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We introduce and analyze a metallic phase of two-dimensi@2ll electrons, the roton Fermi liquidRFL),
which, in contrast to the Landau—Fermi liquid, supports both gapless fermionic and bosonic quasiparticle
excitations. The RFL is accessed using a reformulation of 2D electrons consisting of fermionic quasiparticles
and hc/2e vortices interacting with a mutual long-ranged statistical interaction. In the presence of a strong
vortex-antivortex(i.e., roton hopping term, the RFL phase emerges as an exotic yet eminently tractable
guantum ground state. The RFL phase exhibits a “Bose surface” of gapless roton excitations describing
transverse current fluctuations, has off-diagonal quasi-long-ranged order at zero temg&ra@iréut is not
superconducting, having zero superfluid density and no Meissner effect. The electrical resiatasbesas
T—0 with a power of temperaturéand frequency R(T)~T? (with y>1), independent of the impurity
concentration. The RFL phase also has a full Fermi surface of quasiparticle excitations just as in a Landau—
Fermi liquid. Electrons can, however, scatter anomalously from rotonic “current fluctuations” and “supercon-
ducting fluctuations.” Current fluctuations induced by the gapless rotons scatter anomalously only at “hot
spots” on the Fermi surfagqevith tangents parallel to the crystalline axeshile superconducting fluctuations
give rise to an anomalous lifetime over the entire Fermi suréa@eptnear the(incipient nodal pointg“cold
spots’). Fermionic quasiparticles dominate the Hall electrical transport. We also find three dominant instabili-
ties of the RFL phase: an instability to a conventional Fermi-liquid phase driven by vortex condensation, a
BCS-type instability toward fermion pairing, and(monpairing superconducting instability. Precisedy the
instability into the Fermi-liquid state, the exponensaturates the boungi=1, so thaRR(T) ~ T. Upon entering
the superconducting state the rotons are gapped out, and the anomalous quasiparticle scattering is strongly
suppressed. We discuss how the RFL phase might underlie the strange metallic state of the cuprates near
optimal doping, and outline a phenomenological picture to accommodate the underdoped pseudogap regime
and the overdoped Landau—Fermi-liquid phase.
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I. INTRODUCTION mensions is the existence of a “vison” excitation with a

Despite the appeal of spin-charge separation as an undfaP” " The vison is perhaps most simplest thought of within
pinning to superconductivity in the cuprates, there are seenill® vortex pairing picture, as the remnant of an unbound
ingly fatal obstacles with this approach. Ever since Andersingle vortex. If these ideas were to apply to the cuprates,
son’s initial suggestiohof a spinon Fermi surface in the one would expect this gap to be of order the pseudogap scale
normal state at optimal doping, there have been nagginlisT . Unfortunately for spin-charge separation advocates, ex-
questions about thehargesector of the theory. The concept periments designed to detect the vison and measure its
of the “holon,” a charge spinless boson, was introduced in gap®*have determined an unnaturally low upper bound of
the context of the doped spin liquid st&tand was presumed approximately 150 K for the vison gap in underdoped
to be responsible for the electrical conduction. In the sim-YBCO. Is this the death knell for spin-charge separation?
plest theoretical scenario, spin-charge separation occurs on In a very recent paper focusing on the effects of ring
electronic energy scales, thereby liberating the electron’eéxchange in simple models of bosons hopping on a two-
charge from its Fermi statistics. This idea has been activelgimensional2D) square latticé? we have identified a zero-
investigated over the past 15 years—see Ref. 3 for a reviewemperaturenormal fluid phase—re)named the “exciton
A pervasive challenge to this perspective, however, is thé&ose liquid”(EBL). In the EBL phase boson—antiboson pairs
difficulty of avoiding holon condensation and superconduc-i.e., an excitohare mobile, being carried by a set of gapless
tivity at inappropriately high temperatures. In addition, re- collective excitations, while single bosons cannot propagate.
cent theoretical work, which has elucidated the phenomenolfhe resulting quantum state is “almost an insulator,” with the
ogy of putative spin-charge separated states, has led tc conductivity vanishing as a power of temperatufd)
further conflicts with observations. One class of theories~T* with = 1. This is in contrast to the “strange metallic
have shown how spin-charge separation can emerge fromghase” in the optimally doped cuprates, which is “almost
superconducting phase by pairing and condensing vorticessuperconducting® with an extrapolated zero resistance at
Following this work, aZ, gauge theory formulation greatly T=0, as if it were a superconductor wiff,=0. This phe-
clarified the nature of fractionalization of electroniand nomenology suggests the need for a nonsuperconducting
othep quantum number3it has become clear that a neces- quantum phase in which the vortices are strongly immobi-
sary requirement for true spin-charge separation in two ditized at low temperatures.
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Motivated by this, we revisit th&, vortex-spinon field paper, it is possible to choose a gauge for one of tg) U
theory of interacting electrorfs)in which thehc/2e vortices ~ Chern—-Simons fields so that the spinon is recharged, and has
and the spinons have a long-ranged statistical interaction meinite overlap with a bare electrofin Appendix D we show
diated by twoZ, gauge fields. Rather than gapping out singlethat this gauge choice can effectively be made at the Hamil-
vortices while condensing paifehich leads to a spin-charge tonian level, and construct a Hamiltonian theory in terms of
separated insulatp? we would like to find a quantum phase vortices and fermionic operators which carry the electron
in which the vortices are gapless but nevertheless immobilecharge and have a finite overlap with a bare electron.

To this end, we add an additional “vortex-ring” term to the Initially, in Sec. Ill, we ignore the fermions entirely, and
earlier vortex-field theory. This term is effectively a kinetic focus on the bosonic charger vortex sector of the theory.
energy for vortex-antivortex pairs, that is, for rotons. To ac-A “Spin-wave” expansion valid in the presence of a large
cess the limit of strong roton hopping requires a further refoton-hopping term, leads to a simple theory which is
formulation of theZ, vortex-spinon field theory, replacing duadratic—exceptfor a single vortex-hopping term. Drop-
the Z, gauge fields by () gauge fields. Similar (1) ping this vortex-hopping term then leads to a soluble har-

o . : monic theory of the “roton-liquid{RL) phase. In addition to
vortex-fermion field theories have been explored in Refs. 14the gapless 2D plasmon, the RL phase is shown to support a

The _re_sulting 1) vortex-spinon forml_JIation Is tracta_lble in “Bose surface” of gapless roton excitations. We compute the
the limit of a very strong roton hopping, and describes theCooper, pair propagator in the RL phase, and show that it
“roton Fermi liquid” (RFL) phase, a metallic ground state gyhihits off-diagonal quasi-long-range ord@DQLRO) at
qualitatively different than Landau’s Fermi liquid phase.  zero temperature, butot a Meissner effect. The RL phase
Both theZ, vortex-spinon field theory developed in Refs. exhibits a high degree of “emergent” symmetry—the number
4,5 and our 1) vortex-fermion field theory, described in of vortices on every row and column of the 2D dual lattice is
Sec. Il below, are constructed in terms of operators WhiChasymptotically conserved at low energies. This symmetry
create the excitations of a conventional BCS superconductofmplies that the harmonic “fixed point” theory of the RL
the Bogoliubov quasiparticles, thec/2e vortices, and the phase has an infinite conductivity at any temperature.
collective plasmon mode. This choice of “basis,” however, |n Sec. IV we study the legitimacy of the approximations
does not presume that the system is necessarily supercofised to arrive at the harmonic RL theory, focusing first on
ducting at low temperatures, and indeed we intend to employhe neglected vortex hopping term. We show that for a range
such a formulation to describe nonsuperconducting statesf parameters the vortex hopping term is “irrelevant,” scaling
When superconductivitys present at low temperatures, the to zero at low energies whenever its associated scaling di-
formulation will also be employed to describe the “normal” mension satisfied, = 2. Nevertheless, at finite temperatures
state abovel. In these approaches, the Bogoliubov quasi-vortex hopping leads to dissipation, giving a resistance
particle is electrically neutralizetl, and the resulting which vanishes as a power law in temperat®@) ~T”
“spinon” excitation transported around amc/2e vortex  with y=2A,-3=1. A “plaquette duality” transformatidf
within an ordinary 2D BCS superconductor, acquire a Ber-ajlows us to next address the legitimacy of the initial spin-
ry's phase ofm. Within the Z, and U1) vortex-spinon for-  \yave expansion, used to obtain the harmonic RL theory. Of
mulations, one introduces spinon creation operatiffs  paramount importance is the presence of a term in the dual
where we letr denote the sites of a 2D square lattice andtheory which hops a “charged” quasiparticle excitation, a
with o the spin. Vortex creation operators are also intro-term not present in the harmonic fixed-point theory. We find
duced, conveniently represented in a “rotor” representatiofhat the “charge” hopping process is irrelevant over a range
as €, which live on the plaquettes of the 2D lattice. The of parameters—approximately the complement of the range
vortices are minimally coupled to a gauge field, living on thewhere vortex hopping was irrelevant—implying stability of
links of the dual lattice. The “flux” in the gauge field de- the RL phase. When relevant, on the other hand, the “charge”
scribes charge density fluctuations on the original latticequasiparticle condenses, leading to a superconducting ground
sites, and, for example, encapsulates the plasmon mode igtate.
side the superconducting phaSefinally, the long-ranged The fermions are reintroduced back into the theory in Sec.
statistical interaction between the spinons and vortices is iny, where we argue for the stability of the Bose surface of
corporated by introducing two Chern-Simods or U(1)  rotons and the 2D plasmon in the presence afjamless
gauge fields. The important new element in the present pap@ermi sea of fermionic quasiparticles. We denote the corre-
is the inclusion of a roton hopping term. As we shall see, th&ponding phase by the roton Fermi liquigFL). The gap-
RFL phase is readily accessed within thélyJformulation  |lessness of the fermions is somewhat surprising, and de-
when the magnitude of this roton hopping term is taken sigserves some comment. Indeed, it is in sharp contrast to the
nificantly larger than the single vortex hopping strength.  gapped nature of the quasiparticles in both the superconduct-
Here, we briefly summarize the main results establisheéhg phase andZ, fractionalized insulator, in which the
in the following sections. In Sec. Il thé, vortex-spinon field  spinons experience a BCS-like “pair field.” The cause of this
theory formulation of Ref. 5 is recast in terms of a lattice difference is the existence of gapless single vortex excita-
Hamiltonian. Via a sequence of exact unitary transformationsions (and fluctuationsin the RFL, which according to our
on the Hamiltonian, we demonstrate that it is possible taanalysis leads to the “irrelevance” of the fermion pairing
exchange th&, Chern-Simons gauge fields for thei(l)  term. Crudely, because the bosonic pair field exhibits only
counterparts. Within a Lagrangian representation of the re©D quasi-LRO rather than ODLRO, there is no average pair
sulting W(1) Hamiltonian which we employ throughout the field felt by the quasiparticles, and hence no gap. In this
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sense, the RFL is in fact closer to a Fermi-liquid state than itt is convenient to use a rotor representation for the chargons
is a superconductor. b=, blb,=n,, with [¢,n,/]=i8 .

Section VI is devoted to an analysis of the properties of TheZ, Hamiltonian is conveniently expressed in terms of
the RFL phase. We study both the longitudinal and Hall conthe Hamiltonian densityHz =2, Hz,, which in turn is de-
ductivities, and find that the dissipative electrical reSiStanCQ;omposed into a bosonic charge sector, a fermionic sector,
vf'injshes with a power of t'emperatLR('aT)~T7 with y=1,  and a gauge field ContributiOHZZ=Hc+Hf22+Hg:
similar to the behavior without fermions present. But the
fermions are found to dominate the Hall response, leading Ho= -t of(r)cogdj¢, = A(r)) + ug(n, -po)?, (1)
within a naive Drude treatment to an inverse Hall angle vary- i
ing as ®;'~1/(7£T”), with 7; the fermionic quasiparticle
transport lifetime. Due to the presence of the Bose surface of Hy= —t,> af(r) -K T #-«11 o) a(r + %)),
gapless rotons, electrons at finite energy experience i O(r +w) i
anomalous scatteringot present in a Landau—Fermi liquid. 2)
Specifically, quasiparticles scatter due to rotonic “current
fluctuations” and “superconducting fluctuations,” which con- 5 , N
tribute additively to the electron decay rate. The former gives ~ H*=~ E Uj(r)[tsfr+§<jofftf+ Aifr+f<,-o€mr’fra’ +H.c]
rise to especially strong electron scattering at “hot spots"— !
points on the Fermi surface with tangents parallel to the axes —to> 1. @AM+ H.c. (3)
of the square lattice. At such hot spots the associated electron T 7
decay rate varies with an anomalous power of energy?’? , o
for 1< y<2. The decay rate from superconducting fluctua-H€re,po=1-Xis the electroricharge density withx mea-
tions is present everywhere along the Fermi surfexgept  SU"NY deviations from half filling. Throughout the papér,

near “cold spots” at the incipient-wave nodal points. This with j=1,2 denotes aliscrete (forward) spatial lattice de-

contribution grows strongly with decreasing energy/"Vatives in thex, and x, directions, for exampleg;

temperature, although it has a smaller overall amplitude thaii %x®r =#r+x~¢;- We have included an externgbhysica)
the current fluctuation contribution. Upon entering a superYCtor potentiala;(r) in order to calculate electromagnetic
conducting state, the rotons—gapless within the RFL'€sSponse and to include applied fields. The Hamiltorfign -
phase—become gapped out, and all anomalous scattering§§scribes the dynamics of the chargons hopping with
strongly suppressed. strengthtc, wh|ch.are minimally coypled to théz gauge
Finally, in Sec. VIl we briefly discuss possible connec-field. The dynamics of the gauge fields is primarily deter-
tions of the present work to the cuprates. We suggest that tH®ined from7,, the first two terms of which constitute the
RFL phase might underlie the unusual behavior observe§tandard pure, gauge theory Hamiltonian. The “magnetic”
near optimal doping in the cuprates, in particular the “strang&ontribution involves the plaquette product
metal” normal state abové.. A scenario is outlined which _ ~ .
also incorporates the pseudogap regime and the conventional D(rl_{w)ol = o1(N)o(r +§)o3(r)oy(r +X), (4)
Fermi liquid behavior in the strongly overdoped limit.
which is theZ, analog of the lattice curl. Here we have
definedw=(1/2)(x+y), andr+w denotes the center of the
plaguette. We have also included an additional contribution

We are interested in electrons hopping on a 2D Squarg'i_linear ing*, which in the d_ual vortex represente_ltion beI(_)w
lattice, with electron creation operatoe§,. Here, the sites Will become a “roton” hopping term. In the fermion Hamil-
are denoted(in bold roman charactersas, r=x;k+x,y, tonianHg? we have defln'ed the antisymmetric matey,,
wherex,, x, are integersk, =X, X,=y are unit vectors along =io,,,, and takeA;=(-1)!A, which describes a nearest-
thex andy axes, andr=1,| denotes the two spin polariza- neighbor pair field withd-wave symmetry. Apart from the
tions of the electrorisuch a spin index will be distinguished first two terms familiar to aficionados of th&, gauge
from Pauli matricess* by the lack of any superscript theory® we have included a less exotic bare electron hopping
amplitudet.. We will primarily be interested in the limit that
the spinon hopping strength is significantly larger than the
electron hopping strengtiy> t..

We begin by formulating the electron problem in spin-  In most of the analysis of this paper, we will consider the
charge separated variables using Zhgauge theory Hamil-  limit of small spinon pairingA;— 0. This can be justified
tonian. We emphasize that this formulation does not implyeither by the assumptio; <t,, or by the irrelevance in the
that spin-charge separated excitations are deconfined, and irenormalization grougRG) sense, which will occur in some
deed this formulation correctly describes the low-energyegimes. If strictlyA; =0, both fermion(spinon number and
physics of conventional confined phases as well. boson charge are conserved, and in principle may be sepa-

The Z, gauge theory is most readily formulated in termsrately fixed. However, fol; — 0, even infinitesimal, this is
of a chargee singlet bosonic chargob,,b;r, a neutral spin- not the case. Instead the spinons vetjuilibrate in some
1/2 fermionic spinorf,,,f! , and an Ising gauge fiel®auli  time that diverges ad;— 0 but is otherwise finite, and the

ro?

matrix) o¥‘(r) residing on the link between sitesandr +X;. system will choose a unique fermion density to minimize its

Il. THE MODEL

A. Z, chargon-spinon formulation
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(free) energy. We will return to this point in the (W) formu- dipy = meE(r + W —K)). (10)
lation in Sec. Il C 1.

The full Hamiltonian above has a set of local gauge
symmetries, commuting with each of the local operators,

Here, as defined, due to the discreteness ohtheariables,
a;(r) takes on values that are integer multiplesmfwhile

. g(r) is a periodic variable with period 2. This transformation
crlz (- 1)ﬂr+nr]_[ o, (5) is faithful provided the constraint

+(r) R
wherenf=f' f._is the fermion density and thg, lattice V-8 = Ej 98(r=x;)=0 (mod 2 (1)

divergence is defined as

H)ax = 1‘J[ ol () al(r = %;). (6) (2= o0 = (12)

Physical states are required to be gauge invariant, which i imposed at every site of the dual lattice. Rewriting the
specified by the set of locabnstraints C}El. This is theZ, charge Hamiltonian, one has
analog of Gauss law for conventional electromagnetism.
The connection between tiZg gauge theory and a theory Ho=—to>, of(r)cod wejg(r +w - X)) - A(r)]
of interacting electrons, is most apparent in the limit tas i
taken to be much larger than all other couplings. In this limit

or, equivalently,

u
the electron creation operator is equivalent to the product of + ﬂ—;(éij(?iaj ~ mpo)°. (13
the chargon and spinon creation operatgs=b/f’ . Indeed,

whent,—« the Z, “electric” field becomes frozeny’~1, Conventionalhc/2e superconducting vortices are com-

and the gauge constraints then imply that on each site of thgosites of a visor{topological excitation ins?) and a half
lattice the sum of the chargon and spinon numhreﬂsnI is  vortex in ¢. To describe them, we perform a unitary trans-
even. Moreover, for largg, the chargon and spinon hopping formation to a new Hamiltoniahl,. with new constraint§?,
terms are strongly suppressed, and can be considered pertur- 2

batively. Upon integrating out the gauge fields, one will ﬁz =U'H,U, ca=utcau (14)
thereby generate an additional electron kinetic energy term 2 2

with amplitude of ordet.ts/t,. A brief discussion is given in  with the unitary operator

Appendix A. .
In what follows, we will study theZz gauge theory more U =ex '_2 a(r +w - %)[U,-Z(f) -1]
generally, away from the largg, limit. Of interest is the 257
electron Green’s function
o = [T LA () Jalrim, (15
Ge(r 1, 7570, 7) = = <TTCrla(Tl)C:20(72)>- (7) r
Co =Dy Ty, (8) C=(-¥o*=1, (16)

S +(r)
which is exact as,— o, but more generally should be suf- r

ficient to extract the universal low-energy and long-length- ~, To0

scale behavior of the electron Green’s function. We will also Cr=(-1) ITo=1. 17
be interested in correlation functions involving the Cooper 0o

pair ;:reagign and destruction operatol&f‘, B,, with B, Under this unitary transformation

:(br) =g 4%,

~ _ u
Ho= =12 cog (1) + AT +W)] + —3(€0,8 = mpo)?,
B. Z, Vortex-spinon formulation J

In what follows, it will prove particularly convenient to (18)

work with vortex degrees of freedom, rather than the chargon )

fields. To arrive at such a description, we use tti&)duality 7'3[9 =— TUE ?,-((r)COS{aj(r)] —-K(-1)VO0 4 Hrzz' (19)
transformatiort?® in which the dual variables sit naturally on i

the 2D dual lattice. We denote the sites of the 2D dual lattic
by sans serif characters asx;X+x,y+w, with w=(1/2)(X
+Vy) and integerx;,%,. The duality transformation itself de-
fines two conjugate gauge fieldga(r),g(r")]=igd
where M2 =~ kA (NOA(r + X)codaadn] +(x —y). (20)

Here we have defined(r)=oX(r+W), 34(r)=(r-W), and
have used Eq.17). The transformed roton hopping term be-
comes

The fermion Hamiltonian is almost unchanged in the dual

1
N, = —€;da(r —w), (9 . .
T vortex-spinon representation
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2

T Z = - A T ~ H 3 ’ ’ uU vyl
HfZ 2] sz(r)[tsfr+xjgfr¢r + AJfr+xjr7'6(r(r fr(r + HC] le = E[e}(r) + EjkAlk(r + W)]2 + ZUTO[Gij&ia}(r) - 7Tpo]2,
—te>, o/jz(r)ei[”gj(”‘Ai(”]fLij(rfw +H.c., (21) (29
j
the changes appearing only in the electron-hopyihg last Hy = ﬁz (,{,r_ 5)(,§]r, _ 5>V(r— r'), (30)
term). Here we have defined 2 o T T

e(r)=¢ger +w-X). (22

B i ij S j Hﬁzn =’H52+'H§§+'H,22- (31)

Notice that7e; couples “similar to a gauge field” to the ) )

spinons in the final electron term. Here Br:eij&iAj(r—v_v)_ is thg physical flux thrqugh the
To arrive at the finakZ, vortex-spinon theory, we split the Plaquette of the original lattice located at the sitef the

electric and magnetic fields into longitudinal and transversélual lattice. In the “plasmon” Hamiltoniark,, an implicit

parts a=dl+dl, e=d+e, with V-&=V.8=0, g UM Over=1.2 isunderstood and we have definedbarg

=€ aie}:O. For future purposes, we note that the Iongitudinalp asgno? ve Oﬁ' Yo etlﬁ'vol_—| Ue '(I:t_ Uely dTr ' r!E' eth N éurl)gr:[

part ofe, is related to the transverse partepfand vice versa, conducting phase, this Hamittonian describes the t>oldstone

mode—or sound mode—and can be readily diagonalized to

B -t — t/l s ; R
i.e.,e’(r)=¢;e"(r +w=X;). It is then convenient to solve the . ] . . X
con:J[raint f(I)Jr Jthe Iongitijdinal fields give the d|sperS|onu,2),(k)=ngj[2 sin(k;/2)]* with [kj| <
in the first Brillouin zone. Since the electron charge density

a(r)=- 36, (23) is given by(1/m)e;;da;, one can readily include long-ranged
: Coulomb interactions which will modify the plasmon at
- small k.

