R~x!5ei [b( j 21/2)1kF]xRj
2~x!. ~10!

The above equations hold similarly for the left movers w
the only changeR→L. Hereb5a/ l 2 is the width ink space
of a rung andkF5an/2l 2 is the Fermi wave vector for the
bottom layer stripes. The right and left slow fields can
expressed in terms of boson fields as in conventional o
dimensional electron systems:

Rj
l~x!5

1

A2p
eif j ,R

l (x), L j
l~x!5

1

A2p
eif j ,L

l (x), ~11!

wheref j ,R
l (x) andf j ,L

l (x) are the chiral components of th
bosonic fieldF j

l(x)5@f j ,R
l (x)1f j ,L

l (x)#/2.
In terms of the bosonic fields the chiral currents take

following form,

r j a
l ~x!52

a

2p
]xf j ,a

l ~x!. ~12!
11533
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Introducing the dual fieldQ j
l(x)5@f j ,R

l (x)2f j ,L
l (x)#/2 the

position and charge variablesU j
l , U8 j

l , of the two-edge sys-
tem can be expressed asU j

l52 l 2]xF j
l and U8 j

l

52 l 2]xQ j
l . This shows that the fieldF is related to the

position fluctuations of the two-edge system whereasQ is
related with their charge-density fluctuations.

The field F and the dual fieldQ satisfy the following
commutation relation,

@Q j
l~x!,]x8Fk

u~x8!#52 ipd j ,kdl,ud~x2x8! ~13!

~The fieldsQ/Ap and2]xF/Ap are canonical conjugates!.
In terms of these new fields the Hamiltonian takes the f
lowing form,

H05
1

2E dxdx8(
j ,k

@]xF j
l~x!KF

lu~x2x8, j 2k!]x8Fk
u~x8!

1]xQ j
l~x!KQ

lu~x2x8, j 2k!]x8Qk
u~x8!#, ~14!

whereas the Fourier transform of the corresponding actio

S05
i

pE dxdt(
j

(
l

~]xF j
l!]tQ j

l1E dtH0 ~15!

reads

S05E
q,v

F(
l

S i

p
qxF

l* ~q,v!vQl~q,v! D
1

1

2 (
l,u

~qx
2Fl* ~q,v!KF

lm~q!Fu~q,v!

1qx
2Ql* ~q,v!KQ

lm~q!Qu~q,v!!G . ~16!

Here we have employed the shorthand notation

E
q,v

5E
2L

L dqx

2p E
2p/a

p/a dqya

2p E
2`

` dv

2p
~17!

with L;1/, a high-momentum cutoff, and have adopted t
following Fourier-transform conventions:

F j~x,t!5E
q,v

ei (qxx1qya j2vt)F~q,v!, ~18!

F~q,v!5E dxdt(
j

e2 i (qxx1qya j2vt)F j~x,t!. ~19!

The Quantum Field Theory applies for distances larger thl
and as a result theqx integration has to be cut off by62p/ l .
In Eq. ~16! the kernel matricesKF(q) and KQ(q) are the
Fourier transforms of

KF
lm~x, j !5Kp

lm~x, j !52,2@KRR
lm~x, j !1KRL

lm~x, j !#,
~20!

KQ
lm~x, j !5Kc

lm~x, j !52,2@KRR
lm~x, j !2KRL

lm~x, j !#.
~21!
0-4
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Integration over theF fields in Eq.~16! yields an effective
action in terms of theQ fields alone,

SQ5
1

2Eq,v
(
l,u

FQl* ~q,v!

3S v2

p2
~KF

21~q!!lm1qx
2KQ

lm~q!D Qu~q,v!G . ~22!

The correspondingSF action, obtained by integrating out th
Q fields, differs only through the interchange ofF and Q
andKF , KQ .

C. Microscopic theory of long-wavelength
interaction parameters

The objective of this coupled-Luttinger-liquid model fo
stripe states in quantum Hall bilayers is to address the c
sequences of weak quantum fluctuations when the gro
state is similar to the mean-field-theory stripe state. In t
spirit, we use weak-coupling expressions for the interact
parameters of the model, replacing scattering amplitudes
the bare values for the scattering of the Hartree-Fock the
quasiparticles. If the true ground state were a smectic,
values of these parameters would be renormalized some
by higher-order scattering processes. We expect that it
prove difficult to systematically improve on the estimat
given here for the quantum Hall bilayer case because of
absence of a one-body kinetic-energy term in the relev
microscopic Hamiltonian that would enable a systematic p
turbative expansion. We emphasize that a quantitative the
of the forward-scattering amplitudes that has a sound mi
scopic foundation isnecessaryin order to decide on the rel
evance of the backscattering interactions we have negle
so far and the character of the true ground state. As em
sized by the work of Fradkin, Kivelson, and co-workers27

any conclusion is possible if the forward-scattering inter
tions are allowed to vary arbitrarily. The perturbative ren
malization group scaling dimensions that we evaluate be
are dependent only on the elastic constants atqx50, i.e., for
straight stripe edges. The weak-fluctuation Hamiltonian m
be evaluated in this limit by calculating the expectation va
of the microscopic Hamiltonian in the Hartree-Fock theo
ground state, which in this limit is a single Slater determin
with straight stripe edges displaced from those in
Hartree-Fock theory stripe ground state. By evaluating
expectation value of the microscopic Hamiltonian in a st
with arbitrary stripe edge locations we find that forj Þ0,

E dxKF/Q~x, j !

5
1

2p2,2 S V~ ja !7~ ja ! W7V~ ja2an!

W7V~ ja1an! V~ ja !7W~ ja !
D .

~23!

In the off-diagonal elements the argument ofW is the same
as that ofV, ( ja6an), respectively. TheV and W contri-
11533
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butions are proportional to two-particle intralayer and int
layer interaction matrix elements, respectively, and are gi
by

V~Y!5E dq

2p
e21/2q2,2

VS
N~q!e2 iqY

2e21/2Y2/,2E dq

2p
e21/2q2,2

VS
N~AY2/,41q2!,

~24!

W~Y!5E dq

2p
e21/2q2,2

VD
N~q!e2 iqY. ~25!

Note that the intralayer interaction contributions have co
peting direct and exchange contributions that cancel foY
50, whereas the interlayer interaction has only a direct c
tribution. In the following we shall assume infinitely narro
quantum wells in both layers so that the interaction potent
occurring in the above equations read

VS/D
N ~q!5FLNS 1

2
q2,2D G2

VS/D
0 ~q! , ~26!

where LN(x) is the Laguerre polynomial form factor fo
electrons in theNth excited Landau-level, andVS/D

0 is
the Fourier transform of the Coulomb interaction with
and between the layers,VS

0(q)5e22p/uqu, VD
0 (q)

5e2(2p/uqu)exp(2uqdu) with d being the layer separation
The long-ranged nature of the Coulomb interaction leads
logarithmic divergences inV andW which we regularize by
adding a term2(e22p/uqu)exp(22uqudgate) to VS/D

0 with
dgate@d. This regularization can be roughly thought of
introducing a metallic screening plane at distancedgate lead-
ing to image charges that screen interactions between e
trons in the bilayer system. AlthoughV and W diverge for
dgate→`, it is possible to show28 that KF and KQ remain
finite. In the following we choose a large but finite value f
dgate for numerical convenience.

The above form of the smectic energy kernelKF/Q( j )
applies for j Þ0. For j 50 the components ofKRL(0)
5KLR(0) and ofKRR

lm(0)5KLL
lm(0) for lÞm are given by

the same expressions. The quantitiesKRR
11 (0)5KLL

11 (0)
@5KRR

22 (0)5KLL
22 (0)# have additional contributions tha

originate from the wave-vector dependence of the Hartr
Fock self-energy at a given stripe edge, and capture the
property that the energy of the smectic must be invari
under rigid translations of all stripes,uj a

u (x)° j a
u (x)

1constant.19,29 We find that

KRR
11 ~0!52@KRR

12 ~qy!1KRL
12 ~qy!1KRL

11 ~qy!#qy50

2(
j Þ0

KRR
11 ~ j !. ~27!

