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We introduce and analyze a metallic phase of two-dimensionals2Dd electrons, the roton Fermi liquidsRFLd,
which, in contrast to the Landau–Fermi liquid, supports both gapless fermionic and bosonic quasiparticle
excitations. The RFL is accessed using a reformulation of 2D electrons consisting of fermionic quasiparticles
and hc/2e vortices interacting with a mutual long-ranged statistical interaction. In the presence of a strong
vortex-antivortexsi.e., rotond hopping term, the RFL phase emerges as an exotic yet eminently tractable
quantum ground state. The RFL phase exhibits a “Bose surface” of gapless roton excitations describing
transverse current fluctuations, has off-diagonal quasi-long-ranged order at zero temperaturesT=0d, but is not
superconducting, having zero superfluid density and no Meissner effect. The electrical resistancevanishesas
T→0 with a power of temperaturesand frequencyd, RsTd,Tg swith g.1d, independent of the impurity
concentration. The RFL phase also has a full Fermi surface of quasiparticle excitations just as in a Landau–
Fermi liquid. Electrons can, however, scatter anomalously from rotonic “current fluctuations” and “supercon-
ducting fluctuations.” Current fluctuations induced by the gapless rotons scatter anomalously only at “hot
spots” on the Fermi surfaceswith tangents parallel to the crystalline axesd, while superconducting fluctuations
give rise to an anomalous lifetime over the entire Fermi surfaceexceptnear thesincipientd nodal pointss“cold
spots”d. Fermionic quasiparticles dominate the Hall electrical transport. We also find three dominant instabili-
ties of the RFL phase: an instability to a conventional Fermi-liquid phase driven by vortex condensation, a
BCS-type instability toward fermion pairing, and asnonpairingd superconducting instability. Preciselyat the
instability into the Fermi-liquid state, the exponentg saturates the bound,g=1, so thatRsTd,T. Upon entering
the superconducting state the rotons are gapped out, and the anomalous quasiparticle scattering is strongly
suppressed. We discuss how the RFL phase might underlie the strange metallic state of the cuprates near
optimal doping, and outline a phenomenological picture to accommodate the underdoped pseudogap regime
and the overdoped Landau–Fermi-liquid phase.
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I. INTRODUCTION

Despite the appeal of spin-charge separation as an under-
pinning to superconductivity in the cuprates, there are seem-
ingly fatal obstacles with this approach. Ever since Ander-
son’s initial suggestion1 of a spinon Fermi surface in the
normal state at optimal doping, there have been nagging
questions about thechargesector of the theory. The concept
of the “holon,” a chargee spinless boson, was introduced in
the context of the doped spin liquid state,2 and was presumed
to be responsible for the electrical conduction. In the sim-
plest theoretical scenario, spin-charge separation occurs on
electronic energy scales, thereby liberating the electron’s
charge from its Fermi statistics. This idea has been actively
investigated over the past 15 years—see Ref. 3 for a review.
A pervasive challenge to this perspective, however, is the
difficulty of avoiding holon condensation and superconduc-
tivity at inappropriatelyhigh temperatures. In addition, re-
cent theoretical work, which has elucidated the phenomenol-
ogy of putative spin-charge separated states, has led to
further conflicts with observations. One class of theories
have shown how spin-charge separation can emerge from a
superconducting phase by pairing and condensing vortices.4

Following this work, aZ2 gauge theory formulation greatly
clarified the nature of fractionalization of electronicsand
otherd quantum numbers.5 It has become clear that a neces-
sary requirement for true spin-charge separation in two di-

mensions is the existence of a “vison” excitation with a
gap.6–9 The vison is perhaps most simplest thought of within
the vortex pairing picture, as the remnant of an unbound
single vortex. If these ideas were to apply to the cuprates,
one would expect this gap to be of order the pseudogap scale
kBT* . Unfortunately for spin-charge separation advocates, ex-
periments designed to detect the vison and measure its
gap10,11 have determined an unnaturally low upper bound of
approximately 150 K for the vison gap in underdoped
YBCO. Is this the death knell for spin-charge separation?

In a very recent paper focusing on the effects of ring
exchange in simple models of bosons hopping on a two-
dimensionals2Dd square lattice,12 we have identified a zero-
temperaturenormal fluid phase—srednamed the “exciton
Bose liquid”sEBLd. In the EBL phase boson–antiboson pairs
si.e., an excitond are mobile, being carried by a set of gapless
collective excitations, while single bosons cannot propagate.
The resulting quantum state is “almost an insulator,” with the
dc conductivity vanishing as a power of temperaturessTd
,Ta with aù1. This is in contrast to the “strange metallic
phase” in the optimally doped cuprates, which is “almost
superconducting”13 with an extrapolated zero resistance at
T=0, as if it were a superconductor withTc=0. This phe-
nomenology suggests the need for a nonsuperconducting
quantum phase in which the vortices are strongly immobi-
lized at low temperatures.
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Motivated by this, we revisit theZ2 vortex-spinon field
theory of interacting electrons,4,5 in which thehc/2e vortices
and the spinons have a long-ranged statistical interaction me-
diated by twoZ2 gauge fields. Rather than gapping out single
vortices while condensing pairsswhich leads to a spin-charge
separated insulatord,5 we would like to find a quantum phase
in which the vortices are gapless but nevertheless immobile.
To this end, we add an additional “vortex-ring” term to the
earlier vortex-field theory. This term is effectively a kinetic
energy for vortex-antivortex pairs, that is, for rotons. To ac-
cess the limit of strong roton hopping requires a further re-
formulation of theZ2 vortex-spinon field theory, replacing
the Z2 gauge fields by Us1d gauge fields. Similar Us1d
vortex-fermion field theories have been explored in Refs. 14.
The resulting Us1d vortex-spinon formulation is tractable in
the limit of a very strong roton hopping, and describes the
“roton Fermi liquid” sRFLd phase, a metallic ground state
qualitatively different than Landau’s Fermi liquid phase.

Both theZ2 vortex-spinon field theory developed in Refs.
4,5 and our Us1d vortex-fermion field theory, described in
Sec. II below, are constructed in terms of operators which
create the excitations of a conventional BCS superconductor:
the Bogoliubov quasiparticles, thehc/2e vortices, and the
collective plasmon mode. This choice of “basis,” however,
does not presume that the system is necessarily supercon-
ducting at low temperatures, and indeed we intend to employ
such a formulation to describe nonsuperconducting states.
When superconductivityis present at low temperatures, the
formulation will also be employed to describe the “normal”
state aboveTc. In these approaches, the Bogoliubov quasi-
particle is electrically neutralized,4 and the resulting
“spinon” excitation transported around anhc/2e vortex
within an ordinary 2D BCS superconductor, acquire a Ber-
ry’s phase ofp. Within the Z2 and Us1d vortex-spinon for-
mulations, one introduces spinon creation operatorsf rs

† ,
where we letr denote the sites of a 2D square lattice and
with s the spin. Vortex creation operators are also intro-
duced, conveniently represented in a “rotor” representation
as eiu, which live on the plaquettes of the 2D lattice. The
vortices are minimally coupled to a gauge field, living on the
links of the dual lattice. The “flux” in the gauge field de-
scribes charge density fluctuations on the original lattice
sites, and, for example, encapsulates the plasmon mode in-
side the superconducting phase.15 Finally, the long-ranged
statistical interaction between the spinons and vortices is in-
corporated by introducing two Chern–SimonsZ2 or Us1d
gauge fields. The important new element in the present paper
is the inclusion of a roton hopping term. As we shall see, the
RFL phase is readily accessed within the Us1d formulation
when the magnitude of this roton hopping term is taken sig-
nificantly larger than the single vortex hopping strength.

Here, we briefly summarize the main results established
in the following sections. In Sec. II theZ2 vortex-spinon field
theory formulation of Ref. 5 is recast in terms of a lattice
Hamiltonian. Via a sequence of exact unitary transformations
on the Hamiltonian, we demonstrate that it is possible to
exchange theZ2 Chern–Simons gauge fields for their Us1d
counterparts. Within a Lagrangian representation of the re-
sulting Us1d Hamiltonian which we employ throughout the

paper, it is possible to choose a gauge for one of the Us1d
Chern–Simons fields so that the spinon is recharged, and has
finite overlap with a bare electron.sIn Appendix D we show
that this gauge choice can effectively be made at the Hamil-
tonian level, and construct a Hamiltonian theory in terms of
vortices and fermionic operators which carry the electron
charge and have a finite overlap with a bare electron.d

Initially, in Sec. III, we ignore the fermions entirely, and
focus on the bosonic chargesor vortexd sector of the theory.
A “spin-wave” expansion valid in the presence of a large
roton-hopping term, leads to a simple theory which is
quadratic—exceptfor a single vortex-hopping term. Drop-
ping this vortex-hopping term then leads to a soluble har-
monic theory of the “roton-liquid”sRLd phase. In addition to
the gapless 2D plasmon, the RL phase is shown to support a
“Bose surface” of gapless roton excitations. We compute the
Cooper, pair propagator in the RL phase, and show that it
exhibits off-diagonal quasi-long-range ordersODQLROd at
zero temperature, butnot a Meissner effect. The RL phase
exhibits a high degree of “emergent” symmetry—the number
of vortices on every row and column of the 2D dual lattice is
asymptotically conserved at low energies. This symmetry
implies that the harmonic “fixed point” theory of the RL
phase has an infinite conductivity at any temperature.

In Sec. IV we study the legitimacy of the approximations
used to arrive at the harmonic RL theory, focusing first on
the neglected vortex hopping term. We show that for a range
of parameters the vortex hopping term is “irrelevant,” scaling
to zero at low energies whenever its associated scaling di-
mension satisfiesDvù2. Nevertheless, at finite temperatures
vortex hopping leads to dissipation, giving a resistance
which vanishes as a power law in temperatureRsTd,Tg

with g=2Dv−3ù1. A “plaquette duality” transformation12

allows us to next address the legitimacy of the initial spin-
wave expansion, used to obtain the harmonic RL theory. Of
paramount importance is the presence of a term in the dual
theory which hops a “charged” quasiparticle excitation, a
term not present in the harmonic fixed-point theory. We find
that the “charge” hopping process is irrelevant over a range
of parameters—approximately the complement of the range
where vortex hopping was irrelevant—implying stability of
the RL phase. When relevant, on the other hand, the “charge”
quasiparticle condenses, leading to a superconducting ground
state.

The fermions are reintroduced back into the theory in Sec.
V, where we argue for the stability of the Bose surface of
rotons and the 2D plasmon in the presence of agapless
Fermi sea of fermionic quasiparticles. We denote the corre-
sponding phase by the roton Fermi liquidsRFLd. The gap-
lessness of the fermions is somewhat surprising, and de-
serves some comment. Indeed, it is in sharp contrast to the
gapped nature of the quasiparticles in both the superconduct-
ing phase andZ2 fractionalized insulator, in which the
spinons experience a BCS-like “pair field.” The cause of this
difference is the existence of gapless single vortex excita-
tions sand fluctuationsd in the RFL, which according to our
analysis leads to the “irrelevance” of the fermion pairing
term. Crudely, because the bosonic pair field exhibits only
OD quasi-LRO rather than ODLRO, there is no average pair
field felt by the quasiparticles, and hence no gap. In this
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sense, the RFL is in fact closer to a Fermi-liquid state than it
is a superconductor.

Section VI is devoted to an analysis of the properties of
the RFL phase. We study both the longitudinal and Hall con-
ductivities, and find that the dissipative electrical resistance
vanishes with a power of temperatureRsTd,Tg with gù1,
similar to the behavior without fermions present. But the
fermions are found to dominate the Hall response, leading
within a naive Drude treatment to an inverse Hall angle vary-
ing as QH

−1,1/st f
2Tgd, with t f the fermionic quasiparticle

transport lifetime. Due to the presence of the Bose surface of
gapless rotons, electrons at finite energyv experience
anomalous scattering,not present in a Landau–Fermi liquid.
Specifically, quasiparticles scatter due to rotonic “current
fluctuations” and “superconducting fluctuations,” which con-
tribute additively to the electron decay rate. The former gives
rise to especially strong electron scattering at “hot spots”—
points on the Fermi surface with tangents parallel to the axes
of the square lattice. At such hot spots the associated electron
decay rate varies with an anomalous power of energyvsg+2d/2

for 1,g,2. The decay rate from superconducting fluctua-
tions is present everywhere along the Fermi surfaceexcept
near “cold spots” at the incipientd-wave nodal points. This
contribution grows strongly with decreasing energy/
temperature, although it has a smaller overall amplitude than
the current fluctuation contribution. Upon entering a super-
conducting state, the rotons—gapless within the RFL
phase—become gapped out, and all anomalous scattering is
strongly suppressed.

Finally, in Sec. VII we briefly discuss possible connec-
tions of the present work to the cuprates. We suggest that the
RFL phase might underlie the unusual behavior observed
near optimal doping in the cuprates, in particular the “strange
metal” normal state aboveTc. A scenario is outlined which
also incorporates the pseudogap regime and the conventional
Fermi liquid behavior in the strongly overdoped limit.

II. THE MODEL

We are interested in electrons hopping on a 2D square
lattice, with electron creation operatorscrs

† . Here, the sites
are denotedsin bold roman charactersd as, r =x1x̂+x2ŷ,
wherex1,x2 are integers,x̂1= x̂, x̂2= ŷ are unit vectors along
the x andy axes, ands= ↑ ,↓ denotes the two spin polariza-
tions of the electronssuch a spin index will be distinguished
from Pauli matricessm by the lack of any superscriptd.

A. Z2 chargon-spinon formulation

We begin by formulating the electron problem in spin-
charge separated variables using theZ2 gauge theory Hamil-
tonian. We emphasize that this formulation does not imply
that spin-charge separated excitations are deconfined, and in-
deed this formulation correctly describes the low-energy
physics of conventional confined phases as well.

The Z2 gauge theory is most readily formulated in terms
of a chargee singlet bosonic chargonbr ,br

†, a neutral spin-
1/2 fermionic spinonf rs , f rs

† , and an Ising gauge fieldsPauli
matrixd s j

msr d residing on the link between sitesr andr + x̂ j.

It is convenient to use a rotor representation for the chargons
br =e−ifr, br

†br =nr , with ffr ,nr8g= idr ,r8.
TheZ2 Hamiltonian is conveniently expressed in terms of

the Hamiltonian densityHZ2
=orHZ2

, which in turn is de-
composed into a bosonic charge sector, a fermionic sector,
and a gauge field contributionHZ2

=Hc+H f
Z2+Hg:

Hc = − tco
j

s j
zsr dcos„] jfr − Ajsr d… + ucsnr − r0d2, s1d

Hg = − tvo
j

s j
xsr d − K p

hsr+wd
sz − krp

j

s j
xsr ds j

xsr + x̂ jd,

s2d

H f
Z2 = − o

j

s j
zsr dftsf r+x̂ js

† f rs + D j f r+x̂ js
ess8f rs8 + H.c.g

− teo
j

f r+x̂ js
† eis] jfr−Ajsr ddf rs + H.c. s3d

Here,r0;1−x is the electronscharged density withx mea-
suring deviations from half filling. Throughout the paper,] j
with j =1,2 denotes adiscretesforwardd spatial lattice de-
rivatives in the x1 and x2 directions, for example,]1fr
=]xfr =fr+x̂−fr . We have included an externalsphysicald
vector potentialAjsr d in order to calculate electromagnetic
response and to include applied fields. The HamiltonianHc
describes the dynamics of the chargons hopping with
strengthtc, which are minimally coupled to theZ2 gauge
field. The dynamics of the gauge fields is primarily deter-
mined fromHg, the first two terms of which constitute the
standard pureZ2 gauge theory Hamiltonian. The “magnetic”
contribution involves the plaquette product

p
hsr+wd

sz ; s1
zsr ds1

zsr + ŷds2
zsr ds2

zsr + x̂d, s4d

which is the Z2 analog of the lattice curl. Here we have
definedw=s1/2dsx̂+ ŷd, and r +w denotes the center of the
plaquette. We have also included an additional contribution
bilinear in sx, which in the dual vortex representation below
will become a “roton” hopping term. In the fermion Hamil-
tonian H f

Z2, we have defined the antisymmetric matrixess8
= isss8

y , and takeD j =s−1d jD, which describes a nearest-
neighbor pair field withd-wave symmetry. Apart from the
first two terms familiar to aficionados of theZ2 gauge
theory,5 we have included a less exotic bare electron hopping
amplitudete. We will primarily be interested in the limit that
the spinon hopping strength is significantly larger than the
electron hopping strengthts@ te.

In most of the analysis of this paper, we will consider the
limit of small spinon pairingD j →0. This can be justified
either by the assumptionD j ! ts, or by the irrelevance in the
renormalization groupsRGd sense, which will occur in some
regimes. If strictlyD j =0, both fermionsspinond number and
boson charge are conserved, and in principle may be sepa-
rately fixed. However, forD j →0, even infinitesimal, this is
not the case. Instead the spinons willequilibrate in some
time that diverges asD j →0 but is otherwise finite, and the
system will choose a unique fermion density to minimize its
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sfreed energy. We will return to this point in the Us1d formu-
lation in Sec. II C 1.

The full Hamiltonian above has a set of localZ2 gauge
symmetries, commuting with each of the local operators,

Cr
1 = s− 1dnr+nr

fp
+sr d

sx, s5d

where nr
f = f rs

† f rs is the fermion density and theZ2 lattice
divergence is defined as

p
+sr d

sx ; p
j

s j
xsr ds j

xsr − x̂ jd. s6d

Physical states are required to be gauge invariant, which is
specified by the set of localconstraints: Cr

1;1. This is theZ2
analog of Gauss law for conventional electromagnetism.

The connection between theZ2 gauge theory and a theory
of interacting electrons, is most apparent in the limit thattv is
taken to be much larger than all other couplings. In this limit
the electron creation operator is equivalent to the product of
the chargon and spinon creation operatorscrs

† =br
†f rs

† . Indeed,
when tv→` the Z2 “electric” field becomes frozen,s j

x<1,
and the gauge constraints then imply that on each site of the
lattice the sum of the chargon and spinon numbersnr +nr

f is
even. Moreover, for largetv, the chargon and spinon hopping
terms are strongly suppressed, and can be considered pertur-
batively. Upon integrating out the gauge fields, one will
thereby generate an additional electron kinetic energy term
with amplitude of ordertcts/ tv. A brief discussion is given in
Appendix A.

In what follows, we will study theZ2 gauge theory more
generally, away from the largetv limit. Of interest is the
electron Green’s function

Gesr 1,t1;r 2,t2d = − kTtĉr 1sst1dĉr 2s
† st2dl. s7d

We will express the electron operators as

crs ; br f rs, s8d

which is exact astv→`, but more generally should be suf-
ficient to extract the universal low-energy and long-length-
scale behavior of the electron Green’s function. We will also
be interested in correlation functions involving the Cooper
pair creation and destruction operatorsBr

†, Br , with Br
=sbrd2=e−2ifr.

B. Z2 Vortex-spinon formulation

In what follows, it will prove particularly convenient to
work with vortex degrees of freedom, rather than the chargon
fields. To arrive at such a description, we use the Us1d duality
transformation,15 in which the dual variables sit naturally on
the 2D dual lattice. We denote the sites of the 2D dual lattice
by sans serif characters asr=x1x̂+x2ŷ+w, with w=s1/2dsx̂
+ ŷd and integerx1,x2. The duality transformation itself de-
fines two conjugate gauge fieldsfaisrd ,ejsr8dg= idi jdr,r8,
where

nr =
1

p
ei j]iajsr − wd, s9d

]ifr = pei jejsr + w − x̂ jd. s10d

Here, as defined, due to the discreteness of thenr variables,
ajsrd takes on values that are integer multiples ofp, while
ejsrd is a periodic variable with period 2. This transformation
is faithful provided the constraint

s¹W ·eWdsrd ; o
j

] jejsr − x jd = 0 smod 2d s11d

or, equivalently,

Cr
2 = eips¹W ·eWdsrd = 1 s12d

is imposed at every siter of the dual lattice. Rewriting the
charge Hamiltonian, one has

Hc = − tco
i

si
zsr dcosfpei jejsr + w − x̂ jd − Aisr dg

+
uc

p2sei j]iaj − pr0d2. s13d

Conventionalhc/2e superconducting vortices are com-
posites of a visonstopological excitation ins j

zd and a half
vortex in f. To describe them, we perform a unitary trans-

formation to a new HamiltonianH̃Z2
with new constraintsC̃a,

H̃Z2
= U†HZ2

U, C̃a = U†CaU s14d

with the unitary operator

U = expF i

2o
r ,i,j

ei jaisr + w − x̂idfs j
zsr d − 1gG

= p
r

fs1
zsr dga2sr+wd/pfs2

zsr dga1sr−wd/p, s15d

with w=s1/2dsx̂− ŷd=w− ŷ. The transformed constraints are

C̃r
1 = s− 1dnr

fp
+sr d

sx = 1, s16d

C̃r
2 = s− 1ds¹W ·eWdsrdp

hsrd
sz = 1. s17d

Under this unitary transformation

H̃c = − tco
j

cosfpejsrd + e jkAksr + wdg +
uc

p2sei j]iaj − pr0d2,

s18d

H̃g = − tvo
j

s̄ j
xsrdcosfajsrdg − Ks− 1ds¹W ·eWdsrd + Hr

Z2. s19d

Here we have defineds̄1
xsrd=s2

xsr+wd ,s̄2
xsrd=s1

xsr−wd, and
have used Eq.s17d. The transformed roton hopping term be-
comes

Hr
Z2 = − krs̄1

xsrds̄1
xsr + x̂2dcosf]yaxsrdg + sx ↔ yd. s20d

The fermion Hamiltonian is almost unchanged in the dual
vortex-spinon representation
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H̃ f
Z2 = − o

j

s j
zsr dftsf r+x̂ js

† f rs + D j f r+x̂ js
ess8f rs8 + H.c.g

− teo
j

s j
zsr deifpējsr d−Ajsr dgf r+x̂ js

† f rs + H.c., s21d

the changes appearing only in the electron-hoppingsthe last
termd. Here we have defined

ēisr d = ei jejsr + w − x̂jd. s22d

Notice that pēj couples “similar to a gauge field” to the
spinons in the final electron term.