(V-&)(n =N, (24) In Hy above we have sé&=0, dropping henceforth the

‘ e e T i)
The fieldse* and N, have the interpretation of vortex cre- (€M SHn(K)=—KZ (-1, since it will not play an impor
ation and number operators, as can be seen by tracking tftignt role in the phases of interest. The vortex—vortex interac-
circulation defined from the original chargon phase variabldion €nergyV(r) is the Fourier transformation of the discrete

¢. One finds canonical commutation relations inverse Laplacian operatol~'(k)=K?(k), with K?(k)
=2;2(1-cosk;), and has the expected logarithmic behavior
[6,N,]=i8,. (25)  at large distance¥(r) ~ (1/2m)In(|r]). The vortex kinetic en-

) ) o ) ) ) ergy Hfﬁn is a sum of three contributions—a single vortex-
At this stageN; is a periodic variable with period 2, and popping term
—d)j 0r+a}(r) is constrained to be an integer multiple®flt is
convenient to soften the latter constraint, and in order to HfZ:—tvE Ef(r)cos(ajer—a}), (32
respect the uncertainty relation implied by E85), at the j
same time relax the periodicity d@f,. Formally, this is ac-

. _ _ . Z2 . .
complished by replacing a pair-vortex-hopping ternt{32 given in Eq.(27), and a

roton-hopping term

— ., cogme; + € A) — const. s (& + Al )2, HF2= = k031 0B(r +&)COF Ay 0, = dal(N] + (x = y),
j 27
(33
(26) ,
where we have defined
with u,~t.7%, and adding a term to the Hamiltonizimz2 o
~ ! ’ = = —1)erte oo o

—>H22+2r7‘f§5x with o= A elquo,l( Y 0r+e1x+e2y- 59

HZ2 =ty >, cog(24,0- Za}). (27)  Notice thatH,Zz hops two vortices, originally at sites of the
i dual lattice on opposite corners of an elementary square, to
o ) ] the other two sites. Equivalently, this term can be interpreted
The constra}mt is recovered for large, but we will c_on5|der as hopping a vortex—antivortex pair on neighboring sites
a renormalized theory in whicly, may be considered a (j e a4 vortex “dipole” or more simply &ton) one lattice
small perturbation. o o spacing in a direction perpendicular to the dipole. Such a
Itis convenient to regroup the longitudinal contribution to oton is a 2D analog of a 3D vortex ring, and in a Galilean
H along with the terms iHy and H%g into vortex “poten-  invariant superfluid'such as 4—Hevortex rings propagate

tial” and “kinetic” termsHy and HZ2. We thereby arrive at in precisely this manner. Henceforth we shall refer to this
the final form for theZ, vortex-spinon Hamiltonian process as a “roton hopping” process.
_ _ The aboveZ, vortex-spinon Hamiltonian must be supple-
Hz,= Hpi+ Hy + H2 + H{?, (28)  mented by the two gauge constraints, which from Eg),

_ (17), and (24) can be cast into an appealingly simple and
with the fermion Hamiltoniar2 given in Eq.(21) and with ~ symmetrical form
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~ f o0
Ccr=(-p]]o*=1, 35 ~ o
r ( ) lll_([r) ( ) br:UTer:H[(Tizemeidri], (40)
r
2= (- Ny =
G=CD g([r)"l 1. (36) now including a factor olf(r) for each link of the string.

) Again, the path independence is guaranteed by the gauge
These constraints correspond to an attachmen@Zofflux v . .
constraintC;=1. The final expression for the electron opera-

in o7 and ¢ to the vortex numbeparity and the spinon - . . )
number parity, respectively. Since the spinons are minimall&or within the dualizedZ, vortex-spinon field theory follows

coupled tocg? and the vortices ta™, this implies a sign simply as
change upon hopping a spinon around a vortex—or vice
versa. Indeed, if the partition function for the vortex-spinon % =U'c U=Dbf (41)
. . . 7 . . ro ro rro
Hamiltonian(without ;2 and witht,=0) is expressed as an
imaginary time path integral with th&, constraints in Egs. As discussed at length in Ref. 5, ti® vortex-spinon
(35 and (36) imposed, the resulting Euclidean action be-formulation is particularly well suited for accessing spin-
comes identical to Eq$109—(113) in Ref. 5. charge separated insulating states. Specifically, when pairs of
It is instructive to obtain explicit expressions for the elec-vortices hop around they “see” an average gauge flux of
tron and Cooper pair creation operators in terms of the duake;jdiaj=2mp,. Thus at half filling withp,=1, vortex pairs
ized vortex degrees of freedom. From E@).we can directly ~ effectively moving in zero flux and at large pair-hopping
obtain an expression for the Cooper pair destruction operatditrengtht,, —c will readily condense—driving the system
B,=e 2% as into an insulating state with a charge gap. In the simplifying
. limit with vanishingsinglevortex hopping strength, =0, all
B =] g2 ] 37 gtfr;ri]r?t \i/r:)réices are pairec{,—l)N:E, and tthz gauge con-
; q.(?_>6) reduces tdIHo?=1. The vison excitations
(plaguettes withll5o*=-1) are gapped out of the ground
where thell symbol here denotes a product along a semi-sstate, and the spinons, being minimally coupledstp can
infinite “directed” string running on the links of the original propagate as deconfined excitations. The charge sector sup-
lattice, originating atr and terminating at spatial infinity, ports gapped but deconfined charge-on excitations, which
with dr’ the unit vector from the point’ along the string to  can be viewed as topological defects in the pair-vortex con-
the next point. In terms o (rather than?,-), the product densate.
contains a factor of exp27ie;(r)] for each link of the dual But as we shall see below, to access the roton Fermi liquid
lattice that crosses the string, taking the positive/negativhase requires taking the strength of the roton hopping
sign for directed links crossing the string from right/left to strength large, and th&, formulation proves inadequate. To
left/right proceeding fronr to . We will use the above remedy this, we introduce in Sec. Il C below, a ne 1y
notation when possible to present precise analytic expregormulation of the vortex-spinon field theory. As we shall
sions for such strings. The path independence of the string @demonstrate, the (1) andZ, vortex-spinon formulations are
assured by the second gauge const@iml. Since the uni- formally equivalent, and by a sequence of unitary transfor-
tary transformatiorl in Eq. (15 commutes withe?™j, this ~ mations it is possible to pass from one representation to the
is the correct expression for the Cooper pair operator withirother. Care should be taken when considering operators
the Z, vortex-spinon theory. which transform nontrivially under the unitary operations re-
An expression for the electron operamy.=b,f,, in the lating different representations, however. In particular, some
dual vortex-spinon theory can be extracted by moreover reeperators local in one representation become nonlocal in the
expressing the “charge-on” operatgr=e™'¢r as a string, other. A third dual vortex formulation involving electron
. (rather than spingnoperators is briefly discussed below in
e Appendix D. The Hamiltonian in this “vortex-electron” for-
by = 1:[ e/ = Suort(F)Sy(r). (38) mulation is equivalent under a sequence of unitary transfor-
mations to both th&, and U1) vortex-spinon Hamiltonians.
For later convenience, we have here decomposed this expres- To establish these equivalences, it is convenient to
sion into a piece depending on the vortex configurationschoose a gauge” in th&, theory. As detailed in Appendix
through the longitudinal electric field} and a contribution B, it is possible to unitarily transform to a basis in which the
depending on the smooth part of the phasdahrough the Z, gauge fields are completely “slaved” to the vortex and
transverse fielcb}: spinon operators, and can be eliminated completely from the
. . theory. Specifically, in the chosen gauge xheomponents of
ot indtar! both ¢* and o are set to unity on every link of the lattice
Swon(r)=I1€74%, Sy(r) =11 (39 x(r)=¢2(r)=1. As we shall see in Sec. II C below, thé1y
' ' gauge fields in the (1) vortex-spinon formulation can be
But unlike the Cooper pair operator, the charge-on operatosimilarly enslaved. Remarkably one arrives at ttientical
transforms nontrivially under the unitary transformation in“enslaved” Hamiltonian in both cases, thereby establishing
Eq. (15): the formal equivalence between the two formulations.
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C. U(1) vortex-spinon formulation

In the W(1) formulation of the vortex-spinon field theory,
the Pauli matrices?, o which live asZ, gauge fields on the
links of the original and dual lattice, respectively, are effec-As we shall discuss below, once we restrict the Hilbert space
tively replaced by exponentials of two () gauge fields to gauge invariant states other choices for the “path” of the
Ef(r)—>exp[iaj(r)] and gf(r)ﬁexdigj(r)]. These two 1) string are formally equivalent. Physically, as we will see be-
gauge fields are canonically conjugate variables taken to salow explicitly, S represents the “transverse part’ of the
isfy phase factor of the Cooper pair field due to vortices/

antivortices in the sample.
Lai(r=%),B;(r")] =ime; Sr-r"), (42) In addition to global spin and charge conservation, the full
, . o _U(1) vortex-spinon Hamiltoniar{ above, has a number of
with r=r+w. For two “crossing I|.nksa th?ge commutation 4| gauge symmetries. To fully define the model we need
relations imply that the exponentia&s®, €7 anticommute  , specify the set of gauge invariant states that are allowed.

S, =1 e, (49)
r

with one anothere',e]_=0. Associated with each of the Chern—Simons fieldsnd 3, is
_ o a U(1) gauge symmetry. Specifically, the full Hamiltonian is
1. U(1) vortex-spinon Hamiltonian invariant undeiindependengauge transformations

The full Hamiltonian for the W1) vortex-spinon field
theory takes the same form as thg vortex-spinon Hamil-
tonian in Eq.(28),

e_i 6 N e‘iorei)(r,

ai(r) = (1) + 5, (50)
H:Hp|+HN+Hkin+Hfl (43) and
with H, andHy given as before in E¢(29). Only the vortex £, f, e,
kinetic terms and the fermion Hamiltonian are modified.
Once again the vortex kinetic energy terms are decomposed Bir) — Bi(r) + GiA, (51)

into single vortex, pair-vortex, and roton hopping processes:
for arbitrary real functions\, and y,, living on the original
Hyin=H, + Hay + H,. (44)  and dual lattices, respectively. The corresponding operators

. . . . . which transform the fields in this way are
Since the vortices in the (@) formulation are minimally

coupled to the (1) gauge fielda;(r), each of these three G, (xy) = e =N (1Ime;aif(r-w)] (52)
terms will be modified from theiZ, forms. Specifically, in

terms of the associated Hamiltonian densities we have and
' t
g (A ) = eIErAr[fru_frU.—(l/ﬂ')Eij(9ia/j(r—W):|. (53)
H,=~t,> cogd,0-a +aq)), (45) o
j=1,2 Both of these operators commute with the full Hamiltonian
H. The U(1) sector is specified by simply setting=G;=1
__ e oat _ for arbitrary y, and A,. From Egs.(52) and (53) this is
Ttz tzl,j;l‘,‘zcos(zaje 28+ 241, (46) equivalent to attachingr flux in the statistical gauge fields

and B to the spinons and vortices
— ¢t —
M, =- %COS{AXyG— ﬁx(a;— ay)] F (X y), 47) . Elj(ylaj(r . W) ?Tfrafrm Elj(?lﬁj(r w)=7N,. (54)
Notice that this is simply the (1) analog of theZ, flux
attachment in Eq9.35) and (36) and implies the same sign
change when a spinon is transported around a vortex or vice
versa. The only difference is that in thé1) formulation the
phase ofw is accumulated gradually when the spinon is
taken around the vortex, whereas the sign change irZihe
theory can occur when the spinon hops across a single link.
The formal equivalence of th&, and U1) formulations will
+ Aj[sr]zfr+f(jaeo'a’fro" +H.c]. (48)  pe established below.

, ) i As we shall see, the “smearing” of the accumulated
InTthe WU1) formulation, the(average density of spinons  phase change, makes the theory in th@)Jormulation emi-
(fofo)=((1/me;diay) [as follows from Eq.(S4)] is taken 10 nenily more tractable. The one notable complication is the
be equal to the (average charge density(1/m)€;dig;)- A square of the string operator, which in thé1V sector is a
new element, not present in t&g fermion Hamiltonian}4Z2  nontrivial function ofe?# along the string, rather than equal-
in Eq. (21), is the “string operatorsS,. The string operator is ing unity as in theZ, sector. However, it is worth emphasiz-
given as a product od# running along directed links of the ing that within the W1) sector of the theory, the value of the
original lattice from the site to spatial infinity: operatorO, = S? is independenbf the chosen path. Specifi-

with A, 6, defined in Eq.(34).
The Hamiltonian density for the fermions in thé1) for-
mulation is given by

Hy== 2 A0t + tel AN L, fr
j
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cally, consider twdunitary) string operators, denoted, , O, B[S 4z o€o Fror = B:r+>z.0r+>zo€m'0r(r'- (62)
with different paths running from the same siteff to spa- ! R
tial infinity. The “difference” between the two string opera-
tors 01102 is a product oe?# aroundclosed loopsBut due
to the U1) gauge constraint in Eq54), €;d,8;=7N, this . —y
product is an exponential of the total vorticiy, inside the By rex, = Orbrag s (63
closed loopg0;*0,=exp2miN,y). Since the vorticity is in-
teger, one deduces that the string operator is indeed path -
independentD;=0,. Tt i medr]
It will prove useful to obtain expressions for the electron- br = 1:[ € ' (64)
and Cooper pair creation operators within thélJUvortex-
spinon formulation. The Cooper pair operator has the samRgte that in the untransformed charge-on variables ozthe
form as in theZ, vortex-spinon formulapon, given gxphcnly gauge theory formulatioB:rm_:af(r)brbei_.
in Eq. (37), but the electron operator is modified in a non- . . e o
- L Recalling the discussion in Sec. Il A, it is still the case
trivial way. As we shall check explicitly below, the electron B . - . .
oo L . that for A;=0, when this pairing term is absent, the fermion
operator within the (1) formulation involves a string de- . . Lo
di both the dual “electric field I th number is conserved, and naively may be chosen arbitrarily.
pending on both the dual "electric hielcs, as well as the However, in the limitA; — 0, which we consider here, this
statistical gauge fielg;:

conservation is weakly violated, and only the total charge is
o conserved. The physics at work is clear from Egfl): for
Crop= me ei[ﬂgﬁﬂi]dr{, (55) nonvanishing);, quasiparticle pairs and boson pairs are in-
r terchanged, and the two charged fluids come to equilibrium.
Thus in what follows, we should choose to divide the charge
density amongst the fermions and bosons in such a way as to
minimize the total(free) energy. This division will therefore
shift as parameters of the Hamiltonian are changed. How it
moje(r = X)) = €;08,(r —w). (56) do_es so is crucial to the _ultimate low-energy physica_l prop-
erties of the system, as is clear from E{&5)—(47), which
This implies an equality between the longitudinal electricshow that the vortices experience an effective flux propor-

Here we have introduced a bond-Cooper-pair operator

with g(r) defined in Eq.(22). The path independence fol-
lows from the condition in Eq.24), together with the second
U(1) gauge constraint in Eq54) above:

field and the transverse statistical field tional to the difference of the total charge densigyda;/ m)
NN _ Con _ and the fermionic densityi;=€;;d,a;/ . As the fermion den-
Ba(r) = m&y(r + W), Ba(r) = —€y(r —w) (57) ity is varied, the effective flux seen by the vortices changes.
or Significantly, in the limitt,— o, vortex-hopping dominates
the energetics, and is minimized when the fermion density
B =-ne, (58)  equals the total charge density=¢;;da;/ . This naturally

_ recovers the Fermi liquid phadéppendix A by binding
and enables the electron destruction operator to be ree¥hargee firmly to each fermion, fully accommodating all the
pressed as electrical charge.

x In the rest of the paper we work exclusively within the
Cm:fmsd)(r)l‘[eiﬁ}drj’ (59) u(l) vortex-spiljon formulatior], which is particularly ;uit_-
r able for extracting the properties of the roton Fermi liquid.
) ) ) o ) Before embarking on that, we first establish the formal
with S,(r) defined in Eq(39). Similarly, the string operator  gquivalence between the two formulations by enslaving the
that enters into the (1) fermion HamiltoniarH; in Eq. (48),  y(1) gauge fields. As detailed in Appendix C, it is possible

can be written as to unitarily transform to a gauge With - &=V - ,és'a"e:O. In
= this gauge, botl; and g; are enslaved, being fully express-
S, :Svort(r)H gpdry (60) ible in terms of the spinon and vortex densit'misand N,,
r respectively. Moreover, the enslaved 1y Hamiltonian is
. found to beidentical to the enslavedZ, Hamiltonian ob-
fained in Appendix B, and the enslaved expressions for the
electron operators also coincide.
Having thereby established the equivalence between the
Z, and U1) vortex-spinon field theories, in the remainder of
She paper we choose to work exclusively within thél)JJ
formulation, employing the Hamiltoniakl defined in Eq.
(S 1P€so frofror = BleyorCroCror, (61) (43, together with the gauge constraints in Esg). In prac-
tice, it is far simpler to work within a Lagrangian formula-
with BI the Cooper pair creation operator. Fbwvave pair-  tion, where the gauge constraints can be imposed explicitly
ing, the pair field lives on links, and a similar identity obtains within a path integral, as detailed in the next subsection.

identity for the charge-on operator in the origir@l theory,

by =Syon(r)Sy(r) in Eq. (38) implies thatS/f, ,=b/c,,. Con-
sequently, spinon pairing terms in tix® gauge theory are
seen to be equivalent to the usual Bogoliubov—deGenn
form
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2. Lagrangian for U(1) vortex-spinon theory

In order to impose the (1) gauge constraints in E¢54)
on the Hilbert space of the full vortex-spinon Hamiltonkdn

PHYSICAL REVIEW B 71, 085119(2005

[ff:f:g-(ao_iBO)fro'-i-Hfi (71)

with H; given in Eq.(48). The two sectors are coupled to-
ether by the electric field in the electron-hopping term, and

we will pass to a Euclidean path integral representation of, the Chern—Simons acti - e with
the partition function. The associated Euclidean Lagrangiany Bes=/ ZrzrmLes

is readily obtained as a sum of three contributions

S= f dT[H + I—B + LcorJa (65)

with Lg involving the generalized coordinates and conjugate:O)

momenta
Lg= E
r=r+w

+ 2 [iej(naoai(n) + fl,dof o],

r=r+w

[iNraOHr - lIBi(r)eij Joctj(r +X;)
a

(66)

with dy=d/dr denoting an imaginary time derivative and
Leonis @ Lagrange multiplier term imposing the two indepen-

dent U1) gauge constraints

Leon=— > ao(n)le;aBi(r) - mN.]

Tr=r-w

+ 23 ponlegaan) - mil ). (67)

r=r+w

Here we have introduced two Chern—Simons scalar poten-

tials as Lagrange multipliers, denoteg(r) and By(r), which
live on the dual and original lattice sites respectively.
Upon introducing another scalar potentg(r) living on

Les= 7I_T:30(r)5ij Fay(r) + %Tﬁi(f)fij[ﬂjao(f +%)

(72)

Notice that in the absence of the electron hopping térm
, the electric fielde; enters quadratically in the action,

and can then be integrated out to gi&2§—>2a, with

= doaj(r +%))].

~ 1
ﬁa: I((yoaj - ajao)z + Ug(fij aiaj - 7Tp0)2. (73)

v
Finally, it is useful in some circumstances to treat the exter-
nal gauge field by making the shét— e +A;/, which re-
moves all coupling ofA; to the fermions, and furthermore
leavesA, linearly coupledto a charge “three-current” of the

usual formS,=/ =, L4, with
La=1A,(r)J,(r). (74)

HereJ, is the charge three-current given explicitly by

1
Jo(r) = :Teij&iaj(r)v (75)

Ji(r)= %Eij[&jao(f‘*f(i) = 30ay(r +%))1, (76)

with r=r+w. Notice that the three-current is conserved as
required: dgJo(r)+4a,J;(r =%,)=0. This form is useful for a

the sites of the dual lattice, and collecting together the lonvariety of calculations, particularly within the purely bosonic
gitudinal and transverse parts @fande;, the full Euclidean  RL model discussed in Secs. lll and IV, but less so in some
action can be compactly cast into a simple form. In order teRFL calculations best done in the electron gausee be-
make the vortex physics more explicit we choose to reintrojow), which is incompatible with the above shift ef

duce the vortex phase fiel@ within the Lagrangian formu-
lation. Specifically, we shifta, —a,+d,0 with ©=0,x,y,
and then integrate ovédioth g, and 6. In this way we arrive
at the final form for the full Euclidean Lagrangian:

S=&+ S+ st S

The charge sector actiof.=/, 2L, can be expressed in
terms of the Lagrangian density

(68)

1
L= Lo+ (30— a9+ ag)® + Liin, (69)
2ug
with the ug— 0 limit enslavingag=dy0+ g and
v
2u,

Uy [— A
Lq= _U<ei - ;l) - iey(doay — djao) +

5 (€j0i3; = mpo)°.

(70)
The vortex kinetic energy term8,;, are given explicitly by

Huin in Egs.(45)—(47) except withaj — a.
The fermion actiors;=[ .2, L; is given by

As can be seen from the equations of motion obtained
from 6L/5a=0 and 6L£/5B=0, the effect of the Chern-
Simons term is to attach flux in « (B) to the spinon(vor-
tex) world lines:

€00\ = 71'\]2, €ndBy = 1J,, (77

where JZ and J;, are the spinon and vortex three-currents.
Here u,v,A=0,X,y run over the three space-time coordi-
nates.

Finally we comment on the nature of the gauge symme-
tries of the full actionSin the Lagrangian representation. In
particular, associated with the three gauge figigsa,,, and
B, are threeéndependenspace-time gauge symmetries. Spe-
cifically, these are

6, — 6,+0,

a,(r) — a,r) +4,0,, (78)
b — O+ xr,

a, (1) — a, (1) = d,xr, (79
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—r- processes which enter if;,, we hereafter and in the rest of
the paper drop entirely the vortex pair hopping process in Eq.
Bu(t) = Bu(r) + A, (80) (46) putting t,,=0. For now we also set the single vortex

hopping processes to zero, putting 0 in Eq.(45), but will
with @, x,, and A, arbitrary functions of space and imagi- return to their effects in Sec. IV. Of interest here is the new
nary time. Because of the gauge invarianc&einder these  roton hopping proces£,="H, in Eq. (47), which can be
three distinct transformations, we are free to fix gaugeds-  conveniently recast in the form
pendentlyfor the three gauge fields.

In addition to these three gauge symmetries, the full La- _ 1 ~
grangian has twalobal symmetries. By construction, the L=~ xClajcog Agf z(axay+aya><) ' (83)
spinon Lagrangiaif conserves the total spin, and since the
electrical three-current in Eq§75) and (76) satisfies a con-  With
tinuity equation 4,J,=0, the total electrical char -
y & iy gQ C[é] = COiéijO”iaj/Z) . (84)

=2,Jy(r) is also conserved.