Note that these properties imply that det@KF(qy50)#50.
When these long-wavelength approximations are employ
the Fourier transforms ofKF/Q

lu in Eq. ~23! depend only on
0-5
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qy but not on qx . From the relation KF/Q(x,2 j )
5KF/Q

T (x, j ), it follows that KF/Q(qy) is Hermitian. Under
particle-hole transformation,n°12n, the diagonal ele-
ments of these matrices remain unchanged while the
diagonal elements transform as

KF/Q
12 ~qy!°e2 iqyaKF/Q

21 ~qy!, ~28!

KF/Q
21 ~qy!°e1 iqyaKF/Q

12 ~qy!. ~29!

D. The balanced bilayer limit

The special case of half filling in each layer has additio
symmetry that is most conveniently exploited by taking
slightly different approach. In this case, the electron stri
in both layers have the same width and the system there
has effective periodicity ofa/2. To be more precise, th
problem can be formulated as a one-dimensional lattice
equidistant double edges placed a distancea/2 apart, noting
carefully that right and left goers interchange their layer
bels on alternate edges. To describe this system instea
using coupling matricesKF

lu(x, j ) and KQ
lu(x, j ), as in the

unbiased case, one can simply use the coupling cons
K̃F(x, j ) and K̃Q(x, j ),

K̃F/Q~x, j !52l 2@KRR~x, j !6KRL~x, j !# ~30!

with the value forKRR(0) reflecting translation invariance

KRR~0!52
1

4p2l 2 (
j 52`

1`

~21! j@V~ j !2W~ j !#. ~31!

In momentum spaceK̃F and K̃Q have the following form,

K̃F~qy!5
1

2p2 FVS qy2
2p

a D2VS 2p

a D
2WS qy2

2p

a D1WS 2p

a D G , ~32!

K̃Q~qy!5
1

2p2 FV~qy!2VS 2p

a D1W~qy!1WS 2p

a D G .
~33!

We have used this simpler and partially independent form
lation of then51/2 limit, to test our results for the gener
case.

III. SMECTIC STATE PROPERTIES

A peculiar property of quantum Hall stripe states is th
the microscopic scale of backscattering interactions is we
For this reason observable properties may be those of sm
tic states over a wide interval of temperature, even wh
backscattering interactions are relevant at the smectic fi
point. In this section we discuss some characteristic pro
ties of quantum Hall bilayer stripe states.
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A. Collective modes and thermodynamic properties

The coupled-Luttinger-liquid model for bilayer quantu
Hall stripe states gives rise to two collective modes w
dispersions that can be determined by evaluating zeros o
determinant of the 232 matrix that defines the real-tim
quadratic action at eachq andv. Writing this matrix ~with
indices suppressed! asKF

21@v21p2qx
2KFKQ#/p2, it follows

that the squares of the quadratic boson collective mode
ergies are

v6
2 ~q!5v6

2 ~q!qx
25p2qx

2 Tr@KF~q!KQ~q!#

2

3F16A12
4det@KF~q!KQ~q!#

Tr2@KF~q!KQ~q!#
G . ~34!

Both modes have energies that are proportional toqx . The
velocity of the v2(q) mode vanishes forqy→0. In fact,
when theqx dependence ofKF and KQ is dropped, as in
most of our calculationsv2(qx ,qy50) vanishes identically;
when theqx dependences are restoredv2

2 (q)'qx
2(qy

21qx
4)

at small wave vectors andv2(qx ,qy50)}qx
3 . For gate-

screened Coulomb interactions, the x-directionv2 mode ve-
locity is proportional touqyu in the smallqx andqy limit. In
the independent layer limit, the two modes become dege
ate and we recover the isolated layer results obtai
previously.19

In the case of balanced bilayers the alternate formula
mentioned above is more convenient. The collective mo
for this limit may be expressed as

v1,2~q!5pqxAK̃F~q!K̃Q~q!, ~35!

where K̃F(q) and K̃Q(q) are given by Eqs.~32! and ~33!.
The two collective modes of the general formulation appl
to then51/2 case correspond to two different wave vecto
of this dispersion relation.

The collective modes of the bilayer Quantum Hall smec
phase are shown in Fig. 2. The right panel showsv1(qx ,qy)
that disperses linearly in smallqx for arbitrary qy . In con-
trast, v2(qx ,qy) disperses linearly at smallqx for qyÞ0,
but for qy50 it is sublinear:v2(qx ,qy50);qx

3 .
The thermodynamic properties of the smectic phase of

bilayer system are those of a noninteracting boson sys
and are readily evaluated given the collective mode energ
For example, forn51/2 in each layer, using the simple
alternative formulation, we have one collective mode at e
wave vector. The internal energy density is

U5E d2q

~2p!2/a

v~q!

ev(q)/T21
, ~36!

wherev(q) is given by Eq.~35!. At low temperatures only
the long-wavelength behavior matters and we obtain
0-6
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FIG. 2. Collective modes of the bilayer QH smectic phase. These results shown here were evaluated usingKF/Q(x, j ) values from Eqs.
~23!–~25! with N52, n'1/2, anda55.8l . Notice thatv1(qx ,qy) always disperses linearly for smallqx , whereasv2(qx ,qy) disperses
sublinearly~as qx

3) when qy50. The qy50 behavior of the lower collective mode is sensitive to theqx dependence of the interactio
coefficients which we do not evaluate microscopically. This illustration was constructed by adding a smallqx

4 contribution to the interaction
coefficients.
dqxdqy puqxuuqyuAK̃Q~0!K̃F9 ~0!
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l(x,t)1Q j
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U'E
~2p!2/a epuqxuuqyuAK̃Q(0)K̃F9 (0)/T21

5
2a

p3AK̃Q~0!K̃F9 ~0!
T2z~2!lnS T0

T
D , ~37!

where kBT05AK̃Q(0)K̃F9 (0)/al. The specific heat of this
system varies asTln(T0 /T) at smallT, vanishing less quickly
than that of a noninteracting Fermion system because of
soft collective modes that result from the translational inva
ance of the stripe state. This low temperature behavior
flects the form of the dispersion relation at smallq, v2(q)
;qxqy ; only the prefactor of this enhanced specific he
changes in the unbalanced bilayer case. These results fo
specific heat are similar to that obtained in previous wo
by Barci et al.,24 and Lopatnikovaet al.23 for the case of a
single layer. There is no qualitative difference between
thermodynamic properties of single-layer and bilayer str
states. For unbalanced bilayers the specific heat at low t
peratures is dominated by the softer of the two collect
modes, whose long-wavelength dispersion is given by

v2~q!'qxqyA Tr@KF~0!KQ~0!#

det@KQ~0!#@det~KF!#9~0!
. ~38!

It follows that the internal energy is given by

U'
a

p3
A Tr@KF~0!KQ~0!#

det@KQ~0!#@det~KF!#9~0!
T2z~2!lnS T0

T D ,

~39!

and the specific heat will vary again asT ln(T0 /T). TheT0 in
Eqs.~39! and ~37! are given by corresponding expression

B. Boson and fermion correlation functions
at the smectic fixed point

In this section we discuss the static and dynamic corr
tion functions of the right- and left-moving fermions of th
stripe edges and the boson correlation functions in term
which they are evaluated. The right- and left-moving fermi
fields are expressed in terms of theF andQ boson fields as
follows:
11533
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Rj ~x,t!5
A2p

e 5
A2p

e ,

~40!

L j
l~x,t!5

1

A2p
eif j ,L

l (x,t)5
1

A2p
ei [F j

l(x,t)2Q j
l(x,t)] ,

~41!

where theF field is related to position fluctuations of th
two-edge system, while theQ field is related to its charge
density fluctuations. We observe in the following that t
charge and position fluctuations of the edges have a dram
cally different effect on the correlation functions of the rig
and left movers. The single-particle Green’s function for t
right movers is given by

^Rj
l†~x,t!Rj

l~0,0!&5
1

2p
e21/2̂ [F j

l(x,t)2F j
l(0,0)]2&

3e21/2̂ [Q j
l(x,t)2Q j

l(0,0)]2&. ~42!