To arrive at the finalZ2 vortex-spinon theory, we split the
electric and magnetic fields into longitudinal and transverse

parts aj =aj
l +aj

t, ej =ej
l +ej

t, with ¹W ·aW t=¹W ·eWt=0, ei j]iaj
l

=ei j]iej
l =0. For future purposes, we note that the longitudinal

part ofej is related to the transverse part ofēj and vice versa,
i.e., ēi

l/tsr d=ei jej
t/lsr +w− x̂jd. It is then convenient to solve the

constraint for the longitudinal fields

aj
l srd = − ] jur, s23d

s¹W ·eW ldsrd = Nr. s24d

The fieldseiur and Nr have the interpretation of vortex cre-
ation and number operators, as can be seen by tracking the
circulation defined from the original chargon phase variable
f. One finds canonical commutation relations

fûr,N̂r8g = idrr8. s25d

At this stage,Nr is a periodic variable with period 2, and
−] jur+aj

tsrd is constrained to be an integer multiple ofp. It is
convenient to soften the latter constraint, and in order to
respect the uncertainty relation implied by Eq.s25d, at the
same time relax the periodicity ofNr. Formally, this is ac-
complished by replacing

− tco
j

cosspej + e jkAkd → const. +
uv

2 o
j

sej + e jkAk/pd2,

s26d

with uv< tcp
2, and adding a term to the HamiltonianH̃Z2

→ H̃Z2
+orH2v

Z2, with

H2v
Z2 = − t2vo

j

coss2] ju − 2aj
td. s27d

The constraint is recovered for larget2v, but we will consider
a renormalized theory in whicht2v may be considered a
small perturbation.

It is convenient to regroup the longitudinal contribution to

H̃c along with the terms inH̃g andH2v
Z2 into vortex “poten-

tial” and “kinetic” termsHN and Hkin
Z2 . We thereby arrive at

the final form for theZ2 vortex-spinon Hamiltonian

H̃Z2
= Hpl + HN + Hkin

Z2 + H̃f
Z2, s28d

with the fermion HamiltonianH̃s
Z2 given in Eq.s21d and with

Hpl =
uv

2
fej

tsrd + e jkAk
l sr + wdg2 +

v0
2

2uv
fei j]iaj

tsrd − pr0g2,

s29d

HN =
uv

2 o
r,r8

SN̂r −
Br

p
DSN̂r8 −

Br

p
DVsr − r8d, s30d

Hkin
Z2 = Hv

Z2 + H2v
Z2 + Hr

Z2. s31d

Here Br=ei j]iAjsr−wd is the physical flux through the
plaquette of the original lattice located at the siter of the
dual lattice. In the “plasmon” Hamiltonian,Hpl, an implicit
sum overj =1,2 isunderstood and we have defined asbared
plasmon velocityv0 asv0

2=2uctc=2uctv /p2. Inside the super-
conducting phase, this Hamiltonian describes the Goldstone
mode—or sound mode—and can be readily diagonalized to
give the dispersionvpl

2 skd=v0
2o jf2 sinskj /2dg2 with ukju,p

in the first Brillouin zone. Since the electron charge density
is given bys1/pdei j]iaj, one can readily include long-ranged
Coulomb interactions which will modify the plasmon at
small k.

In HN above we have setK=0, dropping henceforth the
term dHNsKd=−Kor s−1dNr, since it will not play an impor-
tant role in the phases of interest. The vortex–vortex interac-
tion energyVsrd is the Fourier transformation of the discrete
inverse Laplacian operatorV−1skd;K2skd, with K2skd
=o j2s1−coskjd, and has the expected logarithmic behavior
at large distancesVsrd,s1/2pdlnsurud. The vortex kinetic en-
ergy Hkin

Z2 is a sum of three contributions—a single vortex-
hopping term

Hv
Z2 = − tvo

j

s̄ j
xsrdcoss] jur − aj

td, s32d

a pair-vortex-hopping termH2v
Z2 given in Eq. s27d, and a

roton-hopping term

Hr
Z2 = − krs̄2

xsrds̄2
xsr + x̂1dcosfDxyur − ]xay

t srdg + sx ↔ yd,

s33d

where we have defined

Dxyur = Dyxur ; o
e1,e2=0,1

s− 1de1+e2ur+e1x̂+e2ŷ. s34d

Notice thatHr
Z2 hops two vortices, originally at sites of the

dual lattice on opposite corners of an elementary square, to
the other two sites. Equivalently, this term can be interpreted
as hopping a vortex–antivortex pair on neighboring sites
si.e., a vortex “dipole” or more simply arotond one lattice
spacing in a direction perpendicular to the dipole. Such a
roton is a 2D analog of a 3D vortex ring, and in a Galilean
invariant superfluidssuch as 4−Hed vortex rings propagate
in precisely this manner. Henceforth we shall refer to this
process as a “roton hopping” process.

The aboveZ2 vortex-spinon Hamiltonian must be supple-
mented by the two gauge constraints, which from Eqs.s16d,
s17d, and s24d can be cast into an appealingly simple and
symmetrical form
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C̃r
1 = s− 1dnr

fp
hsr d

s̄x = 1, s35d

C̃r
2 = s− 1dNrp

hsrd
sz = 1. s36d

These constraints correspond to an attachment of aZ2 flux
in sz and s̄x to the vortex numberparity and the spinon
number parity, respectively. Since the spinons are minimally
coupled tosz and the vortices tos̄x, this implies a sign
change upon hopping a spinon around a vortex—or vice
versa. Indeed, if the partition function for the vortex-spinon
Hamiltonianswithout Hr

Z2 and with te=0d is expressed as an
imaginary time path integral with theZ2 constraints in Eqs.
s35d and s36d imposed, the resulting Euclidean action be-
comes identical to Eqs.s109d–s113d in Ref. 5.

It is instructive to obtain explicit expressions for the elec-
tron and Cooper pair creation operators in terms of the dual-
ized vortex degrees of freedom. From Eq.s9d we can directly
obtain an expression for the Cooper pair destruction operator
Br =e−2ifr as

Br = p
r

`

e2piējsr8ddr j8, s37d

where thep symbol here denotes a product along a semi-
infinite “directed” string running on the links of the original
lattice, originating atr and terminating at spatial infinity,
with dr 8 the unit vector from the pointr 8 along the string to
the next point. In terms ofej srather thanējd, the product
contains a factor of expf±2piejsrdg for each link of the dual
lattice that crosses the string, taking the positive/negative
sign for directed links crossing the string from right/left to
left/right proceeding fromr to `. We will use the above
notation when possible to present precise analytic expres-
sions for such strings. The path independence of the string is
assured by the second gauge constraintCr

2=1. Since the uni-
tary transformationU in Eq. s15d commutes withe2piej, this
is the correct expression for the Cooper pair operator within
the Z2 vortex-spinon theory.

An expression for the electron operatorcrs=br f rs in the
dual vortex-spinon theory can be extracted by moreover re-
expressing the “charge-on” operatorbr =e−ifr as a string,

br = p
r

`

eipējdr j8 = Svortsr dSfsr d. s38d

For later convenience, we have here decomposed this expres-
sion into a piece depending on the vortex configurations
through the longitudinal electric fieldej

l and a contribution
depending on the smooth part of the phasef through the
transverse fieldej

t:

Svortsr d = p
r

`

eipēj
tdr j8, Sfsr d = p

r

`

eipēj
l dr j8. s39d

But unlike the Cooper pair operator, the charge-on operator
transforms nontrivially under the unitary transformation in
Eq. s15d:

b̃r = U†brU = p
r

`

fsi
zeipējdr j8g, s40d

now including a factor ofs j
zsr d for each link of the string.

Again, the path independence is guaranteed by the gauge

constraintC̃r
2=1. The final expression for the electron opera-

tor within the dualizedZ2 vortex-spinon field theory follows
simply as

c̃rs = U†crsU = b̃r f rs. s41d

As discussed at length in Ref. 5, theZ2 vortex-spinon
formulation is particularly well suited for accessing spin-
charge separated insulating states. Specifically, when pairs of
vortices hop around they “see” an average gauge flux of
2ei j]iaj =2pr0. Thus at half filling withr0=1, vortex pairs
effectively moving in zero flux and at large pair-hopping
strengtht2v→` will readily condense—driving the system
into an insulating state with a charge gap. In the simplifying
limit with vanishingsinglevortex hopping strengthtv=0, all
of the vortices are paired,s−1dN=1, and theZ2 gauge con-
straint in Eq.s36d reduces tophsz=1. The vison excitations
splaquettes withphsz=−1d are gapped out of the ground
state, and the spinons, being minimally coupled tosz, can
propagate as deconfined excitations. The charge sector sup-
ports gapped but deconfined charge-on excitations, which
can be viewed as topological defects in the pair-vortex con-
densate.

But as we shall see below, to access the roton Fermi liquid
phase requires taking the strength of the roton hopping
strength large, and theZ2 formulation proves inadequate. To
remedy this, we introduce in Sec. II C below, a new Us1d
formulation of the vortex-spinon field theory. As we shall
demonstrate, the Us1d andZ2 vortex-spinon formulations are
formally equivalent, and by a sequence of unitary transfor-
mations it is possible to pass from one representation to the
other. Care should be taken when considering operators
which transform nontrivially under the unitary operations re-
lating different representations, however. In particular, some
operators local in one representation become nonlocal in the
other. A third dual vortex formulation involving electron
srather than spinond operators is briefly discussed below in
Appendix D. The Hamiltonian in this “vortex-electron” for-
mulation is equivalent under a sequence of unitary transfor-
mations to both theZ2 and Us1d vortex-spinon Hamiltonians.

To establish these equivalences, it is convenient to
“choose a gauge” in theZ2 theory. As detailed in Appendix
B, it is possible to unitarily transform to a basis in which the
Z2 gauge fields are completely “slaved” to the vortex and
spinon operators, and can be eliminated completely from the
theory. Specifically, in the chosen gauge thex components of
both sz and s̄x are set to unity on every link of the lattice
s̄1

xsrd=s1
zsr d=1. As we shall see in Sec. II C below, the Us1d

gauge fields in the Us1d vortex-spinon formulation can be
similarly enslaved. Remarkably one arrives at theidentical
“enslaved” Hamiltonian in both cases, thereby establishing
the formal equivalence between the two formulations.
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C. U„1… vortex-spinon formulation

In the Us1d formulation of the vortex-spinon field theory,
the Pauli matricessz, s̄x which live asZ2 gauge fields on the
links of the original and dual lattice, respectively, are effec-
tively replaced by exponentials of two Us1d gauge fields
s̄ j

xsrd→expfia jsrdg ands j
zsr d→expfib jsr dg. These two Us1d

gauge fields are canonically conjugate variables taken to sat-
isfy

faisr − x̂id,b jsr 8dg = ipei jd
2sr − r 8d, s42d

with r=r +w. For two “crossing” links these commutation
relations imply that the exponentialseia , eib anticommute
with one another,feia ,eibg−=0.

1. U(1) vortex-spinon Hamiltonian

The full Hamiltonian for the Us1d vortex-spinon field
theory takes the same form as theZ2 vortex-spinon Hamil-
tonian in Eq.s28d,

H = Hpl + HN + Hkin + Hf , s43d

with Hpl andHN given as before in Eq.s29d. Only the vortex
kinetic terms and the fermion Hamiltonian are modified.
Once again the vortex kinetic energy terms are decomposed
into single vortex, pair-vortex, and roton hopping processes:

Hkin = Hv + H2v + Hr . s44d

Since the vortices in the Us1d formulation are minimally
coupled to the Us1d gauge fielda jsrd, each of these three
terms will be modified from theirZ2 forms. Specifically, in
terms of the associated Hamiltonian densities we have

Hv = − tv o
j=1,2

coss] ju − aj
t + a jd, s45d

H2v = − t2v o
j=1,2

coss2] ju − 2aj
t + 2a jd, s46d

Hr = −
kr

2
cosfDxyu − ]xsay

t − aydg + sx ↔ yd, s47d

with Dxyur defined in Eq.s34d.
The Hamiltonian density for the fermions in the Us1d for-

mulation is given by

H f = − o
j

eib jsr dfsts + tee
ifpējsr d−Ajsr dgdf r+x̂ js

† f rs

+ D jfSrg2f r+x̂ js
ess8f rs8 + H.c.g. s48d

In the Us1d formulation, thesaveraged density of spinons
kfs

† fsl=ks1/pdei j]ia jl fas follows from Eq.s54dg is taken to
be equal to the saveraged charge densityks1/pdei j]iajl. A

new element, not present in theZ2 fermion Hamiltonian,H̃s
Z2

in Eq. s21d, is the “string operator”Sr . The string operator is
given as a product ofeib running along directed links of the
original lattice from the siter to spatial infinity:

Sr = p
r

`

eib jdr j8. s49d

As we shall discuss below, once we restrict the Hilbert space
to gauge invariant states other choices for the “path” of the
string are formally equivalent. Physically, as we will see be-
low explicitly, Sr

2 represents the “transverse part” of the
phase factor of the Cooper pair field due to vortices/
antivortices in the sample.

In addition to global spin and charge conservation, the full
Us1d vortex-spinon Hamiltonian,H above, has a number of
local gauge symmetries. To fully define the model we need
to specify the set of gauge invariant states that are allowed.
Associated with each of the Chern–Simons fieldsa andb, is
a Us1d gauge symmetry. Specifically, the full Hamiltonian is
invariant underindependentgauge transformations

e−iur → e−iureixr ,

a jsrd → a jsrd + d jxr s50d

and

f rs → f rseiLr ,

b jsr d → b jsr d + ] jLr s51d

for arbitrary real functionsLr andxr, living on the original
and dual lattices, respectively. The corresponding operators
which transform the fields in this way are

Gvsxrd = e−iorxrfNr−s1/pdei j]ib jsr−wdg s52d

and

G fsLrd = eiorLr ffrs
† frs−s1/pdei j]ia jsr−wdg. s53d

Both of these operators commute with the full Hamiltonian
H. The Us1d sector is specified by simply settingGv=G f =1
for arbitrary xr and Lr . From Eqs.s52d and s53d this is
equivalent to attachingp flux in the statistical gauge fieldsa
andb to the spinons and vortices

ei j]ia jsr − wd = pf rs
† f rs, ei j]ib jsr − wd = pNr. s54d

Notice that this is simply the Us1d analog of theZ2 flux
attachment in Eqs.s35d and s36d and implies the same sign
change when a spinon is transported around a vortex or vice
versa. The only difference is that in the Us1d formulation the
phase ofp is accumulated gradually when the spinon is
taken around the vortex, whereas the sign change in theZ2
theory can occur when the spinon hops across a single link.
The formal equivalence of theZ2 and Us1d formulations will
be established below.

As we shall see, the “smearing” of the accumulatedp
phase change, makes the theory in the Us1d formulation emi-
nently more tractable. The one notable complication is the
square of the string operator, which in the Us1d sector is a
nontrivial function ofe2ib along the string, rather than equal-
ing unity as in theZ2 sector. However, it is worth emphasiz-
ing that within the Us1d sector of the theory, the value of the
operatorOr ;Sr

2 is independentof the chosen path. Specifi-
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cally, consider twosunitaryd string operators, denotedO1,O2
with different paths running from the same siter off to spa-
tial infinity. The “difference” between the two string opera-
torsO1

−1O2 is a product ofe2ib aroundclosed loops. But due
to the Us1d gauge constraint in Eq.s54d, ei j]ib j =pN, this
product is an exponential of the total vorticityNtot inside the
closed loopsO1

−1O2=exps2piNtotd. Since the vorticity is in-
teger, one deduces that the string operator is indeed path
independent,O1=O2.

It will prove useful to obtain expressions for the electron-
and Cooper pair creation operators within the Us1d vortex-
spinon formulation. The Cooper pair operator has the same
form as in theZ2 vortex-spinon formulation, given explicitly
in Eq. s37d, but the electron operator is modified in a non-
trivial way. As we shall check explicitly below, the electron
operator within the Us1d formulation involves a string de-
pending on both the dual “electric field”ej, as well as the
statistical gauge fieldb j:

crs = f rsp
r

`

eifpēi+bigdr i8, s55d

with ēisr d defined in Eq.s22d. The path independence fol-
lows from the condition in Eq.s24d, together with the second
Us1d gauge constraint in Eq.s54d above:

p] jejsr − x jd = ei j]ib jsr − wd. s56d

This implies an equality between the longitudinal electric
field and the transverse statistical field

b1
t sr d = pe2

l sr + wd, b2
t sr d = − e1

l sr − wd s57d

or

bi
t = − pēi

t, s58d

and enables the electron destruction operator to be reex-
pressed as

crs = f rsSfsr dp
r

`

eib j
l dr j8 s59d

with Sfsr d defined in Eq.s39d. Similarly, the string operator
that enters into the Us1d fermion HamiltonianHf in Eq. s48d,
can be written as

Sr = Svortsr dp
r

`

eib j
l dr j8. s60d

Upon combining the above two equations, and recalling the
identity for the charge-on operator in the originalZ2 theory,
br =Svortsr dSfsr d in Eq. s38d implies thatSr

†f rs=br
†crs. Con-

sequently, spinon pairing terms in theZ2 gauge theory are
seen to be equivalent to the usual Bogoliubov–deGennes
form

fSrg2ess8f rsf rs8 = Br
†ess8crscrs8, s61d

with Br
† the Cooper pair creation operator. Ford-wave pair-

ing, the pair field lives on links, and a similar identity obtains

eib jsr dfSrg2f r+x̂ js
ess8f rs8 = Br ,r+x̂ j

† cr+x̂ js
ess8crs8. s62d

Here we have introduced a bond-Cooper-pair operator

Br ,r+x̂ j

† = b̃r
†b̃r+x̂ j

† , s63d

b̃r
† = p

r

`

e−ipēidr i8. s64d

Note that in the untransformed charge-on variables of theZ2

gauge theory formulationBr ,r+x̂ j

† =s j
zsr dbr

†br+x̂ j

† .
Recalling the discussion in Sec. II A, it is still the case

that for D j =0, when this pairing term is absent, the fermion
number is conserved, and naively may be chosen arbitrarily.
However, in the limitD j →0, which we consider here, this
conservation is weakly violated, and only the total charge is
conserved. The physics at work is clear from Eq.s61d: for
nonvanishingD j, quasiparticle pairs and boson pairs are in-
terchanged, and the two charged fluids come to equilibrium.
Thus in what follows, we should choose to divide the charge
density amongst the fermions and bosons in such a way as to
minimize the totalsfreed energy. This division will therefore
shift as parameters of the Hamiltonian are changed. How it
does so is crucial to the ultimate low-energy physical prop-
erties of the system, as is clear from Eqs.s45d–s47d, which
show that the vortices experience an effective flux propor-
tional to the difference of the total charge densitysei j]iaj /pd
and the fermionic densitynf =ei j]ia j /p. As the fermion den-
sity is varied, the effective flux seen by the vortices changes.
Significantly, in the limittv→`, vortex-hopping dominates
the energetics, and is minimized when the fermion density
equals the total charge densitynf =ei j]iaj /p. This naturally
recovers the Fermi liquid phasesAppendix Ad by binding
chargee firmly to each fermion, fully accommodating all the
electrical charge.

In the rest of the paper we work exclusively within the
Us1d vortex-spinon formulation, which is particularly suit-
able for extracting the properties of the roton Fermi liquid.
Before embarking on that, we first establish the formal
equivalence between the two formulations by enslaving the
Us1d gauge fields. As detailed in Appendix C, it is possible

to unitarily transform to a gauge with¹W ·aW =¹W ·bW slave=0. In
this gauge, botha j andb j are enslaved, being fully express-
ible in terms of the spinon and vortex densitiesnr

f and Nr,
respectively. Moreover, the enslaved Us1d Hamiltonian is
found to be identical to the enslavedZ2 Hamiltonian ob-
tained in Appendix B, and the enslaved expressions for the
electron operators also coincide.