A particularly convenient gauge choice for the gauge fieldy;qre generally, with spinon fluctuations included one has

Bu1s C=cog€;d(aj—;)/2]. Clearly, C is maximal—and hence
B(r) = - mel(r), (81)  the rotonic kinetic energy most negative—fef;da;=0,
which is true on average for this choice of fermion density.
We next choose the gaudea=0, and integrate oved,
ith uy— 0). Having dropped the vortex hopping processes,
e remaining charge Lagrangian is then given by

with g defined in terms of the electric fielg(r) in Eq. (22).
Remarkably, in this gauge the electron creation operatO(W
equals the spinon creation operator. To see this, it is convey,
nient to shift oy— ag+a, and then integrate owd,, which
constrainsV X g==V &, or equivalentlygi=-me. Together Lo=Ly+ Ly, (85)
with the above gauge choice this implies thgEs -me, so )

that from Eq.(55) one hasc,,=f,,. We refer to this as the With

electron gauge. The possibility to choose a gauge within the 1

Lagrangian formulation of the (1) vortex-spinon theory ﬁplz—[(aoaj)2+vg(eijai5j)2], (86)
which maked, , an electron operator, suggests that it should 2u,

be possible to reformulate the vortex-spirtdamiltonianen-

tirely in terms of vortices and electrons. This is indeed the 1 5 1 ~

case, as we demonstrate briefly in Appendix D. Lo= z_uv(‘?iaog) ~ kiClaJeog Awy— 2(018, + 38y) |

lll. THE ROTON LIQUID (87)

We first focus on the bosonic charge sector of the theoryJo analyze the phases of this model it is instructive to rep-
entirely ignoring the fermions. Specifically, in the full Eu- resent the LagrangiarC, in Hamiltonian form by re-
clidean action in Eq(68) we retainonly the charge actio. introducing the vortex number operaﬂfslr:
and the coupling to the external electromagnetic fi&ldWwe
take the fermionic density as a nonfluctuating constant. As
discussed in Sec. Il C 1, this constant should be determined
by energetics. We assume here that the largest energy scales
in the problem are those of the vortices, i.e., u,, etc. In ~ 1 -
this case, one expects that vortex kinetic endrgyonic or B "rz C[é]COS(AxyHr‘ E(axaﬁ &yax)>- (89)
otherwise is minimized when the vortices experience zero '
average magnetic flux. We therefore choose the fermioniqgain V(r) is the Fourier transform of the discrete inverse
density equal to the total charge density, setting | aplacian operatorV(k)=1/K%k), with ICZ(k):EJ-Z(l
(1/7)€;dj=po and also puttingy,=0. Note that this choice —cosk)).
is essential to recovering an ordinary Fermi liquid st@&e  The first term in Eq(88) describes a logarithmically in-
Sec. IV and Appendix Aand hence is also natural in this teracting gas of(integer strengthvortices moving on the
sense. We remark that, while we will continue to assume theya| 2D square lattice. Whe =0, this model will undergo
average fermion density is equal tg in the bulk of this 5 finite-temperature Kosterlitz—Thouless transitfofiom a
paper, we will return to another possibility—and its physicalpigh-temperature vortex plasma into the low-temperature

H,= %2 NN,V (r =r7)

r,r’

regime of relevance—in the discussion section. _ vortex dielectric. This corresponds, of course, to a transition
It is also convenient to isolate the fluctuations in thejnto a superconducting phase. With=0 the Kosterlitz—
charge density by defining Thouless transition temperature will be set by the vortex in-
3= ajp 3, (82) teraction strengtlu,. But upon increasing the strength of the

roton-hopping, one expects the transition temperature to be
with background densityl/m)e; ﬁiajb:po. We can then take suppressed, and fat,>u, to be driven all the way to zero.
aj:a}’, so thata; - a;=3;. Of the three vortex kinetic energy Thus, at zero temperature, upon increasing the single dimen-
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T o(r,7) = koo (k, w,,), (92

K, wq

u, for fields O, O on the original and dual lattices, respectively.
Here integrationf, = [d%k/(2)? is taken over the Brillouin
zone Ky, [kl <7 and [, =JZ.. dw,/(2m) defines the inte-

s¢ RL gration measuréat zero temperatuydor the Matsubara fre-
/ quency w, At nonzero temperature, one simply replaces
. - - fwn—>ﬁ‘12wn, with w,=2n/B. It is moreover convenient to
' K define
FIG. 1. Schematic phase diagram of the Hamiltonian in the ICJ-(k) :—i(eiki -1), (93)

charge sectoH.=H,+H,, with zero vortex-hopping strengtt

=0. When the roton-hopping vanishes=0, H; describes a classi- so that upon Fourier transformation, the discrete derivatives
cal logarithmically interacting vortex gas, and has apehave intuitively,

superconductor-to-normal transition at a Kosterlitz-Thouless tem-

peratureTyr =~ u,. With increasing roton-hoppingTyr decreases d—e1iCi(K), (99
being driven to zero ak, ~u,, where there is a quantum phase ) )

transition from the superconductor into the Roton liquid phase. and of coursedy— —iw, as usual. We also introduce the

transverse gauge field
sionless ratiak, /u,, one expects a quantum phase transition i (k)
out of the superconducting phase and into a new plese g(k) = g ICJ(k)

Fig. D—the roton liquid.
with KC2(k) =2, |K;(k)|? and|KC;(k)[=2]sin(k;/ 2)].
To now diagonalizeCg,, it is convenient to define a real
two-component fieldy', via

a(k), (95

A. Harmonic theory and excitations

To access the properties of the roton liqUrL), we con-

[ B
sider «,>u,, where it is presumably valid to expand the a(k, o) = VU, Y (K, 0p), (96)
cosine terms in Eq(88) for small argument, givingH, —
1 e i \”uv
=Hyort: -+, with 0(K, wp) = %Yz(k,wn)- (97)
SRR NEATS "oy K =12
Hot= Evg NN V(= r') + gzr: CILEY Then the actiorSz =2, f,Lg is
1
K ~ 1 NG - = -1 K -
+ Erz Axyer - E(axay"' é)yax) . (89) SQL ka’wn Ya(k'wn)Gaﬁ(k’wn)Yﬁ( k’ wn)’ (98)
r
With this expansion, it is no longer legitimate to restrict with
to the interval[0, 27r]. Consistency then dictates that the ei- GOS .+ GZo% . + G'o™
. - af Oap Oap
genvalues of the vortex number operator no longer be re Gup R IVIE TR (99
stricted to integers, but allowed to take on any real value (@ + @) (@ + o)
from [-oc,e]. whereg is the usual vector of Pauli matrices. Here we have

The full roton-liquid Hamiltonianl:|R|_:I:|p,+l:|rot is qua-  defined
dratic and can be readily diagonalized. This is most conve-
nie_ntly done by returning to the Lagrangian framework, de- Q0= wﬁ+ }vflCz, (100)
scribed now by

1 1
L= ——1(968)% +05(&33)%] + =—(9,306)? KCWC, |2
RL ZUU[( 0 j) UO(EU i ]) ] 2UU( %0 ) GZZ—EUEIC2+U5| X 2y| , (101)
L 5 2 K
K ~ ~
+ Er|:Axy0_ 5(‘9xay + &yax):| ) (90) o
O S - U_i 2 2 Ky
with vO:\ﬂv§+K,uU/4. To proceed to describe the normal G'= 2(|’Cx| = 15,9 K2 (102
modes of this quadratic Lagrangian, we define Fourier trans-
forms with v;=vk,u, and K;=2 sink;/2). The poles inG,; at
o =iw,=twpy, T describe two types of collective modes.
o(r,7) = ke Ok, w,), (91 The first excitation is a plasmon with a renormalized dis-
K,on persion
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2o L 00, Aea=o3 5 5 will become nonzero in the presence of the magnetic field.

wy(K) = E[UJC + VoK +ogui(| K% - |’Cy| )] Since the vortex number operatorhhy has integer eigenval-
ues, it is not generally possible to shift away the apphed

(103 field. But in the roton liquid phaséat zero temperatuye

with velocities where the cosine term can be expanded to quadratic Gader
in H,,y), the vortex number operator has a continuous spectra,
_ 2, 2 o ) e o
Ve = Vg vi/4. (104 and one can formally eliminate th@ field by shifting N,

The plasmon frequency vanishes at the center of the Bril== N+ (1/m)B, for all r. Since the ground state energy of the
louin zonek =0, and in the absence of long-ranged CoulombRL phase is thus independent of the applgtield, both the
interactions disperses linearlpy,=vylk| at small wave- magnetization and the magnetic susceptibiligy dM/JB
vectorsk;—0. But the associated plasmon velocity(¢) ~ Vanish. Unlike in a superconductor, wheye —1/4mr, there
depends upon the ratlg/k,=tan(¢). In particular, along the 1S no Meissner effect in the roton liquigstrictly speaking,
zone diagonals with, = +k, the velocity is minimal and un- there is never a Melssne_r effect in _a_smgle two-d|men§|onal
affected by the vortices with,=7,, whereas it takes it's layer, but one can cor_15|der an infinite stack (_)f electrically
maximum valuev, along thek, or k, axes. dgqoupleo_l but magnetically coupled layers, which would ex-
This upward shift in the plasmon frequency is due to ahibit a Meissner effect when the layers are true 2D supercon-
“level repulsion” with the second collective mode—the gap-ductors, but not when they are RL&hysically, since the RL
less roton, which disperses as phase supports gapless roton excitations, the state cannot
screen out an applied magnetic field.

1
2 2122 [ A4 =22 2_ 2\2
wiolK) = Z[UJC \/U—’C +0gui(| G |’Cy| )] C. Off-diagonal quasi-long-range order

(105) We next consider the Cooper pair propagator in the roton
liquid
For |k/<1 and fixed k the roton dispersiowvanishes w;q )
~ VoK, with G(ry=ram = 75) =(By, (1B (7)), (108
7o with the Cooper pair destruction operat®y given in Eq.
Urot= — U1- (1006

(37) as an infinite product of exponentia&™® running

along the string. The propagator for tldewave pair field
Remarkably, the roton-liquid phase supports a gapless Bogg,

surface of roton excitations, along tkg=0 andk,=0 axes.

+

+X.
N XJ

These roton excitations descrigapless and transversair- Gﬁp(r,r) = <BO’;(i(O)B:]r+;<_(T)>, (109
rent fluctuations, which are obviously not present in a con- o _ o _
ventional bosonic superfluid. behaves similarly, and will be discussed at the end of this

With long-range Coulomb interactions present one wouldsubsection.
have simplyv3— v3(k) ~1/[k|, giving the familiar 2D plas-
mon dispersionwy, ~ v|k|. In addition, the roton velocity, _ _ _ _
becomes dependent updg. We note in passing that the We conS|de_r at first the equal time correlator, with .
roton velocity is in either case determined not only from the™72- The path independence of the string rests on the condi-
dynamics ofg but also from that of, as is evident from its tion (V-€)(r)=N,, with integer vortex number\,. Unfortu-
dependence upoiy/v,. It will be sometimes instructive in  nately, within the tractable harmonic approximation valid for
the following to consider the simple limitg~7y— e, in most quantities in the roton liquid phaésith cosine terms
which the spatial fluctuations @f vanish and the roton mode in the roton-hopping expanded to quadratic oydére con-
is entirely decoupled frora. dition of integer vortex number isot satisfied, and the re-
sults for G°F(r,0) depend upon the choice of string. We
believe that the correct behavior can be extracted by taking
We now employ the Gaussian theory to examine some othe string running along the straightest and “shortéssing
the electrical properties of the roton liquid phase. Considethe “city block” metric [x;—x,| +|y;~y,|) path between the
first the response of the RL phase to an applied magnetitwo pointsr, andr,. As we shall see, the Cooper pair propa-
field. In the presence of a magnetic fidid¢;0,A;, there is  gator calculated in this way has an anisotropic spatial power-
an additional term that one must add to the Lagrangianlaw decay. Preliminary calculations suggest that, once pertur-

1. Equal time correlator

B. No Meissner effect in roton liquid

which from Eq.(74) takes the form bative corrections to the harmonic approximatiosing the
] formalism established in Sec. IV B 2re taken into account
£A:|_aOB- (107) (even if.they are.irreleva_mt in the. renormalization group
T sens@ simple variations in the string do not modify the

_ CPy i-
If agis integrated out front; in Eq. (69) with this additional power-law decal); 0G*(r,0), but only change thenonuni
versa) prefactor!

term preser)t, the Ham!toniamg(Nr,@r) in Eq. (88) becomes We taker ;—r,=XX+Yy andr,=w, with integerX,Y=0.
simply, H/[N,-(1/m)B, 6,]. As expected, the vortex density Then, upon expressing the correlatg*"(X,Y,0) as an
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imaginary time path integral, one obtains an extra term in the 2'5001|ICXICy| + vfIICXICYIZIICZ
i jorb= i i r= 118
Euclidean actiorS=[.3,£ in Eq. (68), with | fk |7l 40, + ) (118
L= L+ignnIinm. (110 Next, we explicitly express the square of the longitudinal
The c-number “source” field is given as string
x-1 v-1 (2m)?| | Ky|? . 2 :
2 X 1_e—IkY2+ o~y 1—e_|k><X2
.7]([',7’) = 277(%7')|:5j22 5x,x’+15y,0_ 5112 5x,X5y,y’:| . |‘7|| K? [ ‘ /Cy | ’ | X | |
x'=0 y'=0
(111 +2 Re(1-e™X)(1- e—ikyY)}] . (119

The Fourier transform is simpl
Py The first two terms in Eq(119 are singular for smak,, k,

1 — g ikiX e k(1 - ekyY) respectively for very largeY, X, leading to a logarithmic

ic. ot i . dependence when inserted in E&18). The final term in Eq.

X y (119, by contrast, is singular only fdyoth k, k, small, and

(1120 this singularity, inserted into Eq118), is weak and inte-
grable. Extracting the logarithmic parts, one finds

~7j(k1wn) = 277|:5j2

Integrating out the electric field; in the gaugeﬁ-ézo and
decomposing the source fields into transverse and longitudi- [, ~ AdIn|X| +1In]Y)), (120
nal parts;=i€; K, 7/ K, J,=iK; i/ K, one obtains the result _

pantsi=ie ik, 7=k g I T for IX|,|Y|>1, with

on _ fon oy :
o _<eXp{ fkw [\’u_v(jtYl ) Ac=2m24[5 (121)
n U, u,
+ i(jt2 + ‘7,2)} , (113  Hence we have
2u, v
cp const.
where the Gaussian average ovelis to be taken with re- G- (X,Y,0) ~ W- (122
spect t0Sg, in Eq. (98). Performing this Gaussian integral,
one obtains This establishes that the roton-liquid phase has off-diagonal
guasilong-ranged ordé©ODQLRO) at zero temperature.
GEP(X,Y, 00 =exd- T - T, - I'y], (114
2. Unequal time correlator
where
We now consider the Cooper-pair propagator at unequal
|712(1 - 02Gyy) times. Unfortunately, it is difficult to produce a simple and
N :f - ou (115 general calculation for arbitrary spatial and time separations.
ken v In particular, clearly, by square symmetry, we expect
GCP(X,Y,7=GC"(Y,X, 7). Any choice of strings, however,
B |$|2(l—wﬁGlﬁ necessarily creates an asymmetry between the two spatial
I'= fkw 2u, : (116 girections. As we have been unable to resolve this dilemma,
n we instead focus on the simple case in which the pair is
created and annihilated on a single row of the lattice, i.e.,
_ T Jr 02G1, GCP(X,0,7). We will see that this correlator decays as a
=~ o u, ' (117) power law both in space and time.
" To proceed, we take,—r,=XX, r,=w, 7,=7, 7,=0, with
with G;; given in Eq.(99). X,Y=0. With this choice, the string in Fourier space be-

Investigation ofl'; andI';; shows that the corresponding COmes
integrands are nonsingular at smigllor k,, and hence go to ik Xt
finite limits for large |X| and/or large|Y|. They will thus Tk, o )=27T5.21_e—x"_ (123
affect only the amplitude of the Cooper pair propagator at e . Ky
large distances, and we henceforth neglect them. Singular
behavior at long distanceesarise froml[’}, in line with the
intuition that it is vortex fluctuations which disrupt the su-
perconducting phase, singg couples to the longitudinal
electric field, which througltV -é=N describes the vorticity. GP(X,0,7) ~ exd- 1:|] (124)
To evaluatd’|, we first perform the frequency integration to
obtain with

Repeating the same manipulations as above, one again
obtains (with negligible contributions from the transverse
part of the string
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~ Ao roton liquid. Indeed, neglecting the effects of vortex-hopping
I~ E'”(X + Uro?), (129 £ in Eq. (45), one can readily sef.g., from Eq(88)] that
the total vortex number on each row and each column of the
where for simplicity we have taken,y independent ok, 2D lattice is separately conserved. Thus it is impossible to
[for a nontrivialv(k,), the logarithm is simply averaged uni- set up a vortex flow, and hence by the Josephson relation to
formly over thek, axis|. This gives generate an electric field. Using the quadratic roton liquid
Lagrangianlg, , this expectation can be directly confirmed.
—. (126)  In particular, we can integrate oatl dynamical field(6,a)
(X2+Urot72)AC/2 from the Lagrangian leaving only the external gauge field
| A and thereby extract the polarization tensor and conduc-
tivity. This is most conveniently carried out in the gauge
eAO:O, and assumi_ng no magnetic-figlgh, — 3,A,=0. In this
case, one may write

const.
GC(X,O,T) -~

Note that this power-law form implies a power-law loca
tunneling density of states for Cooper paiks/e) ~ <.

We conjecture that the full correlator satisfies a simpl
scaling form with “z=1" scaling:

—iwpki(k)
const. X Y S, = oK) K oA (— K
GCP(X,Y,T)NW (@_,@_) (127 A fk,wn KCK) e Ya(k, wp)Aj(—K,— wp).

Combining our two calculations above implie§(y,0) (128
=DA P+ D142 Integrating out and 6 using the Green’s functio6,, in Eq.

3. ODOLRO of the d-wave pair field (99), one obtains, in the limitk|— 0, the effective action

We now briefly discuss the analogous ODQLRO of the
d-wave pair field described b@:"(r,7) in Eq. (109. This
quantity is plagued by the same string ambiguities as the
local Cooper-pair propagator, but to a larger degree, since with
involves two separate strings emanating from the two sites U kk
shared by the initial bond and ending at the two sites shared Hﬂ(k,wn) ~ =1 (130
by the final bond. Although we are confide®§™(r,7) has a K
power-law form consistent with ODQLRO, we are unable toas|k| — 0. The dependence ®1° on the orientation ok is
determine the precise nature of these correlations with religye to the fact that we have assunid0, which according
ability. For instance, consider the equal time pair field corto Faraday's law require§ X E=—gB=0. Hence we must
relator for two bonds along the axis Gy(r,0). For two  choosek parallel to the electric fieldh =E/(-iw). Thus we
bonds in the same row,=XX;, the strings can be chosen to extract anisotropic conductivity tensonﬁ:gijgo, with
line all in the same row, and since the logarithmic divergence
controlling the ODQLRO arises from smad} in this case, () = u, 1 (131)
the power-law exponent is unchanged, i.&5(X,0,0 T2
~ const. [X|%, with A, given above. We believe that, since . . o

characteristic of a system with no dissipation.

this choice of string is by far the most natural, this is prob- The ab lusion for th dratic RL L L
ably the correct result. If, instead, we choose to separate the '€ @POVE conclusion or the quadratic agrangian 1s,

two pair fields along a single columm=Y%,, then the two | owever, modif_ied by the vortex hopping terms. As we detail
strings involved cannot be taken entirely atop one anotherg' the r&ext se_cfuorll, the e:ects of a small \éortex hop_pm% terr1m
Different choices for the strings then give different results.A€P€Nd sensitively on the parameters that enter in the har-

For instance, making the symmetric choice of two paraIIeImoniC ‘heofy of the roton liquid—in particular the Qimen—
strings (each of strengthr rather than zr) gives a decay _5|onless ratlcuv//cr._There are two reglmes._Wh_en this ratio
exponent reduced from, to A/2 in the direction, while is larger than a critical value, vortex-hopping is “relevant

choosing the strings to overlap everywhere except the twgﬂd gr%ws hat Ior\]/v ehnergﬁs destﬁblhzmgh'iheh roton liquid
ends reproduces the previous exponaptwithout any re- phase. On the other hand, for small enoughy; the vortex-

duction. Since we are unable to reliably resolve this ambigu-hOppIng strength scales to zero and the roton liquid phase is

ity, we are unable to determine the exact form of dheave stabl_e. In this _Igtter case, the effects of vortex hopping_ on
pair field correlator. Instead, we will take the pragmatic ap_phy3|cal guantities can be treated perturbatively. In particu-

proach of approximating the correlations by those of the |O_Iar, we find that the conductivity in the roton-liquid diverges

cal pair field Gi‘j:P(r,T)zGCP(r,T). It should be understood &S & power law in the low-frequency and low-temperature

1
g- 1 f 1k, w0 A (K, o)A (- K, — ), (129
k,on

that the decay exponent, may need to be renormalized M
and/or the correlator corrected slightly to obtain detailed re-
sults for a specific model. IV. INSTABILITIES OF THE ROTON LIQUID
D- Conductivity in the harmonic theory We first consider the instabilities of the roton-liquid due to

Given the above result of ODQLRO, it is natural to ex- the presence of a vortex hopping term and examine the ef-
pect a very large and perhaps infinite conductivity in thefects of such processes on the electrical transport. In the
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subsequent subsection we consider the legitimacy of the haone into a Fermi-liquid phase. If we ignore fluctuations in the
monic expansion required to obtain the quadratic RL La-spinon density, or drop the spinons entirely retaining a theory
grangian. This is achieved by performing a plaquette dualityof Cooper pairs, the resulting phase is a charge ordered
transformatior2 where it is possible to address this issuebosonic insulator. The nature of the charge ordering will in
perturbatively. Again we find two regimes depending on thethis case depend sensitively on the commensurability of the
parameters in the quadratic roton liquid Lagrangian. A stablé0oper-pair densitypo/2) with the underlying square lat-
regime for smallu,/«, wherein the harmonic roton liquid tice. In the simplest commensurate case with one Cooper-
description is valid, and an instability toward a supercon-Pair per site(py=2), a featureless Mott insulating state ob-
ducting phase when this ratio is large. tains.

1. Electrical resistance in the roton-liquid

A. Vortex hopping WhenA,>2, on the other hand, vortex-hopping is “irrel-
evant,” and the effects of the hopping on physical quantities

. : : . i .2 _can be treated perturbatively. Physically, this occurs because
is mathematically nearly identical to the stability analysis ofa vortex sees any background charge as a magnetic field, and

the exciton Bose liquidEBL) of Ref. 12 with respect 10 5ccymylates an Aharonov—Bohm flux upon encircling such
boson hopping. Taking over those methods, we note that thg,arge There are enough charge fluctuations in the roton-

vortex hopping operator exhibitse-dimensional power-law liquid (it is nearly superconductingor A, > 2 to randomize

correlations this phase and render vortex-hopping incoherent over long
(N0 Ogridybiar(Dy = 8,0R(X,7), (132) t|mes/d|stanpes. Despite its |r.reIevance, we expect the
vortex-hopping to strongly modify the Gaussian result for
with a power law form at large space-time separations the conductivity by introducing dissipation. To understand
how this occurs, it is instructive to first consider the simple
%, (133 limit alluded to earlier in whichvg— . In this limit, the
(O + vp 7)™ longitudinal density fluctuations described Byat nonzero
wherer =xx+yy and c is a dimensionless constant. Here wave vector are ;uppressed, and the roton mode is purely
' captured by the field. The zero wave vectdibut nonzero

R(x,7) is essentially the single roton Green’s function, de-f Y pi tah . in this limit
scribing the space-time propagation of a roton with a dipolerequenc PIECE Ofa, NROWEVET, remains Nonzero in tis iimi

oriented along the axis. When calculated using the RL gid 20, R0 B LA B 1 i the roton fluctia:
Lagrangian, one finds NP '

tions and their associated dissipation induced by vortex-
1 Ju,v, hopping by calculating the effective action farA upon in-
- (134 tegrating outd to second order(the lowest nontrivial
contribution in t,. Starting then with the Lagrangiafig,
Simple calculations show that this power-law behavior is nott Lo+ £, expanding to second order in the vortex hopping
modified by including the fluctuating, field in the vortex actionS,, and integrating over thé field and the gauge field

The analysis of the stability of the RL to vortex-hopping

R(X,7) =

A

v ~
47 N K vy

hopping operatoff(r, 7) =el%#tayl, je., a(k #0) with vo— = gives
1 i
. . ff =2 = o 2)
* f = —(dpa;)c— —€: a: InA: — X + ,
(T (r, 0T (r+1,7)p ~ (X2+02°t 25, (139 S EW ] Luv( )7 = — e (aA(r = %) | + S5
ro

with only a change in the prefactor. Notice that the exponent (136

A, characterizing the power-law decay of the roton propagawhere

tor is inversely proportional to the analogous expongnin 2

Eq. (121) which gives the power law decay of the Cooper gjk - EUE f (co9;0~3),, COK,0 = )1 1),

pair propagator. Indeed, for the roton liquid Lagrangian stud- R

ied here we find the simple identitf,A.=1/2. But with (137)

inclusion of other terms in the original Hamiltonian such as

the spinons or further neighbor roton hopping terms, thisvhere(:--), indicates the average with respect to the Gauss-

equality will be modified. ian action for 6. From Eq. (132, one can carry out this
The arguments of Ref. 12 imply that the vortex-hoppingaverage to obtain

term is then relevant foA,<2. In this regime, the vortex- 5

hopping strength grows large when scaling to low energies, Sf) b > f R(x,7-7)

and one expects the vortices to condense at zero temperature. A 4 xJr ’

In this case it is legitimate to expand the cosine term in Eq.