We first evaluate theF andQ field correlation functionsC̃F
ll

and C̃Q
ll , where

C̃F
ll~x,0,0!5^@F j

l~x,t!2F j
l~0,t!#2&, ~43!

and similarly forC̃Q
ll . In Eq. ~43! and in the following the

arguments ofC̃F/Q
ll are (x2x8, j 2 j 8,t2t8). From Eq.~22!

we have for theF j
l field

C̃F
ll~x,0,0!52E d2qdv

~2p!3/a
@12cos~qxx!#@MF

21~q,v!#ll,

~44!

where

MF
lu~q,v!5

v2

p2
@KQ

21~qy!#lu1qx
2@KF~qy!#lu. ~45!

MQ(q,v) can be obtained by interchangingKF , KQ . The
integral overv is readily valued by decomposingMF

21 as a
sum over eigenmode contributions, writing it in the for
(6C6

lu/@v21v6
2 (q)#. It follows after some algebra tha

correlation function can be expressed in the form
0-7
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C̃F
ll~x,0,0!

5E
0

L

dqx

@12cos~qxx!#

qx
E

2p/a

p/a dqy

2p/a

3F det~KQ!

K11K2
S ~KQ

21!ll1
KF

ll

K1K2
D G

' lnS uxu
l D E dqy

2p/a F det~KQ!

K11K2
S ~KQ

21!ll1
KF

ll

K1K2
D G ,
~46!

for large x, whereK65v6(q)/p. In the limit of balanced
filling fraction for which KF and KQ are scalars, the inte

grand which is averaged overqy above reduces toAK̃Q /K̃F,
the familiar result forF-field correlation functions in a stan
dard one-dimensional electron system. This result is gene
ized here by the average overqy and by the particular way, in
which the matrix nature of theKQ andKF expressions ente
the matrix elements above. The result for theQ-field corre-
lation functions differs only by the interchange of theKQ and
KF matrices. At first sight it appears that the position flu
tuation factor in the right-mover correlation function deca
algebraically along the stripes. However, the power wh
characterizes this decay,dF,x , is given by the integral ove
qy of Eq ~46!, which diverges logarithmically, becauseK2

}v2 vanishes asuqyu as uqyu→0; the same soft position
fluctuations that led above to an enhanced specific heat,
here to fermion correlation functions that decay faster th
any power low but slower than an exponential. This obs
vation generalizes to bilayers, a property of single-la
stripe states noted by Lopatnikovaet al.23 and Barciet al.24

C̃Q(x,0,0), which specifies the charge fluctuation fac
in the fermion correlation functions, is given by

C̃Q
ll~x,0,0!' lnS uxu

l D E
2p/a

p/a dqy

2p

a

3F det~KF!

K11K2
S ~KF

21!ll1
KQ

ll

K1K2
D G . ~47!

The charge fluctuation factor in the fermion correlation fun
tions has a conventional algebraic decay with finite pow
dQ,x . The faster than algebraic decay of the fermion o
particle Green’s function implies that the singularity in t
Landau gauge occupation numbers, a step function of
magnitude in the Hartree-Fock theory, is exceedingly we

The correlation function of theF field along directions
perpendicular to the stripes is given by

C̃F
ll~0,y,0!'E

1/L

L dqx

qx
E

2p/a

p/a dqy

2p

a

@12cos~qyy!#

3F det~KQ!

K11K2
S ~KQ

21!ll1
KF

ll

K1K2
D G

'C lnS L

l D lnS uyu
a D , ~48!
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whereC is a finite constant that can be found numerically.
follows that the corresponding factor in the one-partic
Green’s function has a faster than algebraic decay in
thermodynamic limit. The factor associated with charge flu
tuations has a similar dependence and is given by

CQ
ll~0,y,0!'E

1/L

L dqx

qx
E

2p/a

p/a dqy

2p

a

cos~qyy!

3F det~KF!

K11K2
S ~KF

21!ll1
KQ

ll

K1K2
D G

' lnS L

l DCQS a

uyu D , ~49!

whereCQ is a function of the ratio (a/uyu) and is finite as
uyu→1`.

C. Tunneling density of states

These results for boson correlation functions may be
sembled to evaluate the imaginary time dependence of
local fermion Matsubara Green’s function and, by Lapla
transforming this, the density of states for tunneling into t
bilayer system, a quantity that is in principle measurab
The single-particle Matsubara Green’s function is given b

G~0,0,t!5^Rl
j
†~x,t!Rj

l~x,0!&'exp$2~1/2!C̃~t!%,
~50!

whereC̃(0,0,t)5C̃F(0,0,t)1C̃Q(0,0,t) and

C̃F/Q~0,0,t!52E d2qdv

~2p!3/a
~12cosvt!@MF/Q

21 ~q,v!#ll.

~51!

We first discuss the balanced bilayer case for which theKF
lu

andKQ
lu matrices become simple numbers and the integra

simpler to treat analytically. In this caseK̃F(qy), K̃Q(qy),
are given by Eqs.~32!–~33! and

C̃F~0,0,t!52E d2qdv

~2p!3/a

~12cosvt!

v2

p2K̃Q~qy!
1K̃F~qy!qx

2

5E d2q

4p/a

1

uqxu
AK̃Q~qy!

K̃F~qy!

3~12e2puqxuAK̃F(qy)K̃Q(qy) t!. ~52!

We can understand the content of this integral by mean
the following analysis. The integral can be separated into
sum of two terms, contributions from the region whereqx
andqy are small and the exponential can be approximated
the first few terms of the Taylor expansion, and contributio
from largerqx and qy where the exponential can be disr
garded. The leading contribution to the integral comes fo
the lower boundary of the second region, whereqy
0-8
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'1/(qxt). We focus on the case of larget for which our
low-energy theory applies. In this limit we can approxima
K̃Q(qy)'K̃Q(0) and K̃F(qy)'K̃F9 (0)qy

2 . In this limit Eq.
~52! becomes

C̃F~0,0,t!5
a

4p
AK̃Q~0!

K̃F9 ~0!
E dqxdqy

uqxuuqyu

3~12e2puqxuuqyutAK̃Q(0)K̃F9 (0)!

'
a

2p
AK̃Q~0!

K̃F9 ~0!
ln2S p3

al
AK̃Q~0!K̃F9 ~0!t D .

~53!

The Matsubara Green’s function factor contributed
Q-field correlations has a weakert dependence which we
can neglect for the present qualitative analysis.

Similar steps can be taken for the general case of un
anced bilayers. After thev integration, for Eq.~51! we ob-
tain

C̃F~0,0,t!5
a

4pE d2q

uqxu
KQ

11

K1
2 2K2

2 H F S K12
KF

22

~KQ
21!22

1

K1
D

2S K22
KF

22

~KQ
21!22

1

K2
D G

2
1

K1
2 2K2

2 F S K12
KF

22

~KQ
21!22

1

K1
D e2v1(qy)t

2S K22
KF

22

~KQ
21!22

1

K2
D e2v2(qy)tG J . ~54!

Since at smallqy , K2;uqyu, the most important contribu
tions to the integral will come from the terms containin
1/K2 and from the exponential factors containing the arg
mentv2(qy). Keeping only these terms we obtain

C̃F~0,0,t!'
a

4p

KQ
11~0!

K1
2 ~0!K29 ~0!

KF
22~0!

~KQ
21!22~0!

E dqxdqy

uqxuuqyu

3S 12
1

K1
2 ~0!

e2pK29 (0)tuqxuuqyu D
'

a

2p

det~KQ!~0!

K1
2 ~0!K29 ~0!

KF
22~0!ln2S p3

al
K29 ~0!t D ,

~55!

demonstrating that the form of the Matsubara Green’s fu
tion does not change qualitatively at unbalanced filling f
tors. The tunneling density of states is the inverse Lapl
transform ofG(0,0,t),

G~0,0,t!'e2(a/2)ln2(V0t)5E
0

1`

dErTunn~E!e2Eutu, ~56!
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wherea andV0 can be identified from Eq.~54! for balanced
bilayers and from Eq.~56! in the unbalanced case. The in
verse Laplace transform of such a function is

rTunn~E!5
e2(a/2)ln2(V0 /E)

E/V0
(
k50

`
Gk~1!

k!