Having thereby established the equivalence between the
Z2 and Us1d vortex-spinon field theories, in the remainder of
the paper we choose to work exclusively within the Us1d
formulation, employing the HamiltonianH defined in Eq.
s43d, together with the gauge constraints in Eq.s54d. In prac-
tice, it is far simpler to work within a Lagrangian formula-
tion, where the gauge constraints can be imposed explicitly
within a path integral, as detailed in the next subsection.
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2. Lagrangian for U(1) vortex-spinon theory

In order to impose the Us1d gauge constraints in Eq.s54d
on the Hilbert space of the full vortex-spinon HamiltonianH,
we will pass to a Euclidean path integral representation of
the partition function. The associated Euclidean Lagrangian
is readily obtained as a sum of three contributions

S=E dtfH + LB + Lcong, s65d

with LB involving the generalized coordinates and conjugate
momenta

LB = o
r=r+w

FiNr]0ur −
i

p
bisr dei j]0a jsr + x̂idG

+ o
r=r+w

fiej
tsrd]0aj

tsrd + f rs
† ]0f rsg, s66d

with ]0;] /]t denoting an imaginary time derivative and
Lcon is a Lagrange multiplier term imposing the two indepen-
dent Us1d gauge constraints

Lcon=
i

p
o

r=r−w
a0srdfei j]ib jsr d − pNrg

+
i

p
o

r=r+w
b0sr dfei j]ia jsrd − pf rs

† f rsg. s67d

Here we have introduced two Chern–Simons scalar poten-
tials as Lagrange multipliers, denoteda0srd andb0sr d, which
live on the dual and original lattice sites respectively.

Upon introducing another scalar potentiala0srd living on
the sites of the dual lattice, and collecting together the lon-
gitudinal and transverse parts ofaj andej, the full Euclidean
action can be compactly cast into a simple form. In order to
make the vortex physics more explicit we choose to reintro-
duce the vortex phase fieldu within the Lagrangian formu-
lation. Specifically, we shiftam→am+]mu with m=0,x,y,
and then integrate overboth am andu. In this way we arrive
at the final form for the full Euclidean Lagrangian:

S= Sc + Sf + SCS+ SA. s68d

The charge sector actionSc=et orLc can be expressed in
terms of the Lagrangian density

Lc = La +
1

2u0
s]0u − a0 + a0d2 + Lkin, s69d

with the u0→0 limit enslavinga0=]0u+a0 and

La =
uv

2
Sēj −

Aj

p
D2

− iejs]0aj − ] ja0d +
v0

2

2uv
sei j]iaj − pr0d2.

s70d

The vortex kinetic energy termsLkin are given explicitly by
Hkin in Eqs.s45d–s47d except withaj

t →aj.
The fermion actionSf =etorL f is given by

L f = f rs
† s]0 − ib0df rs + H f , s71d

with H f given in Eq.s48d. The two sectors are coupled to-
gether by the electric field in the electron-hopping term, and
by the Chern–Simons actionSCS=etor=r+wLCS with

LCS=
i

p
b0sr dei j]ia jsrd +

i

p
bisr dei jf] ja0sr + x̂id

− ]0a jsr + x̂idg. s72d

Notice that in the absence of the electron hopping termste
=0d, the electric fieldej enters quadratically in the action,

and can then be integrated out to giveLa→L̃a, with

L̃a =
1

2uv
s]0aj − ] ja0d2 + v0

2sei j]iaj − pr0d2. s73d

Finally, it is useful in some circumstances to treat the exter-
nal gauge field by making the shiftēi → ēi +Ai /p, which re-
moves all coupling ofAi to the fermions, and furthermore
leavesAi linearly coupledto a charge “three-current” of the
usual formSA=etorLA, with

LA = iAmsr dJmsr d. s74d

HereJm is the charge three-current given explicitly by

J0sr d =
1

p
ei j]iajsrd, s75d

Jisr d =
1

p
ei jf] ja0sr + x̂id − ]0ajsr + x̂idg, s76d

with r =r+w. Notice that the three-current is conserved as
required: ]0J0sr d+]iJisr − x̂id=0. This form is useful for a
variety of calculations, particularly within the purely bosonic
RL model discussed in Secs. III and IV, but less so in some
RFL calculations best done in the electron gaugessee be-
lowd, which is incompatible with the above shift ofēi.

As can be seen from the equations of motion obtained
from dL /da=0 and dL /db=0, the effect of the Chern-
Simons term is to attachp flux in a sbd to the spinonsvor-
texd world lines:

emnl]nal = pJm
s , emnl]nbl = pJm

v , s77d

where Jm
s and Jm

v are the spinon and vortex three-currents.
Here m ,n ,l=0,x,y run over the three space-time coordi-
nates.

Finally we comment on the nature of the gauge symme-
tries of the full actionS in the Lagrangian representation. In
particular, associated with the three gauge fieldsam, am, and
bm are threeindependentspace-time gauge symmetries. Spe-
cifically, these are

ur → ur + Qr,

amsrd → amsrd + ]mQr, s78d

ur → ur + xr,

amsrd → amsrd − ]mxr, s79d
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f rs → f rseiLr ,

bmsr d → bmsr d + ]mLr , s80d

with Qr, xr, andLr arbitrary functions of space and imagi-
nary time. Because of the gauge invariance ofS under these
three distinct transformations, we are free to fix gaugesinde-
pendentlyfor the three gauge fields.

In addition to these three gauge symmetries, the full La-
grangian has twoglobal symmetries. By construction, the
spinon LagrangianLs conserves the total spin, and since the
electrical three-current in Eqs.s75d and s76d satisfies a con-
tinuity equation ]mJm=0, the total electrical chargeQ
=orJ0sr d is also conserved.

A particularly convenient gauge choice for the gauge field
bm is

bi
lsr d = − pēi

lsr d, s81d

with ēi defined in terms of the electric fieldejsrd in Eq. s22d.
Remarkably, in this gauge the electron creation operator
equals the spinon creation operator. To see this, it is conve-
nient to shifta0→a0+a0 and then integrate outa0, which

constrains¹W 3bW =p¹W ·eW, or equivalentlybi
t=−pēi

t. Together
with the above gauge choice this implies thatbi ;−pēi, so
that from Eq.s55d one hascrs= f rs. We refer to this as the
electron gauge. The possibility to choose a gauge within the
Lagrangian formulation of the Us1d vortex-spinon theory
which makesf rs an electron operator, suggests that it should
be possible to reformulate the vortex-spinonHamiltonianen-
tirely in terms of vortices and electrons. This is indeed the
case, as we demonstrate briefly in Appendix D.

III. THE ROTON LIQUID

We first focus on the bosonic charge sector of the theory,
entirely ignoring the fermions. Specifically, in the full Eu-
clidean action in Eq.s68d we retainonly the charge actionSc
and the coupling to the external electromagnetic fieldSA. We
take the fermionic density as a nonfluctuating constant. As
discussed in Sec. II C 1, this constant should be determined
by energetics. We assume here that the largest energy scales
in the problem are those of the vortices, i.e.,kr , uv, etc. In
this case, one expects that vortex kinetic energysrotonic or
otherwised is minimized when the vortices experience zero
average magnetic flux. We therefore choose the fermionic
density equal to the total charge density, setting
s1/pdei j]ia j =r0 and also puttinga0=0. Note that this choice
is essential to recovering an ordinary Fermi liquid statessee
Sec. IV and Appendix Ad and hence is also natural in this
sense. We remark that, while we will continue to assume the
average fermion density is equal tor0 in the bulk of this
paper, we will return to another possibility—and its physical
regime of relevance—in the discussion section.

It is also convenient to isolate the fluctuations in the
charge density by defining

aj = aj
b + ãj , s82d

with background densitys1/pdei j]iaj
b=r0. We can then take

a j =aj
b, so thataj −a j = ãj. Of the three vortex kinetic energy

processes which enter inLkin, we hereafter and in the rest of
the paper drop entirely the vortex pair hopping process in Eq.
s46d putting t2v=0. For now we also set the single vortex
hopping processes to zero, puttingtv=0 in Eq.s45d, but will
return to their effects in Sec. IV. Of interest here is the new
roton hopping processLr ;Hr in Eq. s47d, which can be
conveniently recast in the form

Lr = − krCfãgcosFDxyu −
1

2
s]xãy + ]yãxdG , s83d

with

Cfãg = cossei j]iãj/2d. s84d

More generally, with spinon fluctuations included one has
C=cosfei j]isaj −a jd /2g. Clearly, C is maximal—and hence
the rotonic kinetic energy most negative—forei j]iãj =0,
which is true on average for this choice of fermion density.

We next choose the gauge¹W ·ãW =0, and integrate overa0
swith u0→0d. Having dropped the vortex hopping processes,
the remaining charge Lagrangian is then given by

Lc = Lpl + Lu, s85d

with

Lpl =
1

2uv
fs]0ãjd2 + v0

2sei j]iãjd2g, s86d

Lu =
1

2uv
s] j]0ud2 − krCfãgcosFDxyu −

1

2
s]1ã2 + ]2ã1dG .

s87d

To analyze the phases of this model it is instructive to rep-
resent the LagrangianLu in Hamiltonian form by re-

introducing the vortex number operatorN̂r:

Ĥu =
uv

2 o
r,r8

N̂rN̂r8Vsr − r8d

− kro
r

CfãgcosSDxyûr −
1

2
s]xã1 + ]yãxdD . s88d

Again Vsrd is the Fourier transform of the discrete inverse
Laplacian operatorVskd;1/K2skd, with K2skd=o j2s1
−coskjd.

The first term in Eq.s88d describes a logarithmically in-
teracting gas ofsinteger strengthd vortices moving on the
dual 2D square lattice. Whenkr =0, this model will undergo
a finite-temperature Kosterlitz–Thouless transition16 from a
high-temperature vortex plasma into the low-temperature
vortex dielectric. This corresponds, of course, to a transition
into a superconducting phase. Withkr =0 the Kosterlitz–
Thouless transition temperature will be set by the vortex in-
teraction strengthuv. But upon increasing the strength of the
roton-hopping, one expects the transition temperature to be
suppressed, and forkr @uv to be driven all the way to zero.
Thus, at zero temperature, upon increasing the single dimen-
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sionless ratiokr /uv, one expects a quantum phase transition
out of the superconducting phase and into a new phasessee
Fig. 1d—the roton liquid.

A. Harmonic theory and excitations

To access the properties of the roton liquidsRLd, we con-
sider kr @uv, where it is presumably valid to expand the

cosine terms in Eq.s88d for small argument, givingĤu

=Ĥrot+¯, with

Ĥrot =
uv

2 o
r,r8

N̂rN̂r8Vsr − r8d +
kr

8 o
r

sei j]iãjd2

+
kr

2 o
r
FDxyûr −

1

2
s]xãy + ]yãxdG2

. s89d

With this expansion, it is no longer legitimate to restrictu
to the intervalf0,2pg. Consistency then dictates that the ei-
genvalues of the vortex number operator no longer be re-
stricted to integers, but allowed to take on any real value
from f−` ,`g.

The full roton-liquid HamiltonianĤRL=Ĥpl+Ĥrot is qua-
dratic and can be readily diagonalized. This is most conve-
niently done by returning to the Lagrangian framework, de-
scribed now by

LRL =
1

2uv
fs]0ãjd2 + ṽ0

2sei j]iãjd2g +
1

2uv
s] j]0ud2

+
kr

2
FDxyu −

1

2
s]xãy + ]yãxdG2

, s90d

with ṽ0=Îv0
2+kruv /4. To proceed to describe the normal

modes of this quadratic Lagrangian, we define Fourier trans-
forms

Osr ,td =E
k,vn

eik·r−ivntOsk,vnd, s91d

Osr,td =E
k,vn

eik·r−ivntOsk,vnd, s92d

for fieldsO,O on the original and dual lattices, respectively.
Here integrationek ;ed2k / s2pd2 is taken over the Brillouin
zone uk1u , uk2u,p and evn

;e−`
` dvn/ s2pd defines the inte-

gration measuresat zero temperatured for the Matsubara fre-
quency vn. At nonzero temperature, one simply replaces
evn

→b−1ovn
, with vn=2pn/b. It is moreover convenient to

define

K jskd = − iseikj − 1d, s93d

so that upon Fourier transformation, the discrete derivatives
behave intuitively,

] j→FTiK jskd, s94d

and of course]0→−ivn as usual. We also introduce the
transverse gauge field

ãiskd = ei j

iK j
*skd

Kskd
askd, s95d

with K2skd=o j uK jskdu2 and uK jskdu=2usinskj /2du.
To now diagonalizeLRL, it is convenient to define a real

two-component fieldYa via

ask,vnd = Îuve
ik·wY1sk,vnd, s96d

usk,vnd =
Îuv

Kskd
Y2sk,vnd. s97d

Then the actionSRL=oretLRL is

SRL =
1

2
E

k,vn

Yask,vndGab
−1sk,vndYbs− k,− vnd, s98d

with

Gab =
G0dab + Gzsab

z + Gxsab
x

svn
2 + vpl

2 dsvn
2 + vrot

2 d
, s99d

wheresW is the usual vector of Pauli matrices. Here we have
defined

G0 = vn
2 +

1

2
v+

2K2, s100d

Gz = −
1

2
v+

2K2 + v1
2uKxKyu2

K2 , s101d

Gx =
v1

2

2
suKxu2 − uKyu2d

K̃xK̃y

K2 , s102d

with v1=Îkruv and K̃ j =2 sinskj /2d. The poles inGab at v
= ivn= ±vpl , ±vrot describe two types of collective modes.

The first excitation is a plasmon with a renormalized dis-
persion

FIG. 1. Schematic phase diagram of the Hamiltonian in the
charge sectorHc=Hu+Hpl, with zero vortex-hopping strengthtv
=0. When the roton-hopping vanishes,kr =0, Hc describes a classi-
cal logarithmically interacting vortex gas, and has a
superconductor-to-normal transition at a Kosterlitz-Thouless tem-
peratureTKT <uv. With increasing roton-hopping,TKT decreases
being driven to zero atkr

* <uv, where there is a quantum phase
transition from the superconductor into the Roton liquid phase.
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vpl
2 skd =

1

2
fv+

2K2 + Îv−
4K4 + ṽ0

2v1
2suKxu2 − uKyu2d2g

s103d

with velocities

v± = Îṽ0
2 ± v1

2/4. s104d

The plasmon frequency vanishes at the center of the Bril-
louin zonek =0, and in the absence of long-ranged Coulomb
interactions disperses linearlyvpl=vpluk u at small wave-
vectorskj →0. But the associated plasmon velocityvplsfd
depends upon the ratioky/kx=tansfd. In particular, along the
zone diagonals withky= ±kx the velocity is minimal and un-
affected by the vortices withvpl= ṽ0, whereas it takes it’s
maximum valuev+ along thekx or ky axes.

This upward shift in the plasmon frequency is due to a
“level repulsion” with the second collective mode—the gap-
less roton, which disperses as

vrot
2 skd =

1

2
fv+

2K2 − Îv−
4K4 + ṽ0

2v1
2suKxu2 − uKyu2d2g.

s105d

For ukxu!1 and fixed ky the roton dispersionvanishes, vrot
,vrotukxu, with

vrot =
ṽ0

v+
v1. s106d

Remarkably, the roton-liquid phase supports a gapless Bose
surface of roton excitations, along thekx=0 andky=0 axes.
These roton excitations describegapless and transversecur-
rent fluctuations, which are obviously not present in a con-
ventional bosonic superfluid.

With long-range Coulomb interactions present one would
have simplyv0

2→v0
2skd,1/uk u, giving the familiar 2D plas-

mon dispersionvpl,Îuk u. In addition, the roton velocityvrot
becomes dependent uponky. We note in passing that the
roton velocity is in either case determined not only from the
dynamics ofu but also from that ofã, as is evident from its
dependence uponṽ0/v+. It will be sometimes instructive in
the following to consider the simple limitv0, ṽ0→`, in
which the spatial fluctuations ofã vanish and the roton mode
is entirely decoupled fromã.

B. No Meissner effect in roton liquid

We now employ the Gaussian theory to examine some of
the electrical properties of the roton liquid phase. Consider
first the response of the RL phase to an applied magnetic
field. In the presence of a magnetic fieldB=ei j]iAj, there is
an additional term that one must add to the Lagrangian,
which from Eq.s74d takes the form

LA =
i

p
a0B. s107d

If a0 is integrated out fromLc in Eq. s69d with this additional

term present, the HamiltonianHusN̂r , ûrd in Eq. s88d becomes

simply, HufN̂r−s1/pdB, ûrg. As expected, the vortex density

will become nonzero in the presence of the magnetic field.
Since the vortex number operator inHu has integer eigenval-
ues, it is not generally possible to shift away the appliedB
field. But in the roton liquid phasesat zero temperatured
where the cosine term can be expanded to quadratic ordersas
in Hrotd, the vortex number operator has a continuous spectra,

and one can formally eliminate theB field by shifting N̂r

→ N̂r+s1/pdB, for all r. Since the ground state energy of the
RL phase is thus independent of the appliedB field, both the
magnetization and the magnetic susceptibilityx=]M /]B
vanish. Unlike in a superconductor, wherex=−1/4p, there
is no Meissner effect in the roton liquidsstrictly speaking,
there is never a Meissner effect in a single two-dimensional
layer, but one can consider an infinite stack of electrically
decoupled but magnetically coupled layers, which would ex-
hibit a Meissner effect when the layers are true 2D supercon-
ductors, but not when they are RLsd. Physically, since the RL
phase supports gapless roton excitations, the state cannot
screen out an applied magnetic field.

C. Off-diagonal quasi-long-range order

We next consider the Cooper pair propagator in the roton
liquid

GCPsr 1 − r 2,t1 − t2d = kBr 1
st1dBr 2

† st2dl, s108d

with the Cooper pair destruction operatorBr given in Eq.
s37d as an infinite product of exponentialse2piej running
along the string. The propagator for thed-wave pair field
Br ,r+x̂ j

Gij
CPsr ,td = kB0,x̂i

s0dBr ,r+x̂ j

† stdl, s109d

behaves similarly, and will be discussed at the end of this
subsection.

1. Equal time correlator

We consider at first the equal time correlator, witht1
=t2. The path independence of the string rests on the condi-

tion s¹W ·eWdsrd=Nr, with integer vortex numberNr. Unfortu-
nately, within the tractable harmonic approximation valid for
most quantities in the roton liquid phaseswith cosine terms
in the roton-hopping expanded to quadratic orderd, the con-
dition of integer vortex number isnot satisfied, and the re-
sults for GCPsr ,0d depend upon the choice of string. We
believe that the correct behavior can be extracted by taking
the string running along the straightest and “shortest”susing
the “city block” metric ux1−x2u+ uy1−y2ud path between the
two pointsr 1 andr 2. As we shall see, the Cooper pair propa-
gator calculated in this way has an anisotropic spatial power-
law decay. Preliminary calculations suggest that, once pertur-
bative corrections to the harmonic approximationsusing the
formalism established in Sec. IV B 2d are taken into account
seven if they are irrelevant in the renormalization group
sensed, simple variations in the string do not modify the
power-law decay ofGCPsr ,0d, but only change thesnonuni-
versald prefactor.17

We taker 1−r 2=Xx̂+Yŷ andr 2=w, with integerX,Yù0.
Then, upon expressing the correlatorGCPsX,Y,0d as an
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imaginary time path integral, one obtains an extra term in the
Euclidean actionS=etorL in Eq. s68d, with

L → L + iejsr,tdJ jsr,td. s110d

The c-number “source” field is given as

J jsr,td = 2pdstdFd j2 o
x8=0

X−1

dx,x8+1dy,0 − d j1 o
y8=0

Y−1

dx,Xdy,y8G .

s111d

The Fourier transform is simply

J jsk,vnd = 2pFd j2
1 − e−ikxX

iKx
− d j1

e−ikxXs1 − e−ikyYd
iKy

G .

s112d

Integrating out the electric fieldej in the gauge¹W ·aW =0 and
decomposing the source fields into transverse and longitudi-
nal partsJt= iei jKiJ j /K, Jl = iKi

*Ji /K, one obtains the result

GCPsX,Y,0d =KexpH−E
k,vn

F ivn

Îuv

sJtY1 − JlY2d

+
1

2uv
sJt

2 + Jl
2dGJL

Y

, s113d

where the Gaussian average overY is to be taken with re-
spect toSRL in Eq. s98d. Performing this Gaussian integral,
one obtains

GCPsX,Y,0d = expf− Gl − Gt − Gltg, s114d

where

Gl =E
kvn

uJlu2s1 − vn
2G22d

2uv
, s115d

Gt =E
kvn

uJtu2s1 − vn
2G11d

2uv
, s116d

Glt = −E
kvn

JlJt
*vn

2G12

uv
, s117d

with Gij given in Eq.s99d.
Investigation ofGt and Glt shows that the corresponding

integrands are nonsingular at smallkx or ky, and hence go to
finite limits for large uXu and/or largeuYu. They will thus
affect only the amplitude of the Cooper pair propagator at
large distances, and we henceforth neglect them. Singular
behavior at long distancesdoesarise fromGl, in line with the
intuition that it is vortex fluctuations which disrupt the su-
perconducting phase, sinceJl couples to the longitudinal

electric field, which through¹W ·eW =N describes the vorticity.
To evaluateGl, we first perform the frequency integration to
obtain

Gl =E
k

uJlu2
ṽ0v1uKxKyu + v1

2uKxKyu2/K2

4uvsvpl + vrotd
. s118d

Next, we explicitly express the square of the longitudinal
string

uJlu2 =
s2pd2

K2 FUKx

Ky
U2

u1 − e−ikyYu2 + UKy

Kx
U2

u1 − e−ikxXu2

+ 2 Rehs1 − e−ikxXds1 − e−ikyYdjG . s119d

The first two terms in Eq.s119d are singular for smallky, kx
respectively for very largeY, X, leading to a logarithmic
dependence when inserted in Eq.s118d. The final term in Eq.
s119d, by contrast, is singular only forboth kx, ky small, and
this singularity, inserted into Eq.s118d, is weak and inte-
grable. Extracting the logarithmic parts, one finds

Gl , DcslnuXu + lnuYud, s120d

for uXu , uYu@1, with

Dc = 2p
ṽ0

v+
Îkr

uv
. s121d

Hence we have

GCPsX,Y,0d ,
const.

uXuDcuYuDc
. s122d

This establishes that the roton-liquid phase has off-diagonal
quasilong-ranged ordersODQLROd at zero temperature.