(45) and one generates a “dual Meissner effect,” where the _x o

gauge fields that are minimally coupled to the vortices be- X COFaT 7 =M 3%, 7)] + (x = y)},

come massive. In the presence of spinons this leads to a mass (139)

term of the form£U~(tU/2)(aj—aj)2, which confines one

unit of electrical charge to each spinon presumably drivingwith the roton propagatdR(x, 7) given as in Eq(133), ex-
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cept with A,—u,/«,/(47) in this limit. Following the B |72
usual RPA strategy, we expa&P to quadratic order if to R(7)=c, sin(w1B) (148
obtain
2 The retarded roton propagator follows upon analytic continu-
2,/)\: ZU k R(wn)|aj(wn)|21 (139  ation, and can be most readily extracted by using the identity
@Wn - ) . ,8 .
~ — wt ~
with the definitionT (w,) =R(0)~R(w,) and IM Rrefw) = sinffol2) f_w dte R(T* 5" 't)'
R(wp) = R(ky=0,0,). (140 (149
Thek =0 limit is valid whenvy— 0. At low frequencies one Upon combining Eqs(147)—149 we thereby obtain a gen-
has eral expression for the finite temperature and frequédisy
1ty sipative resistance in the roton liquid phase:
_ |wn/Urot|
R(wy) =— Cy Tt (141 (2] T |7
Urot SINZ (1 +9) Rw,T)=c,——| — | RfwlaT), (150
2 Urot L Urot

with C,>0 a dimensionless constant. Here we have retainedith a universal crossover scaling function
explicitly the leading singular frequency dependence and

dropped analytic terms consisting of even powers@fThe R (X) = 27 1“(1 + vt lX) Zsinh(7X/2)
exponenty is defined as k4 r2+vy 2 X ’
y=2A,-3 (142 (159
and in the stable regime of the RL phases 1. interpolating between the dc resistance at finite temperature
Finally, upon integrating ou&;, one obtains a renormal- and theT=0 ac behavior. Sincéy(X—>O) is finite, the dc
ized electromagnetic response tensor resistance varies as a power law in temperaR{fie ~ T”. At
w2 Kk the boundary.of the RL phase with=1, a linear temperature
IT; = n z # (143 dependence is predicted. At large argument,
U (mwp)? + 2 R(w;) -
2 R,(X — o) = T X, (152
It is now straightforward to extract the conductivity by ana-
lytic continuation so that the resistance crosses over smoothly to the zero tem-
B perature formR(w,T=0) ~ |w|”.
o) = Mok — 0Ky = 0,00) (144) This RPA treatment has the appeal that it produces the
Wn iog—w+id natural physical result that the effect of the wéakelevan)

vortex-hopping is to generate a smadisistivity ~tf. For-

One obtains an appealing Drude form mally, it is correct forvg=o because the RPA reproduces the

1 exact perturbative result for the electromagnetic response
o(w) = e (145 tensor toO(t?) in this case. Unfortunately, when the spatial
—iw(7?lu,) + iTeret(w)/w fluctuations ofg; are not negligible, i.e., fos, <, even the

O(tf) term is not obtained correctly. More generally, the fluc-
with the retarded propagator obtained from analytic continutuations ofa; and ¢ must be treated on the same footing.
ation: Therefore in the general case we instead integratebotit

fields and obtain more directly the correctionlig to O(tf).

Rrefl) = R(“’")hwnﬁwﬂﬁ' (146) The calculations are described in Appendix E. This does not
yield the appealing “Drude” form in Eq145) but instead the

The nonanalytic frequency dependenceTdf{w) contrib- Taylor expansion of Eq143) to O(tﬁ),

utes to the dissipativdreal) part of the resistancéper

squarg R(w)=Reo Y(w), which is quadratic in the vortex- 202 Kk
hopping amplitude?: P ~ - 5 ZAU_1|wn|2A”_4#, (153
U tv
¢ 7 o] |7 | T o
Rlw)=——IMR(w)=C,-—5 | — | - (147  except with the scaling dimensid), given explicitly in Eq.
2w 2070:L Urot

(134), now fully renormalized by the plasmon fluctuations.
Note that at the point for which vortex-hopping is just mar- Provided the vortex-hopping is irrelevant, this is sufficient to
ginal, y=1, the resistance becomes linear in frequencyecover properly the low-frequency behavior of the resistiv-

Reo(w)~1/w. ity (147) to O(t%). In particular, formally inverting the per-
We can readily extend this result to finite temperatures, byurbative result forr(w, T) to O(t?), we infer the appropriate
using the finite temperature roton propagator dc dissipative resistandE(T)~t5T7, with y=2A,-3.
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B. “Charge hopping” value, and it is convenient to pass to a Lagrangian written

In this subsection we examine the legitimacy of the spinjust in terms of¢:
wave expansion employed in Sec. Il A to obtain the Gauss-
ian roton liquid Lagrangian. This is most readily achieved by 1 Ind )2 i ~ _ _
passing to a dual representation, which exchanges vortex opd-rL = Lpi+ Hy + 52 % + ZTE IoPrrw(d@y + dyay).
erators for new charge operators. This procedure is a quan- ' ' '
tum analog of the mapping from the classical XI¥ model (159
to a sine-Gordon representatithe latter suited to exam-
ine corrections to the low temperature spin wave expansiorin this dual form the roton liquid Lagrangian deperidsa-
As we shall find, there are parameter regimes where theratically) on the field ,, which lives on the sites of the
charge hopping terms are irrelevant and the RL phase igirect lattice, and thétransversg gauge-fielda(r) defined
stable. However, outside of these regimes, the charge quasin the links of the dual lattice.
particles become mobile at low energies and condense—
driving an instability into a conventional superconducting
phase. Throughout this subsection we will drop the vortex
hopping termH, focusing on the parameter regimes of the This dual formulation is ideal for studying the legitimacy

2. Superconducting instabilities

roton liquid phase where it is irrelevafite., A, > 2). of the spin-wave expansion needed to obtain the quadratic
) RL Lagrangian. The crucial effect of the spin-wave expan-
1. Plaquette duality sion was in softening the integer constraint on the eigenval-

To this end we now employ the plaquette duality transfor-ues of¢/ r, allowing ¢ to take on all real values ibg, . It is,
mation, originally introduced in Ref. 12 in the context of the however, possible to mimic the effects of this constraint by
exciton-Bose-liquid phase. Consider the charge sector of thedding a potential term thg, of the form
theory, with HamiltonianH.=Hy+H,+H,. This Hamil-
tonian is a function of the vortex phase field and number __ ~
operatorsé,, N, (living on the sites of the dual lattigeas b= )\Er Cos2¢h)- (160
well as the (transversg gauge fielda} and it's conjugate

transverse electric-field]. The plaquette duality exchanges whenx —  the integer constraint is enforced, whereas the
6 andN, for a new set of canonically conjugate fields which r|_ phase corresponds 1=0. Stability of the RL phase can
live on the sites of the original 2D square lattice. The tWope studied by treating as asmall perturbation to the qua-
new fields, denoted, and™,, are defined via the relations dratic RL Lagrangian. But as discussed in Ref. 12, one
should also consider other perturbationd tp which might

TNy = Ay, (154 pe even more relevant. Generally, one can add any local
_ operator involvinge, at a set of nearby spatial points which
N = Ay (159 is 27 periodic in 2p, and satisfies all the discrete lattice

symmetries(i.e., translations, rotations, and pajitfor ex-
ample, terms of the form c(ﬁ?ﬁ) for arbitrary integell are
[ﬁ,,?&,,] =061, (156) allowed, although these will generically become less relevant
) ) with increasingl. As we shall see, for our “minimal” model
they cannot strictly be interpreted as phase and number opst the RL phase, the most relevant perturbation is of the form
erators since the eigenvaluesg@f=mm for arbitrary integer

Although Ebr andh, are conjugate fields satisfying

m, whereasr, is 2 periodic. It is important thai, and, Li=-t.> > cod2d ¢,). (161)
not be confused with the charge-on phase and number opera- roj=1.2 .
tors introduced in Sec. Il which were denoted

Before studying the perturbative stability to such opera-
tors, we try to get some physical intuition for the meaning of
the operatore'?. From the commutation relations in Eq.
(156), the operatoe'® increasen, by 1, and creates some

- 1 - sort of quasiparticle excitation on the spatial sit&Since the
Hy=Hy = 12 cOg iy, = 5@+ @) |, (1570 perturbation in Eq(160 changes the numb@; by +2, the
' total number of these quasiparticlég,==, T, is not con-

¢, ,n,—withoutthe tildes. As we discuss beloar does in
fact create a chargelike excitation, but itist the charge-on.

Under the change of variabléi;g(a,N)—>H¢(c7>,T1),

with the definition served, but the complex char@g=¢€ ™t is conserved. The
perturbation in Eq(161) can then be interpreted as a charge
H = Uy S A b A bV =T, (158 hopping process. To get some feel for the nature of the qua-
U T siparticle, it is instructive to introduce an external magnetic

o _ o field B=¢;d,A;, which enters intdd, above via the substitu-
In the roton liquid phase the cosine term lify, is ex-  tion Ayybr — Ay —Bysy- A spatially uniform fieldB can
panded to quadratic order, aht}+Hy— Hg,. To be consis-  readily be removed from the Gaussian RL Lagrangian by
tent, bothn and ¢ must then be allowed to take on any real letting
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b, — &, +Bxy. (162) of the Cooper pgir propagator in E@.21), so that for small_
A. the roton liquid phase is already almost superconducting.
But thenB appears in the cosine perturbations, in “almost” aMoreover, when the vortex core energy greatly exceeds the
minimal coupling form. For example, one has the combinaroton hopping strengthi, > «,, the HamiltonianH, in Eq.
tion aX:b—ZAX where we have chosen the gauje=-By/2  (88) is deep within its superconducting phase. This limit pre-

and A,=Bx/2, suggesting that¢ carries the Cooper pair cisely corresponds ta.<1, the limit where the charge hop-

charge. But they derivative enters a9y55+2Ay—with the ping is strongly relevant. More directly, when the charge-

wrong sign. Thus, this quasiparticle isot a conventional hopping strength; grows large, the fields gets trapped at

electrically charged particle. Nevertheless, as we show beéhe minimum of the cosine potentials in E¢e60 and
low, condensation of the quasiparticle wits®) 0 does (161), and it is legitimate to expand the cosine potentials to

drive the RL phase into a superconducting state. quadratic order. Once ma_ssivg, the expectation véd®
To evaluate the relevance of the various perturbations i 0—and the charge quasiparticle has condensed. Moreover,
the RL phase, requires diagonalizing the associated actiosetting¢=0 in Eq.(161) in the presence of an applied mag-

Ski- In momentum space one has netic field will generate a term of the form
= Dosigi2. Pa2ap 4 b a(k )3~ k Lo~ SR (170
Su= | | B AP+ Daak Bk, | = SR

/2
(163 indicative of a Meissner response.

In the resulting superconducting phase, the rotons—

1 { 5 uvKr|KxKy|21 gapless in the RL phase—become gapped. This follows upon

Dy = | ©n K2 (164) expanding the cosine term in EGL60) L,=2\¢4% which
' leaves the roton liquid Lagrangian quadratic, and allow one
to readily extract the modified roton dispersion. kgt 0 at

1 . T
Daa= —[w? +72K2], (165  fixedk,, this gives
oK) = \“”vrzotk>2< + mrzot' (177)
w ICZ - ’CZ eik'W H “ TR _ N .
Day = (K5 = KY) , (166) with the “roton mass gap” given by,,=27kA. Since the

27K productAcAU:%, it is not possible to have both the vortex-

~  hopping and the charge-hopping terms simultaneously irrel-
with k,=(k , w,). Evaluation of the two-point function & * evgﬁt_ J J PRing Y

then gives

12 (7) n=i2ho(0 -2A,
(2200 ~ & ol T, (167) V. THE ROTON FERMI LIQUID PHASE

with scaling dimension We now put the fermions back into the description of the
roton-liquid. We first consider setting the explicit pairing

(168 term in the fermion Hamiltoniari; in Eq. (48) to zero: A

Uy U+ =0. As in Sec. Ill, we will assume for the most péastith the

We note in passing that this power-law form of the chargeexception of Sec. VIII B 3 in the discussipthat the equi-

operator(e?#) two-point function in Eq.(167) differs from ~ librium fermion density is equal to the charge density
ex(—In? 7) behavior of the corresponding object in the exci- This choice naturally minimizes Coulomb energy and vortex

ton Bose liquid of Ref. 12, due to the long-range Iogarithmickine’[iC energy, as discussed therein. As we shall see, in Fhis
interactions between vortices. Stability of the RL phase re}/_vay dweh wil ag:ve "’:t aFdesc_r:ptlo_(rj\ of ﬁ. nr:)vel nont—Ferm|—
quiresA.>1. Evaluation of the two-point function for the Iquid phase—the roton mermi Iiquid—which SUpports a gap-

Kr 50

A.=2m

. o g less Fermi surface of quasiparticles coexisting with a gapless
charge hopping operater'y” gives set of roton modes. We then reintroduce a nonzero pairing
8o term, and study the perturbative effectsAaf\We argue that,

2 2 AL (169  when the scaling exponent that describes the decay of the
(X% + i) e . . U

off-diagonal order in the roton liquid is large enougdh

with r =xX+yy, and with thesamescaling dimension\; as >AZ>3/2, the explicit pairing term is perturbatively irrel-
above. However, since this two-point function decays algeevant, and the RFL phase with a full gapless Fermi surface is
braically in two(rather than onespace-time dimensions, the stable.
perturbationt, is relevant forA.< 2. Even in the absence of the explicit pairing term—which

When A< 2, the charge hopping process will grow at couples the fermionic and vortex degrees of freedom in a
low energies, and will destabilize the roton liquid phase. Nothighly nonlinear manner—the rotons and quasiparticles in-
surprisingly, the resulting quantum ground state is supercorteract through (threejcurrent—current interactions “medi-
ducting. Indeed, the exponefit in Eq. (168 above is in fact ~ated” by theg, andeg, fields. Although these interactions are
identicalto the exponent characterizing the power law decayong ranged for individual vortices, they are not for rotons,

(2 (DgriZayhoOy
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which carry no net vorticity. Moreover, due to phase spaceoton/plasmon portion of the Hamiltonian. Iti®t correct if
restrictions we find that the residual short-ranged interactionthis canonical coupling is removed by shiftieg which is
asymptotically decouple at low energies. The resulting RFLthe procedure needed to generate Ayd, coupling in Eq.
phase supports both gapless charge and spin excitations witfi4). If the latter form of the Lagrangian is used, the vector
no broken spatial or internal symmetries, just as in a convenpotential should be removed from the electron hopping term.
tional Fermi liquid. But, due to the vortex sector of the Either choice is correct if used consistently.
theory, the RFL phase is demonstrably a non-Fermi liquid, The full Lagrangian that we then use to access the RFL
with a gapless Bose surface of rotons and with ODQLRO irphase is given by
the Cooper pair field but no Meissner effesee below
Moreover, the quasiparticles at the RFL Fermi surface are
sharp (in the sense of the electron spectral functjobut
electrical currents are carried by tfepuasjcondensate. Even
with impurities present the resistivity vanishes as a poweMith the definition,
law of temperature in the RFL. The power law exponent
varies continuously, but is greater than or equal to one. For 1
y<1, the zero temperature RFL phase is unstable to a quan- Lo= 5(509‘ ag + ap)’. (176)
tum confinement transition, which presumably drives the 0
system into a conventional Fermi liquid phase. ) . ] i

To describe the RFL, we start with the general Lagrangiart Ne Interaction terms between the fermions and the fig|ds
(68—(71), and first make the same approximation as in theande; in L will be treated in the random phase approxima-
RL of expanding the roton-hopping term to quadratic orderfion. Doing so, one arrives at a tractable, if horrendously
That is, to leading ordelﬁkinzc?, with alg_ebralcally compl_lcated _Lagranglan describing the_RFL,
which is quadratic in the fields, a,, €, a,, and 8,. This
makes calculations of nearly any physical quantity possible
in the RFL.

Before turning to these properties, we veriin the re-
+ ﬁ[fijﬂi(aj _ aj)]z_ (172) main_der of this se(_:tidrthe above claims _t_hat the couplin_g of_

8 fermions and vortices does not destabilize the RFL—i.e., it
neither modifies the form of the low-energy roton excitations

As before for the RL, this approximation will be corrected L L
; . __ at the Bose surface nor the fermionic quasiparticles at the
perturbatively by charge and vortex hopping terms, which

will not be expanded. Fermi surface.
Turning to the fermionic sector, we assume for the mo-

LreL=La+ Lo+ L2+ Los+ L7+ LT, (179

0=\ 50— Laa, - ay + @ ant |
r— o | z{ax(ay a’y) ‘9y(ax a)}

ment that the power-law decapDQLRO) of the Cooper- A. Quasiparticle scattering by rotons

pair field is sufficiently rapid that the pair field terdy) can ) . .

be neglected. We argue later this is correct fqr>A" In this subsection, we show that the coupling of the elec-
: C

>3/2. This gives a nonanomalous fermionic Lagrange dengronic_ quasiparticles to the vor'gicgs does not destroy the
sity L, which we further presume is well described by FermiFérmi surface. To do so, we will integrate out the vortex
liquid theory, again checking the correctness of this assumpc_iegrees of freedom to arrive at effective interactions amongst

tion perturbatively in the couplings t8, ande. Hence we the quasiparticles. This procedure is somewhat gauge depen-
replaceﬁfz£?+£f1, with (working for# simplicity at zero dent. To provide a useful framework for the calculation of

temperaturg the electron spectral furjction in the following section, we
will choose the gaug¥ - =ej;d,g;, in which thef, ' op-
E?sza(ao—,u)fm—tz f,li_gfw, (173 erators create fermionic quasiparticles with nonvanishing
j : overlap with the bare electrons, without the need for any
additional string operators. This is essentially equivalent to
L= =iByDf! £, -1, tB;(r) + td mey(r) +Aj(r)]f:+;(_gfm working in the electron formulation of Appendix D.
j ! Since this gauge choice explicitly involves;dg;, we
¢ i must employ a path integral representation in which the
+ 20| 28,12+ Z[Bi(r) + mey(r) + AN | s oF o transverse component of the electric figfldhas not been
L2 2 : integrated out. It is further convenient to fix the two remain-
(174 ing gauge choices according Yod= ap=0, and to integrate
out the fielday in theuy— 0 limit. The full RFL Lagrangian

Note that, to leading order, the fermionic dispersion is CONensity (before imposing the constrail;ﬁ;:we?) then takes
trolled by the sum of the two hopping amplitudests+te  he form )

Here we have included explicitly the physical external vector

potential Aj(r) in the electron hopping term. Some care 0 1

needs to be taken when treatiRg(r). The above form is LrrL= Lyt L5(B) + L(BL), (177
correct provided\;(r) is also coupled int@; in the quadratic

Hamiltonian in the canonical fashione;— me;+A;, in the  with
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Uy o ootn v3 . 5 this is the result to zeroth order ip=0, and we have the
Lyort= E(ej) +iejdoay + I(fij dia; = mp) definitions
. 2472 4
| U]_’C 1]
e a(diBo= doBy) + Lo(aj-a), (178 Ugo= 5| wn + — w2+ Zl|lCXle|2], (184)
where
U= = UA[TRIKCIC, 2 + w3 P, (185
1 K
Loa;) = (33, 0)* + — (& dix;)?
H(a']) 2UU( 0%i ) 8 (elj IaJ) uyy: _vi[’ﬁg|lcxlcy|2+vz|lcy|2wﬁ], (186)
Ky 1 2
+ > A,y 0+ E(&Xay +dya) | (179 Uyy = — UCZ)ICXICywﬁ, (187
To assess the perturbative effects of the vortices upon the Ugj = - V2K i wp[ 202 + v3(K? - /C,-Z)]- (188

electronic quasiparticles, we wish to integrate out the vorti-
ces perturbatively in the coupling of the gauge-fig|gdto the  |n the dc limit, these interactions simplify considerably, and
fermions. For this we require the correlation functions of thepne obtains the simple results

B, fields (neglecting the couplings insidg and in particular

to lowest order justg,,)). To obtain the latter, we add a UK. . = 0) = K, vo 2 (189
source term to the Lagrangian 003 %n 4 \3,) "
/:vort_) Lvort+ i()\'OiBO + 7: ' ,é) (180) 77,2
. - UK w,=0) =~ —8;, (190
Here we have included an extra factoriofith 3, to com- ! u,

pensate for the factor afpresent in the coupling ¢, to the ©
fermion density. Upon fully integrating out tte, 6, a', B,,, and Uy (k, w,=0)=0. _ _

a; fields, the coefficient ok ,\, in the effective action will Sincei 3, and 3 couple to the fermion density and current,
give (half) the desired correlator. We perform the integration'espectivelySe« mediates an effective frequency and wave-
in two stages. First, imposing the constrajit=m€', we vector-dependent interaction between fermions. Since, in the
eliminatee’, shift a;— a;(d,6-a)), and integrate out the, ~ dc limit, ~Ugg(k,,=0) and U’ (k,w,=0) are finite and
al, and, fields. One obtainscvortezvon(a- \.), with wave-vector in(_jependenfc, they d_escribe Idoai—sit_e) repul-

] " e sive quasiparticle density—density and attractive current-

v2 LK 5 , current interactions, respectively.
vort = Z(Eij Gaj +imho)”+ Z[(f?xay) + (dyay)?] Generally, a repulsive density—density interaction between
v fermions will lead to Fermi-liquid corrections in the quasi-
particle dynamics and thermodynamics, but will not destroy
the Fermi surface. On the other hand, the current—current
interaction for near-neighbor quasiparticle hopping can be
with on)\o-iﬁ rewritten in terms of antiferromagnetic, near-neighbor repul-
In Eq. (181) we have added back in the vortex-hopping Sive, and pairing interactions

term, £,=-t, codq;), neglected in the RFL Lagrangian. In 1
the RFL phase, the vortex-hopping is irrelevant, and scales to Hy;=J3> | S-S + _nIn:, + ZAIAI, , (191)
zero at low energies. If we put=0, the remaining integra- rr 4
tions overe; are Gaussian and can be readily performed. We _ _ _ _ _
will return to the effects of nonzero vortex-hopping upon theup to a shift of the fermion chemical potential, wit
fermions in Sec. VIl A. The final effective action then takes =f'(¢/2)f (with & the vector of Pauli matricgsn’=f'f,

Y

1
+E((90ai _Wfij)\j)z_tv COS(a/J-), (181)

v

the form Af=f.f,, and A'=f!f]. Here,J~t2/u, is inversely propor-
tional to the vortex core energy. One expects that the antifer-
Serr(N ) == lf UK, ) (K, o)\ (= K, = wy). romagnetic interaction can lead to an a Cooper instability in
2 K.on " K thed-wave(or extended-wave channel. The repulsive pair-

(182) ing interaction interaction does not favor atwave Cooper
instability. Hence it seems possible that for smaj| for

Here which thisJ is large, a spontaneous quasiparticle pairing in-
stability may occur, most probably afwave symmetry. An-
UOK, o) = m u, (K. (183 other possibility, which appears very natural f@xtremely
KT U (wh+ op) (it wfy) T small dopingx— 0* (andu,— 0%), is that the antiferromag-

3 o o netic interaction drives an antiferromagnetic spin-density-
specifies theg, propagator(BoBolo=Ugy: (BiBj)o=—U;’s  wave instability. We will discuss both possibilities in the dis-
<i[30,8j>0:—ug?), where the superscript zero reminds us thatcussion section.
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B. Roton scattering by quasiparticles Since Szpp IS quadratic, one can perform the remaining