3S 2
Aa

A2
D k11

Hk11FAa

A2
ln

E

V0
G , ~57!

whereGk(1) is thekth derivative of 1/G(r ) at r 51 andHk
are the Hermite polynomials. In the asymptotic case of sm
E ~low energies!, we have

rTunn~E!;
e2(a/2)ln2(V0 /E)

E/V0

a ln~V0 /E!

G„11a ln~V0 /E!…

'expH 2
a

2
ln2

V0

E
2S a ln

V0

E
2

1

2D ln ln
V0

E

1 ln
V0

E J . ~58!

This shows that the density of states vanishes at the Fe
energy stronger than any power ofE and that in this sense
the stripe edge physics in bilayer quantum Hall systems
not that of a usual system of weakly-coupled Luttinge
liquids. The above result generalizes to the case of bila
systems, points that have been made about single-l
quantum Hall stripe states by Lopatnikovaet al23 and
Barci et al.24

IV. STABILITY OF THE QUANTUM HALL
SMECTIC PHASE

We now consider ‘‘backward’’~interchannel! scattering
interactions that do not conserve the number of electron
each stripe edge. The most important conclusion of the
lowing analysis is that backscattering interactions are m
more important for bilayer stripe states than for single-la
stripe states. We can classify the backscattering interact
as either intralayer interactions that involve electrons only
one layer or interlayer interactions that involve electrons
both layers. Nonzero backscattering two-particle matrix e
ments conserve total momentum along the stripes, wh
means that the two Landau gauge guiding center jumps m
sum to zero. In the case of quantum Hall stripe states,
microcopic matrix elements associated with these ba
scattering processes tend to be small and these interac
will be important only if they produce strong infrared dive
gences in perturbation theory. The strength of these di
gences is characterized here by evaluating lowest-order
turbative renormalization group scaling dimensions for th
operators. As in Ref. 19 our renormalization group~RG!
scheme involves onlyx andt dimensions and treats the run
label as an internal index of the fieldsF j

l , Q j
l . The philoso-

phy underlying this procedure is discussed in the followi
section.
0-9
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A. Interlayer tunneling

We first address the tunneling of an electron from o
stripe edge to the other in the same rung. The action co
bution from this process has the following bosonized form

STunn52uE dxdt(
j

(
l

@exp~ i2Q j
l!1H.c.#, ~59!

where the microscopic amplitudeu is discussed below. We
integrate out ‘‘fast’’ boson modesFl, Ql in a shell, with
L/b,uqxu,L and v,qy unrestricted, and then rescaleqx8
5bqx andv85bv leavingqy unchanged. With an appropr
ate rescaling ofF, this RG transformation leaves the ha
monic smectic actionS0 @and dispersion relation~34! for
KF/Q ~23!#, invariant. Stability of the smectic fixed point i
the presence of backscattering can be tested by consid
the lowest-order RG flow equation,

]u

]t
5~22DTunn!u, ~60!

with t5 lnb. As can be seen from this equation the tunnel
operator will become relevant when its scaling dimension
less than two. When this term in the Hamiltonian is stro
the system is described at low energies by a set of quan
sine-Gordon models coupled by gradient terms~22!. In the
domain 0,DTunn,2 the continuous symmetry, present
Eq. ~22!, and broken by tunneling, is lost in the low-ener
fixed point action. This model has a discrete symmetryQ j

l

→Q j
l1pn for any integer n and the QFT become

massive.30 The gap due to tunneling will lead to an integ
quantum Hall effect at total filling factornT51. Using Eqs.
~22!, and~59!, we find the following expression for the sca
ing dimension

DTunn5E
2p/a

p/a dqy

2p

a

F detKF

K11K2
S ~KF

21!111
KQ

11

K1K2
D G .

~61!

The integrand in the integral overqy is similar to that in-
volved in theQ boson correlation field and, ignoring th
matrix character of the coefficients that appear in the sme
fixed point Hamiltonian, is;AKF /KQ. SinceKF vanishes
for qy→0, we can expect this quantity to be small. Inde
we find by evaluating this integral numerically that interlay
tunneling is always relevant.

B. Coulomb backscattering interactions

The tunneling amplitude in bilayer quantum Hall syste
can be made extremely small by making the barrier betw
quantum wells higher or wider and is often completely ne
ligible in practice. Coulomb interactions, on the other ha
are always present and must always be considered. We
sider interlayer and intralayer Coulomb backscattering pro
cesses separately. In the strongest interlayer backscatt
process an electron is transferred from, say, a left-moving
layer stripe edge to a right-moving edge in the same r
pair of the same layer, while in the same rung pair of
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bottom layer an electron is transferred in the opposite dir
tion, as depicted in Fig. 1. The interlayer backscattering
erators for processes involving neighboring rungs have la
scaling dimensions and tend to be irrelevant. In addition,
bare matrix elements for such a process will fall off rapid
in magnitude with increasing distance between the rungs
volved. The action for interlayer backscattering interactio
for electrons within the same rung pair reads

Sinter52uE dxdt(
j

@exp„i2~Q j
11Q j

2!…1H.c.#.

~62!

@The other kind of process involving two neighboring run
pairs is related to the above one by a particle-hole trans
mationn°12n].

After an elementary calculation we obtain the followin
scaling dimension expression:

D inter5E
2p/a

p/a dqy

2p

a

F 2 detKF

K11K2

3S ~KF
21!112~KF

21!121
KQ

112KQ
12

K1K2
D G . ~63!

This expression is similar to that which would be obtain
for interwire backscattering interactions in a systems of t
coupled quantum wires. This integral is similar to the o
that appears in the tunneling operator scaling dimension
culation, although it is easy to verify that forward-scatteri
interactions between different stripes play an essential r
As we discuss below, this operator is usually strongly r
evant (D inter→0), so that at low temperatures the phasesQ j

1

andQ j
2 of neighboring two-edge system are strongly antic

related. The low-energy nontopological~chargeless! excita-
tions in this limit can be understood by approximatin
cos@(Qj

11Qj
2)#'12(Qj

11Qj
2)2/2. When a term of this form is

FIG. 3. Scaling dimensions for tunneling and backscattering
teractions as a function of layer separationd/ l in a balanced bilayer
system at bilayer total filling factornT59, i.e., with aN52 va-
lence Landau-level.
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FIG. 4. The left panel shows theN52, d/,
55.8, intralayer backscattering interaction sca
ing dimension. The right panel shows the scali
dimension of the tunneling operator.
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added to the quadratic Hamiltonian, the low-energy coll
tive mode dispersion at long wave lengths takes the form
a spatially anisotropic two-dimensionalXY ferromagnet,
v2;Kqx

21uqy
2 . We discuss the significance of this result

greater length below.
Finally, in an intralayer backscattering process two el

trons move in opposite directions between pairs of str
edges in the same layer with the same separation~cf. Fig 1!.
Here we also concentrate on processes involving neighbo
rungs only. Processes involving two rung pairs are again
lated to those involving three pairs by a particle-hole tra
formation. For the first case the action reads

Sintra52uE dxdt(
j

$exp@ i ~F j
22F j

11F j 11
1 2F j 11

2 !#

3exp@ i ~2Q j
22Q j

11Q j 11
1 1Q j 11

2 !#1H.c.%, ~64!

which leads to a scaling dimensionD intra5DF1DQ with

DF5E
2p/a

p/a dqy

2p

a

detKQ

K11K2
@12cos~qya!#

3S ~KQ
21!111~KQ

21!121
KF

111KF
12

K1K2
D , ~65!

DQ5E
2p/a

p/a dqy

2p

a

detKF

K11K2
@12cos~qya!#

3S ~KF
21!112~KF

21!121
KQ

112KQ
12

K1K2
D . ~66!