2. Unequal time correlator

We now consider the Cooper-pair propagator at unequal
times. Unfortunately, it is difficult to produce a simple and
general calculation for arbitrary spatial and time separations.
In particular, clearly, by square symmetry, we expect
GCPsX,Y,td=GCPsY,X,td. Any choice of strings, however,
necessarily creates an asymmetry between the two spatial
directions. As we have been unable to resolve this dilemma,
we instead focus on the simple case in which the pair is
created and annihilated on a single row of the lattice, i.e.,
GCPsX,0 ,td. We will see that this correlator decays as a
power law both in space and time.

To proceed, we taker 1−r 2=Xx̂, r 2=w, t1=t, t2=0, with
X,Yù0. With this choice, the string in Fourier space be-
comes

J jsk,vnd = 2pd j2
1 − e−ikxX+ivnt

iKx
. s123d

Repeating the same manipulations as above, one again
obtains swith negligible contributions from the transverse
part of the stringd

GCPsX,0,td , expf− G̃lg s124d

with
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G̃l ,
Dc

2
lnsX2 + vrot

2 t2d, s125d

where for simplicity we have takenvrot independent ofky
ffor a nontrivialvskyd, the logarithm is simply averaged uni-
formly over theky axisg. This gives

GcsX,0,td ,
const.

sX2 + vrot
2 t2dDc/2

. s126d

Note that this power-law form implies a power-law local
tunneling density of states for Cooper pairsrCPsed,eDc−1.

We conjecture that the full correlator satisfies a simple
scaling form with “z=1” scaling:

GCPsX,Y,td ,
const.

uXuDcuYuDc
GS X

vrott
,

Y

vrott
D . s127d

Combining our two calculations above impliesGsx ,0d
=fx2/ sx2+1dgDc/2.

3. ODQLRO of the d-wave pair field

We now briefly discuss the analogous ODQLRO of the
d-wave pair field described byGij

CPsr ,td in Eq. s109d. This
quantity is plagued by the same string ambiguities as the
local Cooper-pair propagator, but to a larger degree, since it
involves two separate strings emanating from the two sites
shared by the initial bond and ending at the two sites shared
by the final bond. Although we are confidentGij

CPsr ,td has a
power-law form consistent with ODQLRO, we are unable to
determine the precise nature of these correlations with reli-
ability. For instance, consider the equal time pair field cor-
relator for two bonds along thex axis G11

CPsr ,0d. For two
bonds in the same row,r =Xx̂1, the strings can be chosen to
line all in the same row, and since the logarithmic divergence
controlling the ODQLRO arises from smallkx in this case,
the power-law exponent is unchanged, i.e.,G11

CPsX,0 ,0d
,const. /uXuDc, with Dc given above. We believe that, since
this choice of string is by far the most natural, this is prob-
ably the correct result. If, instead, we choose to separate the
two pair fields along a single columnr =Yx̂2, then the two
strings involved cannot be taken entirely atop one another.
Different choices for the strings then give different results.
For instance, making the symmetric choice of two parallel
strings seach of strengthp rather than 2pd gives a decay
exponent reduced fromDc to Dc/2 in theY direction, while
choosing the strings to overlap everywhere except the two
ends reproduces the previous exponentDc without any re-
duction. Since we are unable to reliably resolve this ambigu-
ity, we are unable to determine the exact form of thed-wave
pair field correlator. Instead, we will take the pragmatic ap-
proach of approximating the correlations by those of the lo-
cal pair fieldGij

CPsr ,td<GCPsr ,td. It should be understood
that the decay exponentDc may need to be renormalized
and/or the correlator corrected slightly to obtain detailed re-
sults for a specific model.

D. Conductivity in the harmonic theory

Given the above result of ODQLRO, it is natural to ex-
pect a very large and perhaps infinite conductivity in the

roton liquid. Indeed, neglecting the effects of vortex-hopping
Lv in Eq. s45d, one can readily seefe.g., from Eq.s88dg that
the total vortex number on each row and each column of the
2D lattice is separately conserved. Thus it is impossible to
set up a vortex flow, and hence by the Josephson relation to
generate an electric field. Using the quadratic roton liquid
LagrangianLRL, this expectation can be directly confirmed.
In particular, we can integrate outall dynamical fieldssu ,ad
from the Lagrangian leaving only the external gauge field
Am, and thereby extract the polarization tensor and conduc-
tivity. This is most conveniently carried out in the gauge
A0=0, and assuming no magnetic-field]xAy−]yAx=0. In this
case, one may write

SA =E
k,vn

− ivnK jskd
pKskd

e−ik·wask,vndAjs− k,− vnd.

s128d

Integrating outa andu using the Green’s functionG11 in Eq.
s99d, one obtains, in the limituk u→0, the effective action

SA
0 =

1

2
E

k,vn

Pi j
0sk,vndAisk,vndAjs− k,− vnd, s129d

with

Pi j
0sk,vnd ,

uv

p2

kikj

k2 , s130d

as uk u→0. The dependence ofPi j
0 on the orientation ofk is

due to the fact that we have assumedB=0, which according
to Faraday’s law requires¹3E=−]tB=0. Hence we must
choosek parallel to the electric fieldA =E / s−ivd. Thus we
extract anisotropic conductivity tensorsi j

0 =di js
0, with

s0svd =
uv

p2

1

− iv
, s131d

characteristic of a system with no dissipation.
The above conclusion for the quadratic RL Lagrangian is,

however, modified by the vortex hopping terms. As we detail
in the next section, the effects of a small vortex hopping term
depend sensitively on the parameters that enter in the har-
monic theory of the roton liquid—in particular the dimen-
sionless ratiouv /kr. There are two regimes. When this ratio
is larger than a critical value, vortex-hopping is “relevant”
and grows at low energies destabilizing the roton liquid
phase. On the other hand, for small enoughuv /kr the vortex-
hopping strength scales to zero and the roton liquid phase is
stable. In this latter case, the effects of vortex hopping on
physical quantities can be treated perturbatively. In particu-
lar, we find that the conductivity in the roton-liquid diverges
as a power law in the low-frequency and low-temperature
limit.

IV. INSTABILITIES OF THE ROTON LIQUID

We first consider the instabilities of the roton-liquid due to
the presence of a vortex hopping term and examine the ef-
fects of such processes on the electrical transport. In the
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subsequent subsection we consider the legitimacy of the har-
monic expansion required to obtain the quadratic RL La-
grangian. This is achieved by performing a plaquette duality
transformation,12 where it is possible to address this issue
perturbatively. Again we find two regimes depending on the
parameters in the quadratic roton liquid Lagrangian. A stable
regime for smalluv /kr wherein the harmonic roton liquid
description is valid, and an instability toward a supercon-
ducting phase when this ratio is large.

A. Vortex hopping

The analysis of the stability of the RL to vortex-hopping
is mathematically nearly identical to the stability analysis of
the exciton Bose liquidsEBLd of Ref. 12 with respect to
boson hopping. Taking over those methods, we note that the
vortex hopping operator exhibitsone-dimensional power-law
correlations

kei]yurs0de−i]yur+r stdlRL = dy,0Rsx,td, s132d

with a power law form at large space-time separations

Rsx,td =
c

sx2 + vrot
2 t2dDv

, s133d

where r =xx̂+yŷ and c is a dimensionless constant. Here,
Rsx,td is essentially the single roton Green’s function, de-
scribing the space-time propagation of a roton with a dipole
oriented along theŷ axis. When calculated using the RL
Lagrangian, one finds

Dv =
1

4p
Îuv

kr

v+

ṽ0

. s134d

Simple calculations show that this power-law behavior is not
modified by including the fluctuatingay field in the vortex

hopping operatorT̂jsr ,td=eif]yur+aysrdg, i.e.,

kT̂ysr,0dT̂y
*sr + r ,tdlRL ,

dy,0

sx2 + vrot
2 t2dDv

, s135d

with only a change in the prefactor. Notice that the exponent
Dv characterizing the power-law decay of the roton propaga-
tor is inversely proportional to the analogous exponentDc in
Eq. s121d which gives the power law decay of the Cooper
pair propagator. Indeed, for the roton liquid Lagrangian stud-
ied here we find the simple identityDvDc=1/2. But with
inclusion of other terms in the original Hamiltonian such as
the spinons or further neighbor roton hopping terms, this
equality will be modified.

The arguments of Ref. 12 imply that the vortex-hopping
term is then relevant forDv,2. In this regime, the vortex-
hopping strength grows large when scaling to low energies,
and one expects the vortices to condense at zero temperature.
In this case it is legitimate to expand the cosine term in Eq.
s45d and one generates a “dual Meissner effect,” where the
gauge fields that are minimally coupled to the vortices be-
come massive. In the presence of spinons this leads to a mass
term of the formLv,stv /2dsaj −a jd2, which confines one
unit of electrical charge to each spinon presumably driving

one into a Fermi-liquid phase. If we ignore fluctuations in the
spinon density, or drop the spinons entirely retaining a theory
of Cooper pairs, the resulting phase is a charge ordered
bosonic insulator. The nature of the charge ordering will in
this case depend sensitively on the commensurability of the
Cooper-pair densitysr0/2d with the underlying square lat-
tice. In the simplest commensurate case with one Cooper-
pair per sitesr0=2d, a featureless Mott insulating state ob-
tains.

1. Electrical resistance in the roton-liquid

WhenDv.2, on the other hand, vortex-hopping is “irrel-
evant,” and the effects of the hopping on physical quantities
can be treated perturbatively. Physically, this occurs because
a vortex sees any background charge as a magnetic field, and
accumulates an Aharonov–Bohm flux upon encircling such
charge. There are enough charge fluctuations in the roton-
liquid sit is nearly superconductingd for Dv.2 to randomize
this phase and render vortex-hopping incoherent over long
times/distances. Despite its irrelevance, we expect the
vortex-hopping to strongly modify the Gaussian result for
the conductivity by introducing dissipation. To understand
how this occurs, it is instructive to first consider the simple
limit alluded to earlier in whichv0→`. In this limit, the
longitudinal density fluctuations described byã at nonzero
wave vector are suppressed, and the roton mode is purely
captured by theu field. The zero wave vectorsbut nonzero
frequencyd piece ofa, however, remains nonzero in this limit
and can be used to calculate the conductivity in an RPA
fashion. In particular, we take into account the roton fluctua-
tions and their associated dissipation induced by vortex-
hopping by calculating the effective action forã,A upon in-
tegrating out u to second ordersthe lowest nontrivial
contributiond in tv. Starting then with the LagrangianLRL
+LA+Lv, expanding to second order in the vortex hopping
actionSv, and integrating over theu field and the gauge field
ask Þ0d with v0→` gives

Sa,A
eff = o

r=r+w
E

t
F 1

2uv
s]0ãjd2 −

i

p
ei j ãisrd]0Ajsr − x̂jdG + Sa,A

s2d ,

s136d

where

Sa,A
s2d = −

tv
2

2o
r,r8
E

t,t8
kcoss]iu − ãidrt coss] ju − ãjdr8t8lu,

s137d

wherek¯lu indicates the average with respect to the Gauss-
ian action for u. From Eq. s132d, one can carry out this
average to obtain

Sa,A
s2d , −

tv
2

4Ho
r,x
E

t,t8
Rsx,t − t8d

3 cosfãysr,td − ãysr + xx̂,t8dg + sx ↔ ydJ ,

s138d

with the roton propagatorRsx,td given as in Eq.s133d, ex-
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cept with Dv→Îuv /kr / s4pd in this limit. Following the
usual RPA strategy, we expandSs2d to quadratic order inã to
obtain

Sa,A
s2d =

tv
2

4
E

k,vn

R̃svnduãjsvndu2, s139d

with the definitionR̃svnd=Rs0d−Rsvnd and

Rsvnd ; Rskx = 0,vnd. s140d

Thek =0 limit is valid whenv0→`. At low frequencies one
has

Rsvnd = − Cg

uvn/vrotu1+g

vrot sin
p

2
s1 + gd

+ ¯ , s141d

with Cg.0 a dimensionless constant. Here we have retained
explicitly the leading singular frequency dependence and
dropped analytic terms consisting of even powers ofvn. The
exponentg is defined as

g = 2Dv − 3 s142d

and in the stable regime of the RL phase,g.1.
Finally, upon integrating outãj, one obtains a renormal-

ized electromagnetic response tensor

Pi j =
vn

2

uv
−1spvnd2 +

p2tv
2

2
R̃svnd

kikj

k2 . s143d

It is now straightforward to extract the conductivity by ana-
lytic continuation

ssvd =UPxxskx → 0,ky = 0,vnd
vn

U
ivn→v+id

. s144d

One obtains an appealing Drude form

ssvd =
1

− ivsp2/uvd + i
p2tv

2

2
R̃retsvd/v

s145d

with the retarded propagator obtained from analytic continu-
ation:

Rretsvd = Rsvnduivn→v+id. s146d

The nonanalytic frequency dependence ofRretsvd contrib-
utes to the dissipativesreald part of the resistancesper
squared Rsvd;Res−1svd, which is quadratic in the vortex-
hopping amplitudetv

2:

Rsvd =
p2tv

2

2v
Im Rretsvd = Cg

p2tv
2

2vrot
2 F uvu

vrot
Gg

. s147d

Note that at the point for which vortex-hopping is just mar-
ginal, g=1, the resistance becomes linear in frequency
Ressvd,1/v.

We can readily extend this result to finite temperatures, by
using the finite temperature roton propagator

Rstd = cgF p/vrotb

sinspt/bdGg+2

. s148d

The retarded roton propagator follows upon analytic continu-
ation, and can be most readily extracted by using the identity

Im Rretsvd = sinhsbv/2dE
−`

`

dteivtRSt → b

2
+ itD .

s149d

Upon combining Eqs.s147d–s149d we thereby obtain a gen-
eral expression for the finite temperature and frequencysdis-
sipatived resistance in the roton liquid phase:

Rsv,Td = cg

sptvd2

vrot
2 FpT

vrot
Gg

R̃gsv/pTd, s150d

with a universal crossover scaling function

R̃gsXd =
2g

Gs2 + gd
UGS1 +

g + iX

2
DU2sinhspX/2d

X
,

s151d

interpolating between the dc resistance at finite temperature

and theT=0 ac behavior. SinceR̃gsX→0d is finite, the dc
resistance varies as a power law in temperatureRsTd,Tg. At
the boundary of the RL phase withg=1, a linear temperature
dependence is predicted. At large argument,

R̃gsX → `d =
p

Gs2 + gd
Xg, s152d

so that the resistance crosses over smoothly to the zero tem-
perature formRsv ,T=0d,uvug.

This RPA treatment has the appeal that it produces the
natural physical result that the effect of the weaksirrelevantd
vortex-hopping is to generate a smallresistivity ,tv

2. For-
mally, it is correct forv0=` because the RPA reproduces the
exact perturbative result for the electromagnetic response
tensor toOstv

2d in this case. Unfortunately, when the spatial
fluctuations ofãj are not negligible, i.e., forv0,`, even the
Ostv

2d term is not obtained correctly. More generally, the fluc-
tuations of ãj and u must be treated on the same footing.
Therefore in the general case we instead integrate outboth
fields and obtain more directly the correction toPi j to Ostv

2d.
The calculations are described in Appendix E. This does not
yield the appealing “Drude” form in Eq.s145d but instead the
Taylor expansion of Eq.s143d to Ostv

2d,

Pi j
s2d , −

tv
2uv

2

2vrot
2Dv−1uvnu2Dv−4kikj

k2 , s153d

except with the scaling dimensionDv, given explicitly in Eq.
s134d, now fully renormalized by the plasmon fluctuations.
Provided the vortex-hopping is irrelevant, this is sufficient to
recover properly the low-frequency behavior of the resistiv-
ity s147d to Ostv

2d. In particular, formally inverting the per-
turbative result forssv ,Td to Ostv

2d, we infer the appropriate
dc dissipative resistanceRsTd, tv

2Tg, with g=2Dv−3.
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B. “Charge hopping”

In this subsection we examine the legitimacy of the spin
wave expansion employed in Sec. III A to obtain the Gauss-
ian roton liquid Lagrangian. This is most readily achieved by
passing to a dual representation, which exchanges vortex op-
erators for new charge operators. This procedure is a quan-
tum analog of the mapping from the classical 2DXY model
to a sine-Gordon representation,16 the latter suited to exam-
ine corrections to the low temperature spin wave expansion.
As we shall find, there are parameter regimes where the
charge hopping terms are irrelevant and the RL phase is
stable. However, outside of these regimes, the charge quasi-
particles become mobile at low energies and condense—
driving an instability into a conventional superconducting
phase. Throughout this subsection we will drop the vortex
hopping termHv focusing on the parameter regimes of the
roton liquid phase where it is irrelevantsi.e., Dv.2d.

1. Plaquette duality

To this end we now employ the plaquette duality transfor-
mation, originally introduced in Ref. 12 in the context of the
exciton-Bose-liquid phase. Consider the charge sector of the
theory, with Hamiltonian Hc=Hpl+Hu+Hv. This Hamil-
tonian is a function of the vortex phase field and number
operatorsur , Nr sliving on the sites of the dual latticed, as
well as the stransversed gauge fieldaj

t and it’s conjugate
transverse electric-fieldej

t. The plaquette duality exchanges
ur andNr for a new set of canonically conjugate fields which
live on the sites of the original 2D square lattice. The two
new fields, denotedf̃r and ñr , are defined via the relations

pNr+w ; Dxyf̃r , s154d

pñr ; Dxyur−w. s155d

Although f̃r and ñr are conjugate fields satisfying

fñr ,f̃r8g = idr ·r8, s156d

they cannot strictly be interpreted as phase and number op-
erators since the eigenvalues off̃r =pm for arbitrary integer
m, whereaspñr is 2p periodic. It is important thatf̃r andñr
not be confused with the charge-on phase and number opera-
tors introduced in Sec. II which were denoted
fr ,nr—without the tildes. As we discuss below,eif̃r does in
fact create a chargelike excitation, but it isnot the charge-on.

Under the change of variablesHusu ,Nd→Hfsf̃ ,ñd,

Hf = Hu − kro
r

cosFpñr+w −
1

2
s]xãy + ]yãxdG , s157d

with the definition

Hu =
uv

2p2o
r ·r8

Dxyf̃rDxyf̃r8Vsr − r 8d. s158d

In the roton liquid phase the cosine term inHf is ex-
panded to quadratic order, andHf+Hpl→HRL. To be consis-
tent, bothñ and f̃ must then be allowed to take on any real

value, and it is convenient to pass to a Lagrangian written
just in terms off̃:

LRL = Lpl + Hu +
1

2o
r

s]0f̃rd2

p2kr
+

i

2p
o

r
]0f̃r+ws]xãy + ]yãxd.

s159d

In this dual form the roton liquid Lagrangian dependssqua-
draticallyd on the field f̃r , which lives on the sites of the
direct lattice, and thestransversed gauge-fieldãjsrd defined
on the links of the dual lattice.

2. Superconducting instabilities

This dual formulation is ideal for studying the legitimacy
of the spin-wave expansion needed to obtain the quadratic
RL Lagrangian. The crucial effect of the spin-wave expan-
sion was in softening the integer constraint on the eigenval-
ues off̃ /p, allowing f̃ to take on all real values inLRL. It is,
however, possible to mimic the effects of this constraint by
adding a potential term toLRL of the form

Ll = − lo
r

coss2f̃rd. s160d

When l→` the integer constraint is enforced, whereas the
RL phase corresponds tol=0. Stability of the RL phase can
be studied by treatingl as asmall perturbation to the qua-
dratic RL Lagrangian. But as discussed in Ref. 12, one
should also consider other perturbations toLRL which might
be even more relevant. Generally, one can add any local
operator involvingf̃r at a set of nearby spatial points which
is 2p periodic in 2f̃, and satisfies all the discrete lattice
symmetriessi.e., translations, rotations, and parityd. For ex-
ample, terms of the form coss2lf̃d for arbitrary integerl are
allowed, although these will generically become less relevant
with increasingl. As we shall see, for our “minimal” model
of the RL phase, the most relevant perturbation is of the form

Lt = − tco
r

o
j=1,2

coss2] jf̃rd. s161d

Before studying the perturbative stability to such opera-
tors, we try to get some physical intuition for the meaning of
the operatoreif̃. From the commutation relations in Eq.
s156d, the operatoreif̃r increaseñr by 1, and creates some
sort of quasiparticle excitation on the spatial siter . Since the
perturbation in Eq.s160d changes the numberñr by ±2, the
total number of these quasiparticlesñtot=or ñr is not con-
served, but the complex chargeQc=eipñtot is conserved. The
perturbation in Eq.s161d can then be interpreted as a charge
hopping process. To get some feel for the nature of the qua-
siparticle, it is instructive to introduce an external magnetic
field B=ei j]iAj, which enters intoHu above via the substitu-
tion Dxyfr →Dxyfr −Br+w. A spatially uniform fieldB can
readily be removed from the Gaussian RL Lagrangian by
letting
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f̃r → f̃r + Bxy. s162d

But thenB appears in the cosine perturbations, in “almost” a
minimal coupling form. For example, one has the combina-
tion ]xf̃−2Ax where we have chosen the gaugeAx=−By/2
and Ay=Bx/2, suggesting thateif̃ carries the Cooper pair
charge. But they derivative enters as]yf̃+2Ay—with the
wrong sign. Thus, this quasiparticle isnot a conventional
electrically charged particle. Nevertheless, as we show be-
low, condensation of the quasiparticle withkeif̃lÞ0 does
drive the RL phase into a superconducting state.