Having established that the Fermi surface remains intadhtegrals straightforwardly. We.choo§e§:§-&:0, and in-
(apart from a possible BCS-type pairing instabjliip the  tegrate out, Sy, ande, to obtain

presence of gapless rotons, we need to see how the fermions 2 A2 + 72 w2K2

feed back and effect the roton modes. To this end, we will s:f n 2, Ko U°~ V1,24 50 2
integrate out all fields excep, treating the fermions within K,wn 20, 8 U% U,

the random phase approximati@RPA), to study the effects (K2-K2) |2

upon the roton dispersion. The RPA is complicated by the K K0+ ——Lo| o, (195)
two distinct amplitudes, andt,, describing spinon and elec- 2 Y 2K

tron hopping processes, the latter coupling to the electric ~ _ 2% (4 _ — 2742 ~2

fld 2 vil a5 ) auge e Webegi i ho REL 1€ 51T G T o0 T e

Lagrangian in Eq.(175). It is convenient to first shiftw, thel bra;nch ?)fo.rotons Wit~ k. <K ~O(1), for which the
+a, then integrate ouf, and takeuy,— O, which con- . Lo X Y ' -

_>a," Lo 9 uaf 0_,> : . first term in Eq.(195 is negligible, and the remaining

strains V fﬂjwv € and ap=-dpf. Choosing in addition j,ieqral can be carried out to obtain finally the effective ac-

V.B=-7V X & we essentially return to the electron formu- tjon

lation, with 8;=—me,. This choice is convenient, since tjge -
and e fields present in the electron-hopping term precisely 1 K3 > 5 21 w12

cancel, and only 7e appears “similar to a gauge field” in Srot‘E ) u:[“’n+vrot(ky)kx]|0| ' (196
the spinon-hopping term. The fermionic quasiparticles can “n Y

then be integrated out in the random phase approximatiowith

(RPA). One findsS;— Szpa, With 2

2 2y U% + 71151
t§ VrorKy) = vlu_ 2, 1~2" (197
I1y4e(k, wp)]? vPo™ 2
We have thereby shown that even a gapless Fermi sea
ts 5 does notlead to a qualitative change in the gapless Bose
+ | 1 . Tanlek, 0p)[? |, (192 surface of rotons. Due to tHg dependence dflpy andTly;

(implicit in 7, andu,), the roton velocity is now seen to
whereTyny=(f! f,.5,) is the nearest-neighbor kinetic energy, depend upon k,. Additional “direct” quasiparticle-

andt=tg+t,. Hrérrenoo andIl,, are, respectively, the density- quasiparticle interaction@ot mediated by the rotohsvould
density and current-current response kern@slarization in any case similarly renormalizg,. But the location of the
bubbles+ diamagnetic contribution in the case Idf,) that ~ Bose surface and the qualitative low-energy dispersion of the
would obtain for the Fermi sea were a single gauge fieldoton modes are seen to be unaffected by the fermions. To-
minimally coupled to the fermions. These depend upon th@ether with the earlier demonstration of the stability of the
band structure. We will not require particular expressions fofrermi surface, this result establishes the RFL phase as a
these quantities, but will use the fact that bby(k , w,) and ~ stable 2D non-Fermi liquid wittboth gapless charge and
I1,,(k,»,) are finite and generally nonvanishing fixed  SPIN excitations.
wave vectotk| >0 andw,=0. Since we will focus uponthe ~, \\sTABILITIES OF THE ROTON FERMI LIQUID
low-energy rotons, which occur near the principle axes in the
Brillouin zone, we have dropped terms in E492) that are As for the RL, the RFL has potential instabilities to su-
small for w,~k,<k, andw,~k, <k, [e.g., due to the parity perconducting and Fermi I.iquid states, driven by effects/
symmetryx— —x of the 2D square latticélo;(k=0,k,, w,)  terms neglected in the previous subsection. We address each
vanishe} We also note that Eq(192 does not have the N turn now.
usual RPA form even in this limit, due to the nonminimal
coupling form of the fermion Lagrangiaminimal coupling
is restored only fotg—t). The arguments of Sec. IV A for determining the relevance
It may be helpful to keep in mind the forms for a circular Or irrelevance of the neglected vortex hopping term within
Fermi surfacde.g., valid at small electron densitiesrhere,  the simpler RL continue to hold for the full RFL, provided

1
SkealBL) = Ef

{Hoo|,30(k, wp)|? + 2
K,on

A. Landau—Fermi-liquid instability

at small wave vectors and frequencies, one has the proper renormalized roton liquid parameters are em-
ployed. In particular, the vortex hopping term continues to be
Mook, @) ~ M, (193  described by a(1+1)-dimensional scaling dimension,,
. g . which is, however, renormalized by the statistical interac-
wherem ~t™= is the effective mass and tions with the fermions, to wit
1], lwl] _ 1 (7 dk (k)
I141(k, wp) m*{k + ok’ (199 A, = am) . 2mok)’ (198

which is valid for |w| <vegk. We stress, however, that our with v,,(k,) given from Eq.(197). The same arguments thus
results do not depend upon these particular forms. continue to apply, and the vortex hopping term is irrelevant
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for A,>2. ForA, <2, we expect an instability to a state with with the gauge constraing;(A,)=1. We can, however,
proliferated vortices. The dual Meissner effect for this vortexproject into the W1) subspace using the operator
condensate confines particles with nonzero gauge charge, as

discussed in Sec. IV A. Coming from the RFL, the natural N t 1

expectation is then that the system becomes a Fermi liquid. P=IT4\f/,fro- —ejdiag(r —w) . (201
This hypothesis is fleshed out in Appendix A. '

B. Superconducting instabilities Since[P,H]=[P,G,(x)]=0, the state

As for the RL, the RFL can also be unstable to a super-
conducting state. However, the inclusion of the fermionic

quasiparticles opens new routes to superconductivity from . . . . .
the RFL. We explore each of these in turn, satisfies all gauge constraints and remains an eigenstate of

(with zero kinetic termp This establishes that the resulting
1. Charge hopping superconducting state is an ordinary BCS-type supercon-

) ) ductor with paired electrons.
As for the vortex-hopping considered above, the argu-

ments for the relevance of the charge hopping in Sec. IV B 2
for the RL continue to apply with only a renormalization of
the roton-liquid parameters. In particular, the scaling dimen- As we saw in Section V, the coupling of the spinons to the
sion defined from the charge hoppifitp9 is modified to gapless rotons in the RFL phase leads to Heisenberg ex-
change and pair field interactions between the fermions with

|0) = P[0}, (202)

2. BCS instability

A = Wfﬁ %IICy(ky)lzlf’t(kM). (199 strengthJ~t§(uU. .In the physiqally _interesti_ng Iimi.tztS _
g 2T uy(ky) >1t,, the quasiparticles move primarily as spinons, i.e., with-

. . I ) out any associated electrical charge, and hence do not expe-
With this modification, the charge-hopping processes bejiance” a long-ranged Coulomb repulsion. Thus one may
come relevant fol\. <2, as before. It should be noted that, jmagine that the above interactions could lead to a BCS pair-
including the renormalizations due to scattering by fermiongng instability at “high” energiesstill below the quasiparticle
AcAs#1/2, owing to thek, dependence of the,, andu,. Fermi energy to make the Fermi liquid description appropri-

As we established in Sec. IVB2 by employing the 56 pyt quantitatively large compared to, e.g., more conven-
plaquette duality transformation, when the charge hoppingional BCS critical temperaturgsf orderJ. Here we explore
processes are relevant the rotons become gapped out and i@ properties of the resulting phase which emerges when the
system exhibits a Me|ssner effect. Here,. we bnefly.com.menfermionS pair spontaneously and condense. To this end, we
on the corresponding fate of the fermionic quasiparticlessyc,s on the fluctuations of the phase of the fermion pair
which are gapless across the Fermi surface in the RFL phasgg|q <fol>=Afei<I>. Keeping A, fixed, and working once
The relevance o_f the_ charge hoppi_ng in the p!a_\quette dualyore in the electron gaugs,=-e, we integrate out the
ized representation, indicates that it is not legitimate t0 eXfermions entering inCqe, t0 generate an effective action for

pand the cosine term that enters into the roton hopping Lag, Bo, ande. Specifically, one obtain§°+£1—>£¢ with
grangianZ,. Rather, in the original vortex representation, the ' b

state corresponds to a “vortex vacuum,” and the properties of g fit ft

the state can be accessed by taking all of the vortex hopping_, = = (do® — 28,)2 + pis(aicp + 276 )%+ @(aicb - 2A)?
processes small,,t,,, x, <<u,. At zeroth order in the vortex 2 2 2

kinetic terms, the full Hamiltonian of the (@) vortex-spinon keT o )

field theory in Eq.(43) is independent of;, so thats; com- - QE(W@ + 27t — 2tA)” (203

mutes withH and naively can be taken asnumbers. A

simple choice consistent with the conditidh=0 is 3j=0,  Hereg; is of order the density of states at the Fermi surface
and in the vortex vacuum one also has @1310 In this case, A is (t|me independent for Simp|ici)}externa| vector poten-
the full fermionic Hamiltonian describing the quasiparticlestiaL and p; is the fermion pair(“superfluid”) density. The

in Eq. (48) reduces to the Bogoliubov—de Gennes form, apartinal term represents the low but nonzero temperature correc-
from the coupling toe; which describes the Doppler shift tions to the superfluid density appropriate to the case of
couplings to the superflow. In particular, the string operatoig.wave pairing. Herex is a nonuniversal constant of order
which enters into the explicit pairing term equals uniy  one representing the effects of Fermi liquid corrections, or
=1, so that the fermionic quasiparticles are paired. We degquivalently, high-energy renormalizations of the “Doppler-
note by|0); the ground state off; with 3=e;=0, which is  shift” coupling constant.

easily found by filling the Bogoliubov—de Gennes levels be- The excitations and response functions of the system can

low the Fermi energy. Our naive ground state is then then be obtained from the RFL Lagrangian by shifting
B B a a,— a,+a, and then integrating o@,, a;, anda,. Having
00=[0)s @ |8;=0) @|N:=0). (200 made ‘the replacement’;— L, one thereby obtains

In the U1) sector, unfortunately, we must take somewhat{rrL— Lerin With an effective Lagrangian given by
more care, since the conditighy=0 is in fact inconsistent =Ly +Lg, where
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- u, 1 z u » 2 2 21 12
Lio=5 | &+ —€ihy +idpe (0,0 + o)+ 271%3[30 Serr(0) = 2—u A (W2 +T2KA)|62, (209
i K where
+ —Boejdiayt — (€jd,a))?
T 8 2
U1 2.2
2 vi+— | + TYgy
Ky 1 + 420t u( 0 ) fUoU1
+ E[Axy0+ 5((9xay + ﬁyax)] . (204 5r20t: Uiu“ Ps's ‘21 . (210
. o . . o u,| v3+ )y 2mgiv?
First, it is instructive to consider the transverse electro- v\"0" 2 fPom1

magnetic response, in parucular consider a static, transvers_,l_eh desnite th duct duced b ficl
external gauge fleldoAi—V-A—O. Since the external gauge us, despite the superconductivity induced by quasiparticle

field is at zero frequencyr, Bo, 6, ande, are decoupled palrln_g, f[he gap]gss_roton exc!tauons_survwe with some
from A ande, in this limit aj1r,1d 3(/e ,may thus neglect all but guantitative modifications to their velocity and correlations.
i ’

the first term in Eq(204). In addition,d is decoupled from As we shall explore further in the concluding sections, in

N : . the limit of a very small “bare” vortex core energy appropri-
E‘)(ED as well, so we may simplity the effective Lagrangian ate in the underdoped limit,~x— 0, there is a large energy

scale for palrlngJ~t2/u It is then natural to assunt@s
u A2 ~t(1-x)>u,. If we presume that the fermionic kinetic en-
Eeﬁ:—”(q +—t) +2tepLAt2+ Zﬁtsp;qz ergy is predominantly due to “spinon hopping*ts>t.,
2 ™ then one has

ke T
- aﬁ(zwtsa - 2tA)2. (209
f

K=

Uv f 2akBT

- +1 211
4 <ﬂ2 eps)m(s)2 (211
Thus, despite the large bare superfluid stiffness coming

from the BCS pairing of the quasiparticles, the renormalized
stiffness is small, set by the bare vortex core enefgy

Integrating ovelg then gives the superfluid stiffneks as
the coefficient of Atz (corresponding to the pair-field phase
stiffness in the effective action

pl(tu, + 472t tsPD (tu, + 472t tsp£)22ak T =u,/4m?~x or the electron hoppind, (presumed small
= > - ﬂze i~ AB compared tdy). It is the renormalized stiffness which deter-
u, + 4mtepg (u, + 4mtepg)c A mines the vortex core energy, and sets the scale for the finite

(206 temperature Kosterlitz—Thouless superconducting transition
Tkt~ U, ~X. In this way, one can understand the large sepa-
to linear order in temperature. Note that, fdr# 0, the sys- ration in energy scales between the pseudogap line at scale
tem is a true charge superfluid, displaying a Meissner effecty and the superconducting transition temperatiligg ~ X.

We would next like to establish the fate of the roton ex-Unfortunately(since it is in apparent conflict with the small
citations. To do these, we & =0, specialize tol=0, and  amount of experimental data for this quanttglong with
consider the appropriate limit, ~ k,<k,~O(1), integrating  this small superfluid stiffness, one obtains a small linear tem-
out fields to obtain an effective action féralone. Integrating  perature derivativeK/ dT|1-o, due to the same mechanism.

out @, one obtains in this limit This is similar to results for the (1) gauge theory for the
t-j model.
Lo — 2giB5+ 27°plse], (207) To complete the analysis, one should consider the effects
) . of the heretofore neglected explicit pairing term in this novel
using the above conditions an, andk, anddoBo<€di€,  “rotonic” superconductor. In particular, one may imagine

which follows in this limit. Further taking the gaudé-a  that, once the fermionic pair field has condensed, it may
=0, one sees thag couples only todya in Eq. (204), and  induce true off-diagonal long-range order in the rotonic sec-
thus generates only negligible terms at low frequencies antbr through the proximity effect. Naively, ODLRO appears
may be dropped. We therefore need only the effective actioincompatible with gapless rotons, so one may expect the ex-
for =y, 6, By, and e, Seﬁ:fkwnseﬁ, which in this limit  plicit pairing term to induce a gap in the roton spectrum.
becomes While this is possible, it is easy to see that it is not inevitable.
To see this, note that, in the rotonic superconductor, the
u, + 472t >, U +47%059; fermionic pair field in the explicit pairing term may be re-
ff = 2 e+ 27202 2 '30_ |’Cy|“’nelg placed simply by its mean-field valualch,);lgegg,crU,
=AsCrix,0€50'Cror =Ar. This leads, in the roton sector, to an
sgntky) o additional term
2

I T .
(208 Ha= Af% (Br,r+xj +H.c). (212

i<y 2

K JC2
+—L r 2 2+ r'vy
T Poar+ 8]Cya 2

Ked+

Performing the integration over, B,, ande, one obtains the Indeed, Eq(212), since it embodies a linear coupling to the
final effective action forg bosonic pair fieIcBr,H;(j will induce ODLRO in theB, op-
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erators. However, this need not itself be a mechanism teided a possibléand for the moment unknowr©(1) modi-
induce a roton gap. Noting that from Sec. Ill C, the bosonfication of A, is made in the relations.

pair field correlators are power law in form, we expect that We would like to determine the “relevance” ®f, in the

for A. sufficiently large, perturbation theory in; will be  renormalization grougRG) sense, i.e., whether its presence
regular and convergent, and the gapless rotons will be predestabilizes the low-energy properties of the RFL. Unfortu-
served. Due to the anisotropic structure of these correlatorgately, due to the extremely anisotropic nature of the rotonic
we cannot reliably determine the relevance or irrelevance ofpectrum, and the very different nature of the low energy
A¢ by simple power-counting arguments. We note that forelectronic quasiparticle states at the Fermi surface, we do not

A.>3/2, the induced ODLRO is expected to be lineain
i.e., the bosonic pair-field susceptibility is finite. However,

know how to formulate a proper RG transformation. How-
ever, we do note that correlations®f, decay as power laws

the criterion for irrelevance is probably more stringent, e.g.jin space and imaginary time in the theory wit=0, since

A.>3. To determine the precise valde such that forA,
>A the explicit pairing term remains irrelevant after con-

then these correlations factor in@" (with power law be-
havior described in Sec. IllI)Cand the fermion pair field

densation of quasiparticle pairs, would require a more carefutorrelator, which has the power law form characteristic of a

analysis of the structure of the perturbation theoryinWe

Fermi liquid. Clearly, for sufficiently large\., the Cooper

leave this for braver souls, and content ourselves with theair propagatoG©H(r, 7) will decay sufficiently rapidly that
observation that there is a range of stability to this perturbaperturbation theory i\ does not generate an(primitive)
tion. We note that, however, since the RL itself even withoutsingularities. However, determining the criticAIE above

the pairing term is always unstable to either vortex or chargeavhich this occurs is beyond the scope of the current study. A
hopping, the rotonic superconductor, with true gapless rosimple argument clearly bounds;>3/2. In particular, one
tons, exists at best as an intermediate energy scale crossovieray attempt to integrate out the vortices perturbatively in

Nevertheless, provided the inevitable roton gap is sinall,
for small Ay, t¢, t,), we expect the gap onset will only

‘H, in a cumulant expansion. The first nontrivial term in this
expansion occurs at second order, and generates an attractive

slightly modify the values for the superfluid stiffness and itsfermion pair-field to pair-field interaction whose vertex is

linear temperature derivative determined above.
3. Explicit pairing term

The final potential instability of the RFL we consider is
from the explicit(spinon pairing termA. Recall from Sec.
I1C1,

HA = 2 eiﬁj(r)Aj[Sr]zfrﬂA(ja'eaa"fro" +H.c. (213)
i

_E AJ r, r+x Cl’+x o€50'Cror T H.c., (214)

where the last line is written in electron variables or, equiva-
lently, in the electron gauge with;= —we This representa-

tion is convenient because it eliminates all unphysical gaug

fluctuations, which, although they do not appear in an

hysical properties, may enter inadvertently through approxi-
Py prop y y gh app Harly damaging.

mations. Had we considered instead a Hamiltonian wit
s-wave pairing, we would have had

szave: As[sr]zfru'ea'u'/fr(r’ +H.c. :ASB:—CrUGU—U—/Cr(r’ +H.c.
(215

simply the Fourier transform o&“"(r,7). For A;<3/2, a
simple scaling analysis indicates that this Fourier transform
is divergent atq=w,=0. Thus for such values ak, this
attractive Cooper channel interaction will overwhelm any
other repulsive interaction that might be present at low ener-
gies, leading to a Cooper instability and pairing. This analy-
sis, however, neglects higher cumulant terms which are cer-
tainly present in integrating out the vortices, and which are
presumably crucial in determining the ultimate limits of sta-
bility of the RFL. Nevertheless, and this is all we shall re-
quire at present, it is clear thAﬁ exists and is not infinite, so
that a nonvanishing region of stability also exists. Whgn
<A* the explicit pairing term will be relevant, destabilizing
the RFL phase, presumably driving it into a conventional
guperconducting phase with paired electrons and gapped ro-
ons. Given our lack of knowledge df, the additional un-
:certainty in the decay exponent of ODQLRO is not particu-

VII. PROPERTIES OF THE RFL PHASE

Having established the existence of the RFL phase, we
now discuss some of its properties. Since the rotons are ef-

Since we have already determined the correlations of théectively decoupled from the fermions at low energies, much

boson pair field operataB, (which exhibits ODQLRQ, in
Sec. Il C, all the operators appearing in Eg15 have well

of the physics of the RFL phase follows directly from the
results we established for the charge sector in Secs. Ill and

understood properties at this stage, and so we will discusd/. Specifically, one expectthree different gapless excita-
this case for simplicity. For the physically more interestingtions in the RFL phase—a gapless longitudinal plasmon, a
scenario ofd-wave pairing, we require instead the behaviorBose surface of gapless rotons, and a set of particle-hole
of the bond pair field correlations. As discussed in Secexcitations across the Fermi surface. Hpén physics in the

[Il C 3, this behavior is qualitatively identical to that of the
local pair field, with a possible renormalization &f. Hence
we believe that the results we obtain for lodatwave
pairing—in particular that the pairing term is irrelevant for
sufficiently largeA.—carry over to thed-wave case, pro-

RFL phase is then qualitatively similar to that of a conven-
tional normal metal. Also, similar to a metal, the RFL has
ODQLRO in the Cooper-pair field. Unlike an ordinary metal,
however, this power law off-diagonal order exists with two
distinct unrelated powers, one originating from the two-
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particle excitations of the Fermi sea, and the other from the Hoo R+ 5 )

gapless rotons. Because the rotons and electronic quasiparti- |,30(k wp)|* + > TNN|—| + TNN|A|

cles exist as nearly independent excitations in the RFL, one

would expect a sharp electron spectral function despite the i~ o~

critical rotons. While this is true, as we demonstrate below in + ;té(wtsa + Ak o (18 + teA) ko). (218

detail, the quasiparticles do scatter appreciably and in a sin-

gular manner from the gapless rotons at particular hot spots

on the Fermi surface. Nevertheless, even at these hot spot8, Ed. (218), bOthHoo andl'[” are functions ok andw, (and

the decay rate vanishes more rapidly than the electron’® throughA® which appears in the electron-hopping te¢rm

energy. and we have neglected a cross-tdiip betweengs, and the
Despite the existence of such long lived electronlike quaspatial gauge fields, which is negligible in all the limits of

siparticle excitations, the electrical transport in the RFLinterest. We will require the behavior diI” in two regimes.

phase is strikingly non-Drude-like, as we now demonstrateSince the external fields are spatially uniform, we will need

Specifically, in the presence of impurities the electrical con-H(k 0,w,) at low frequencies

ductivity at low temperatures is dominated by the quasicon-

densate in the charge sector, diverging at low temperatures as

o~T 7 with y> 1. But as we shall see, titall conductivity I (k = 0,w,) = 0l w,|8; + ol wne;, (219
behaves very differently, being dominated by the electronlike
quasiparticles. whered!. is the conductivity tensor for the fermions. Roton

fluctuations are dominated in contrast hy,~k,<k,

A. Electrical conductivity ~0(1) (or the same witlk, k). In this limit, ﬁij becomes

Here we evaluate the electrical resistance in the RFL2 nontrivial function of theO(1) component of the wave

phase. As in Sec. IV A, it will be necessary to include theVector, but has the useful properfgue to square reflection
effects of the vortex hopping term, even though vortex hop: symmetry of decoupling in the longitudinal and transverse

ping is technically irrelevant when>1. The RFL phase P2SiS

exhibits the same “emergent symmetry” as in the roton . .
liquid—the number of vortices on every row and column KK | = KiK;

being independently conserved—so inclusion of vortex- H'J(k wp) = 8ij K2 +H'F' (220
hopping is necessary to generatey dissipative resistance

whatsoever. In order to access the Hall conductivity we ap-

ply a uniform external magnetic field. We choose a gaugdn this limit, we note thafl, is related toll;; of Sec. V B by

with Ay=0, and set Iy, =T+ T
~ As discussed above, the conductivity is finite only once
Ar,7) = AJB(r) +A(7), (216  the vortex-hopping is included to break the row/column sym-

metries of the RFL. Hence to extract the conductivity, we

with €;A7=B the external magnetic field and} a time-  must compute the effective action f@r to O(t?), which
dependent source term used to extract the conduct|V|ty terjives the first nontrivial correction. This requires only
sor. As might be expected it is important to include the ef-Gaussian integrals, with no further approximations. How-
fects of elastic scattering from impurities. ever, for ease of presentation, it is convenient, analogously to
Itis convenient to employ, as in Sec. VIB 2, in which the Sec. VA1, to take the simplifying limitu L /v3+Tlgg
fermions have been integrated out, their effects felt only<i/k,. In this limit the fluctuations of3, are extremely
through an additional contribution to the effective action. |nstrong which in turn strong|y suppresses the fluctuations of
particular, we choose, as in Sec. VI B 2, the electron gaugeat(k w,) except atk=0. Furthermore, choosing the gauge

and write V-a=0, we may thereby take;(r,7) to be a function ofr
~ _ only. Doing so, we may drop all spatial derivativesgfin
2 [Lio—t, cog40+ a)] +Si(&, oA, Lo Furthermore, since fluctuations af are only temporal,
it can be accurately treated in an RPA fashion.
(217 To carry out the RPA calculation, we first perform the
integral overe;, which gives an effective action in terms of
with Lmtgwen in EQ.(204). Here$; represents the fermionic ¢, remammg 6, «, and A fields Suy— S= Sl(A)
terms in the action. We proceed by shlﬂlwe] A [, N
Sy, A)+SY(0, ), with
which takesA, —>A in Lrot without any further changes since
ABis time mdependent This has the effect for the fermions

11 making the magnetic field appear uniformly in both ,=L2J 1 o+t Tundy + 1 2+ 2t +20tt
electron- and spinon-hopping terms. Integrating out the fer- =1 2 (s + te Ty ( 7 ety

mions then perturbatively i, By, and A; effectively re- 5 5 _
placesS— S= ., St where XTLj(k = 0,@y) (A(= wn)Aj(@)), (221
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2 242
, nw Nl ~

2
v uvt

Xai(= wn)a'j(wn) - %Eijai(_ wn);&j(wn)} ,

(222
1| 0?K?
Sé: E|: n_ +Kr|lcxlcy|2‘||0(k’wn)|2
kwp uU
-t,> f cog4,0+ o), (223
r T

where 7=u,/(u, + 7Tyn), and U=u, + w2t Ty + w2200, /12
=T, +mt2I1,,/t? as in Sec. V B. In Eqs(221) and (222, L2

is the system voluméumber of sites in the square lattice
arising sinceq;, A; are spatially constant. In obtaining Eqs.