Note that the imaginary part of the integrand in Eqs.~63!,
~65! and ~66! does not contribute to the integrals. Bac
scattering processes other than those discussed above
larger scaling dimensions and also involve larger momen
transfer, and have therefore exponentially smaller bare
trix elements. We therefore shall concentrate on the p
cesses discussed above.
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We now discuss our numerical results for scaling dime
sions of the operators that are not described by the quad
boson theory. Figure 3 shows the scaling dimensions of
backscattering interactions in a balanced system (n51/2) in
the second-excited Landau-level (N52) as a function of the
layer separationd/,. The stripe period chosen for these ca
culations,a55.8,, corresponds to the period at which th
Hartree-Fock energy of the stripe state in a isolated laye
minimized.31 Interestingly, single-electron tunneling is irre
evant (DTunn.2) for d/,.1.5, but is strongly relevant a
smaller layer separations. Interlayer backscattering is
evant (D inter,2) at all layer separations, more strongly so
smaller layer separations, while the scaling dimension of
intralayer backscattering is smaller than two only ford/,
*2 and approaches a value ofD intra'1.84 ford/,@1. This
value for the limit of weak interactions between the laye
recovers the single-layer result obtained earlier.19 The contri-
butionsDF and DQ to D intra, not shown in the figure, be
come equal in this case.

The dependence of scaling dimensions on the bilayer
ance is illustrated in Figs. 4 and 5. We see that intrala
interactions become more relevant when their individual fi
ing factors move away fromn50.5, as in the single-laye
case, while the tunneling operator becomes less relevant
terestingly, the interlayer backscattering interactions sh
different results depending on the distance between the e
involved in the transition. FornÞ0.5 we have to distinguish
between nearest-neighbor interlayer and intralayer ba
scattering processes that involve, according to the defini
given in Fig. 1, only the smallest number of neighbori
rung pairs~one and two, respectively! and those processe
that involve formally two and three rung pairs, respective
These two kinds of processes are related by particle-h
transformation, and therefore shown in different panels. G
erally the scaling dimension increases with the distance
tween the edges. The data shows that one of these two b
scattering processes, related by a particle-h
transformation, is always relevant and that the minimu
scaling dimension decreases with increasing bias betw
the layers. In summary, the most relevant residual inter
i-
ar-
r-

rs.
ht
er-
FIG. 5. The left panel shows the scaling d
mensions for interlayer backscattering across n
row and the right panel for interlayer backscatte
ing across wide rungs in unbalanced bilaye
Note the difference in scale between left and rig
panels. The most relevant interlayer backscatt
ing interactions are those of narrow rungs.
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tions is interlayer backscattering and they are increasin
important as the bilayer is unbalanced.

We note that the scaling dimensionsDTunn of the single-
electron tunneling andD inter of the interlayer backscatterin
approach zero ford/,→0, i.e., these processes becom
strongly relevant. This is a natural result since in this lim
we recover the monolayer electron-spin quantum Hall fer
magnet. This system is perfectly isotropic in pseudos
space, and therefore processes like tunneling which acts
sentially like a~pseudo-!magnetic field are obviously ver
relevant. This increased relevance arises formally in our
culations through the property that the matricesKF(qy) van-
ish in the limitd→0, so that the integrands in Eqs.~61! and
~63! are identically zero.KF vanishes, because it is a me
sure of energy changes associated with charge transfe
tween layers at a particular stripe edge; whend→0 only the
total charge near each stripe edge influences the energy
tional. In Fig. 6 we show the dependence of these sca
dimensions on the Landau-level indexN50,1,2,3 with the
stripe periods taken from Ref. 31 in each case. As this fig
shows, our results for the scaling dimensions of backsca
ing processes around the assumed stripe state depend
weakly on the Landau-level index. We note that in the low
and first-excited Landau-level (N50,1) no conductance
anisotropies are found experimentally in single layers, e
though there is a stripe state in each of these Landau le
which is a local minimum of the Hartree-Fock energy fun
tional. The true ground state in these instances is far from
stripe state, differencing in character even at microsco
length scales. The fact that our calculation does not ob
anomalous results in cases where we do not believe s
states occur, emphasizes again that our approach can
address the properties of systems in which fluctuati
around the Hartree-Fock stripe states are weak. It can
predict when stripe states occur. Future experimental acti
will be necessary to identify with confidence when stri
states occur in bilayers.

FIG. 6. The scaling dimension of the backscattering interacti
in the various Landau-level (N50,1,2,3) in a balanced system as
function of the layer separationd/,. The stripe periodsa are ob-
tained from the Hartree-Fock monolayer results given in Ref. 3
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C. Smectic interlayer phase coherent and the Wigner
crystal states

1. Smectic interlayer phase-coherent state

In this section we examine the effect of the interlay
backscattering interactions~when they are strongly relevan!
on the low-energy physics of the system and show that
phase coherence is marked by a nonvanishing value o
interlayer phase order parameter. In this phase electron
each stripe edge are coherent superpositions of the uppe
lower layer states.

The most relevant interlayer backscattering operators
related by particle-hole symmetry and describe backsca
ing across an electron stripe in the top layer and the co
sponding hole stripe in the bottom layer or across a h
stripe in the top layer and the corresponding electron st
in the bottom layer. In terms of the Luttinger-liquid fields w
have defined, the sum of these two interactions takes
form

Ôinter52uinter,ncos@2~Q j
11Q j

2!#

2uinter,(12n)cos@2~Q j
21Q j11

1 !#. ~67!

Expressions for the bare values of these coupling const
are given below. As shown on Figs. 5~a! and 5~b!, ~left, right
panel, respectively!, at small layer separations these ope
tors are strongly relevant. At low temperatures the phasesQ j

1

andQ j
2 , Q j

2 andQ j 11
1 of neighboring two edges tend to b

strongly anticorrelated. The low-energy excitations in th
limit can be understood by approximating cos@(Qj

11Qj
2)#'1

2(Qj
11Qj

2)2/2. When terms of this form are added to th
action, it takes the following form:

SQ5
1

2Eq,v
(
l,u

@Ql* ~q,v!M Q
luQu~q,v!#. ~68!

The new matrixMQ is given by

MQ5MQ12S ui11ui2 ui11ui2e2 iqya

ui11ui2eiqya ui11ui2
D , ~69!

whereMQ is the matrix of the system at the smectic fixe
point and is given by Eq.~22! or by Eq.~45! ~interchanging
KF , KQ) and ui1 , ui2, is the short notation foruinter,n ,
uinter,(12n) , respectively. The effects of the interlayer bac
scattering interactions, included on the new matrix of E
~69! ~which we denote byNQ), shift the poles of the boson
propagators. The low-energy collective modes now are gi
by

v6
2 ~q!5p2

A

2 F16A12
4D

A2 G , ~70!

where

A5qx
2Tr~KFKQ!12NQ

11KF
2212Re$KF

12NQ
21%, ~71!

s
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FIG. 7. The collective modes of the bilayer QH smectic interlayer coherent phase, for the case ofKF/Q(x, j ) of Eqs.~23! and~25! and
N52, n'1/2 anda55.8l , are shown.v1(qx ,qy), the right panel, is of the form of a spatially anisotropic two-dimensional ferromag
v1

2 (q);Kqx
21uqy

2 . The v2(qx ,qy) collective mode vanishes only forqy→0 and qx→0 when nonlocal contributions to the interactio
coefficients are accounted for.
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D5det~KF!$qx
4det~KQ!12NQ

22KQ
111det~NQ!

22qx
2Re@KQ

12NQ
21#%. ~72!

These low-energy collective modes are shown in Fig. 7.
As before, the case of balanced filling fraction can

described in a more transparent way using the scalar
plings K̃F , K̃Q of Eqs.~32! and~33!. For this case the low-
energy collective modes have the form

v6
2 ~q!5p2K̃F~q!$qx

2K̃Q~q!12ui1@11cos~qya/2!#%.
~73!

In this formulation one of the gapless modes is located at
edge of the Brillouin zone, which is now doubled, atqy
52p/a. In the extended Brillouin zone we use for balanc
bilayers thev2(q) softmode appears forqy→0, whereas the
v1(q) softmode appears asqy→2p/a. The two modes have
the following behaviors:

v2
2 ~q!'p2K̃F9 ~0!qy

2@K̃Q~0!qx
214ui1#, ~74!

v1
2 ~q!'p2K̃FS 2p

a D F K̃QS 2p

a Dqx
21

ui1a2

4 S qy2
2p

a D 2G .
~75!

Similar results can be obtained using the matrix formulat
for generaln and become equivalent forn51/2. There is no
qualitative change in the collective mode structure wh
nÞ1/2.