To evaluate the relevance of the various perturbations in
the RL phase, requires diagonalizing the associated action
SRL. In momentum space one has

SRL =E
km

FDff

2
uf̃u2 +

Daa

2
uau2 + Dafaskmdf̃s− kmdG ,

s163d

Dff =
1

p2kr
Fvn

2 +
uvkruKxKyu2

K2 G , s164d

Daa =
1

uv
fvn

2 + ṽ0
2K2g, s165d

Daf =
vnsKx

2 − Ky
2deik·w

2pK , s166d

with km=sk ,vnd. Evaluation of the two-point function ofe2if̃

then gives

kei2f̃r stde−i2f̃0s0dlRL , dr ,0utu−2Dc, s167d

with scaling dimension

Dc = 2pÎkr

uv

ṽ0

v+
. s168d

We note in passing that this power-law form of the charge
operatorse2if̃d two-point function in Eq.s167d differs from
exps−ln2 td behavior of the corresponding object in the exci-
ton Bose liquid of Ref. 12, due to the long-range logarithmic
interactions between vortices. Stability of the RL phase re-
quires Dc.1. Evaluation of the two-point function for the
charge hopping operatore2i]yf̃ gives

kei2]yf̃r stde−i2]yf̃0s0dlRL ,
dy,0

sx2 + vrot
2 t2dDc

, s169d

with r =xx̂+yŷ, and with thesamescaling dimensionDc as
above. However, since this two-point function decays alge-
braically in twosrather than oned space-time dimensions, the
perturbationtc is relevant forDc,2.

When Dc,2, the charge hopping process will grow at
low energies, and will destabilize the roton liquid phase. Not
surprisingly, the resulting quantum ground state is supercon-
ducting. Indeed, the exponentDc in Eq. s168d above is in fact
identical to the exponent characterizing the power law decay

of the Cooper pair propagator in Eq.s121d, so that for small
Dc the roton liquid phase is already almost superconducting.
Moreover, when the vortex core energy greatly exceeds the
roton hopping strengthuv@kr, the HamiltonianHu in Eq.
s88d is deep within its superconducting phase. This limit pre-
cisely corresponds toDc!1, the limit where the charge hop-
ping is strongly relevant. More directly, when the charge-
hopping strengthtc grows large, the fieldf̃ gets trapped at
the minimum of the cosine potentials in Eqs.s160d and
s161d, and it is legitimate to expand the cosine potentials to
quadratic order. Once massive, the expectation valuekeif̃l
Þ0—and the charge quasiparticle has condensed. Moreover,
settingf̃=0 in Eq.s161d in the presence of an applied mag-
netic field will generate a term of the form

Lt ,
tc
2

AW 2, s170d

indicative of a Meissner response.
In the resulting superconducting phase, the rotons—

gapless in the RL phase—become gapped. This follows upon
expanding the cosine term in Eq.s160d Ll=2lf̃2, which
leaves the roton liquid Lagrangian quadratic, and allow one
to readily extract the modified roton dispersion. Forkx→0 at
fixed ky, this gives

vrotskd = Îvrot
2 kx

2 + mrot
2 , s171d

with the “roton mass gap” given bymrot=2pÎkrl. Since the
productDcDv= 1

2, it is not possible to have both the vortex-
hopping and the charge-hopping terms simultaneously irrel-
evant.

V. THE ROTON FERMI LIQUID PHASE

We now put the fermions back into the description of the
roton-liquid. We first consider setting the explicit pairing
term in the fermion HamiltonianH f in Eq. s48d to zero:D
=0. As in Sec. III, we will assume for the most partswith the
exception of Sec. VIII B 3 in the discussiond that the equi-
librium fermion density is equal to the charge densityr0.
This choice naturally minimizes Coulomb energy and vortex
kinetic energy, as discussed therein. As we shall see, in this
way we will arrive at a description of a novel non-Fermi-
liquid phase—the roton Fermi liquid—which supports a gap-
less Fermi surface of quasiparticles coexisting with a gapless
set of roton modes. We then reintroduce a nonzero pairing
term, and study the perturbative effects ofD. We argue that,
when the scaling exponent that describes the decay of the
off-diagonal order in the roton liquid is large enoughDc
.Dc

* .3/2, the explicit pairing term is perturbatively irrel-
evant, and the RFL phase with a full gapless Fermi surface is
stable.

Even in the absence of the explicit pairing term—which
couples the fermionic and vortex degrees of freedom in a
highly nonlinear manner—the rotons and quasiparticles in-
teract through sthree-dcurrent–current interactions “medi-
ated” by thebm andei fields. Although these interactions are
long ranged for individual vortices, they are not for rotons,
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which carry no net vorticity. Moreover, due to phase space
restrictions we find that the residual short-ranged interactions
asymptotically decouple at low energies. The resulting RFL
phase supports both gapless charge and spin excitations with
no broken spatial or internal symmetries, just as in a conven-
tional Fermi liquid. But, due to the vortex sector of the
theory, the RFL phase is demonstrably a non-Fermi liquid,
with a gapless Bose surface of rotons and with ODQLRO in
the Cooper pair field but no Meissner effectssee belowd.
Moreover, the quasiparticles at the RFL Fermi surface are
sharp sin the sense of the electron spectral functiond, but
electrical currents are carried by thesquasidcondensate. Even
with impurities present the resistivity vanishes as a power
law of temperature in the RFL. The power law exponentg
varies continuously, but is greater than or equal to one. For
g,1, the zero temperature RFL phase is unstable to a quan-
tum confinement transition, which presumably drives the
system into a conventional Fermi liquid phase.

To describe the RFL, we start with the general Lagrangian
s68d–s71d, and first make the same approximation as in the
RL of expanding the roton-hopping term to quadratic order.
That is, to leading order,Lkin<Lr

0, with

Lr
0 =

kr

2
F]xyu −

1

2
h]xsay − ayd + ]ysax − axdjG2

+
kr

8
fei j]isaj − a jdg2. s172d

As before for the RL, this approximation will be corrected
perturbatively by charge and vortex hopping terms, which
will not be expanded.

Turning to the fermionic sector, we assume for the mo-
ment that the power-law decaysODQLROd of the Cooper-
pair field is sufficiently rapid that the pair field termD j can
be neglected. We argue later this is correct forDc.Dc

*

.3/2. This gives a nonanomalous fermionic Lagrange den-
sity Lf, which we further presume is well described by Fermi
liquid theory, again checking the correctness of this assump-
tion perturbatively in the couplings tobm andei. Hence we
replaceL f <L f

0+L f
1, with sworking for simplicity at zero

temperatured

L f
0 = f rs

† s]0 − mdf rs − to
j

f r+x̂ js
† f rs, s173d

L f
1 = − ib0sr df rs

† f rs − io
j

tb jsr d + tefpējsr d + Ajsr dgf r+x̂ js
† f rs

+ o
j
F ts

2
b jsr d2 +

te
2

fb jsr d + pējsr d + Ajsr dg2G f r+x̂ js
† f rs.

s174d

Note that, to leading order, the fermionic dispersion is con-
trolled by the sum of the two hopping amplitudest= ts+ te.
Here we have included explicitly the physical external vector
potential Ajsr d in the electron hopping term. Some care
needs to be taken when treatingAjsr d. The above form is
correct providedAjsr d is also coupled intoej in the quadratic
Hamiltonian in the canonical fashionpēj →pēj +Aj, in the

roton/plasmon portion of the Hamiltonian. It isnot correct if
this canonical coupling is removed by shiftingēj, which is
the procedure needed to generate theAmJm coupling in Eq.
s74d. If the latter form of the Lagrangian is used, the vector
potential should be removed from the electron hopping term.
Either choice is correct if used consistently.

The full Lagrangian that we then use to access the RFL
phase is given by

LRFL = La + L0 + Lr
0 + Lcs+ L f

0 + L f
1, s175d

with the definition,

L0 =
1

2u0
s]0u − a0 + a0d2. s176d

The interaction terms between the fermions and the fieldsb j
andej in L f

1 will be treated in the random phase approxima-
tion. Doing so, one arrives at a tractable, if horrendously
algebraically complicated Lagrangian describing the RFL,
which is quadratic in the fieldsu, am, ej, am, and bm. This
makes calculations of nearly any physical quantity possible
in the RFL.

Before turning to these properties, we verifysin the re-
mainder of this sectiond the above claims that the coupling of
fermions and vortices does not destabilize the RFL—i.e., it
neither modifies the form of the low-energy roton excitations
at the Bose surface nor the fermionic quasiparticles at the
Fermi surface.

A. Quasiparticle scattering by rotons

In this subsection, we show that the coupling of the elec-
tronic quasiparticles to the vortices does not destroy the
Fermi surface. To do so, we will integrate out the vortex
degrees of freedom to arrive at effective interactions amongst
the quasiparticles. This procedure is somewhat gauge depen-
dent. To provide a useful framework for the calculation of
the electron spectral function in the following section, we

will choose the gauge¹W ·bW =pei j]iej, in which the f, f† op-
erators create fermionic quasiparticles with nonvanishing
overlap with the bare electrons, without the need for any
additional string operators. This is essentially equivalent to
working in the electron formulation of Appendix D.

Since this gauge choice explicitly involvesei j]iej, we
must employ a path integral representation in which the
transverse component of the electric fieldej

t has not been
integrated out. It is further convenient to fix the two remain-

ing gauge choices according to¹W ·aW =a0=0, and to integrate
out the fielda0 in the u0→0 limit. The full RFL Lagrangian
density sbefore imposing the constraintb j

l =pej
td then takes

the form

LRFL = Lvort + L f
0sbmd + L f

1sbmd, s177d

with
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Lvort =
uv

2
sej

td2 + iej
t]0aj

t +
v0

2

2uv
sei j]iaj

t − pr̄d2

+
i

p
ei jais] jb0 − ]0b jd + Lusa j − aj

td, s178d

where

Lusa jd =
1

2uv
s]0]iud2 +

kr

8
sei j]ia jd2

+
kr

2
FDxyu +

1

2
s]xay + ]yaxdG2

. s179d

To assess the perturbative effects of the vortices upon the
electronic quasiparticles, we wish to integrate out the vorti-
ces perturbatively in the coupling of the gauge-fieldbm to the
fermions. For this we require the correlation functions of the
bm fieldssneglecting the couplings insideL f and in particular
to lowest order justkbmbnld. To obtain the latter, we add a
source term to the Lagrangian

Lvort → Lvort + isl0ib0 + lW · bW d. s180d

Here we have included an extra factor ofi with b0 to com-
pensate for the factor ofi present in the coupling ofb0 to the
fermion density. Upon fully integrating out theet, u, at, bm,
a j fields, the coefficient oflmln in the effective action will
give shalfd the desired correlator. We perform the integration
in two stages. First, imposing the constraintbl =pet, we
eliminateet, shift a j →a j −s] ju−aj

td, and integrate out theu,

aj
t, andbm fields. One obtainsLvort→L̃vortsa j ,lmd, with

L̃vort =
v0

2

2uv
sei j]ia j + ipl̃0d2 +

kr

4
fs]xayd2 + s]yaxd2g

+
1

2uv
s]0ai − pei jl jd2 − tv cossa jd, s181d

with l̃0=l0− i r̄.
In Eq. s181d we have added back in the vortex-hopping

term, Lv=−tv cossa jd, neglected in the RFL Lagrangian. In
the RFL phase, the vortex-hopping is irrelevant, and scales to
zero at low energies. If we puttv=0, the remaining integra-
tions overa j are Gaussian and can be readily performed. We
will return to the effects of nonzero vortex-hopping upon the
fermions in Sec. VII A. The final effective action then takes
the form

Seffslmd = −
1

2
E

k,vn

Umn
s0dsk,vndlmsk,vndlns− k,− vnd.

s182d

Here

Umn
s0dsk,vnd =

p2

uvsvn
2 + vpl

2 dsvn
2 + vrot

2 d
umnsk,vnd s183d

specifies thebm propagatorkb0b0l0=U00
s0d, kbib jl0=−Uij

s0d,
kib0b jl0=−U0j

s0d, where the superscript zero reminds us that

this is the result to zeroth order intv=0, and we have the
definitions

u00 = v0
2Fvn

4 +
v1

2K2

2
vn

2 +
v1

4

4
uKxKyu2g, s184d

uxx = − v1
2fṽ2

0uKxKyu2 + v+
2uKxu2vn

2g, s185d

uyy = − v1
2fṽ2

0uKxKyu2 + v+
2uKyu2vn

2g, s186d

uxy = − v0
2KxKyvn

2, s187d

u0j = − v0
2Kxivnf2vn

2 + v1
2sK2 − K j

2dg. s188d

In the dc limit, these interactions simplify considerably, and
one obtains the simple results

U00
s0dsk,vn = 0d =

p2kr

4
Sv0

ṽ0
D2

, s189d

Uij
s0dsk,vn = 0d = −

p2

uv
di j , s190d

andU0i
s0dsk ,vn=0d=0.

Sinceib0 andb couple to the fermion density and current,
respectively,Seff mediates an effective frequency and wave-
vector-dependent interaction between fermions. Since, in the
dc limit, −U00

s0dsk ,vn=0d and Uii
s0dsk ,vn=0d are finite and

wave-vector independent, they describe localson-sited repul-
sive quasiparticle density–density and attractive current-
current interactions, respectively.

Generally, a repulsive density–density interaction between
fermions will lead to Fermi-liquid corrections in the quasi-
particle dynamics and thermodynamics, but will not destroy
the Fermi surface. On the other hand, the current–current
interaction for near-neighbor quasiparticle hopping can be
rewritten in terms of antiferromagnetic, near-neighbor repul-
sive, and pairing interactions

HJ = Jo
r ,r8

FSr ·Sr8 +
1

4
nr

fnr8
f + 2D̄r

fDr8
f G , s191d

up to a shift of the fermion chemical potential, withS
; f†ssW /2df swith sW the vector of Pauli matricesd nf = f†f,

D f = f↑f↓, and D̄ f = f↓
†f↑

†. Here, J, ts
2/uv is inversely propor-

tional to the vortex core energy. One expects that the antifer-
romagnetic interaction can lead to an a Cooper instability in
thed-wavesor extendeds-waved channel. The repulsive pair-
ing interaction interaction does not favor ans-wave Cooper
instability. Hence it seems possible that for smalluv, for
which thisJ is large, a spontaneous quasiparticle pairing in-
stability may occur, most probably ofd-wave symmetry. An-
other possibility, which appears very natural forextremely
small dopingx→0+ sanduv→0+d, is that the antiferromag-
netic interaction drives an antiferromagnetic spin-density-
wave instability. We will discuss both possibilities in the dis-
cussion section.

L. BALENTS AND M. P. A. FISHER PHYSICAL REVIEW B71, 085119s2005d

085119-20



B. Roton scattering by quasiparticles

Having established that the Fermi surface remains intact
sapart from a possible BCS-type pairing instabilityd in the
presence of gapless rotons, we need to see how the fermions
feed back and effect the roton modes. To this end, we will
integrate out all fields exceptu, treating the fermions within
the random phase approximationsRPAd, to study the effects
upon the roton dispersion. The RPA is complicated by the
two distinct amplitudests andte, describing spinon and elec-
tron hopping processes, the latter coupling to the electric
field ej as well as theb j gauge field. We begin with the RFL
Lagrangian in Eq.s175d. It is convenient to first shiftam

→am+am then integrate outa0 and takeu0→0, which con-

strains ¹W 3bW =p¹W ·eW and a0=−]0u. Choosing in addition

¹W ·bW =−p¹W 3eW, we essentially return to the electron formu-
lation, with bi =−pēi. This choice is convenient, since thebi
andpēi fields present in the electron-hopping term precisely
cancel, and only −pēi appears “similar to a gauge field” in
the spinon-hopping term. The fermionic quasiparticles can
then be integrated out in the random phase approximation
sRPAd. One findsSf →SRPA, with

SRPAsbmd =
1

2
E

k,vn

FP00ub0sk,vndu2 +
p2ts

2

t2
P11uelsk,vndu2

+ p2tsS1 −
ts
t
DTNNuesk,vndu2G , s192d

whereTNN=kf rs
† f r+x̂sl is the nearest-neighbor kinetic energy,

andt= ts+ te. HereP00 andP11 are, respectively, the density-
density and current-current response kernelsspolarization
bubbles1 diamagnetic contribution in the case ofP11d that
would obtain for the Fermi sea were a single gauge field
minimally coupled to the fermions. These depend upon the
band structure. We will not require particular expressions for
these quantities, but will use the fact that bothP00sk ,vnd and
P11sk ,vnd are finite and generally nonvanishing atfixed
wave vectoruk u .0 andvn=0. Since we will focus upon the
low-energy rotons, which occur near the principle axes in the
Brillouin zone, we have dropped terms in Eq.s192d that are
small forvn,kx!ky andvn,ky!kx fe.g., due to the parity
symmetryx→−x of the 2D square latticeP01skx=0,ky,vnd
vanishesg. We also note that Eq.s192d does not have the
usual RPA form even in this limit, due to the nonminimal
coupling form of the fermion Lagrangiansminimal coupling
is restored only forts→ td.

It may be helpful to keep in mind the forms for a circular
Fermi surfacese.g., valid at small electron densitiesd, where,
at small wave vectors and frequencies, one has

P00sk,vnd , m* , s193d

wherem* , t−1 is the effective mass and

P11sk,vnd ,
1

m* Fk2 +
uvu
vFk

G , s194d

which is valid for uv u ,vFk. We stress, however, that our
results do not depend upon these particular forms.

SinceSRPA is quadratic, one can perform the remaining

integrals straightforwardly. We choose¹W ·aW =¹W ·aW =0, and in-
tegrate outa, b0, ande, to obtain

S=E
k,vn

H vn
2

2ũv
a2 +

kr

8

4v0
2 + ṽ1

2

ṽ1
2 a2 +

vn
2K2

ūv
u2

+
kr

2
UKxKyu +

sKx
2 − Ky

2d
2K aU2J , s195d

where ũv=uv+p2tss1−ts/ tdTNN, ūv= ũv+p2ts
2/ t2P11, and ṽ1

2

=v1
2+krp

2P0v0
2. Without loss of generality, we focus upon

the branch of rotons withvn,kx!ky,Os1d, for which the
first term in Eq. s195d is negligible, and the remaininga
integral can be carried out to obtain finally the effective ac-
tion

Srot =
1

2
E

k,vn

8 K̃2
y

ūv
fvn

2 + vrot
2 skydkx

2guuu2, s196d

with

vrot
2 skyd = v1

2ūv

uv

v0
2 + 1

4ṽ1
2

v0
2 + 1

2ṽ1
2 . s197d

We have thereby shown that even a gapless Fermi sea
does notlead to a qualitative change in the gapless Bose
surface of rotons. Due to theky dependence ofP00 andP11
simplicit in ṽ1 and ūvd, the roton velocity is now seen to
depend upon ky. Additional “direct” quasiparticle-
quasiparticle interactionssnot mediated by the rotonsd would
in any case similarly renormalizevrot. But the location of the
Bose surface and the qualitative low-energy dispersion of the
roton modes are seen to be unaffected by the fermions. To-
gether with the earlier demonstration of the stability of the
Fermi surface, this result establishes the RFL phase as a
stable 2D non-Fermi liquid withboth gapless charge and
spin excitations.

VI. INSTABILITIES OF THE ROTON FERMI LIQUID

As for the RL, the RFL has potential instabilities to su-
perconducting and Fermi liquid states, driven by effects/
terms neglected in the previous subsection. We address each
in turn now.

A. Landau–Fermi-liquid instability

The arguments of Sec. IV A for determining the relevance
or irrelevance of the neglected vortex hopping term within
the simpler RL continue to hold for the full RFL, provided
the proper renormalized roton liquid parameters are em-
ployed. In particular, the vortex hopping term continues to be
described by as1+1d-dimensional scaling dimensionDv,
which is, however, renormalized by the statistical interac-
tions with the fermions, to wit

Dv =
1

4p
E

−p

p dky

2p

ūvskyd
vrotskyd

, s198d

with vrotskyd given from Eq.s197d. The same arguments thus
continue to apply, and the vortex hopping term is irrelevant
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for Dv.2. ForDv,2, we expect an instability to a state with
proliferated vortices. The dual Meissner effect for this vortex
condensate confines particles with nonzero gauge charge, as
discussed in Sec. IV A. Coming from the RFL, the natural
expectation is then that the system becomes a Fermi liquid.
This hypothesis is fleshed out in Appendix A.