(221) and (222, we expanded to linear order iﬁ[ij(k

=0,w,) since we are interested ultimately in the low-

frequency limit, ancﬁij is linear in frequency. In E¢223),

we used the fact tha# coupled to only to the longitudinal
part of e and hence only tdl;. Note that the quadratic part

of Eq. (223 reproduces precisely Eq6196) and (197), in
the limit vy>7,, as assumed herein.

We now can integrate owt to O(tg). This proceeds iden-

tically as in Sec. IV A1, witha; replaced by «;, and with

the renormalized roton liquid parameters— u,. Hence we

obtain the correctior8;(6, a;) — S;(¢;), with
2

SLTEY 2 224

Ss_ 4 R(wn)|aj(‘”n)| ) (224

with R(w,) ~—|w,**” as in Eq.(141) of Sec. IVA 1, but
y=2A,-3 with the renormalized, given in Eq.(198.

PHYSICAL REVIEW B71, 085119(2005

(229

(Tij(w)=

{ HEFL(i wp) ~ teTandj
Wn o=+ é

As in Sec. IV A 1, we see that the rotonic contribution to the
conductivity is not perturbativéat low frequenciesin t,, so
to capture the expected behavior, we replace it by

oot = lg{f] - 9
I W iwn—>w+i5 . . 772’[5"’ ‘
- Iwu—v +i > Ried ) ®
(230)
This gives
t2+ 2t et
oij(@,T) = N0, 1) + =6k (0, T). (231

t

Notice that from Eq(231), the conductivity is the sum of
separate fermion and roton contributions, and that the only
effects of the fermions upon the rotonic piece is to modify
the exponenty (or A,) implicit in R(w). Moreover, the fer-
mionic contribution vanishes fdg=0, as expected on physi-
cal grounds since the spinon-hopping term does not transport
charge.

Consider first the dissipative diagonal d¢sheet resis-
tance R(T):Re{a;i], which at low temperatures is com-
pletely dominated by the rotonic contribution, given as in Eq.

(150,
2 Y
R<T>=cy@[”—q ,

Urot Urot

(232

except withv,,; and the exponeny renormalized by the in-
teractions with the fermions. We thereby arrive at the impor-
tant conclusion that the resistance in the RFL phase varies as
R(T) ~T?, with y>1. Wheny< 1 the RFL phase is unstable

to confinement into a Fermi liquid phase, and right at the
quantum confinement transition the resistance is linear in

With this replacement, the remaining quadratic integrakemperature.

over ; can be easily performed to determine the physical

response kemes, +Sy+S;— SeedAp), With

1~ o
Sesp=L? f SAC o) o)A(wn), (229
where
M5 (i) = T + T (226)
and
f tg + 2ntels~
ITjj = teThn 6 + t—znij(k =0,w,), (227
2,27,
~rot_ | Yo uyt, R (wn)
Hij - |:7T2 - 27T2a)§ B (229

The conductivity is obtained from the Kubo formula as

The Hall conductivity and hence Hall angle on the other
hand, are dominated by the fermionic quasiparticles. Specifi-
cally, o= af(y, and in the dc limit the fermionic Hall con-
ductivity can be approximately obtained from a Drude ex-
pressiorv;yz weri(Ni€271) /M~ w72, wherew,=eB/mis the
cyclotron frequency. The fermionic scattering timehas a
variety of contributions, from elastic impurity scattering to
interactions with rotons, considered in the next section, and
hence mayor may noj have temperature dependence of its
own—in contrast to the diagonal conductivity,,~T77?,
which diverges asT—0 due to the rotonic contribution.
These considerations suggest that the cotangent of the Hall
angle, defined in terms of the resistivity tenspf as
cot(®y) = py pyy, Will vary as,

oy 17 1

cotf@y) ~— ~—— ~ et
ny (Uch We ’Tf

(233

The complete absence of a roton contribution to the Hall
conductivity i7" is a consequence of the magnetic field
independence of the roton liquid Lagrangiép,, either in
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its original or dual formg90) and(159), respectively. But as =3(k,w,— —iw+0") in the usual way. At the level of this
discussed in Sec. IV B, the dual representatiof gf allows  discussion, the two types of interactions act in parallel to
for additional terms involving cosines of the dual fiefd  scatter quasiparticles, so

which are present due to the underlying discreteness of the

vortex number operator. While being irrelevant in the roton 2(k,0) =2k, 0) + Zgpk, o). (236)

liquid phase, these neglected terdtsdependn the external e will focus upon the imaginary pa®”(k , ), which de-

magnetic fi_eld_and if retained will Ieelld. to a non.vanishing scribes broadening of the electron spectral function(T}
roton contribution to the Hall conductivity. But this contri- =3"(k,0:T). We have

bution is expected to vanish rapidly at low temperatures. If
on the other hand, these terms astevantand drive a su- = () + (D) (237
perconducting instability at low temperature, they will likely

contribute signifigantly to the Hall conductivity. A careful N Principle this single-particle “lifetime” is distinct from the
analysis of the Hall responsabove the superconducting momentum scattering rate which is relevant in discussions of

transition temperature in this situation will be left for future @nsport quantities. However, we will use the behavior ob-
work. tained for 1/; as a crude guide to the quasiparticle transport

as well, leaving a more careful treatment for future study.

o 1. Scattering mediated by vortex hopping—enhanced current
B. Electron lifetime fluctuations
Although the electran speptral function is gxpected to be Taking into account quadratic fluctuations of fBgfields,
;harp at zero temperature right on the Ferm| surface in thﬁwe leading self-energy correction due to current fluctuations
ideal RFL fixed-point theory, at finite energiésr tempera- .
ture9 one expects the electrons to scatter off the rotons

through interactions neglected in the RFL, causing a decay.

Here, we consider two contributions to this electron decay Scr(K,ion) =2 R Go(K = 0,00~ @)U (0, 0p)
rate at lowest order in the perturbations to the RFL. We con- #y = Gheon

sider two scattering mechanisms. First, scattering due to cou-

pling of the quasiparticle current to boson currents through =2 ) UFMUFVWUW(QMQ),
the 8, and g terms present in the fermionic Hamiltonian. #y = Gien @n= On) ™ €kq

Because singular bosonic current fluctuations are primarily (238

induced by vortex-hopping, nontrivial contributions to the . — _ _ .

fermion lifetime through this mechanism occur firstGi(t?). with trTe delff|n|t|ona;Fj.—(9ek/<9kj, vaorTl.fHere we 2.6“'/6 writ-
Second, we consider scattering of quasiparticles due to sﬁ'—aln the se -ene”rgydm terms o rt] € rl;;ﬂ-gauge_- '?d cor-
perconducting fluctuations, i.e., fermion decay mediated b)rLe atorUWd'gg a %r ers int,, rather than restricting te,
the “Jospephson couplingt to the bosonic pair field. Since =0 as we did in obtaining E183).

we expectA <t, on physical groundgsee Sec. VIIIB 2, Introducing a spectral representation

this O(A?) contribution is naively much smaller than the * dwU” (q,0)
former one. However, depending upon the parameters of the UK, op) = ;—a‘:_T (239
RFL, this need not be the case. This point will be returned to — n

in the discussion. with U’ (0)=Im U (w)=Im U, (0, —~iw+0"), allows
As discussed above, to compute the spectral function it igne to analytically continue to obtain theetarded self-

simplest to work in the gaug@ =€, in which we may energy

assume the electron operatgy,~ f,,, and hence study

Gi(r,7) = = (Tf, (D T5,(0). (234
) , . For positive frequenciesw>0, the imaginary part”
In other gauges, it would be necessary to include string fac= |, 3 .. is given by

tors as indicated in E¢55).

Neglecting the fluctuatings,, fields, one hasjy(k,wy)
=(iwn— €, with dispersione, =-2t cogk;) - us. Both fluc-
tuations of theg, gauge fields, which mediate retarded in-
teractions amongst the quasiparticles, as well as the explicit XO(0 ~ €sq)- (241
interactions in the pairing term, will induce a self-energy
3(k,wp), defined by

3 ik, ©) =2 (K, @) —wtio*- (240

,éF(kiw) = E f vF/,LvFVU;ILV(qu - Ek+q)®(6k+q)
uy v q

The self-energy can now be evaluated by considering pro-
gressive orders ir,. To zeroth order, the expressions for
1 Ui?l(k,wn) may be taken from Eq9183—(188. We note
— . (239 that, because they come from the quadratic RL Lagrangian,
wn Ek 2(kva)n) . . N
they contain only simple poles. Furthermore, they are explic-
We will compute the lowest-order corrections to the electrontly real functions ofiw,, so that, upon analytic continuation,
self-energy, obtaining a single-particle lifetime from thetheir retarded correlator has zero imaginary part. Since

imaginary part of its retarded continuatioR,e(k,) UfZ":Ov one thus ha§g”(k,w):0.

Golk, wn) =~
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Thus there is no broadening of the quasiparticle peak at R"(k;, w) ~ A(A,)(w? - 02K 0 (|w| - vrodk)SgNw).
zeroth order in the vortex-hopping. The first nontrivial con- (246

tribution to the quasiparticle lifetime occurs though tD(ei)
corrections to the gauge field propagatm);yzuflﬂiufz From inspection of Eq.244), one thereby sees the imaginary
+:--. This correction is obtained by integrating ouf 10 part of the retarded gauge-field correlats? (k, o) is the
second order in, starting from Eq.(181) to obtainS«(\,)  sum of two terms, which are nonzero OnlyﬂfV011>vrot|kx| or

to O(t}) using the cumulant expansion. We shiff(r, 7) > vk, respectively. Thus the momentum integrals in the
— a;(r,7)~u(r, 7), to eliminate the linear terms in; in the  expression fo[. in Eq. (241), are constrained not only by

Lagrangian, withy, linear in, given explicitly by 0< gq<w but also eitherg.q< w=v,lty O €uq<w
—v,0t|qj, for the two terms, respectively.
K .
v (K, wp) = = PRI [v%lCXle(vSICX)\O+ iy We focus on tt]e self—en_ergy for momenta e>§actly on the
n+ op) (0] + ofy) Fermi surfacelk|=kg. In this case, the constraints clearly
(02 + 2 (LRI Nm + T\ require smallq for small w. Eor*such snjall wave vectors,
(wn + U oo + oy, one may approximates .=~ uvg-G+q?/2m’. For a generic
point on the Fermi surfacéaken for simplicity in the quad-
_ m : t with k,k,>0, for which o makes an angle
K,wp) = 2IC Iy (03I N + 0N ran x: Ky =Y, JF MAKe F
ylk,on) (wh+ wh) () + wfot)[vo KAveho Hiwphy) #0,7/2 to thex axis, theg? term is negligible, and one has
i €+q=Up(Qy COSO-+q, Sin 6:). Applying the above con-
— (R + VKD (B0 + iph) . (242  Skra—UFG COSOFTLy SIN ). ADPYING

straints, one finds that botl, and gy are integrated over a

After this shift the correction to the effective action can beSmMall bounded region in which both a@w). Thus for such
formally written generic points on the Fermi surface, we should consider the

limit of Ufz"(q,w—ekm) in which all arguments ar®(w).

t2 In this limit, inspection of Eqs(242) and (245 shows that
2)__ v ; _ ) P gs al shows tha
ff — 2% E, , (cogai(r,7) — u(r,7)] the correlator satisfies a scaling form
rr T,7
@n _ 2,2
xcoga;j(r,7) = (1, D e, (243 U2"(0, 0~ €rq) ~ o> U0 0,0)/w),  (247)

with a well-behaved limit agj— 0. Inserting this into Eq.
with respect to the quadratic terms in E481). Sincey is (24 and rescalmgmtklel‘) momentum integrals dyone sees
linear in\,,, this correction is not quadratic in,, indicating that 2 ¢e(Ke, w) ~ 0577 for G #0,7. SinceA,=2 in the

that the 8, fluctuations are not Gaussian. To evaluate theStable region of the RFL, th|szdepend.ence is always as weak
leading order self-energy correction, however, we requird’ Weaker than the ordinary” scattering rate due to Cou-

only the two-point function of3,, and hence may expand to 0mMb interactions in a Fermi liquid. .
quadratic order ins. One finds The special cases whei=0,7/2 require separate con-

sideration. For these values, the Fermi velocity is along one
2 _ tﬁ o o of the principal axes of the square lattice, and the linear
S =- " (|ud(k, 0n) "R (ky, ) + |1y(K, @) "R (K n)).  approximation forec.q is inadequate. Taking for concrete-
ke nessf-=0, we have insteady,q~vgd,+0,/2n", and it is
(244 not obviously consistent to neglect thg term. For the first
term [involving R'(qy, w—€y.q)], the constraints reduce to
0<vy+05/2m" < w=-v.qy|. This is approximately solved
for small @ by 0<qgy<(w-v.fa)/ve and |oy<w/ve.
~ ey i (ON0) Thus bothgy, g, are again bounded ar@(w), so the above
R(k,wn)zzf [1 - cogkx+ w,7) (WX e yByD) Fermi-liquid-like scaling applies.
T For the second terrfinvolving R'(gy, w— €c.q)], the con-
2, 2 1 2A-1 straints reduce to @qux+q§/2m*<w—vmt|qx|. This is
(@h +vrod) ™ (245 solved by taking w/v,,<0y<w/(v,+ve) and maxo,

2 * .
N . . —UEly) <05/2m < w—vEQy—v . Hence for this term
where the latter behavior gives the leading nonanalytic term P =Gy Vol O %

for small w,, k, with A(A,) a constant prefactor. An analytic 'j O(w) Whr']le qtthS O(\(?) Sltnc_e V\?;h tft1_|s scalinga|> «
guadratic term is also presefaind larger than the given form |,/ one has the significant simplification

where the subscripk indicates a Gaussian average over

Here 7~€(k,wn) is the two-point function of the vortex hop-
ping operator considered in Sec. IV A, i.e.,

AR
sin(A,— 1)

for A,>2), but does not contribute to the imaginary part of T2 G
the self-energy for the same reasons described above for the  vy(q,w) ~ 2 2 .2 5 for |qy| > o~ [0y
= 205 Upoly @
t,=0 terms.
Next, we must analytically continue to obtain the (248
2 . .
UW (k,w). From Eq. (242, one immediately sees that Since only\, appears, in this IimitUézo)">Ui(iz)",Ug)", ie.,

Yk, w) is purely real. Hence, the imaginary part comesthe flyctuations ofg, are much stronger than those gf
entirely from the analytic continuation &ik;, w,). One has One may therefore approximate
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" A(Av)w2t5v4v4 _ O
UL (@ @)gz0 = = 3 G —viod)™ G{a.0)=> | GSfr,nea it (253
+ rJor
X O(|o| = v16{ay)SgN 08,08, with G{™(r,7) from Eq. (109).

(249 Our uncertainties in the details of the Cooper pair propa-

gator (originating from ambiguities in the string geometry
Inserting this into Eq(241), one may integrate oveq, (o do not allow a thorough calculation of the resulting self-
yield a constant multiplyingy|q,| and rescaleg,— wa,) to  energy. However, as we will now show, we can obtain a

obtain the result rough understanding of its scaling properties by some simple
approximations, which we believe do not significantly effect
2 (Ke, ) ~ w052 for g = 0,7_7, (250) the results. In particular, we will assume that the lifetime is

controlled by the small wave vectdg|< = portion of the
Cooper pair propagator. In this regime, we expect
At the end point of the RFL, for whichA,=2, this gives the Gi(j:P(q,Qn)z(;CP(q,Qn), the Fourier transform of thiocal
anomalous lifetimeX"(kg,w) ~w>? at these special hot cooper pair propagator studied in depth in Sec. Il C. Mak-
SpOtS for which the Fermi VeIOCity is parallel to one of the|ng this approximation, one hAq|<|k| for k near the qua-
principal axes of the square lattice. For the conventionakjparticle Fermi surface, and one may write
Fermi surface believed to apply to the cuprates, this corre-

: . CP,
sponds to the points on the Fermi surface closegtit®), Sk, wp) ~ |Ak|2f : G-"(q,0) (259
(0 177)- qQ, ~ |(Qn - (J)n) + Eq_k
Comparing the scattering rate at these hot spots to else- !
where on the Fermi surface, one finds with Ak:|A|(COSkX—COSky). Note that this form immedi-
ately implies that scattering due to this mechanism is
CEhol®) m*vf: strongly suppressed upon approaching the nodal regions of
s @) N (251 the Fermi surface.
CRiyp A detailed analysis is now possible based on a spectral

Since the Fermi surface in the cuprates is particularly flaféPresentation o8, as in Sec. VIl B 1" Unlike the above
near(r,0), the effective mass would be largé >m,, anda  ¢ase, howevefsince the power law decay @_CP(“T) IS
significantly enhanced scattering rate at such hot spots woufPProximately isotropit a much simpler scaling analysis
be expected in the RFL phase. suffices to obtain the qualitative behavior of the lifetime. In
In parameter regimes where the RFL phase is unstabigarticular, the scaling form of Eq127) implies that
via charge hoppingat low temperatures to a conventional ~
(supercon%uctol?,pth)g enhanced pscattering at the hot spots will G, ) ~ 12276 A/, (259
be significantly suppressed upon cooling below the transitiorﬂJp to nonsingular additive corrections, for smiafl and (.
temperature. Indeed, the low-energy roton excitations argyrthermore, for smalty andk on the Fermi surface, one
gapped out in the su_perconducting phase, and at temperpn—ay Writeeq_kvaqwqi/Zm, whereq,, q, are the compo-
tures well belowTc will not be appreciably thermally ex-  nenis ofq parallel and perpendicular to the local Fermi ve-
cited. Unimpeded by the rotons, the electron lifetime will belocity at k, andve and m are the magnitude of the local
greatly enhanced relative to that in the normal s.tate, partiC“Fermi velocity and effective mass. The singularity in the in-
larly at the hot spots on the Fermi surface with tangent§eqrang in Eq(254) is then cut off by the external frequency
along thex or y axes, for example, at wave vectors near, -~ anq rescalingj— q(),, one sees that the effective mass
(,0) in the cuprates. term is negligible, and obtains by power counting

2. Scattering mediated by superconducting fluctuations, i.e., Serk, 0p) ~ [Aywp?Ae 7L, (256)

—fermi i h . . . . . .
boson-—fermion pair exchange again with possible analytic and subdominant corrections.

A second mechanism of fermion decay is by the “pairingUpon analytic continuation to obtain the lifetime, only
term” H, in Eq. (213. We supposdA| is small, and so nonanalytic terms contribute, and we expect
consider the first perturbative contribution to the quasiparti- " T
cle lifetime atO(A?). In general, ford-wave pairing, this selk, @) ~ [A*|0| 7 sgrw), (257)
takes the form for k on the Fermi surface. This result can be verified by

) ) ) . more detailed calculations using the spectral representation
J i+ g g7l + g71(G7K) of G°P.17 Moreover, we expect that fdsT> w, w can be
qQy

2
Ssek, o) = 2 A,

= 2 2 replaced bykgT in this formula.

As expected, for sufficiently largd,, this lifetime van-
Gﬁp(q.ﬂn) ishes rapidly at low energies, and in particular Xr>3/2,
—i(Qy - @) + Eq—k’ (252) this contribution is subdominant to the usual Fermi liquid
one. However, in the regime with, <A, this is never the
where case(A.<1/42), at least within our simple model without
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dramatic corrections to the RL exponents. Indeed, fgr  gimes where the physics is decidedly non-BCS-like even at
<1, as supposed herein, this scattering rate is maaer  short distances, most importantly the cuprate normal state
than the quasiparticle energy at low frequency. Taken liternear optimal doping. The philosophy of this approach is very
ally, this implies increasingly incoherent behavior away fromsimilar to that of theZ, gauge theory proposal of a fraction-
the nodes as temperature is lowered. Near the nodes, tisdized underdoped normal state. Indeed, as demonstrated in
amplitude of this strong scattering contribution vanishes rapSec. Il C and Appendixes B and C, oufl) formulation is
idly, similar to the idea of cold spots proposed by loffe andcompletely(unitarily) equivalent to &, gauge theory. How-
Millis. 18 ever, because the unitary transformation relating the two for-
mulations is nontrivial, the (1) formulation is(much more
convenient for the types of manipulations and approxima-
tions we employ here, largely because th@)Uugauge fields

We close with a discussion of some theoretical issues corare continuous variables. The price paid for the use of the
cerning the vortex-quasiparticle formulation of interactingU(1) formulation is that the “spinon pairing term” of th&
electrons that we have been employing throughout. In pargauge theory appears nonlocal in thél)JHamiltonian.
ticular, we contrast our approach with the earligg Fortunately, this nonlocality and its consequences are
formulatior? and mention the connection with more standardreadily understood. In particular, although thé1)vortex-
and more microscopic formulations of correlated e|eCtr0nSquasipartic|e Hamiltonian is microscopica”y equiva|ent to a
We then address the possible relevance of the roton Ferma, gauge theory, it imlsoequivalent(as described in Appen-
liquid phase to the cuprate phase diagram and the associatggk D) to a theory of electroniéi.e., charges) quasiparticles

VIIl. DISCUSSION

experimental phenomenology. coupled to charge€bosongwith the latter described in dual
vortex variables The “two-fluid” point of view of this
A. Theoretical issues vortex-electron formulation is convenient for understanding

the qualitative properties of the RFL phase and its descen-
Eents, although it should be emphasized that the current—
urrent couplinggembodied by the gauge fields of thé1y

Since the discovery of the cuprate superconductors, th
many attempts to reformulate theories of two-dimensiona

strongly. correlated electron in terms of new collective Orformulation] between the two fluids are not expected to be
composite degrees of freedom, have been fueled on the ong. . "1y the vortex-electron language, the nonlocal term
hand by related theoretical successes and on the other lgy '

mply represents coherent Josephson coupling of electron
cuprate phenomen_ology. The remarkable and_succe_ssful dSéirs and the bosons. The nonlocality of the pairing term
velopment ofbosonizatio®’ both as a reformulation of inter-

.arises simply from the nonlocal representation of boson op-

acting one-dimensional electron models in terms of bosoni¢, .0 .<"in ‘the usual @) boson-vortex duality. The crucial

f|eId_s and as a means to extract qualitatively new phys'c%eature which allows us to handle the pairing term despite its
outside of the Fermi liquid paradigm, played an important

role in a number of early theoretical approaches to th nonlocality is the strength of vortex fluctuations in the
3 carly th bp $osonic roton liquid, which persists even with these strong
cuprates? The equally impressive successes of toenpos-

. ; . ) . current—current couplings. The resulting power-law decay of
ite bosonandcomposite fermiomapproaches in the fractional : - .