The interlayer phase-coherent smectic state is chara
ized by a finite value of the following order parameter,

C~r !5^cT
†~r !cB~r !&5

1

2p
^e22iQ(r )&'

1

2p
e21/2̂ 4Q2(r )&,

~76!

wherecT
† , cB are fermion creation and annihilation for th

top and bottom layers, respectively. We now show t
^Q2(r )& is finite. We discuss only the case of balanced
layers, using the alternative formulation which is more tra
parent. We find that
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^Q j
2&5E d2q

~2p!2

a/2

dv

2p

3
K̃F~q!

v2

p2
1K̃F~q!Fqx

2K̃Q~q!12ui1F11cosS qya

2 D G G
'

a

16pE22p/a

2p/a

dqyAK̃F~qy!

K̃Q~qy!

3 lnF 2K̃Q~qy!~1/l !

ui1„11cos~qya/2!…
G . ~77!

In Eq. ~77! we have introduced an upper short distance cu
1/, for the qx integration. Interlayer backscattering intera
tions have cutoff the infrared divergence of theqx integra-
tion, making the integral finite and establishing particle-ho
pair condensation. In this state theU(1) symmetry associ-
ated with conservation of total charge differenceNT2NB
between top and bottom layers is broken.

We conclude on the basis of this analysis that interla
backscattering will drive the Hartree-Fock bilayer smec
state to a state which has both broken translational and
entational symmetryandspontaneous interlayer phase coh
ence along the edges. We expect this state to exhibit g
interlayer tunneling conductance anomalies at low-bias v
ages, similar to those that have been seen in theN50
Landau-level in bilayers. Although these states have a ch
gap that we discuss below and should exhibit the quan
Hall effect, we expect that they will exhibit strongly aniso
tropic dissipative transport at finite temperatures. Their t
gapless collective modes arise, because they have br
translational and orientational symmetry and spontaneous
terlayer phase coherence. We also note that the quan
character of these bilayer smectic states is quite distinct f
the quantum smectics discussed previously for the sin
layer case. For instance, the long-wavelength behavior of
quantized collective modev2(qx ,qy) changes from being
proportional to uqxqyu to being proportional touqyu only
when spontaneous interlayer phase coherence is pre
locking the phase difference between different layers qu
0-13
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tatively increases the cost of independent position fluct
tions. The long-wavelength behavior of thev1(qx ,qy) col-
lective mode is that of an anisotropic superfluid. As in t
case of uniform states, spontaneous interlayer phase co
ence is equivalent to electron-hole pair superfluidity, but
broken orientational symmetry of the smectic state cau
this superfluid to have orientation dependent stiffness.

It seems quite possible that the order parameter that c
acterizes the broken orientational and translational symm
of these states will be driven to zero when interlayer int
actions are sufficiently strong. Indeed this is suggested15,16

by mean-field calculations. We are unable to estimate wh
this transition takes place using the methods of this pape

2. Coherent smectic state specific heat

The internal energy of the bilayer smectic phase-cohe
~SPC! state will be dominated at low energies by the con
bution from thev2(q) mode. The leading contribution to th
integral for the internal energy comes from the region
small q. The qx integral now has a natural infrared cuto

however, atAui1 /K̃Q(0). It follows that the internal energy
is given for smallu by

U'
2a

p3AK̃Q~0!K̃F9 ~0!
T2z~2!lnS K̃Q~0!

4ui1

1

al
D , ~78!

and the specific heat will now be linearly dependent onT.
The specific heat anomaly noted previously for the bila
smectic is suppressed when interlayer coherence is e
lished, even though broken translational and orientatio
symmetry are still present.

3. The Wigner crystal state

Intralayer backscattering interactions take the form

Ôintra52u$exp@ i ~2kFx1F j
22F j

11F j 11
1 2F j 11

2 !#

3exp@ i ~2Q j
22Q j

11Q j 11
1 1Q j 11

2 !#1H.c.%,

~79!

where the oscillatory dependence on coordinate along
edge which we have exhibited explicitly follows from ou
earlier field operator definitions. This interaction domina
only at quite large layer separations. When it does it dri
the system to a state which has periodicity along the st
edges as well as across the stripes. Since, the wavele
along the stripe is 4p l 2/a, and since the periodicity alon
the direction perpendicular to the stripes isa, this state will
contain one electron per layer per two-dimensional unit c
We therefore identify this state as a bilayer Wigner crys
~WC! state.

D. Gap estimates for bilayer stripe states

The most important conclusion from the above calcu
tions is that interlayer Coulomb backscattering interactio
are always relevant in bilayer stripe states.The gapless bi-
layer stripe state can never be the true ground state.Since
11533
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the bare matrix elements associated with these interact
are often quite small, however, they will often be importa
only at low temperatures. As we explain below, we belie
that Coulomb interactions will most often drive the syste
either to an isotropic coherent state or to a smectic cohe
state. Both states will have a charge gap and an integer q
tum Hall effect. In this section we estimate the size of th
gap, and hence the temperature above which we expec
phenomenology of these states to crossover from quan
Hall behavior to stripe-state behavior.

Our estimates are built on bare matrix elements wh
evaluation we discuss below and on the scaling dimens
calculations discussed above. Given dimensionless in
layer and intralayer backscattering interactionsuinter and
uintra, we can estimate the gap by integrating the RG fl
equations to obtain

Eg
e/a~ue/a!5b21Eg

e/a~b22De/aue/a!, ~80!

where the superscripts and subscriptse/a are used for in-
ter-layer and intralayer interactions, respectively. Whe
the interactions become of order 1 on the renormalized
ergy scale (b22Du51), the energy gap should be rough
equal to the renormalized characteristic Coulomb energyEc ,
giving

Eg~u!5~U/Ec!
1/(22D)Ec , ~81!

where U5uEc is the microscopic high-energy-scale bac
scattering interaction strength. Then dependence of the ga
enters throughU, and through the scaling dimensions. Bo
effects conspire to strongly reduce the gap magnitude n
half filling. Taking Ec50.3e2/ l , approximately the maxi-
mum correlation energy per electron in a partially filled La
dau level, the resulting gaps forN52 and dgate550l , are
shown as a function of filling fraction and distance betwe
layers in Figs. 8–10. We notice that the gap resulting fr
the intralayer backscattering interaction is very small n
half filling, dropping below the range accessible to dilutio
fridges over most of the filling factor shown in this figur
On the other hand the gap resulting from the interlayer ba

FIG. 8. Estimated charge gap due to interlayer backscatte
interactions. These interactions are always relevant and lead, in
absence of interlayer tunneling, to states with spontaneous in
layer phase coherence.The energy scale in this figure is;e2/e,
which is ;kB50 K for a typical higher Landau-level experimen
The energies should be reduced to account for screening from i
Landau-level transitions that we have not included in our calcu
tions.
0-14
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QUANTUM THEORY OF BILAYER QUANTUM HALL SMECTICS PHYSICAL REVIEW B67, 115330 ~2003!
scattering interactions is not as small and remains reason
large out to large values of the interlayer separationd. Re-
calling that this interaction is proportional toR1

†L1L2
†R2, we

see that when this interaction is strong it favors interla
phase coherence along each stripe edge and that when
very strong it leads to condensation of the fieldQ j

11Q j
2 to a

value independent ofj. SinceQ j
l is by definition the phase

difference between left- and right-going fermion fields at t
( j ,l) stripe edge, and since the layer indices of right- a
left-going fermions is opposite atl51 andl52 stripe edges,
what is condensing when this interaction is strong is
phase difference between fermions in opposite layers
other words,the state that occurs in the strong intered
backscattering limit has spontaneous interlayer phase coh
ence. States with interlayer phase coherence and stripe o
can occur as local and even global minima of Hartree-F
energy functionals. Coupled with the irrelevance of int
layer backscattering interactions at small layer separation
the bilayer case, our analysis suggests that they can be
ground states of bilayer quantum Hall systems in h
Landau-levels.

For intralayer backscattering, the bare backscattering
teraction matrix element has both direct and exchange c
tributions, while interlayer backscattering has only a dir
contribution. An elementary calculation using the Land
gauge basis states leads to the following explicit express
that were used to obtain gap estimates.