B. Superconducting instabilities

As for the RL, the RFL can also be unstable to a super-
conducting state. However, the inclusion of the fermionic
quasiparticles opens new routes to superconductivity from
the RFL. We explore each of these in turn.

1. Charge hopping

As for the vortex-hopping considered above, the argu-
ments for the relevance of the charge hopping in Sec. IV B 2
for the RL continue to apply with only a renormalization of
the roton-liquid parameters. In particular, the scaling dimen-
sion defined from the charge hoppings169d is modified to

Dc = pE
−p

p dky

2p
uKyskydu2

vrotskyd
ūvskyd

. s199d

With this modification, the charge-hopping processes be-
come relevant forDc,2, as before. It should be noted that,
including the renormalizations due to scattering by fermions
DcDsÞ1/2, owing to theky dependence of thevrot and ūv.

As we established in Sec. IV B 2 by employing the
plaquette duality transformation, when the charge hopping
processes are relevant the rotons become gapped out and the
system exhibits a Meissner effect. Here, we briefly comment
on the corresponding fate of the fermionic quasiparticles,
which are gapless across the Fermi surface in the RFL phase.
The relevance of the charge hopping in the plaquette dual-
ized representation, indicates that it is not legitimate to ex-
pand the cosine term that enters into the roton hopping La-
grangianLr. Rather, in the original vortex representation, the
state corresponds to a “vortex vacuum,” and the properties of
the state can be accessed by taking all of the vortex hopping
processes small,tv ,t2v ,kr !uv. At zeroth order in the vortex
kinetic terms, the full Hamiltonian of the Us1d vortex-spinon
field theory in Eq.s43d is independent ofa j, so thatb j com-

mutes with Ĥ and naively can be taken asc numbers. A
simple choice consistent with the conditionNr=0 is b j =0,
and in the vortex vacuum one also has thatej

l =0. In this case,
the full fermionic Hamiltonian describing the quasiparticles
in Eq. s48d reduces to the Bogoliubov–de Gennes form, apart
from the coupling toej

t which describes the Doppler shift
couplings to the superflow. In particular, the string operator
which enters into the explicit pairing term equals unitySr

2

=1, so that the fermionic quasiparticles are paired. We de-

note by u0l f the ground state ofĤf with bj =ej =0, which is
easily found by filling the Bogoliubov–de Gennes levels be-
low the Fermi energy. Our naive ground state is then

u0l0 = u0l f ^ ub j = 0l ^ uNr = 0l. s200d

In the Us1d sector, unfortunately, we must take somewhat
more care, since the conditionb j =0 is in fact inconsistent

with the gauge constraintG fsLrd=1. We can, however,
project into the Us1d subspace using the operator

P̂ = p
r

dS f rs
† f rs −

1

p
ei j]ia jsr − wdD . s201d

SincefP̂,Ĥg=fP̂,Gvsxrdg=0, the state

u0l = P̂u0l0 s202d

satisfies all gauge constraints and remains an eigenstate ofH
swith zero kinetic termsd. This establishes that the resulting
superconducting state is an ordinary BCS-type supercon-
ductor with paired electrons.

2. BCS instability

As we saw in Section V, the coupling of the spinons to the
gapless rotons in the RFL phase leads to Heisenberg ex-
change and pair field interactions between the fermions with
strengthJ, ts

2/uv. In the physically interesting limitt< ts
@ te, the quasiparticles move primarily as spinons, i.e., with-
out any associated electrical charge, and hence do not expe-
rience a long-ranged Coulomb repulsion. Thus one may
imagine that the above interactions could lead to a BCS pair-
ing instability at “high” energiessstill below the quasiparticle
Fermi energy to make the Fermi liquid description appropri-
ate, but quantitatively large compared to, e.g., more conven-
tional BCS critical temperaturesd of orderJ. Here we explore
the properties of the resulting phase which emerges when the
fermions pair spontaneously and condense. To this end, we
focus on the fluctuations of the phase,F of the fermion pair
field kf↑f↓l=D fe

iF. Keeping D f fixed, and working once
more in the electron gaugebi =−pēi, we integrate out the
fermions entering inLRFL to generate an effective action for
F , b0, andēi. Specifically, one obtainsL f

0+L f
1→LF, with

LF =
gf

2
s]0F − 2b0d2 +

rs
fts
2

s]iF + 2pēid2+
rs

fte
2

s]iF − 2Aid2

− a
kBT

tD f
st]iF + 2ptsēi − 2teAid2. s203d

Heregf is of order the density of states at the Fermi surface
Ai is stime independent for simplicityd external vector poten-
tial, and rs

f is the fermion pairs“superfluid”d density. The
final term represents the low but nonzero temperature correc-
tions to the superfluid density appropriate to the case of
d-wave pairing. Herea is a nonuniversal constant of order
one representing the effects of Fermi liquid corrections, or
equivalently, high-energy renormalizations of the “Doppler-
shift” coupling constant.

The excitations and response functions of the system can
then be obtained from the RFL Lagrangian by shifting
am→am+am and then integrating outa0, aj, anda0. Having
made the replacementL f →LF one thereby obtains
LRFL→Leff, with an effective Lagrangian given byLeff

=L̂rot+LF, where
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L̂rot =
uv

2
Sei +

1

p
ei jAjD2

+ i]0eis]iu + aid+
uv

2p2v0
2b0

2

+
i

p
b0ei j]ia j+

kr

8
sei j]ia jd2

+
kr

2
FDxyu +

1

2
s]xay + ]yaxdG2

. s204d

First, it is instructive to consider the transverse electro-
magnetic response, in particular consider a static, transverse

external gauge field]0Ai =¹W ·AW =0. Since the external gauge
field is at zero frequencya j , b0, u, and et are decoupled
from Ai andel in this limit, and we may thus neglect all but
the first term in Eq.s204d. In addition,F is decoupled from
el s ētd as well, so we may simplify the effective Lagrangian
to

Leff =
uv

2
Sel +

At

p
D2

+ 2ters
fAt

2 + 2p2tsrs
fel

2

− a
kBT

tD f
s2ptsel − 2teAtd2. s205d

Integrating overel then gives the superfluid stiffnessKs as
the coefficient of 2At

2 scorresponding to the pair-field phase
stiffnessd in the effective action

Ks =
rs

fstuv + 4p2tetsrs
fd

uv + 4p2tsrs
f −

stuv + 4p2tetsrs
fd2

suv + 4p2tsrs
fd2

2akBT

tD f

s206d

to linear order in temperature. Note that, forrs
f Þ0, the sys-

tem is a true charge superfluid, displaying a Meissner effect.
We would next like to establish the fate of the roton ex-

citations. To do these, we letAi =0, specialize toT=0, and
consider the appropriate limitvn,kx!ky,Os1d, integrating
out fields to obtain an effective action foru alone. Integrating
out F, one obtains in this limit

LF → 2gfb0
2 + 2p2rs

ftsel
2, s207d

using the above conditions onvn and k, and]0b0!ei j]iej,

which follows in this limit. Further taking the gauge¹W ·aW
=0, one sees thatet couples only to]0a in Eq. s204d, and
thus generates only negligible terms at low frequencies and
may be dropped. We therefore need only the effective action
for a=at, u, b0, and el, Seff=ekvn

seff, which in this limit
becomes

Seff =
uv + 4p2rs

fts
2

el
2 +

uv + 4p2v0
2gf

2p2v0
2 b0

2 − uKyuvnelu

+
i uKyu

p
b0a +

kr

8
Ky

2a2 +
krKy

2

2
Ukxu +

sgnskyd
2

aU2

.

s208d

Performing the integration overa, b0, andel, one obtains the
final effective action foru

seffsud =
1

2

Ky
2

uv + 4p2rs
fts

svn
2 + ṽrot

2 kx
2duuu2, s209d

where

ṽrot
2 = v1

2uv + 4p2rs
fts

uv

uvSv0
2 +

v1
2

4
D + p2gfv0

2v1
2

uvSv0
2 +

v1
2

2
D + 2p2gfv0

2v1
2

. s210d

Thus, despite the superconductivity induced by quasiparticle
pairing, the gapless roton excitations survive, with some
quantitative modifications to their velocity and correlations.

As we shall explore further in the concluding sections, in
the limit of a very small “bare” vortex core energy appropri-
ate in the underdoped limituv,x→0, there is a large energy
scale for pairingJ, ts

2/uv. It is then natural to assumetrs
f

< ts1−xd@uv. If we presume that the fermionic kinetic en-
ergy is predominantly due to “spinon hopping”t< ts@ te,
then one has

Ks <
uv

4p2 + ters
f − S uv

4p2 + ters
fD2 2akBT

tD fsrs
fd2 . s211d

Thus, despite the large bare superfluid stiffness coming
from the BCS pairing of the quasiparticles, the renormalized
stiffness is small, set by the bare vortex core energyKs
=uv /4p2,x or the electron hoppingte spresumed small
compared totsd. It is the renormalized stiffness which deter-
mines the vortex core energy, and sets the scale for the finite
temperature Kosterlitz–Thouless superconducting transition
TKT ,uv,x. In this way, one can understand the large sepa-
ration in energy scales between the pseudogap line at scale
J and the superconducting transition temperatureTKT ,x.
Unfortunatelyssince it is in apparent conflict with the small
amount of experimental data for this quantityd, along with
this small superfluid stiffness, one obtains a small linear tem-
perature derivative]Ks/]TuT=0, due to the same mechanism.
This is similar to results for the Us1d gauge theory for the
t- j model.

To complete the analysis, one should consider the effects
of the heretofore neglected explicit pairing term in this novel
“rotonic” superconductor. In particular, one may imagine
that, once the fermionic pair field has condensed, it may
induce true off-diagonal long-range order in the rotonic sec-
tor through the proximity effect. Naively, ODLRO appears
incompatible with gapless rotons, so one may expect the ex-
plicit pairing term to induce a gap in the roton spectrum.
While this is possible, it is easy to see that it is not inevitable.
To see this, note that, in the rotonic superconductor, the
fermionic pair field in the explicit pairing term may be re-
placed simply by its mean-field valueD1cr+x̂1sess8crs8
=D2cr+x̂2sess8crs8=D f. This leads, in the roton sector, to an
additional term

HD = − D fo
jr

sBr ,r+x̂ j

† + H.c.d. s212d

Indeed, Eq.s212d, since it embodies a linear coupling to the
bosonic pair fieldBr ,r+x̂ j

will induce ODLRO in theBr op-
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erators. However, this need not itself be a mechanism to
induce a roton gap. Noting that from Sec. III C, the boson
pair field correlators are power law in form, we expect that
for Dc sufficiently large, perturbation theory inD f will be
regular and convergent, and the gapless rotons will be pre-
served. Due to the anisotropic structure of these correlators,
we cannot reliably determine the relevance or irrelevance of
D f by simple power-counting arguments. We note that for
Dc.3/2, the induced ODLRO is expected to be linear inD f,
i.e., the bosonic pair-field susceptibility is finite. However,
the criterion for irrelevance is probably more stringent, e.g.,
Dc.3. To determine the precise valueDc

* such that forDc
.Dc

* , the explicit pairing term remains irrelevant after con-
densation of quasiparticle pairs, would require a more careful
analysis of the structure of the perturbation theory inD f. We
leave this for braver souls, and content ourselves with the
observation that there is a range of stability to this perturba-
tion. We note that, however, since the RL itself even without
the pairing term is always unstable to either vortex or charge
hopping, the rotonic superconductor, with true gapless ro-
tons, exists at best as an intermediate energy scale crossover.
Nevertheless, provided the inevitable roton gap is smallsi.e.,
for small D f , tc, tvd, we expect the gap onset will only
slightly modify the values for the superfluid stiffness and its
linear temperature derivative determined above.

3. Explicit pairing term

The final potential instability of the RFL we consider is
from the explicitsspinond pairing termD. Recall from Sec.
II C 1,

HD = o
j

eib jsr dD jfSrg2f r+x̂ js
ess8f rs8 + H.c. s213d

=o
j

D jBr ,r+x̂ j

† cr+x̂ js
ess8crs8 + H.c., s214d

where the last line is written in electron variables or, equiva-
lently, in the electron gauge withb j =−pēj. This representa-
tion is convenient because it eliminates all unphysical gauge
fluctuations, which, although they do not appear in any
physical properties, may enter inadvertently through approxi-
mations. Had we considered instead a Hamiltonian with
s-wave pairing, we would have had

HD
s-wave= DsfSrg2f rsess8f rs8 + H.c. =DsBr

†crsess8crs8 + H.c.

s215d

Since we have already determined the correlations of the
boson pair field operatorBr swhich exhibits ODQLROd, in
Sec. III C, all the operators appearing in Eq.s215d have well
understood properties at this stage, and so we will discuss
this case for simplicity. For the physically more interesting
scenario ofd-wave pairing, we require instead the behavior
of the bond pair field correlations. As discussed in Sec.
III C 3, this behavior is qualitatively identical to that of the
local pair field, with a possible renormalization ofDc. Hence
we believe that the results we obtain for localss-waved
pairing—in particular that the pairing term is irrelevant for
sufficiently largeDc—carry over to thed-wave case, pro-

vided a possiblesand for the moment unknownd Os1d modi-
fication of Dc is made in the relations.

We would like to determine the “relevance” ofHD in the
renormalization groupsRGd sense, i.e., whether its presence
destabilizes the low-energy properties of the RFL. Unfortu-
nately, due to the extremely anisotropic nature of the rotonic
spectrum, and the very different nature of the low energy
electronic quasiparticle states at the Fermi surface, we do not
know how to formulate a proper RG transformation. How-
ever, we do note that correlations ofHD decay as power laws
in space and imaginary time in the theory withD=0, since
then these correlations factor intoGCP swith power law be-
havior described in Sec. III Cd and the fermion pair field
correlator, which has the power law form characteristic of a
Fermi liquid. Clearly, for sufficiently largeDc, the Cooper
pair propagatorGCPsr ,td will decay sufficiently rapidly that
perturbation theory inD does not generate anysprimitived
singularities. However, determining the criticalDc

* above
which this occurs is beyond the scope of the current study. A
simple argument clearly boundsDc

* .3/2. In particular, one
may attempt to integrate out the vortices perturbatively in
HD in a cumulant expansion. The first nontrivial term in this
expansion occurs at second order, and generates an attractive
fermion pair-field to pair-field interaction whose vertex is
simply the Fourier transform ofGCPsr ,td. For Dc,3/2, a
simple scaling analysis indicates that this Fourier transform
is divergent atq=vn=0. Thus for such values ofDc, this
attractive Cooper channel interaction will overwhelm any
other repulsive interaction that might be present at low ener-
gies, leading to a Cooper instability and pairing. This analy-
sis, however, neglects higher cumulant terms which are cer-
tainly present in integrating out the vortices, and which are
presumably crucial in determining the ultimate limits of sta-
bility of the RFL. Nevertheless, and this is all we shall re-
quire at present, it is clear thatDc

* exists and is not infinite, so
that a nonvanishing region of stability also exists. WhenDc
,Dc

* the explicit pairing term will be relevant, destabilizing
the RFL phase, presumably driving it into a conventional
superconducting phase with paired electrons and gapped ro-
tons. Given our lack of knowledge ofDc

* , the additional un-
certainty in the decay exponent of ODQLRO is not particu-
larly damaging.

VII. PROPERTIES OF THE RFL PHASE

Having established the existence of the RFL phase, we
now discuss some of its properties. Since the rotons are ef-
fectively decoupled from the fermions at low energies, much
of the physics of the RFL phase follows directly from the
results we established for the charge sector in Secs. III and
IV. Specifically, one expectsthree different gapless excita-
tions in the RFL phase—a gapless longitudinal plasmon, a
Bose surface of gapless rotons, and a set of particle-hole
excitations across the Fermi surface. Thespin physics in the
RFL phase is then qualitatively similar to that of a conven-
tional normal metal. Also, similar to a metal, the RFL has
ODQLRO in the Cooper-pair field. Unlike an ordinary metal,
however, this power law off-diagonal order exists with two
distinct unrelated powers, one originating from the two-
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particle excitations of the Fermi sea, and the other from the
gapless rotons. Because the rotons and electronic quasiparti-
cles exist as nearly independent excitations in the RFL, one
would expect a sharp electron spectral function despite the
critical rotons. While this is true, as we demonstrate below in
detail, the quasiparticles do scatter appreciably and in a sin-
gular manner from the gapless rotons at particular hot spots
on the Fermi surface. Nevertheless, even at these hot spots,
the decay rate vanishes more rapidly than the electron’s
energy.

Despite the existence of such long lived electronlike qua-
siparticle excitations, the electrical transport in the RFL
phase is strikingly non-Drude-like, as we now demonstrate.
Specifically, in the presence of impurities the electrical con-
ductivity at low temperatures is dominated by the quasicon-
densate in the charge sector, diverging at low temperatures as
s,T−g with g.1. But as we shall see, theHall conductivity
behaves very differently, being dominated by the electronlike
quasiparticles.

A. Electrical conductivity

Here we evaluate the electrical resistance in the RFL
phase. As in Sec. IV A, it will be necessary to include the
effects of the vortex hopping term, even though vortex hop-
ping is technically irrelevant wheng.1. The RFL phase
exhibits the same “emergent symmetry” as in the roton
liquid—the number of vortices on every row and column
being independently conserved—so inclusion of vortex-
hopping is necessary to generateany dissipative resistance
whatsoever. In order to access the Hall conductivity we ap-
ply a uniform external magnetic field. We choose a gauge
with A0=0, and set

Ajsr,td = Aj
Bsrd + Ãjstd, s216d

with ei j]iAj
B=B the external magnetic field andÃj a time-

dependent source term used to extract the conductivity ten-
sor. As might be expected it is important to include the ef-
fects of elastic scattering from impurities.

It is convenient to employ, as in Sec. VI B 2, in which the
fermions have been integrated out, their effects felt only
through an additional contribution to the effective action. In
particular, we choose, as in Sec. VI B 2, the electron gauge,
and write

Seff =E
t
o

r
fL̂rot − tv coss]iu + aidg + Sfsei,b0,Ãid,

s217d

with L̂rot given in Eq.s204d. HereSf represents the fermionic
terms in the action. We proceed by shiftingēj → ēj −Aj

B/p,

which takesAj → Ãj in L̂rot without any further changes since
Aj

B is time independent. This has the effect for the fermions
of making the magnetic field appear uniformly in both
electron- and spinon-hopping terms. Integrating out the fer-

mions then perturbatively inēi, b0, and Ãi effectively re-

placesSf → S̃f =ekvn
sf, where

sf =
P00

2
ub0sk,vndu2 +

p2ts
2

TNNuēju2 +
te
2

TNNuÃju2

+
P̃i j

2t2
sptsēi + teÃidk,vn

sptsēj + teÃjd−skvnd. s218d

In Eq. s218d, bothP00 andP̃i j are functions ofk andvn sand
B throughAj

B which appears in the electron-hopping termd,
and we have neglected a cross-termP0i betweenb0 and the
spatial gauge fields, which is negligible in all the limits of

interest. We will require the behavior ofP̃i j in two regimes.
Since the external fields are spatially uniform, we will need

P̃sk =0,vnd at low frequencies

P̃i jsk = 0,vnd < sxx
f uvnudi j + sxy

f vnei j , s219d

wheresi j
f is the conductivity tensor for the fermions. Roton

fluctuations are dominated in contrast byvn,kx!ky

,Os1d sor the same withkx↔kyd. In this limit, P̃i j becomes
a nontrivial function of theOs1d component of the wave
vector, but has the useful propertysdue to square reflection
symmetryd of decoupling in the longitudinal and transverse
basis

P̃i jsk,vnd < P̃tSdi j −
KiK j

*

K2 D + P̃l

KiK j
*

K2 . s220d

In this limit, we note thatP̃t is related toP11 of Sec. V B by

P11=P̃t+TNN.
As discussed above, the conductivity is finite only once

the vortex-hopping is included to break the row/column sym-
metries of the RFL. Hence to extract the conductivity, we

must compute the effective action forÃj to Ostv
2d, which

gives the first nontrivial correction. This requires only
Gaussian integrals, with no further approximations. How-
ever, for ease of presentation, it is convenient, analogously to
Sec. IV A 1, to take the simplifying limituv /v0

2+P00
!1/kr. In this limit the fluctuations ofb0 are extremely
strong, which in turn strongly suppresses the fluctuations of
atsk ,vnd except atk =0. Furthermore, choosing the gauge

¹W ·aW =0, we may thereby takeaisr ,td to be a function oft
only. Doing so, we may drop all spatial derivatives ofa j in

L̂rot. Furthermore, since fluctuations ofa j are only temporal,
it can be accurately treated in an RPA fashion.