. o : bosonic pair-field correlationSODQLRO) opens up a re-
quantum Hall effeé were also influential in early higifiz . : , : "
theories, most notably thanyontheories?® Gauge theories gime, corresponding to the RFL phase, in which the pairing

of the Heisenberg ana) models were notable early attempts term is irrelevant and can be treated perturbatively. We note
gal . X y P RS in passing that, although it is not relevant for the cuprates,
to reformulate 2D interacting electrons in terms of “spin-

» . 3 . " the above discussion makes clear that a RL plfasevhich
charge” separated variabfég3—electrically neutral fermi- . . oo
; . . . fermions need never be introdugezhould be possible in a
onic spin one-half spinons and chakgbosonic holons—and

were motivated both by analogies with 1D bosonization and:)urely bosonic model, which would be interesting in and of
: ) itself.
by resonating valence bond idédMore recent approaches

16 2D spin-charae separation have highliahted the connecs A second important feature of the present formulation is
) P 9 pars 5 gnig . $he retention of the lattice-scale structure. Appropriate to the
tions with superconductivit§®> by developing a formulation

) ; : S cuprates, we have carefully defined the theory on a 2D
in terms of vortices, Bogoliubov quasiparticles, and plas- . . . . . . 4 ;
) : . N square lattice which we wish to identify with the microscopic
mons: the three basic collective excitations of a 2D super-: . . . .
conductor. These latter theories were primarily attempting t&or e lattice. Since our theory obviously does not similarly
) . primartly PING W9atain physics on atomienergy scales, our starting bare

access the pseudogap regime by approaching from the sup

. . . Hamiltonian should be viewed aslaw energybut not spa-
conducting phade—focusing on low-energy physics where . . . :

. o~ . . tially coarse-grained effective theofgr at most an effective
appreciable pairing correlations were manifest.

theory coarse-grained spatially only insofar as to remove,
e.g., theO p orbitalg. It is important to emphasize that the
very existence of the roton Fermi liquid phasguiresthe

In this paper, although we are employing a formulationpresence of a square lattice. In the RFL ground state there is
with the same field contenthe/ 2e vortices, fermionic qua- an infinite set of dynamically generated symmetries, corre-
siparticles, and collective plasmons—we are advocating aponding to a conserved number of vortices on every row
rather different philosophy. In particular, we wish to useand column of the lattice. If we study the same model on a
these same fields to describe higher-energy physics in redifferent lattice, say the triangular lattice, the quantum

1. Vortex-fermion formulation
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ground state analogous to the RFL phasistained, again, by avoid confinement. These ideas were later considerably
taking the roton hopping amplitude, — ) is highly un-  amplified® and the stability of genuinely spin-charge sepa-
stable, being destroyed by the presence of an arbitrarilyated ground states establisi&€d? Such ground states are
small single vortex hopping amplitude. exotic electrical insulators which support fractionalized exci-
More generally, the importance of employing the dualtations carrying separately the spin and charge of the elec-
vortex-quasiparticle field theory reformulation cannot betron. Each fragment carriesZa gauge charge, but in contrast
overemphasized. The novel and unusual RFL phase emergesthe U1) gauge theory saddle points, tEg spinons are
quite simply when one takes a large amplitude for the rotorelectrically neutral and do not contribute additively to the
hopping term, and the fixed-point theory is also quite simpleresistance. Such fractionalized insulators necessarily support
consisting of a Fermi sea of quasiparticles minimallyan additionalZ, vortexlike excitation: the visof.
coupled to an electric field with Gaussian dynamics. It is  Within the present formulation, thegs fractionalized in-
very difficult to see how one could adequately describe sucBulators can be readily accessed by condengiaigs of
a phase working with bare electron operators. Indeed, we dwortices* rather than condensing rotons. Since vortex pairs
not yet understand the simpler task of constructing a microenly have statistical interactions with charged particles and
scopic(undualized boson model which enters the RL phase,not the spinons, the resulting pair-vortex condensate is an
even without the complications of fermions. However, pre-electricalinsulator with deconfined spinon, charge-on, and
vious experience with dual vortex formulations for bosonicvison excitation$®>—dramatically different from the roton
and electronic systems strongly argues that the RL and RFEermi liquid. Recent experiments on very underdoped cu-
theories properly describe physically accessitaieit mi- prate samples have failed to find evidence of a gapped
croscopically unknownmodels. vison1%11 suggesting that the pseudogap phase is not frac-
An unfortunate drawback of the present formulation,tionalized. But a negative result in these vison detection ex-
however, is the apparent lack dfrect connection between periments does not preclude the RFL phase, which supports
the starting lattice Hamiltonian and any microscopic electrormobile single vortices even at very low temperatures. A dif-
model. In particular, it is presently unclear what microscopicferent approach supposing unbound and mobile single vorti-
electron physics could be responsible for generating such ees is the QERtheory of Ref. 14.
large roton hopping term. In the absence of a microscopic At the most basic level, a roton is a small pattern of swirl-
foundation, one must resort to developing phenomenologicahg electrical currents. Much recent attention has focused on
implications of the roton Fermi liquid phase and comparingthe possibility of a phase in the underdoped cuprates with
with the experimentally observed cuprate phenomenologynonvanishing orbital currens, counter-rotating about el-
We take a preliminary look in this direction in Sec. VIII B ementary plaquettes on the two sublattices of the square lat-
below. tice. Such a phase was initially encountered as a mean-field
state within a slave-fermion gauge theory appréaehhe
2. Related approaches so-called “staggered-flux phase,” but has been resurrected as
It is instructive to contrast the RFL phase with earlierthe “ d-density wave” ordered state of a Fermi ligdfdin
notions of spin-charge separation. Anderson’s original piceither case, such a phase within the present formulation
ture of the cuprate normal state at optimal doping consistewould be described as a “vortex—antivortex lattice™—a
of gas of spinons with a Fermi surface coexisting and somecheckerboard configuration on the plaquettes of the 2D
how weakly interacting with a gas of holoh&3 In the early ~ square lattice. Ground states wihort-ranged‘orbital anti-
gauge theory implementations of this picture, both theferromagnetic” order have also been suggested recZntly.
spinons and holons carried a(1) [or SU2)] gauge Surprisingly, the roton liquid phase also has appreciable
charge??23 Mean-field phase diagrams were obtained byshort-ranged orbital order. A “snapshot view” of the orbital
pairing the spinons and/or condensing the holons, and gurrent correlations in the RL phase can be obtained by ex-
pseudogap regime witd-wave paired Spinons yet uncon- amining the Vortex-density structure function. For S|mpI|C|ty,
densed holons was predicféd®—several years before ex- consider the charge sector of the RFL the@the RL) in the
periment(of course thed-wave nature of the superconduct- limit of large plasmon velocity,— %, which suppresses the
ing state was also predicted by other approathe®vithin  longitudinal charge density fluctuations. The transverse elec-
this approach, the normal state at optimal doping was viewe#fical currents are then described by the Hamiltortigg in
as an incoherent gas of uncondensed holons strongly inteEd. (89) with @ — 0. The vortex-density structure function
acting with unpaired spinons. Some efforts were made to us&u can be readily obtained from this Gaussian theory:
the neglected gauge-field fluctuations to stop the holons con-
densingsat ina_ppropriately_ high-energy scales, with some SNN(k)E<|l§I(k)|2>:}\/E|ch(k)lcy(k)|\'ICT(k),
succesg® A serious worry is that these gauge fluctuations, 2 Vu,
ignored at the mean-field level, will almost certainly drive (258
confinemer®® (gluing the spinons and the holons together
and thus at low temperatures invalidate the assumed stabilityith |K;(k)|=2|sin(k;/2)| and K4(k)=X;|K;(k)|? as before.
of the initial mean-field saddle point. The vortex structure function is analytic except on the
A few early papers emphasized that spinon pairing would=0 andk,=0 axes and isnaximumat k =(, ), indicative
break the continuous (@) [or SU(2)] gauge symmetry down of short-ranged orbital antiferromagnetism. As such, the
to a discreteZ, subgroup;?’ and this might be a way to RFL/RL phase can perhaps be viewed as a quantum-melted
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staggered-fluxor vortex-antivortex state, with only residual as acritical, and usuallymulticritical phase, rather than a
short-ranged orbital current correlations—the rapid motionstable one. For these three processes, the resulting quantum
of the rotons being responsible for the melting. If the fermi-ground states are, respectiveiy,a (“confined” and conven-

ons are paired, the amplitude for the basic roton-hoppingional Fermi liquid phase(ii) a conventional superconduct-
process which generates the structure function above vamg phase with singleti._> pairing and gapless nodal Bo-
ishes upon approaching half filling, as is apparent from Eqgoliubov quasiparticles, an@i) a “rotonic superconductor”
(84). A preliminary analysi¥ suggests that the further neigh- with the properties of a conventional superconductor but co-
bor roton hopping processes which do survive at half filling,existing gapless roton excitations. The rotonic supercon-
lead to a vortex structure function which vanishes asductor, as described in Sec. VI B 2, has further potential in-

|k = (7, m)| for wave vectors neafr, ). stabilities driven by either single vortex hopping and charge
hopping/explicit pairing. Both perturbations, if relevant, will
B. Cuprates and the RFL phase? generate an energy gap for the rotons. It seems likely that the

domains of relevance of these two perturbations overlap, so

In applying BCS theory to low-temperature superconducthat there no regime of true stability of the rotonic supercon-
ors, one implicitly assumes that the normal state ablvie  ductor. The true ground state of the system in this regime is
adequately described by Fermi liquid theory. Within a mod-then a conventional superconductor, and its rotonic nature is

ern renormalization group viewpoifit this is tantamount to  evidenced only as an intermediate energy crossover.
presuming that the effective Hamiltonian valid below atomic

energy scalegof say 10 eV is sufficiently “close” (in an 2. Effective parameters

abstract space of Hamiltonianto the Fermi liquid fixed- In order to construct a phase diagram within this scenario,
point Hamiltonian(actually an invariant or “fixed” manifold j; jg necessary to specify the various parameters., Bose

of Hamiltonians cha_ractenzed by the marginal Fermi-liquidgng Fermi liquid parametersf the RFL model as a function
parameters In practical terms, “close” means that under a f the doping levelx. Because the RFL is multicritical, we
renorr_nahzatlon group Fransformgtlon_ Whlch scales down INcannot rely upon “universality” to validatad hocrequire-
energies, the renormalized Hamiltonian arrives at the Fermyents of smallness of perturbations, as might be the case,
liquid fixed point on energy scales which are still well aboveg g - for renormalized perturbations around a stable fixed
T.. BCS theory then describes the universal crossover ﬂOViboint. Instead, we will make some assumptions based
between the Fermi liquid fixed poiritvhich is marginally  (partly) on physics. First, our main assumption is the basic
unstable to an attractive interaction in the Cooper channel,5jidity at high energies of the roton dynamics, and of Fermi
anq the superconducting flxgd point which characte_rlzes thﬁ‘quidlike quasiparticles. Second, we assume that supercon-
universal low-energy properties of_the superconducting Statﬁuctivity is never strong, i.e., always occurs below the
well belowTc. Four orders of magnitude between 10 eV andqtonic/Fermi liquid energy scales. Mathematically, these

Tc gives the RG flows plenty of “time” to accomplish the o assumptions are encompassed in the inequalities
first step to the Fermi liquid fixed point, and is the ultimate

reason behind the amazing quantitative success of BCS Kpy Uy, ts> 1, > 1, A (259

theory. Reading from left to right, this corresponds to the first and

second assumptions above. In practice, we can at best hope
for a factor of a few between, e.d,, and «;, so the “>"

In what follows, our working hypothesis is that the effec- symbols above should not be taken too strongly. Although it
tive electron Hamiltonian on the 10 eV scale appropriate folis not important to our discussion, it is natural to assume that
the 2D copper-oxygen planes at doping levels within and,~ «;,u,,ts (since Coulombic energies at the lattice scale
nearby the superconducting “dome,” is close to the rotorare comparable to the electronic bandwjd#third assump-
Fermi liquid “fixed manifold” of Hamiltonians(character- tion, which is not needed for consistency of the approach,
ized by Fermi/Bose liquid parameters for the quasiparticlesbut seems desirable empirically, is that the fermion dynamics
rotons. More specifically, we presume that when renormal-is primarily by spinon rather than electron hopping t..
ized down to the scale of say one half of an eV, the effectiveMany of the parameters of the RFL phase can be fixed em-
Hamiltonian can be well approximated by a Hamilton@n pirically from the observed behavior of the cuprates on or
the RFL fixed manifold-up to small perturbations. The im- above the eV scale. For example, thepace location of the
portant small perturbations are those that mlevantover  quasiparticle Fermi surface can be chosen to coincide with
appreciable portions of the fixed manifold. As established irthe electron Fermi surface as measured via angle-resolved
Secs. IV and V, there are three such perturbatiénsSingle  photoemission spectroscopftRPES.3* The value of other
vortex-hopping(ii) charge hopping, andii) attractive qua- parameters, such as the bare veloegyhich appears iC,
siparticle interactions in the Cooper channel. When relevantand sets the scale of the plasmon velocity, can be roughly
these three processes destabilize the RFL phase and cause¢iséimated from the basic electronic energy scales, and in any
RG flows to cross over to different fixed points which deter-case does not greatly effect the relevancel/irrelevance of the
mine the asymptotic low-temperature behavior. From outhree important perturbations. For our basic lattice Hamil-
calculations, we find that at least one, and often more ofonian introduced in Sec. Il, the two most important param-
these three perturbations is always relevant, regardless of tleers characterizing the RFL phase are the vortex core energy
roton-liquid parameters. Hence the RFL should be regarded, and the roton hopping strength). Indeed, as shown in

1. Assumptions underlying the RFL approach
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FIG. 2. Proposed values for the vortex and charge hopping scal- I dasc
ing dimensiong\,(x) andA.(x) as a function of the doping These L s
0 ' X

hopping perturbations are relevant at the RFL fixed point when their

A<2. Within the doping rangey <x<Xx,, the charge hopping is FIG. 3. Schematic phase diagram that follows from the doping
morerelevant and the RFL phase is unstable to superconductwnydependence ot . shown in Fig. 2. With increasing doping the
ground state evolves from a charge ordered insulétprinto a
Sec. 1V, the scaling dimensions which determine the relsuperconductofdSQO, and then back into a Fermi liquidFL). The
evance of the vortex and charge hopping perturbations at th@rmal state behavior near optimal doping is controlled by the roton
RFL fixed point, denotedy, and A, respectively, depended Fermi-liquid (RFL) ground state. Below ", the quasiparticles pair.
sensitively on the ratia,/ ;. For example, ignoring renor- A quantum phase transition between the RFL and FL ground states

malizations from the gapless fermions we found occurs atx. but is preempted by superconductivity. %t x., a nor-
mal state resistand@aear in temperature is predicted.

L _ 1 [y,

A, = E T an K Do’ (260 vortex and charge hopping processes, since hothA.
. =1/\2<2. It seems reasonable to assume that in this situa-
with v+—vo 4U Kr—vo 2U Kt tion, the more strongly relevant process ultimately dominates

Rather than specifying the doping dependence, ok, ,vq at low energies. This implies thaf demarcates the boundary
and the Bose/Fermi-liquid parameters, though, it is simplepetween a Fermi liquid and a superconducting ground state,
and suffices for our purposes to specify the firalepen-  as illustrated in Fig. 3. Upon further decreasigghe charge
dence ofA, andA.. Shown in Fig. 2 is a proposed form for hopping becomes even more strongly relevant, tending to

Ayc(x), primarily chosen to fit the gross features of the cu-increaseT, until it reaches a maximum at “optimal doping,”
prate phase diagram. For example, since the RFL phase d:enotedxopt in Figs. 2 and 3. As one further decreased,
strongly unstable to the Fermi liquid phase whgn<2, we  should start decreasing. But as shown in Sec. V A, with de-
have takenA, decreasing to small values in the strongly creasing vortex core energy ~ X, the enhanced vortex den-
overdoped limit. On the other hand, to account for the obsity fluctuations generate an increasing antiferromagnetic ex-
servednon-Fermi-liquid behavior in the normal state near change interactionJ~t2/u,. This attractive interaction
optimaldoping;® requires that we takd, =2 in that regime.  between fermions will mediate quasiparticle pairing, with a
On the underdoped side of the dome we can use the observediring energy scale growing rapidly &s- 0. It is natural to
linear x dependence of the superfluid density to guess th@ssociate this “quasiparticle pairing” temperature scale with
behavior ofA, for smallx. In this regime thérenormalizedl  the crossover temperature into the pseudogap refime,
vortex core energy in the superconducting state is presunshown asT” in Fig. 3. As discussed in Sec. VI B 2, under the
ably tracking the transition temperature, varying linearlyassumption that quasiparticle kinetic energy arises primarily
with x. It seems plausible that the bare vortex core energy through spinon-hopping>t., the superfluid density associ-
in the lattice Hamiltonian, while perhaps S|gn|f|cantly larger, ated with the quasiparticle pairing is small, so that potential
also tracks thisx dependence. This |mpllesu~\u ~\xas true superconductivity as a consequence of this pairing is
depicted in the figure. Moreover, to recov@onventional  suppressed to a low or zero temperature.
insulating behavior wher— 0, requires that vortex conden-  Since A, <A, for doping levels withx<x;, vortex-
sation(rather than charge hoppihge more relevant in this hopping should again dominate over charge hopping. This is
limit, i.e., A,<A. (see below. the same condition which we argued leads to the Fermi-
liquid state forx>x, above. However, the physics for small
X is more complex, owing to the strong antiferromagnetic

Under the above assumptions, we now discuss in somiateractions and proximity to the commensurate fillixrgO
detail the resulting phase diagram and predicted behaviorst which antiferromagnetic order is probable. In théllU
Consider first the ground states upon varyign the ex-  vortex-quasiparticle formalism of this paper, this difference
treme overdoped limit withd, <2, vortex hopping will be a  arises from the freedom to choogas A;— 0) the fermion
strongly relevant perturbation at the RFL fixed point. Thedensity to minimize the totaffree) energy of the system. In
vortices will condense aT=0, leading to a conventional the majority of this paper we have takeg=pg, in order to
Fermi liquid ground state. Upon decreasixighere comes a minimize the vortex kinetic energy. However, if antiferro-
special doping valugx, in Fig. 2), where A. becomes magnetic quasiparticle interactions are large, &rdl, an-
smallerthanA,. At x=x, the RFL phase is unstable bmth  other possibility arises. To optimally benefit from the antifer-

3. Phase diagram
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romagnetic interactions, one may instead choose the fermiorot(®,) ~ 71 ~R (with 7 the electron’s momentum relax-
density commensurate =1, for which the Fermi surface is ation time, in the RFL phase the cotangent of the Hall angle
optimally nested and the quasiparticles can become fullyaries with adifferent powerof temperature than for the
gapped, gaining the maximal “condensation energy” fromelectrical resistanceR~T?. This non-Drude behavior is
antiferromagnetic ordering. The cost of this choice is som&onsistent with the electrical transport generally observed
loss of vortex kinetic energy as the vortex motion becomes, the optimally doped cupraté®’ where R~T and
somewhat frustrated by the resulting dual fleix. Although cot @) ~ T2.

we assume vortex energy scales are large, this flux itself is Consider next the thermal conductivity near optimal

small far smallx, so eventually ax—0 th.'s fise in k|.net_|c doping within the RFL normal state. One of the most impor-
energy becomes smaller than the lowering of fermionic en: - L i TR
nt defining characteristics of a conventional Fermi liquid is

ergy due to antiferromagnetism and such a choice becomé%e Wiedemann—Franz law—the universal low-temperature
favorable. The ultimate physics of the remaining vortices in-'c '*' A z law—inhe univers w peratu
ratio of thermal and electrical conductivitiés= x/oT. In a

this limit is difficult to analyze reliably, but it seems evident T . L
that for A, < A, the more relevant vortex-hopping will lead Fermi liquid, electronlike Landau quasiparticles carry both

to an insulating state. Since the quasiparticles are thef!® conserved charge and the heat, and since the energy of
gapped, the remaining uncompensated fiwis expected to  the individual quasiparticles becomes conservedraso0,

lead to incommensurate charge ordering when the vorticetfie Lorenz ratio is universal,™ =L,=7kg3/3€”. In contrast,
condense—the dual analog of the Abrikosov lattice. the electrical conductivity is infinite in a superconductor, but

the condensate is ineffective at carrying heat so that the Lo-
4. The RFL normal state renz ratio vanished,5¢=0. Within the RFL phase, heat can
Having established the phase diagram which follows fromalso be transported by the single fermion excitations, with a
the assumed doing dependencedpfx), we turn to a discus-  contribution to the thermal conductivity linear in tempera-
sion of the normal state properties aboVg Under our ture: x,=Loo'T. At low enough temperatures this will domi-
working assumption, in the energy range abdyewe can  nate over the phonon contributiog,e,~ T°. But the roton
ignore the small(but ultimately relevant charge hopping excitations, which have a quasi-one-dimensional dispersion
perturbation, and use the RFL fixed point Hamiltonian t0a¢ |ow energies, will presumably also contribute a linear tem-
describe the physics of the normal state. First consider thSerature dependenag.,,~ T. Thus, thetotal thermal conduc-
special doping value=x;, whereA,=2 on the overdoped i in the RFL phase is expected to vanish linearly in
side of the superconductlng donfeee Figs. 2 and)3 For_ temperaturex~T. But since the roton contribution to the
X<X; the vortex hopping strengi) decreases upon scaling electrical conductivity diverges a3 — 0, the RFL phase is

down in energy, so that it can be treated perturbatively. Aﬁ)redicted to have a vanishing Lorenz ratio
shown in Sec. VI A, at second order in the vortex hopping,

the electrical conductivity is additive in the roton and quasi- P

particle conductivities. With impurities present the quasipar- LRFL= — ~ 77, (263
ticle conductivity of will saturate to low temperatures, ot

whereaso,o;~ T 7 (with y=2A,-3) diverges asT —0. The
low-temperature normal state electrical resistance is thus pr
dicted to behave as a power law

The quasicondensate in the RFL phase is much more effec-
§ive at transporting charge than heat, much as in a supercon-
ductor. Electron doped cuprates near optimal doping, when
R(T) ~ thV, (261) placed in a strong magnetic field to quench the superconduc-