Same-layer direct

k1l 25Y11Ql2, k2l 25Y22Ql2, ~82!

k3l 25Y1 , k4l 25Y2 , ~83!

and

^Y11Ql2,Y22Ql2uVuY1 ,Y2&

5
1

2p
e2a2n2/2l 2E dqxe

2qx
2l 2/2e2 iqxaVs

n~qx ,Q!,

~84!

FIG. 9. Estimated charge gap due to interlayer backscatte
interactions, for balanced bilayers~n51/2 in each layer!, as a func-
tion of layer separation. This dependence is extracted from Fi
and shown here for clarity.
11533
bly

r
t is

d

e
In

r-
er
k
-
in
the
h

n-
n-
t
u
ns

same-layer exchange

k2l 25Y11Ql2, k1l 25Y22Ql2, ~85!

k3l 25Y1 , k4l 25Y2 , ~86!

^Y22Ql2,Y11Ql2uVuY1 ,Y2&

5
1

2p
e2a2/2l 2E dqxe

2qx
2l 2/2e2 iqxanVs

n~qx ,a/ l 2!,

~87!

different-layer direct

k1l 25Y11Ql2, k2l 25Y1 , ~88!

k3l 25Y1 , k4l 25Y11Ql2, ~89!

^Y2 ,Y1uVuY1 ,Y2&5
1

2p
e2a2n2/2l 2E dqxe

2qx
2l 2/2VD

n ~qx ,Q!,

~90!

where the subscriptsS andD refer to two-dimensional Fou
rier transforms of the Coulomb interactions between el
trons in same and different layers. We see in Figs. 8–10
the importance of interlayer interactions diminishes rat
slowly with layer separation, leading to sizable integer qu
tum Hall gaps out to large layer separations.

Our results for the energy gaps are summarized in Fig
by a schematic phase diagram intended to represent
dicted experimental findings in very high mobility bilaye
systems at dilution refrigerator temperatures. This phase
gram was constructed from a recipe specified below. Diff
ent regions of the phase diagram as a function of layer se
ration d/ l and imbalance, characterized byn, are identified
as exhibiting the behavior of one of the following phase
The bilayer smectic state is a state with no integer quan
Hall effect, and anisotropic transport. The coherent bila
smectic state will have an integer quantum Hall effect b
will still have anisotropic transport at finite temperature. T
bilayer Wigner crystal state will have an integer quantu
Hall effect with an odd integer quantized Hall conductivit
We predict bilayer smectic state behavior when neither in

g

8

FIG. 10. Estimated charge gap that would result from intrala
backscattering interactions in the bilayer case. When the sca
dimension is larger than two, the gap vanishes. Intralayer inte
tions are more important than interlayer interactions only at v
large layer separations. The energy scale in this figure ise2/e,.
0-15
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layer nor intralayer backscattering interactions produce a
larger than 0.001e2/e,. We judge that a gap smaller than th
size would not produce observable effects in a typical d
tion fridge experiments. Interlayer backscattering inter
tions are much more effective than intralayer interactions
producing gaps, because they are strongly relevant. We
dict bilayer Wigner crystal behavior when the intralay
backscattering yields the largest gap and a gap that exc
our minimum value. These states are expected only when
charge imbalance is large or the layer separation is q
large. We predict bilayer coherent smectic states when in
layer backscattering produces the largest gap, provided a
that it exceeds our minimum value. Because the intrala
interactions are strongly relevant, observable gaps are

FIG. 11. Apparent phase diagram predicted for experime
studies of high mobility bilayer systems at dilution fridge tempe
tures. The various phases in this illustration have qualitatively
ferent transport properties. These calculations are for stripe stat
the N52 orbital Landau level (a55.8,), with weak remote-gate
screening (dgate550,). It is possible to explore the phase diagra
experimentally in a single sample, since both the top layer fill
factor n and the normalized interlayer separationd/,, are altered
when the charge imbalance and total electron density are cha
by using front and back gates in combination. For interlayer spac
d less than approximately 1.5, and any charge imbalance, we e
pect the bilayer to be in an isotropic interlayer phase coherent s
which has a large gap, integer quantum Hall effect and isotro
transport properties. Anisotropic states are expected only for m
widely spaced layers,d.1.5,. For strongly unbalanced layers (n
far from 1/2! we expect anisotropic WC states to appear becaus
intralayer backscattering interactions, just as they do in the sin
layer case. These states will exhibit a quantum Hall effect with
odd integer quantized Hall conductivity. Stripe~smectic metal!
states~SS! tend to occur when each layer has a filling factor close
n51/2, but as in the single-layer case these states are never th
ground states. Smectic metal states show anisotropic transpor
do not show an integer quantum Hall effect. Interlayer backsca
ing interactions always induce charge gaps but these are some
too small to be observable at a typical dilution fridge temperatu
which we take to be 0.001e2/e l . Regions with an estimated charg
gap larger than this value are labeled as SPC state regions i
phase diagram. Smectic phase-coherent states have an odd i
quantum Hall effect, and are expected to have transport prope
which are much more anisotropic than those of the anisotro
Wigner crystal states. This state should also exhibit giant interla
tunneling conductance anomalies at low-bias voltages.
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pected out to very large layer separations, an unexpe
result of our analysis. The interval of charge imbalan
where stripe~smectic metal! states are expected expan
only modestly with layer separation, butis sensitive to the
orbital indexN of the Landau-levels, since nodes in the o
bital wave functions can cause the bare backscattering m
element to vanish at particularN-dependent values ofn. The
details of boundaries separating stripe state and stripe-ph
coherent regions of this phase diagram will be quite differ
for different values ofN. As we have emphasized, our a
proach is reliable only when quantum fluctuations around
mean-field stripe state of the Hartree-Fock theory are we
For small layer separations the charge gaps start to bec
comparable to the underlying microscopic energy scales
this regime we expect that the ground state is actually
isotropic coherent bilayer state, but are unable to provid
reliable quantitative estimate of the layer separation at wh
this transition occurs.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have studied double-layer quantum H
systems at odd integer total filling fractions. Mean-fie
theory predicts that these systems can form striped gro
states. This observation serves as the starting point for
work. The Hilbert space in which the low-energy excite
states of mean-field bilayer stripe states reside may
mapped to those of an infinite set of coupled-Lutting
liquids, one for each stripe, allowing us to borrow bosoniz
tion techniques from the literature on one-dimensional el
tron systems. Quantum fluctuations around the mean-fi
stripe state are conveniently described in terms of the B
quantum fields that can be interpreted as representing ch
density and position fluctuations along each stripe edge.
interactions that control quantum fluctuations in the elect
ground state include both forward-scattering terms wh
contribute to quadratic interactions in the boson Hamilton
and weak, but more complicated backscattering terms.
coupled-Luttinger-liquid model obtained when the bac
scattering interactions are neglected is not of the stand
form, because both charge and position terms in the effec
Hamiltonian have a matrix character, and because the en
cost of fluctuations in which stripes move collectively
small when the stripes are not pinned. We find that the la
property leads to fermion spatial correlations whose deca
faster than any power law, to a specific heat that vanis
less quickly thanT for T→0, and to a tunneling density o
states that vanishes faster than any power law forE→0.
These properties of bilayer stripe states are similar to pr
erties established previously for single layers by Lopatniko
et al.and Barciet al.There is no limit in which bilayer stripe
quantum Hall states can be treated as a system of wea
coupled-Luttinger liquids.

We address the role played by intralayer and interla
backscattering interactions by evaluating their perturba
renormalization group scaling dimensions, following an a
proach two of us have taken previously for the case
single-layer stripe states.19 In the single-layer case we
reached the conclusion that these interactions are always
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evant, and that they are likely to drive the system to a Wig
crystal state with an energy gap. Estimates of the size of
gap based on bare backscattering matrix elements and
ing dimensions gave extremely small values, however, c
sistent with the observation of stripe-state phenomenolog
temperature scales that could be reached experimen
Since other researchers have reached different conclu
about the relevance of backscattering interactions in sin
layer systems, it is worthwhile in stating the conclusions t
we have reached in the present work to emphasize o
again the philosophy that underpins our calculations and
plain why we have considerable confidence in the conc
sions we reached previously.