To carry out the RPA calculation, we first perform the
integral overei, which gives an effective action in terms of

the remaining u, ai, and Ãi fields Seff→Seff8 =S18sÃid
+S28sai ,Ãid+S38su ,aid, with

S18 = L2E
vn

1

2
Hshts + tedTNNdi j +

1

t2
ste

2 + h2ts
2 + 2htetsd

3P̃i jsk = 0,vndJÃis− vndÃjsvnd, s221d
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S28 = L2E
vn

Hhvn
2

2uv
Fdi j +

hp2ts
2

uvt
2 P̃i jsk = 0,vndG

3ais− vnda jsvnd −
hvn

p
ei jais− vndÃjsvndJ ,

s222d

S38 =E
kvn

1

2
Fvn

2K2

ūv
+ kruKxKyu2Guusk,vndu2

− tvo
r
E

t

coss]iu + aid, s223d

where h=uv / suv+p2tsTNNd, and ū=uv+p2tsTNN+p2ts
2P̃t / t

2

= ũv+p2ts
2P11/ t2 as in Sec. V B. In Eqs.s221d ands222d, L2

is the system volumesnumber of sites in the square latticed,
arising sinceai , Ãi are spatially constant. In obtaining Eqs.

s221d and s222d, we expanded to linear order inP̃i jsk
=0,vnd since we are interested ultimately in the low-

frequency limit, andP̃i j is linear in frequency. In Eq.s223d,
we used the fact thatu coupled to only to the longitudinal

part of ei and hence only toP̃t. Note that the quadratic part
of Eq. s223d reproduces precisely Eqs.s196d and s197d, in
the limit v0@ ṽ1, as assumed herein.

We now can integrate outu to Ostv
2d. This proceeds iden-

tically as in Sec. IV A 1, withaj replaced by −a j, and with
the renormalized roton liquid parametersuv→ ūv. Hence we
obtain the correctionS38su ,aid→S39sa jd, with

S39 =
tv
2

4
L2E

vn

R̃svndua jsvndu2, s224d

with R̃svnd,−uvnu1+g as in Eq.s141d of Sec. IV A 1, but
g=2Dv−3 with the renormalizedDv given in Eq.s198d.

With this replacement, the remaining quadratic integral
over ai can be easily performed to determine the physical

response kernelS18+S28+S39→SrespsÃjd, with

Sresp= L2E
vn

1

2
Ãis− vndPi j

RFLsivndÃjsvnd, s225d

where

Pi j
RFLsivnd < P̃i j

f + P̃i j
rot s226d

and

P̃i j
f = teTNNdi j +

te
2 + 2htets

t2
P̃i jsk = 0,vnd, s227d

P̃i j
rot = F uv

p2 −
uv

2tv
2R̃svnd

2p2vn
2 Gdi j . s228d

The conductivity is obtained from the Kubo formula as

si jsvd = FPi j
RFLsivnd − teTNNdi j

vn
G

ivn→v+id
. s229d

As in Sec. IV A 1, we see that the rotonic contribution to the
conductivity is not perturbativesat low frequenciesd in tv, so
to capture the expected behavior, we replace it by

si j
rot = F P̃i j

rot

vn
G

ivn→v+id
→ di j

− iv
p2

uv
+ i

p2tv
2

2
R̃retsvd/v

.

s230d

This gives

si jsv,Td = si j
rotsv,Td +

te
2 + 2htets

t2
si j

f sv,Td. s231d

Notice that from Eq.s231d, the conductivity is the sum of
separate fermion and roton contributions, and that the only
effects of the fermions upon the rotonic piece is to modify

the exponentg sor Dvd implicit in R̃svd. Moreover, the fer-
mionic contribution vanishes forte=0, as expected on physi-
cal grounds since the spinon-hopping term does not transport
charge.

Consider first the dissipative diagonal dcssheetd resis-
tance RsTd=Refsxx

−1g, which at low temperatures is com-
pletely dominated by the rotonic contribution, given as in Eq.
s150d,

RsTd = cg

sptvd2

vrot
2 FpT

vrot
Gg

, s232d

except withvrot and the exponentg renormalized by the in-
teractions with the fermions. We thereby arrive at the impor-
tant conclusion that the resistance in the RFL phase varies as
RsTd,Tg, with g.1. Wheng,1 the RFL phase is unstable
to confinement into a Fermi liquid phase, and right at the
quantum confinement transition the resistance is linear in
temperature.

The Hall conductivity and hence Hall angle on the other
hand, are dominated by the fermionic quasiparticles. Specifi-
cally, sxy<sxy

f , and in the dc limit the fermionic Hall con-
ductivity can be approximately obtained from a Drude ex-
pressionsxy

f <vct fsnfe
2t fd /m,vct f

2, wherevc=eB/m is the
cyclotron frequency. The fermionic scattering timet f has a
variety of contributions, from elastic impurity scattering to
interactions with rotons, considered in the next section, and
hence maysor may notd have temperature dependence of its
own—in contrast to the diagonal conductivitysxx,T−g,
which diverges asT→0 due to the rotonic contribution.
These considerations suggest that the cotangent of the Hall
angle, defined in terms of the resistivity tensorri j as
cotsQHd;rxx/rxy, will vary as,

cotsQHd ,
sxx

sxy
,

T−g

vct f
2 ,

1

vcT
gt f

2 . s233d

The complete absence of a roton contribution to the Hall
conductivity sxy

RFL is a consequence of the magnetic field
independence of the roton liquid LagrangianLRL, either in
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its original or dual formss90d ands159d, respectively. But as
discussed in Sec. IV B, the dual representation ofLRL allows
for additional terms involving cosines of the dual fieldf,
which are present due to the underlying discreteness of the
vortex number operator. While being irrelevant in the roton
liquid phase, these neglected termsdo dependon the external
magnetic field and if retained will lead to a nonvanishing
roton contribution to the Hall conductivity. But this contri-
bution is expected to vanish rapidly at low temperatures. If
on the other hand, these terms arerelevantand drive a su-
perconducting instability at low temperature, they will likely
contribute signifigantly to the Hall conductivity. A careful
analysis of the Hall responseabove the superconducting
transition temperature in this situation will be left for future
work.

B. Electron lifetime

Although the electron spectral function is expected to be
sharp at zero temperature right on the Fermi surface in the
ideal RFL fixed-point theory, at finite energiessor tempera-
turesd one expects the electrons to scatter off the rotons
through interactions neglected in the RFL, causing a decay.
Here, we consider two contributions to this electron decay
rate at lowest order in the perturbations to the RFL. We con-
sider two scattering mechanisms. First, scattering due to cou-
pling of the quasiparticle current to boson currents through
the bm and ei terms present in the fermionic Hamiltonian.
Because singular bosonic current fluctuations are primarily
induced by vortex-hopping, nontrivial contributions to the
fermion lifetime through this mechanism occur first atOstv

2d.
Second, we consider scattering of quasiparticles due to su-
perconducting fluctuations, i.e., fermion decay mediated by
the “Jospephson coupling”D to the bosonic pair field. Since
we expectD! tv on physical groundsssee Sec. VIII B 2d,
this OsD2d contribution is naively much smaller than the
former one. However, depending upon the parameters of the
RFL, this need not be the case. This point will be returned to
in the discussion.

As discussed above, to compute the spectral function it is
simplest to work in the gaugebl =pet, in which we may
assume the electron operatorcrs, f rs, and hence study

G fsr ,td = − kTtf rsstdf0s
† s0dl. s234d

In other gauges, it would be necessary to include string fac-
tors as indicated in Eq.s55d.

Neglecting the fluctuatingbm fields, one hasG0sk ,vnd
=sivn−ekd−1, with dispersionek =−2t cosskjd−ms. Both fluc-
tuations of thebm gauge fields, which mediate retarded in-
teractions amongst the quasiparticles, as well as the explicit
interactions in the pairing term, will induce a self-energy
Ssk ,vnd, defined by

G0sk,vnd =
1

ivn − ek − Ssk,vnd
. s235d

We will compute the lowest-order corrections to the electron
self-energy, obtaining a single-particle lifetime from the
imaginary part of its retarded continuationSretsk ,vd

=Ssk ,vn→−iv+0+d in the usual way. At the level of this
discussion, the two types of interactions act in parallel to
scatter quasiparticles, so

Ssk,vd = SCFsk,vd + SSFsk,vd. s236d

We will focus upon the imaginary partS9sk ,vd, which de-
scribes broadening of the electron spectral function 1/t fsTd
=S9sk ,0 ;Td. We have

t f
−1 = st f

CFd−1 + st f
SFd−1. s237d

In principle this single-particle “lifetime” is distinct from the
momentum scattering rate which is relevant in discussions of
transport quantities. However, we will use the behavior ob-
tained for 1/t f as a crude guide to the quasiparticle transport
as well, leaving a more careful treatment for future study.

1. Scattering mediated by vortex hopping–enhanced current
fluctuations

Taking into account quadratic fluctuations of thebm fields,
the leading self-energy correction due to current fluctuations
is

SCFsk,ivnd = o
mn
E

q,vn8
vFmvFnG0sk − q,vn − vn8dUmnsq,vn8d

= o
mn
E

q,vn8
vFmvFn

1

isvn − vn8d − ek−q
Umnsq,vn8d,

s238d

with the definitionsvFj =]ek /]kj, vF0=1. Here we have writ-
ten the self-energy in terms of the fullb-gauge-field cor-
relator Umn to all orders intv, rather than restricting totv
=0 as we did in obtaining Eq.s183d.

Introducing a spectral representation

Umnsk,vnd =E
−`

` dv

p

Umn9 sq,vd
v − ivn

, s239d

with Umn9 svd=Im Umn
retsvd=Im Umnsvn→−iv+0+d, allows

one to analytically continue to obtain thesretardedd self-
energy

Sretsk,vd = Ssk,vnduivn→v+i0+. s240d

For positive frequencies,v.0, the imaginary part,S9
=Im Sret is given by

SCF9 sk,vd = o
mn
E

q
vFmvFnUmn9 sq,v − ek+qdQsek+qd

3Qsv − ek+qd. s241d

The self-energy can now be evaluated by considering pro-
gressive orders intv. To zeroth order, the expressions for
Umn

s0dsk ,vnd may be taken from Eqs.s183d–s188d. We note
that, because they come from the quadratic RL Lagrangian,
they contain only simple poles. Furthermore, they are explic-
itly real functions ofivn, so that, upon analytic continuation,
their retarded correlator has zero imaginary part. Since
Umn

s0d9=0, one thus hasSCF
s0d9sk ,vd=0.
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Thus there is no broadening of the quasiparticle peak at
zeroth order in the vortex-hopping. The first nontrivial con-
tribution to the quasiparticle lifetime occurs though theOstv

2d
corrections to the gauge field propagatorUmn=Umn

s0d+ tv
2Umn

s2d

+¯. This correction is obtained by integrating outa j to
second order intv starting from Eq.s181d to obtainSeffslmd
to Ostv

2d using the cumulant expansion. We shiftaisr ,td
→aisr ,td−yisr ,td, to eliminate the linear terms inai in the
Lagrangian, withyi linear in lm given explicitly by

yxsk,vnd = −
p

svn
2 + vpl

2 dsvn
2 + vrot

2 d
fv0

2KxKysv0
2Kxl0 + ivnlxd

− svn
2 + v+

2uKxu2dsv0
2Kyl0 + ivnlydg,

yysk,vnd =
p

svn
2 + vpl

2 dsvn
2 + vrot

2 d
fv0

2KxKysv0
2Kyl0 + ivnlyd

− svn
2 + v+

2uKyu2dsv0
2Kxl0 + ivnlxdg. s242d

After this shift the correction to the effective action can be
formally written

Seff
s2d = −

tv
2

2o
i j

o
r,r8
E

t,t8
kcosfaisr,td − yisr,tdg

3cosfa jsr,td − y jsr,tdgla, s243d

where the subscripta indicates a Gaussian average overai
with respect to the quadratic terms in Eq.s181d. Sinceyi is
linear inlm, this correction is not quadratic inlm, indicating
that thebm fluctuations are not Gaussian. To evaluate the
leading order self-energy correction, however, we require
only the two-point function ofbm, and hence may expand to
quadratic order inyi. One finds

Seff
s2d = −

tv
2

4
E

kvn

„uyxsk,vndu2R̃sky,vnd + uyysk,vndu2R̃skx,vnd….

s244d

Here R̃sk,vnd is the two-point function of the vortex hop-
ping operator considered in Sec. IV A, i.e.,

R̃sk,vnd = o
x
E

t

f1 − cosskx+ vntdgkeiaysx,y,tde−iays0,y,0dla

,
AsDvd

sin psDv − 1d
svn

2 + vrot
2 k2dDv−1, s245d

where the latter behavior gives the leading nonanalytic term
for smallvn, k, with AsDvd a constant prefactor. An analytic
quadratic term is also presentsand larger than the given form
for Dv.2d, but does not contribute to the imaginary part of
the self-energy for the same reasons described above for the
tv=0 terms.

Next, we must analytically continue to obtain the
Umn

s2d9sk ,vd. From Eq. s242d, one immediately sees that

yi
retsk ,vd is purely real. Hence, the imaginary part comes

entirely from the analytic continuation ofR̃ski ,vnd. One has

R9ski,vd , AsDvdsv2 − vrot
2 ki

2dDv−1Qsuvu − vrotukiudsgnsvd.

s246d

From inspection of Eq.s244d, one thereby sees the imaginary

part of the retarded gauge-field correlatorUmn
s2d9sk ,vd is the

sum of two terms, which are nonzero only foruvu.vrotukxu or
v.vrotukyu, respectively. Thus the momentum integrals in the
expression forSCF9 in Eq. s241d, are constrained not only by
0,ek+q,v but also eitherek+q,v−vrotuqxu or ek+q,v
−vrotuqyu, for the two terms, respectively.

We focus on the self-energy for momenta exactly on the
Fermi surfaceuk u=kF. In this case, the constraints clearly
require smallq for small v. For such small wave vectors,
one may approximateek+q<vWF ·qW +q2/2m* . For a generic
point on the Fermi surfacestaken for simplicity in the quad-
rant with kx,ky.0, for which vWF makes an angleuF
Þ0,p /2 to thex axis, theq2 term is negligible, and one has
ek+q<vFsqx cosuF+qy sin uFd. Applying the above con-
straints, one finds that bothqx and qy are integrated over a
small bounded region in which both areOsvd. Thus for such
generic points on the Fermi surface, we should consider the
limit of Umn

s2d9sq ,v−ek+qd in which all arguments areOsvd.
In this limit, inspection of Eqs.s242d and s245d shows that
the correlator satisfies a scaling form

Umn
s2d9sq,v − ek+qd , v2sDv−2dUsqx/v,qy/vd, s247d

with a well-behaved limit asq→0. Inserting this into Eq.
s241d and rescaling the momentum integrals byv, one sees
that SCF9 skF ,vd,v2sDv−1d for uFÞ0,p. SinceDvù2 in the
stable region of the RFL, this dependence is always as weak
or weaker than the ordinaryv2 scattering rate due to Cou-
lomb interactions in a Fermi liquid.

The special cases whenuF=0,p /2 require separate con-
sideration. For these values, the Fermi velocity is along one
of the principal axes of the square lattice, and the linear
approximation forek+q is inadequate. Taking for concrete-
nessuF=0, we have insteadek+q<vFqx+qy

2/2m* , and it is
not obviously consistent to neglect theqy

2 term. For the first

term finvolving R̃9sqy,v−ek+qdg, the constraints reduce to
0,vFqx+qy

2/2m* ,v−vrotuqyu. This is approximately solved
for small v by 0,qy, sv−vrotuqxud /vF and uqxu,v /vF.
Thus bothqx, qy are again bounded andOsvd, so the above
Fermi-liquid-like scaling applies.

For the second termfinvolving R̃9sqx,v−ek+qdg, the con-
straints reduce to 0,vFqx+qy

2/2m* ,v−vrotuqxu. This is
solved by taking −v /vrot,qx,v / svrot+vFd and maxs0,
−vFqxd,qy

2/2m* ,v−vFqx−vrotuqxu. Hence for this term,qx

is Osvd while qy is OsÎvd. Since with this scalinguqyu@v
,uqxu one has the significant simplification

vysq,vd ,
pv0

2v1
2

2v+
2

qxl0

vrot
2 qx

2 − v2 for uqyu @ v , uqxu.

s248d

Since onlyl0 appears, in this limit,U00
s2d9@Uii

s2d9 ,U0i
s2d9, i.e.,

the fluctuations ofb0 are much stronger than those ofbi.
One may therefore approximate
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Umn
s2d9sq,vduF=0 ,

AsDvdp2

2

tv
2v0

4v1
4

v+
4 qx

2sv2 − vrot
2 qx

2dDv−3

3 Qsuvu − vrotuqxudsgnvdm0dn0.

s249d

Inserting this into Eq.s241d, one may integrate overqy sto
yield a constant multiplyingÎuqxu and rescaleqx→vqxd to
obtain the result

SCF9 skF,vd , v2Dv−5/2 for uF = 0,
p

2
, ¯ . s250d

At the end point of the RFL, for whichDv=2, this gives the
anomalous lifetimeS9skF ,vd,v3/2 at these special hot
spots for which the Fermi velocity is parallel to one of the
principal axes of the square lattice. For the conventional
Fermi surface believed to apply to the cuprates, this corre-
sponds to the points on the Fermi surface closest tosp ,0d,
s0,pd.

Comparing the scattering rate at these hot spots to else-
where on the Fermi surface, one finds

SCF;hot9 svd
SCF;typ9 svd

,Îm*vF
2

"v
. s251d

Since the Fermi surface in the cuprates is particularly flat
nearsp ,0d, the effective mass would be largem* @me, and a
significantly enhanced scattering rate at such hot spots would
be expected in the RFL phase.

In parameter regimes where the RFL phase is unstable
svia charge hoppingd at low temperatures to a conventional
superconductor, the enhanced scattering at the hot spots will
be significantly suppressed upon cooling below the transition
temperature. Indeed, the low-energy roton excitations are
gapped out in the superconducting phase, and at tempera-
tures well belowTc will not be appreciably thermally ex-
cited. Unimpeded by the rotons, the electron lifetime will be
greatly enhanced relative to that in the normal state, particu-
larly at the hot spots on the Fermi surface with tangents
along thex̂ or ŷ axes, for example, at wave vectors near
sp ,0d in the cuprates.

2. Scattering mediated by superconducting fluctuations, i.e.,
boson–fermion pair exchange

A second mechanism of fermion decay is by the “pairing
term” HD in Eq. s213d. We supposeuDu is small, and so
consider the first perturbative contribution to the quasiparti-
cle lifetime at OsD2d. In general, ford-wave pairing, this
takes the form

SSFsk,vnd = o
i,j=1

2

DiD jE
qVn

eiki + eisqi−kid

2

e−ikj + e−isqj−kjd

2

3
Gij

CPsq,Vnd
− isVn − vnd + eq−k

, s252d

where

Gij
CPsq,Vnd = o

r
E

t

Gij
CPsr ,tdeiq·r−iVnt, s253d

with Gij
CPsr ,td from Eq. s109d.

Our uncertainties in the details of the Cooper pair propa-
gator soriginating from ambiguities in the string geometryd
do not allow a thorough calculation of the resulting self-
energy. However, as we will now show, we can obtain a
rough understanding of its scaling properties by some simple
approximations, which we believe do not significantly effect
the results. In particular, we will assume that the lifetime is
controlled by the small wave vectoruqu!p portion of the
Cooper pair propagator. In this regime, we expect
Gij

CPsq ,Vnd<GCPsq ,Vnd, the Fourier transform of thelocal
Cooper pair propagator studied in depth in Sec. III C. Mak-
ing this approximation, one hasuqu! uku for k near the qua-
siparticle Fermi surface, and one may write

SSFsk,vnd < uDku2E
qVn

GCPsq,Vnd
− isVn − vnd + eq−k

, s254d

with Dk = uDuscoskx−coskyd. Note that this form immedi-
ately implies that scattering due to this mechanism is
strongly suppressed upon approaching the nodal regions of
the Fermi surface.

A detailed analysis is now possible based on a spectral
representation ofGCP, as in Sec. VII B 1.17 Unlike the above
case, howeverfsince the power law decay ofGCPsr ,td is
approximately isotropicg, a much simpler scaling analysis
suffices to obtain the qualitative behavior of the lifetime. In
particular, the scaling form of Eq.s127d implies that

GCPsq,Vnd , uVnu2Dc−3G̃sq/Vnd, s255d

up to nonsingular additive corrections, for smalluqu andVn.
Furthermore, for smallq and k on the Fermi surface, one
may writeeq−k <vFqi+q'

2 /2m, whereqi , q' are the compo-
nents ofq parallel and perpendicular to the local Fermi ve-
locity at k, and vF and m are the magnitude of the local
Fermi velocity and effective mass. The singularity in the in-
tegrand in Eq.s254d is then cut off by the external frequency
vn, and rescalingq→qVn, one sees that the effective mass
term is negligible, and obtains by power counting

SSFsk,vnd , uDku2uvnu2Dc−1, s256d

again with possible analytic and subdominant corrections.
Upon analytic continuation to obtain the lifetime, only
nonanalytic terms contribute, and we expect

SSF9 sk,vd , uDku2uvu2Dc−1 sgnsvd, s257d

for k on the Fermi surface. This result can be verified by
more detailed calculations using the spectral representation
of GCP.17 Moreover, we expect that forkBT@v, v can be
replaced bykBT in this formula.