_ . _ o _ tivity, do exhibit a small Lorenz ratio at low temperatui®s
with a vanishing residual resistivityMoreover, right atx | | /5 Byt extracting the zero field Lorenz ratio is prob-

=X, sincey=1 alinear temperature dependence is predicted |gmagic; since abov, the phonon contribution te is non-
Notably, this transport behavior is a due to the presence egligible.
the quasicondensate in the RFL phase, and as such is com- g instructive to consider the electrical resistance also in
pletely independent (_)f_the smgle-partlt_:le scattering rate.  heo underdoped regimeparticularly upon cooling below the
_The Hall conductivity, however, will be largely deter- tormion pairing temperature. Above this crossover line the
mined by the fermionic quasiparticle contribution, as de-yeqicted electrical resistance varies with a power of tem-
tailed in Sec. VII. Specifically, the cotangent of the Hall peratureR~ T?. Since, as we assume, the fermion’s kinetic
angle cot®y) = pxd pyy, was fpupld to vary as c®n)  gnergy comes primarily in the form of spinon hopping
Nl/(T?T%) in the RFL phase, with;~ the spinon momentum  — >t the resulting superfluid density is, however, very
relaxation rate. Moreover, at the hot spots on the Fermi surgmg|| (see Sec. VI B 2 and phase coherent superconductiv-
-1 H . . .
face 7~ ~T"*'/2 due to scattering off the gapless rotons.jty does not result, at least not in this temperature range.
Under the assumption that these same processes doming@vertheless, one would expect a dramatic increase in the
the temperature dependence of the quasipartielesport  fermion conductivitys' upon cooling througi*—much as

scattering rate, we deduce that seen in superconducting thin films upon cooling through the
. materials bulk transition temperature. Since the conductivity
cot(®y) ~ — ™, (2620 is additive in the roton and spinon contributiofT)*
f

~o,o(T)+0'(T), a large and rapid increase irf(T) should
and right atx=x,, a quadratic dependence @)~ T2 In  be detectable as a drop in the electrical resistance relative to
striking contrast to conventional Drude theory which predictsthe “critical” power law form, i.e.,
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R(T) 1 dimensions. More detailed predictions, such as for the opti-

T T 14cTol(M) (264 cal conductivity upon entering the superconductor and the

thermal Hall effect in the RFL normal state, might also be

This behavior is generally consistent with that seen in théhelpful in this regard. It would, of course, be most appealing

underdoped cupratéd?3’ provided we takey=~1. to identify a more convincing experiment for the roton
_ Fermi-liquid state, analogous to the vison-trapping ex-
5. Entering the superconductor periment for detecting 2D spin-charge separation. However,

We finally discuss the predicted behavior upon coolingdiven the critical nature of the RFL, with copious gapless
from the RFL normal state into the superconducting phaseXcitations Wlth_ varieties 'of quantum numbers, flndlr?g. such
The main change occurs in the spectrum of roton excitationgn incontrovertible experimental signature may be difficult.
which become gapped inside the superconductor. The roton
gap A, should be manifest in optical measurements, since
the optical conductivity will drop rapidly for low frequencies ACKNOWLEDGMENTS
<A, As in BCS theory, the ratio of th@oton) gap to the
superconducting transition temperatute g/ T. should be of
order one. This ratio is determined by the RG crossover flo
between the RFL and superconducting fixed points. It see
likely that this ratio will benonuniversal depending on the

We are grateful to Arun Paramekanti and Ashvin Vish-
wanath for a number of helpful conversations, and to Patrick
Y ee for commenting on a draft of the manuscript. We are
méspecially indebted to T. Senthil for his many clarifying re-
marks, particularly pointing to the importance of spinon-
. . C o ! . . o I'pairing terms in the Hamiltonian. This work was generously
fixed point (this is distinct from changes in this ratio in supported by the NSF; M.P.A.F. under Grant Nos. DMR-
strong coupling Eliashberg theories, since here variations i 210790 and PHY—990’7949 and L.B. by Grant No. DMR-

the r_atio . to.mafgi”a' parameters of the RFL f_ixe 985255. L.B. also acknowledges support from the Sloan
manifold even at arbitrarily weak couplingNevertheless, it and Packard foundations.

would be instructive to compute this ratio for the simple

near-neighbor RFL model we have been studying through-
out, and to analyze the behavior of the optical conductivity
above the gap.

Another important consequence of gapped rotons below We expect the Fermi liquid phase to occur upon complete
T., is that the electron lifetime should rapidly increase uponproliferation and unbinding of vortices. To obtain the Fermi
cooling into the superconducting phase. With reduced scatiquid in our formulation, we therefore in this appendix con-
tering from the rotons, the ARPES linewidth should narrow,sider the limit of large vortex hopping — o and small vor-
most dramatically near the normal state hot sgaish tan-  tex energyu,— 0. We have previously demonstrated the
gents parallel to the& or y axes. This behavior is consistent equivalence of the (1) gauge theory to &, gauge theory,
with the ARPES data in the cuprat&swhich upon cooling and it is this latter formulation which is most convenient in
into the superconductor does show a significant narrowing ofhis limit.
the quasiparticle peak, particularly so at the Fermi surface To observe the Fermi liquid, we analyze tde gauge
crossing near momentufar, 0). theory in its Hamiltonian form. Although this limit is very

Despite these preliminary encouraging similarities be-straightforward, based on previous work Bngauge theory,
tween various properties of the RFL phase and the cuprati¢is instructive to go through it in some detail here, in order
phenomenology, much more work is certainly needed beforéo observe the effects of the spinon pairing term. The Hamil-
one can establish whether this exotic non-Fermi-liquidtonian density can be separated into pure gauge, charge, and
ground state might actually underlie the physics of the highspin partsH =, +HZ2+H?Z2, with
temperature superconductors. We have already emphasized
the strengths of this proposition, but there are, of course, Hp=-h>, aj(r), (A1)
some experimental features which seem challenging to ex- i

plain from this point of view. The “quasiparticle charge,” i.e., yhere o* is the usual Pauli matrix in the space of states on
temperature derivative of the superfluid densil/dTlr-o  |ink in thej direction coming from site (and hence anti-

appears, based upon a small number of experimental daig nmutes witho?). In the charge sector
points, to be large and roughly independent of dopinin !

apparent conflict with the RFL prediction. The linear tem- HE2= -2t >, of(r)cos drag = &) + Un[n, — 1],
perature dependence of the electron lifetimer 2 kgT/#% j !

observed for nodal quasiparticles near optimal doping in (A2)
ARPES also does not seem natural in the RFL. However, it

seems likely that it may be possible to explain a small numwheren, is the number operator conjugate ¢, satisfying

ber of such deviations from th@ost naiveRFL predictions  [¢;,n:/]=i6;... For simplicity, in the spin sector we consider
by more detailed considerations. Further investigations of tha locals-wave pair field instead of d-wave one. This is not
RFL proposal should confront other experimental probesessential, but simplifies the presentation and still addresses
such as interlayer transport and tunneling. Toward this end, the essential issue of the relevance of spinon pairing in the
will be necessary to generalize the present approach to thréeermi liquid. Hence,

APPENDIX A: FERMI LIQUID PHASE
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He2= —tso/jz(r)[f:ﬂzj(,fnﬁ H.c]+ eoff,fro Ca(m) = (fry(Df (D (0)F],(0)), (A6)

ro

+A(fyfr +He) +ug(flfr ) (A3)  Since the pair-field operator creates a site doubly occupied
by spinons, the energy of the intermediate states encountered
Note that we have added a local on-site enesggnd inter-  in the imaginary time evolution from 0 te is increased by
actionuy, allowed in general by symmetry. The Hamiltonian y,, so that the spinon pair-field correlator decays exponen-
commutes with the gauge generators tially, C,(7) ~ e ", This indicates that the spinon pair field
T R is strongly irrelevantformally with infinite scaling dimen-
G =(- 1)n'+f“’fr”H () of(r =%y). (A4 sion). Tr?eyimportance of thi)é observation in thegcontext of
) this paper is that it provides an example in which the spinon
We requireG, =1 to enforce gauge invariance. pair field—which naively has a special significance because
In the analysis of the large vortex hopping limit above, weit alone violates spinon number conservation—is irrelevant.
obtained the action for @, gauge theory with zero kinetic This irrelevance is a consequence of strong vorticity fluctua-
term. This corresponds in the Hamiltonian to latgén par-  tions, which bind(confing charge to the spinons to form
ticular we will take h>t;,ty). In this limit o)j(zl, and the electrons. Since charge is conserved, electron nunmaest

gauge constraint becomes be conserved in the resulting effective theory. Similamt
ot g not quite so largevorticity fluctuations in the RFL have the
(=" rolre=1, (A5)  effect of rendering the spinon pair field irrelevant.

.e., requiring an even number of bosons and fermions on  AppENDIX B: ENSLAVING THE Z, GAUGE FIELDS
each site. Further, for large, the chargon and spinon hop-

ping terms are strongly suppressed, and can be considered T0 enslave th&; gauge fields, we employ two sequential
perturbatively. At zeroth order ity, t., then, the charge and unitary transformationt);,=U;U,, with

spin sectors are decoupled at each site and decoupled also

from one another except by the gauge constraint. In the U ‘H(
charge sector, fou.> 0, it is energetically favorable to have -
only either zero or one charge-on per gite=0,1. If n,=0,

IT or + m) =TT [5(r) 10 s,

r x'=0 r

then we must have either zero or two spinons per site. Note (B1)
than in this subspace, even for smal|] these two local

spinon singlet states are nondegenerate: the energy of the - Ne x
two-spinon state differs from the zero-spinon state by the ~ Up=11 ( I1 5’{(f+X'f<)) =[] [0 (r)]Fx=0 N,
energy ep+4u;. With nonzeroA, one obtains as eigenstates T \x'=0 r

simply two different linear combination of these two states (B2)
on each site. The lower energy of the two will be realized in )
the ground state, and the upper-energy state has no physicdle two operatorsU; and U, are mutually commuting.
significance. Physically, the lower-energy state, which igRoughly,U; transforms to a gauge in whia =1, andU,
neutral(n, =0) and is a spin singlet, corresponds to the localtransforms to a gauge witb;=1. More precisely, applying
vacuum, i.e., a site with no electron on it.ff=1, then we the first unitary transformatiot, and Hy are invariant,
must have one spinon on this site, which may have eitheWhile the fermion Hamiltonian transforms to

spin orientation. This state has thus the quantum numbers of taZoy ) — Zz

a physical electron. Fixing the total charge of the system UsH?Up = Hi |"JZ(”_"’J;'SIM(”N)’ (B3)
Q=2=,n,#0 will require some number of electrons in the where

system. At zeroth order these are localized, but @tth), |

the electrons acquire a hopping between sites, and one ob- o™ =1,

tains a system clearly in a Fermi liquid pha#eis not non-

interacting, since one has a hardcore constraint in the limit » slav * * N )
considereyl o) =11 II =11 (-)Nwwwi. (B4)
The above considerations can be applied for zero or non- x'=0 D)(r+w+x'%) x'=0

ZeroA, and there are no qualitative differences in the resultsne yortex kinetic terms also transform

(the detailed nature of the vacuum state depends smoothly on

A, leading to a weak dependence of the effective electron- UIHfﬁnulz Héﬂ?(r)ﬂm,slavqr;n), (B5)
hopping on the rati@\/u;) in either case. This strongly sug- B

gests thatA is not a relevantin the renormalization group with

sensgperturbation in the Fermi liquid phase. This notion can TSy = 1

be confirmed more formally by considering the limit of very ! '

weak A<<u;, in which it may be treated perturbatively. At "

zeroth order in this perturbation theory, the vacuum Staie Slaver . _ _ n

a single sitgis just the state with zero spinons. Formally, the == [T (= (B6)
perturbative relevance a is determined by the behavior of
the two-point function of the pair-field operator, e.g., Simultaneously, the first constraint is rendered trivial

x'=0
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crsiavez yioty =] =1 (B7) with one another and can be treatedcasumbers. Simulta-
' et i) ' neously, the two (1) constraints are rendered trivial,
Further transformation witiJ, removes?j‘ from Hﬁfn and gflavez U;gfuaze—(i/w)ErAreijaia}u—w): 1, (C8)
trivializes the remaining constraint, i.e.,
~ . P
c2slave= yicay, = g([)o—z =1. (B8) gilave: UlG,U, = eilmZonedfii-w) = 1 (C9
r

implying that of=;=0, and fully eliminating both gauge

The final transformed Hamiltonian no longer involves anyfields from the Full fransformed Hamiltonian

dynamical gauge fieldavhose state is uniquely specified by
Egs.(B7) and(B8)], and is simply given by UIHU, = Hlga o8, get™eqsee. (C10

H%fve: Ul Hz U, = sz|glzugf@slave. (B9) Further transformation withJ,, which is essentially a
. . . nonsingular gauge transformation of both the vortices and
The electron destruction operator in tl vortex-spinon  g,inons modifies the enslaved gauge figktsthat they van-
theory G, ,=bf;, with b, in Eq. (40), transforms upon en- ish on the horizontal bonds and are integer multiples oh
slaving in an identical fashion the vertical bondswhile leaving the gauge fluxes invariant.
UI;:raulzz Era|ofaofslave- (B10) Specifically, we require

a0(r)=2B(r), 0Or, (C11)
APPENDIX C: ENSLAVING THE U (1) GAUGE
THEORY

As for theZ, case, to enslave the gauge fields in tHa)y  Here B;(r) is the enslaved gauge field configuration for a
formulation we apply two sequential unitary transformationsvortex located at=0 [i.e., determined from EqgC7) with

a@(r)=2B,(r), Or+#xx+wW, x=0. (C12

Uap=U, Uy, with N;= 6 o]. The transverseness B‘[ implies then
U,= eiErvrrNrV(r—rr)&.&)(r’)eizr’rrnIV(r—r')(ﬁ.lé)(rf)' (C1) V20(r +W) = (8,0~ -1, (C13
whereV?V(r -r’)=4,,» and with an unknown functionjs, such thaty, =0 for x<0. Tak-

Uy = e(i/Z)Er,r’nI@)(r_r’)Nr’, ©2) ing a line sum around the origin requires then
where the lattice Laplacian is AO(XX +W) = = 277 + 2B, (XX + W), (C14
V2 =S 2Er =50 =S f(r +%) + f(r = %) — 2f(r). for x=0. Equation§C13) and(C14) are the lattice analog of

") Ej i =%)) Ej (F+%)) +1(r =) = 2A(r) Laplace’s equation and the condition tHatjumps by 27
(C3) across the positive axis. These conditions determigg and

hence®. After some algebra, the solution is expressible as a
Here we have introduced a “angle” functi@(r -r’), to  Fourier integral

be determined later. The two unitary transformations com-

mute with one another. Again, bott, andHy are invariant a(r :J O (k) Cc1

commuting withU, andUy, whereas under application of; ") K (e, (€19

the vortex kinetic energy transforms to

+ where
UaHkinUa= Hkin|ei“jﬂeia§ei“jsla‘/7”f)- (C4 _ .
Here, ol is the transverse part af, and o*'®" satisfies Ok) = - 2me ™| Ky K (k) (C16)
L | | - ICZF(kX) ’C; xNy AR 1
€jj aiajSIaV%r - W) = 7Tn:, V- &slave: 0. (CS) .
with
Similarly, the spinon and electron hopping Hamiltonians
transform to sin(k,/2
F(k) = 1—|.nz(—X)|, (C17)
UlHgeUa = Hyelos, ares™im), (C6) Vsin“(k/2) + 1
with B} the transverse part ¢8; and 1
. (k) = — = . (c18
& ai/ajs'ave(r -w)=mN, V.pive=o. (C7) 4 sin(k,/2)Vsir?(k/2) + 1

Notice that the longitudinal parts ak and 8 have been For large arguments, the asymptotic behavior can be ob-
eliminated, and the remaining transverse pieces commutgined,
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O(r) ~ arctanfy/x], (C19 purely transverse gauge fielﬁ'zo. The electrical charge

Y] ) ) ) density in the vortex-spinon formulation transforms to in-
for yx*+y“>1, with the arctan defined on the interval .| de theelectrondensity

[0,27]. Hence®(r) gives a proper lattice version of the
continuum angle function. U;ei,-&iaj(r —W)Ug = g;diaj(r —w) + wc:rgcw. (D6)

With this definition, one finds The full Hamiltonian density within the vortex-electron

Hs'ave= Ul HU,p= Hga s xsive zsiave,  (C20)  formulation is readily obtained from the enslaved vortex-
b spinon Hamiltonian: H,.=ULUIHU U, It can be com-
with o7**r;n’) and o7**¥r;N) as defined in Eqs(B6)  pactly expressed as
and (B4), respectively. Remarkably, the enslaved 1y )
Hamiltonian isidentical to the enslaved, Hamiltonian in W Yo J _ 2
Eq (Bg) HSIaveE H;lave 2 Hve_ ZUEJ ej2+ 2u [Eij ﬁiaj + Cr(rcr(r 7Tp0] + Hv(aj)
’ > . U
We have thereby established the formal equivalence be- _
tween theZ, and U1) formulations of the vortex-spinon +H (@) + Hy, (07)
field theory—the unitarily~transformed enslaved versions ofwhere?, and’, denote the vortex and roton hopping terms,
the original Hamiltonianddz, andH in Egs.(28) and (43) ~ respectively, and are given explicitly as
are identical to one another. Finally, we can verify that the

enslaved versions of the electron operators in th&) land M, (8y) = _tvzj: cosa), (D8)

Z, formulations also coincide. From the definition of the

electron operator in the (@) formulationc, . in Eq. (55), one «

can readily show that Hl(ay) =~ EE cog&;d;ay). (D9)
|

U;bcrouab: Cra|ejﬁj—>ul.'5'a"e- (C21) o . . )
! The fermionic Hamiltonian is
With the analogous expression for the enslagdelectron

operator in Eq.(B10), and upon comparing the defining Hf:_zteCLf(jgcra_E eing(r)[tSC:—+)A(jo-Cl’o'
expressions of the electron operators in Zheand U1) for- J ]
mulations in Egs.(41) and (55), respectively, one thereby +A:BC 1z s€,0/Cror + H.CJ. (D10)

. . . ~ 1= r+ler oo Mro
establishes the desired formal equwalentlalfzcmu12
Eugbcwuabl The electric field appearing in the spinon hopping term

yields the same physical effects as the gauge field in {ig U

APPENDIX D: THE VORTEX-ELECTRON FORMULATION formulation. Specifically, when the electron hops from one

In this appendix we briefly discuss a third Hamiltonian Site to a neighboring site, the factet™ which shifts the
formulation of the vortex-fermion field theory. The vortex- gauge-field aj by , effectively hops a compensating
electron Hamiltonian will be expressed in terms of “electroncharge-on in the opposite direction. In addition, this minimal
operators,” or more correctly operators which create excitacoupling form encodes the requisite minus sign when a
tions having a nonvanishing overlap with the bare electronspinon is hopped around a vortex and vice versa. The full
In order to transform to this formulation, we start with the Hamiltonian must be supplemented with the constraint that
enslaved version of the (M) vortex-spinon Hamiltonian as V-€=N, with integerN. We emphasize that the total spin
obtained in Appendix C:

- 1
_ = T2
U;HUa: Héal,éﬁjaéaflave,eiﬁjslavea (Dl) S= er CrO'To-o-rCro-’ (Dll)
| | H
where 5 ®*® and 87" satisfy and electric charge

eij r?iajSIave(r - W) = 7Tn:, ' &Slave: O, (DZ)

<1

1
Q=2 | =eday(r —w) +cl,¢, (D12)
r a

€ij &iﬂjSIaVEtr - W) =aN,, 6 : é3|ave: 0. (D3) . )
) ) ) are conserved, commuting with,..
Now consider the unitary transformation It is of course also possible to pass to a Euclidean path
U = e(i/z)gm,njv(r_r/)eijgiej(r/_w) (D4) in_tegral representation of the parti_tion_function _qssociated
el ' with the above vortex-electron Hamiltonian. Specifically, the
where agairV?V(r-r’)=4,,.. As is apparent from Eq$39)  corresponding Euclidean Lagrangian can be readily ex-
and (59) this transformation takes one from the spinon op-pressed as

erator to the electron operator

L= i€dga; + Cl doC, +ia (V -€=N,) +H,e, (D13
U£|frUUe|:S¢(r)fm:Cm_ (D5) e 1%j00%) T br 0obr 0 r e

o where the time component of the gauge fialdr) lives on
Here S,(r)=IIe"™ is defined in Eq.(39) and the last the sites of the dual lattice. In the partition function, the
equality follows from Eq.(59) in the enslaved gauge with vortex numbei;, is a continuous field running over the real
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numbers, but the integration only contributes whiris an
integer. To see why, it is instructive to la—a,-d,0, and
to integrate the vortex phase variall@ver the reals. Since
the Hamiltonian is 2r periodic in 6, upon splitting the inte-

gration asdyf=2l +(905 with 79—[0 2], the summation of

PHYSICAL REVIEW B 71, 085119(2005

APPENDIX E: POLARIZATION TENSOR

In this appendix, we calculate the corrections to the po-
larization tensoll;; at O(tf) including fluctuations of botk
and 0, for the general casey<. Integrating out all dy-
namical fields toO(tZ) one finds that the effective action as

exp(i2mIN) over integed vanishes unless the vortex number 4 t,nctional ofA; takes the formss= 5°+S(2) where

N is an integer.

To obtain a more tractable representation of the Lagrang-

ian, we introduce a Hubbard—Stratonovich fieldr) to de-
couple the Coulomb interaction term above. Higgehas the

§/3>:_Eve5i2f (Ci(r,NC(r', 7)€ Mg, (ED)

physical meaning of a dynamical electrostatic potential. Inwith the shorthand notatio@(r, 7)=cogd,0-%;),, and with
this way the full Euclidean Lagrangian can be convenientlythe(:--)5-o indicating a Gaussian average with respect to the
decomposed as the sum of a bosonic charge sector andRa action. This can be written as

fermionic spin and charge carrying sectf.=L.+L;. The
full bosonic sector is given by

u, .
L= {e + Feo} +iej(doqy — dja0)
- I_eOEij(?iaj +i(dpf—ag)N+L,+ L, (D14
a
with vortex and roton hopping terms
L£,=-1,> codd,0-a), (D15)
j
K
L=~ Er[COS(AxyG— da) +(x—=y)l.  (D16)

The Lagrangian density in the fermionic sector is

;Cf = C:-((?O - ieo)Cr + Hf + i80po. (Dl?)

2
s=- tz"esg(e“@f*w + ), (E2)
with
F_J ( K, |wnICA)(k :
X~ o l/fkwn’C K wn
- ‘/lka)nlcye(kywn)] l (E3)
Py, =€ KT — gkr=en™) and T', obtained fromT, by
x«y. Evaluating the expectation value gives
1 iwyu
2~ -2, exp f —
" o) DEFOR(T= )T, K

X ‘ﬁ—k,—wn(kyGlZ + kan)TCjAj(‘ K,— @) + X Y.
(E4)

In addition to the global symmetries corresponding to spinSince we are interested in the polarization tensor, we may
and charge conservation, the full Lagrangian has a locatxpand the exponential in E¢E4) to O(A?) to obtainII;;

gauge symmetry, being invariant under

0, — 6,+ 0,

a,(r) — a,r +4,0, (D18)

=I17 +I1;?, with
tzwz 2
Hi(jZ) L (wh + vf k) 1|lC o+ K,Gual K, K
+(Xey). (E5)

with ©, an arbitrary function of space and imaginary time. In the limit of interest for the conductivitjk| —0 at fixed
Because of this gauge invariance we are free to choose drequencyG;;> G,,, and we obtain Eq(153 of the main

appropriate gauge.
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