Our identification of a low-energy Hilbert space in whic
it is possible to derive a simplified many-electron Ham
tonian is based on the experimental discovery of stripe st
and on evidence from experiment that the true ground sta
energetically very close to the mean-field theory grou
state. In our view the most convincing evidence in this
gard is the ability32 of the Hartree-Fock theory to accurate
predict the dependence of the stripe state orientation on
plane field strength, quantum well width, and other mic
scopic parameters. In single-layer systems, quantum fluc
tions are important only at low-energies and long-len
scales. When mean-field theory accurately describes the
croscopic length scale physics, we can use the elemen
excitations of the Hartree-Fock stripe state to identify
Hilbert space of low-energy excitations, and confidently u
bare interaction matrix elements to estimate forwa
scattering and backscattering interaction parameters. Th
sue of quantum stability of smectic states in single-layer s
tems has received interest partly, because it is closely rel
to the possible existence33,27,34 of freely sliding analogs of
the Kosterlitz-Thouless phase in stacked two-dimensio
XY models. Although it is certainly clear27 that the interact-
ing Luttinger-liquid fixed-point actions exist for which back
scattering interactions are irrelevant, this observation is
sufficient to decide on their relevance in the case of quan
Hall stripe states. Crudely speaking, irrelevance in the c
of repulsive interactions requires19,28 that the forward-
scattering interaction strength decay in a strongly nonmo
tonic way with edge separation. For single-layer syste
Fertig and collaborators35 have estimated forward-scatterin
amplitudes using an approach that goes beyond the w
coupling approximations we employ, doing so, however, i
partially ad hocmanner by fitting their model to collectiv
modes evaluated in a time-dependent Hartree-Fock app
mation. Their conclusion on the relevance of backscatte
interactions is opposite to ours. The source of the discr
ancy may be traced to the broken particle-hole symmetr
the half filled Landau-level Hartree-Fock approximati
Wigner crystal state that they use to extract strong-coup
interaction parameters.For a single-layer stripe state, back
scattering interactions can be irrelevant atn51/2 only if the
true ground state breaks particle-hole symmetry.Since stable
stripe states are most likely to occur atn51/2 and Landau-
level mixing ~neglected in these theories! also works agains
stripe-state stability, we believe that stripe states are ne
stable in single-layer quantum Hall systems. This raises
11533
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interesting question. Could there be another class of as
undetected phase transitions that occur in the quantum
regime either in the high-N stripe-state regime, or perhap
even for lowerN where stripe states do not occur? Brok
particle-hole symmetry atn52 would imply a finite-
temperature phase transition in the 2D Ising universa
class, for which the deviation of the Hall conductivity atn
51/2 from e2/2h could be taken as the order paramet
There is certainly no evidence for such a phase transitio
experiment, although it might be washed out by disorde36

even if it occurred. In any event, broken particle-hole sy
metry in the ground state would require that a phase tra
tion occur between the high-temperature stripe state
Hartree-Fock theory that does not have broken particle-h
symmetry and a low-temperature stripe state, in wh
particle-hole symmetry is broken and backscattering is ir
evant. In light of the evidence that fluctuation corrections
the Hartree-Fock ground state are weak, we believe that
simpler conclusion of our earlier work is more likely to b
correct, namely, that particle-hole symmetry is not brok
and that the smectic state is not stable.

As we have emphasized several times, the approach
have taken does not lead to completely standard coup
Luttinger-liquid properties, because some interaction para
eters vanish forqy→0. In particular, the decay properties o
fermion correlation functions at large distances, and of
tunneling density of states at small energies, are faster
power laws. This conclusion of our analysis follows from t
broken translational symmetry in the stripe state wh
makes its energy functional invariant under a simultane
translation of all stripes. Barciet al.,24 have argued that this
unusual property might signal a failure of the perturbat
renormalization group transformation we have used, wh
rescales spatial coordinates along the stripe edges but
across them. Our approach is dictated, we believe, by
nature of the mean-field state that is suggested by
Hartree-Fock theory and by experiment. When backsca
ing is neglected, the quadratic Hamiltonian of the syst
scales asqx

2 at all qy values. Because the chiral stripe edg
are discrete,uqyu is restricted to a Brillouin zone and there
no simple power-law dependence forqy that applies through-
out its range. The Luttinger-liquid action will therefore n
be invariant under any transformation that scales they coor-
dinate. We do not see any alternative to our perturbative
approach to account for the neglected backscattering te
In the present analysis of bilayer stripe states, we have fo
it convienent to group the stripe edges in pairs with oppo
chirality, and localized near the same planar position in
posite layers. In this language,the fluctuations of the pair
be separated into fluctuations of the position and the cha
density of a stripe pair. We have found that the char
density fluctuations are more violent and they are respons
for the unusual properties of these strongly couple
Luttinger liquids: the rapid decay of the correlation fun
tions, the strong suppression of the single-particle densit
states, and the enhancment of the specific heat at low t
peratures. The special features of long-wavelength sh
fluctuations in smectic systems, which lead to collect
modes with dispersionv2;qx

2@qy
21qx

4# for small qx andqy
0-17
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and, in particular, withv;qx
3 at qy50, do play a minor role

in the calculation of some correlation functions and the s
cific heat. These features are not captured by our renorm
ization scheme. However, it is intended only to shed lig
only on the stability of the smectic state. It obtains we
defined values for backscattering operator scaling dim
sions without this higher order in wave vector information
scattering amplitudes.

Our conclusions concerning the nature of the true gro
state could, in principle, be altered if it were possible
extend the perturbative RG analysis to higher order. Ind
this must happen when our analysis is applied to low ind
Landau levels, in which stripe states do not occur. We do
believe, however, that the unusual correlation functions
nal a greater likelihood of this eventuality than normally a
plies to lowest-order perturbative RG calculations. In pr
tice, the microscopic backscattering amplitudes trea
perturbatively are sufficiently weak in high Landau-leve
that our lowest-order calculations seem likely to descr
what happens down to the lowest-temperatures available
perimentally, at least when the Landau-levels are close
half-odd-integer filling factor per layer. Well away fromn
51/2, the Hartree-Fock theory suggests that the true gro
state is composed of bubbles rather than stripes, a tran
mation in the physics that our analysis does not recogin
In our view the approach we have taken should be trus
when experimental evidence suggests that the physics a
energies is described by the stripe states of the Hartree-F
theory.

We find here that the role of backscattering interaction
quite different in the bilayer case compared to the sing
layer case. At very large layer separations, the single-la
case in which stripe state physics occurs down to very
temperatures forn;1/2 is recovered. However, already fo
layer separations;10,, we find that interlayer backscatte
ing interactions which drive the system toward a state w
spontaneous interlayer phase coherence along the edge
come important and lead to a state with a substantial ch
gap. Our prediction of odd integer quantum Hall effects w
anisotropic finite-temperature transport coefficients in s
.
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prisingly widely separated bilayer systems is an import
result of this paper. This conclusion about the properties
spontaneously coherent stripe states in the absence of i
layer tunneling differs from that reached by Fertig and c
laborators who, incorrectly in our view, ignore interedge co
pling in considering the properties of coherent strip
Interestingly, intralayer backscattering interactions that dr
the system toward a Wigner crystal state are irrelevant in
regime.We conclude that stripe states are stable in bilay
quantum Hall systems, unlike the single-layer case, but h
an excitation gap unlike smectic metals.It seems likely that
for very small layer separations, backscattering interacti
will drive the system toward a uniform charge-density st
with interlayer coherence, although our perturbative a
proach is not able to offer any substantial guidance in de
ing this question.

The study of stripe-state physics in single-layer quant
Hall systems requires samples of exceptional quality, bey
that required for studies of fractional quantum Hall phys
with the lower index partially filled Landau-levels which ca
be studied at higher magnetic fields. It is still not possible
create bilayer quantum Hall systems with disorder that is
weak as that in single-layer quantum Hall systems. Nev
theless, recent samples appear to be of a quality that o
the physics of stripe states in bilayer systems up to exp
mental study. We expect on the basis of this work, and
previous theoretical work, that the physics will be rich, wi
much potential for surprises beyond the properties ant
pated here.
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