As expected, for sufficiently largeDc, this lifetime van-
ishes rapidly at low energies, and in particular forDc.3/2,
this contribution is subdominant to the usual Fermi liquid
one. However, in the regime withDc,Dv, this is never the
casesDc,1/Î2d, at least within our simple model without
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dramatic corrections to the RL exponents. Indeed, forDc
,1, as supposed herein, this scattering rate is muchlarger
than the quasiparticle energy at low frequency. Taken liter-
ally, this implies increasingly incoherent behavior away from
the nodes as temperature is lowered. Near the nodes, the
amplitude of this strong scattering contribution vanishes rap-
idly, similar to the idea of cold spots proposed by Ioffe and
Millis. 18

VIII. DISCUSSION

We close with a discussion of some theoretical issues con-
cerning the vortex-quasiparticle formulation of interacting
electrons that we have been employing throughout. In par-
ticular, we contrast our approach with the earlierZ2
formulation5 and mention the connection with more standard
and more microscopic formulations of correlated electrons.
We then address the possible relevance of the roton Fermi
liquid phase to the cuprate phase diagram and the associated
experimental phenomenology.

A. Theoretical issues

Since the discovery of the cuprate superconductors, the
many attempts to reformulate theories of two-dimensional
strongly correlated electron in terms of new collective or
composite degrees of freedom, have been fueled on the one
hand by related theoretical successes and on the other by
cuprate phenomenology. The remarkable and successful de-
velopment ofbosonization19 both as a reformulation of inter-
acting one-dimensional electron models in terms of bosonic
fields and as a means to extract qualitatively new physics
outside of the Fermi liquid paradigm, played an important
role in a number of early theoretical approaches to the
cuprates.13 The equally impressive successes of thecompos-
ite bosonandcomposite fermionapproaches in the fractional
quantum Hall effect20 were also influential in early high-Tc
theories, most notably theanyon theories.21 Gauge theories
of the Heisenberg andt-J models were notable early attempts
to reformulate 2D interacting electrons in terms of “spin-
charge” separated variables22,23—electrically neutral fermi-
onic spin one-half spinons and chargee bosonic holons—and
were motivated both by analogies with 1D bosonization and
by resonating valence bond ideas.13 More recent approaches
to 2D spin-charge separation have highlighted the connec-
tions with superconductivity,4,5 by developing a formulation
in terms of vortices, Bogoliubov quasiparticles, and plas-
mons: the three basic collective excitations of a 2D super-
conductor. These latter theories were primarily attempting to
access the pseudogap regime by approaching from the super-
conducting phase4—focusing on low-energy physics where
appreciable pairing correlations were manifest.

1. Vortex-fermion formulation

In this paper, although we are employing a formulation
with the same field content—hc/2e vortices, fermionic qua-
siparticles, and collective plasmons—we are advocating a
rather different philosophy. In particular, we wish to use
these same fields to describe higher-energy physics in re-

gimes where the physics is decidedly non-BCS-like even at
short distances, most importantly the cuprate normal state
near optimal doping. The philosophy of this approach is very
similar to that of theZ2 gauge theory proposal of a fraction-
alized underdoped normal state. Indeed, as demonstrated in
Sec. II C and Appendixes B and C, our Us1d formulation is
completelysunitarilyd equivalent to aZ2 gauge theory. How-
ever, because the unitary transformation relating the two for-
mulations is nontrivial, the Us1d formulation issmuchd more
convenient for the types of manipulations and approxima-
tions we employ here, largely because the Us1d gauge fields
are continuous variables. The price paid for the use of the
Us1d formulation is that the “spinon pairing term” of theZ2

gauge theory appears nonlocal in the Us1d Hamiltonian.
Fortunately, this nonlocality and its consequences are

readily understood. In particular, although the Us1d vortex-
quasiparticle Hamiltonian is microscopically equivalent to a
Z2 gauge theory, it isalsoequivalentsas described in Appen-
dix Dd to a theory of electronicsi.e., chargeed quasiparticles
coupled to charge 2e bosonsswith the latter described in dual
vortex variablesd. The “two-fluid” point of view of this
vortex-electron formulation is convenient for understanding
the qualitative properties of the RFL phase and its descen-
dents, although it should be emphasized that the current–
current couplingsfembodied by the gauge fields of the Us1d
formulationg between the two fluids are not expected to be
weak. In the vortex-electron language, the nonlocal term
simply represents coherent Josephson coupling of electron
pairs and the bosons. The nonlocality of the pairing term
arises simply from the nonlocal representation of boson op-
erators in the usual Us1d boson-vortex duality. The crucial
feature which allows us to handle the pairing term despite its
nonlocality is the strength of vortex fluctuations in the
bosonic roton liquid, which persists even with these strong
current–current couplings. The resulting power-law decay of
bosonic pair-field correlationssODQLROd opens up a re-
gime, corresponding to the RFL phase, in which the pairing
term is irrelevant and can be treated perturbatively. We note
in passing that, although it is not relevant for the cuprates,
the above discussion makes clear that a RL phasesfor which
fermions need never be introducedd should be possible in a
purely bosonic model, which would be interesting in and of
itself.

A second important feature of the present formulation is
the retention of the lattice-scale structure. Appropriate to the
cuprates, we have carefully defined the theory on a 2D
square lattice which we wish to identify with the microscopic
copper lattice. Since our theory obviously does not similarly
retain physics on atomicenergy scales, our starting bare
Hamiltonian should be viewed as alow energybut not spa-
tially coarse-grained effective theorysor at most an effective
theory coarse-grained spatially only insofar as to remove,
e.g., theO p orbitalsd. It is important to emphasize that the
very existence of the roton Fermi liquid phaserequires the
presence of a square lattice. In the RFL ground state there is
an infinite set of dynamically generated symmetries, corre-
sponding to a conserved number of vortices on every row
and column of the lattice. If we study the same model on a
different lattice, say the triangular lattice, the quantum
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ground state analogous to the RFL phasesobtained, again, by
taking the roton hopping amplitudekr →`d is highly un-
stable, being destroyed by the presence of an arbitrarily
small single vortex hopping amplitude.

More generally, the importance of employing the dual
vortex-quasiparticle field theory reformulation cannot be
overemphasized. The novel and unusual RFL phase emerges
quite simply when one takes a large amplitude for the roton
hopping term, and the fixed-point theory is also quite simple
consisting of a Fermi sea of quasiparticles minimally
coupled to an electric field with Gaussian dynamics. It is
very difficult to see how one could adequately describe such
a phase working with bare electron operators. Indeed, we do
not yet understand the simpler task of constructing a micro-
scopicsundualizedd boson model which enters the RL phase,
even without the complications of fermions. However, pre-
vious experience with dual vortex formulations for bosonic
and electronic systems strongly argues that the RL and RFL
theories properly describe physically accessiblesalbeit mi-
croscopically unknownd models.

An unfortunate drawback of the present formulation,
however, is the apparent lack ofdirect connection between
the starting lattice Hamiltonian and any microscopic electron
model. In particular, it is presently unclear what microscopic
electron physics could be responsible for generating such a
large roton hopping term. In the absence of a microscopic
foundation, one must resort to developing phenomenological
implications of the roton Fermi liquid phase and comparing
with the experimentally observed cuprate phenomenology.
We take a preliminary look in this direction in Sec. VIII B
below.

2. Related approaches

It is instructive to contrast the RFL phase with earlier
notions of spin-charge separation. Anderson’s original pic-
ture of the cuprate normal state at optimal doping consisted
of gas of spinons with a Fermi surface coexisting and some-
how weakly interacting with a gas of holons.1,13 In the early
gauge theory implementations of this picture, both the
spinons and holons carried a Us1d for SUs2dg gauge
charge.22,23 Mean-field phase diagrams were obtained by
pairing the spinons and/or condensing the holons, and a
pseudogap regime withd-wave paired spinons yet uncon-
densed holons was predicted22,23—several years before ex-
perimentsof course thed-wave nature of the superconduct-
ing state was also predicted by other approaches24d. Within
this approach, the normal state at optimal doping was viewed
as an incoherent gas of uncondensed holons strongly inter-
acting with unpaired spinons. Some efforts were made to use
the neglected gauge-field fluctuations to stop the holons con-
densing at inappropriately high-energy scales, with some
success.25 A serious worry is that these gauge fluctuations,
ignored at the mean-field level, will almost certainly drive
confinement26 sgluing the spinons and the holons togetherd
and thus at low temperatures invalidate the assumed stability
of the initial mean-field saddle point.

A few early papers emphasized that spinon pairing would
break the continuous Us1d for SUs2dg gauge symmetry down
to a discreteZ2 subgroup,7,27 and this might be a way to

avoid confinement. These ideas were later considerably
amplified,5 and the stability of genuinely spin-charge sepa-
rated ground states established.28,29 Such ground states are
exotic electrical insulators which support fractionalized exci-
tations carrying separately the spin and charge of the elec-
tron. Each fragment carries aZ2 gauge charge, but in contrast
to the Us1d gauge theory saddle points, theZ2 spinons are
electrically neutral and do not contribute additively to the
resistance. Such fractionalized insulators necessarily support
an additionalZ2 vortexlike excitation: the vison.8

Within the present formulation, theseZ2 fractionalized in-
sulators can be readily accessed by condensingpairs of
vortices,4 rather than condensing rotons. Since vortex pairs
only have statistical interactions with charged particles and
not the spinons, the resulting pair-vortex condensate is an
electrical insulator with deconfined spinon, charge-on, and
vison excitations4,5—dramatically different from the roton
Fermi liquid. Recent experiments on very underdoped cu-
prate samples have failed to find evidence of a gapped
vison,10,11 suggesting that the pseudogap phase is not frac-
tionalized. But a negative result in these vison detection ex-
periments does not preclude the RFL phase, which supports
mobile single vortices even at very low temperatures. A dif-
ferent approach supposing unbound and mobile single vorti-
ces is the QED3 theory of Ref. 14.

At the most basic level, a roton is a small pattern of swirl-
ing electrical currents. Much recent attention has focused on
the possibility of a phase in the underdoped cuprates with
nonvanishing orbital currents,30 counter-rotating about el-
ementary plaquettes on the two sublattices of the square lat-
tice. Such a phase was initially encountered as a mean-field
state within a slave-fermion gauge theory approach31—the
so-called “staggered-flux phase,” but has been resurrected as
the “ d-density wave” ordered state of a Fermi liquid.30 In
either case, such a phase within the present formulation
would be described as a “vortex–antivortex lattice”—a
checkerboard configuration on the plaquettes of the 2D
square lattice. Ground states withshort-ranged“orbital anti-
ferromagnetic” order have also been suggested recently.32

Surprisingly, the roton liquid phase also has appreciable
short-ranged orbital order. A “snapshot view” of the orbital
current correlations in the RL phase can be obtained by ex-
amining the vortex-density structure function. For simplicity,
consider the charge sector of the RFL theorysthe RLd in the
limit of large plasmon velocityv0→`, which suppresses the
longitudinal charge density fluctuations. The transverse elec-
trical currents are then described by the HamiltonianHrot in
Eq. s89d with ãj →0. The vortex-density structure function
SNN can be readily obtained from this Gaussian theory:

SNNskd ; kuN̂skdu2l =
1

2
Îkr

uv
uKxskdKyskduÎK2skd,

s258d

with uK jskdu=2usinskj /2du and K2skd=o juK jskdu2 as before.
The vortex structure function is analytic except on thekx
=0 andky=0 axes and ismaximumat k =sp ,pd, indicative
of short-ranged orbital antiferromagnetism. As such, the
RFL/RL phase can perhaps be viewed as a quantum-melted
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staggered-fluxsor vortex-antivortexd state, with only residual
short-ranged orbital current correlations—the rapid motion
of the rotons being responsible for the melting. If the fermi-
ons are paired, the amplitude for the basic roton-hopping
process which generates the structure function above van-
ishes upon approaching half filling, as is apparent from Eq.
s84d. A preliminary analysis12 suggests that the further neigh-
bor roton hopping processes which do survive at half filling,
lead to a vortex structure function which vanishes as
uk −sp ,pdu for wave vectors nearsp ,pd.

B. Cuprates and the RFL phase?

In applying BCS theory to low-temperature superconduct-
ors, one implicitly assumes that the normal state aboveTc is
adequately described by Fermi liquid theory. Within a mod-
ern renormalization group viewpoint,33 this is tantamount to
presuming that the effective Hamiltonian valid below atomic
energy scalessof say 10 eVd is sufficiently “close” sin an
abstract space of Hamiltoniansd to the Fermi liquid fixed-
point Hamiltoniansactually an invariant or “fixed” manifold
of Hamiltonians characterized by the marginal Fermi-liquid
parametersd. In practical terms, ‘‘close’’ means that under a
renormalization group transformation which scales down in
energies, the renormalized Hamiltonian arrives at the Fermi
liquid fixed point on energy scales which are still well above
Tc. BCS theory then describes the universal crossover flow
between the Fermi liquid fixed pointswhich is marginally
unstable to an attractive interaction in the Cooper channeld
and the superconducting fixed point which characterizes the
universal low-energy properties of the superconducting state
well belowTc. Four orders of magnitude between 10 eV and
Tc gives the RG flows plenty of “time” to accomplish the
first step to the Fermi liquid fixed point, and is the ultimate
reason behind the amazing quantitative success of BCS
theory.

1. Assumptions underlying the RFL approach

In what follows, our working hypothesis is that the effec-
tive electron Hamiltonian on the 10 eV scale appropriate for
the 2D copper-oxygen planes at doping levels within and
nearby the superconducting “dome,” is close to the roton
Fermi liquid “fixed manifold” of Hamiltoniansscharacter-
ized by Fermi/Bose liquid parameters for the quasiparticles/
rotonsd. More specifically, we presume that when renormal-
ized down to the scale of say one half of an eV, the effective
Hamiltonian can be well approximated by a Hamiltonianon
the RFL fixed manifold—up to small perturbations. The im-
portant small perturbations are those that arerelevantover
appreciable portions of the fixed manifold. As established in
Secs. IV and V, there are three such perturbations:sid Single
vortex-hopping,sii d charge hopping, andsiii d attractive qua-
siparticle interactions in the Cooper channel. When relevant,
these three processes destabilize the RFL phase and cause the
RG flows to cross over to different fixed points which deter-
mine the asymptotic low-temperature behavior. From our
calculations, we find that at least one, and often more of
these three perturbations is always relevant, regardless of the
roton-liquid parameters. Hence the RFL should be regarded

as acritical, and usuallymulticritical phase, rather than a
stable one. For these three processes, the resulting quantum
ground states are, respectively,sid a s“confined” andd conven-
tional Fermi liquid phase,sii d a conventional superconduct-
ing phase with singletdx2−y2 pairing and gapless nodal Bo-
goliubov quasiparticles, andsiii d a “rotonic superconductor”
with the properties of a conventional superconductor but co-
existing gapless roton excitations. The rotonic supercon-
ductor, as described in Sec. VI B 2, has further potential in-
stabilities driven by either single vortex hopping and charge
hopping/explicit pairing. Both perturbations, if relevant, will
generate an energy gap for the rotons. It seems likely that the
domains of relevance of these two perturbations overlap, so
that there no regime of true stability of the rotonic supercon-
ductor. The true ground state of the system in this regime is
then a conventional superconductor, and its rotonic nature is
evidenced only as an intermediate energy crossover.

2. Effective parameters

In order to construct a phase diagram within this scenario,
it is necessary to specify the various parametersse.g., Bose
and Fermi liquid parametersd of the RFL model as a function
of the doping level,x. Because the RFL is multicritical, we
cannot rely upon “universality” to validatead hoc require-
ments of smallness of perturbations, as might be the case,
e.g., for renormalized perturbations around a stable fixed
point. Instead, we will make some assumptions based
spartlyd on physics. First, our main assumption is the basic
validity at high energies of the roton dynamics, and of Fermi
liquidlike quasiparticles. Second, we assume that supercon-
ductivity is never strong, i.e., always occurs below the
rotonic/Fermi liquid energy scales. Mathematically, these
two assumptions are encompassed in the inequalities

kr,uv,ts @ tv @ tc,D j . s259d

Reading from left to right, this corresponds to the first and
second assumptions above. In practice, we can at best hope
for a factor of a few between, e.g.,tv and kr, so the “ @”
symbols above should not be taken too strongly. Although it
is not important to our discussion, it is natural to assume that
v0,kr ,uv ,ts ssince Coulombic energies at the lattice scale
are comparable to the electronic bandwidthd. A third assump-
tion, which is not needed for consistency of the approach,
but seems desirable empirically, is that the fermion dynamics
is primarily by spinon rather than electron hoppingts@ te.
Many of the parameters of the RFL phase can be fixed em-
pirically from the observed behavior of the cuprates on or
above the eV scale. For example, thek-space location of the
quasiparticle Fermi surface can be chosen to coincide with
the electron Fermi surface as measured via angle-resolved
photoemission spectroscopysARPESd.34 The value of other
parameters, such as the bare velocityv0 which appears inLa
and sets the scale of the plasmon velocity, can be roughly
estimated from the basic electronic energy scales, and in any
case does not greatly effect the relevance/irrelevance of the
three important perturbations. For our basic lattice Hamil-
tonian introduced in Sec. II, the two most important param-
eters characterizing the RFL phase are the vortex core energy
uv and the roton hopping strengthkr. Indeed, as shown in
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Sec. IV, the scaling dimensions which determine the rel-
evance of the vortex and charge hopping perturbations at the
RFL fixed point, denotedDv andDc, respectively, depended
sensitively on the ratiouv /kr. For example, ignoring renor-
malizations from the gapless fermions we found

Dv =
1

2Dc
=

1

4p
Îuv

kr

v+

ṽ0

, s260d

with v+
2= ṽ0

2+ 1
4uvkr =v0

2+ 1
2uvkr.

Rather than specifying the doping dependence ofuv ,kr ,v0
and the Bose/Fermi-liquid parameters, though, it is simpler
and suffices for our purposes to specify the finalx depen-
dence ofDv andDc. Shown in Fig. 2 is a proposed form for
Dv/csxd, primarily chosen to fit the gross features of the cu-
prate phase diagram. For example, since the RFL phase is
strongly unstable to the Fermi liquid phase whenDv!2, we
have takenDv decreasing to small values in the strongly
overdoped limit. On the other hand, to account for the ob-
servednon-Fermi-liquid behavior in the normal state near
optimaldoping,13 requires that we takeDvù2 in that regime.
On the underdoped side of the dome we can use the observed
linear x dependence of the superfluid density to guess the
behavior ofDv for smallx. In this regime thesrenormalizedd
vortex core energy in the superconducting state is presum-
ably tracking the transition temperature, varying linearly
with x. It seems plausible that the bare vortex core energyuv
in the lattice Hamiltonian, while perhaps significantly larger,
also tracks thisx dependence. This impliesDv,Îuv,Îx as
depicted in the figure. Moreover, to recoversconventionald
insulating behavior whenx→0, requires that vortex conden-
sationsrather than charge hoppingd be more relevant in this
limit, i.e., Dv,Dc ssee belowd.

3. Phase diagram

Under the above assumptions, we now discuss in some
detail the resulting phase diagram and predicted behaviors.
Consider first the ground states upon varyingx. In the ex-
treme overdoped limit withDv!2, vortex hopping will be a
strongly relevant perturbation at the RFL fixed point. The
vortices will condense atT=0, leading to a conventional
Fermi liquid ground state. Upon decreasingx there comes a
special doping valuesx2 in Fig. 2d, where Dc becomes
smaller thanDv. At x=x2 the RFL phase is unstable toboth

vortex and charge hopping processes, since bothDv=Dc
=1/Î2,2. It seems reasonable to assume that in this situa-
tion, the more strongly relevant process ultimately dominates
at low energies. This implies thatx2 demarcates the boundary
between a Fermi liquid and a superconducting ground state,
as illustrated in Fig. 3. Upon further decreasingx, the charge
hopping becomes even more strongly relevant, tending to
increaseTc until it reaches a maximum at “optimal doping,”
denotedxopt in Figs. 2 and 3. As one further decreasesx, Tc
should start decreasing. But as shown in Sec. V A, with de-
creasing vortex core energyuv,x, the enhanced vortex den-
sity fluctuations generate an increasing antiferromagnetic ex-
change interactionJ, ts

2/uv. This attractive interaction
between fermions will mediate quasiparticle pairing, with a
pairing energy scale growing rapidly asx→0. It is natural to
associate this “quasiparticle pairing” temperature scale with
the crossover temperature into the pseudogap regime,13

shown asT* in Fig. 3. As discussed in Sec. VI B 2, under the
assumption that quasiparticle kinetic energy arises primarily
through spinon-hoppingts@ te, the superfluid density associ-
ated with the quasiparticle pairing is small, so that potential
true superconductivity as a consequence of this pairing is
suppressed to a low or zero temperature.

Since Dv,Dc for doping levels with x,x1, vortex-
hopping should again dominate over charge hopping. This is
the same condition which we argued leads to the Fermi-
liquid state forx.x2 above. However, the physics for small
x is more complex, owing to the strong antiferromagnetic
interactions and proximity to the commensurate fillingx=0
at which antiferromagnetic order is probable. In the Us1d
vortex-quasiparticle formalism of this paper, this difference
arises from the freedom to choosesas D j →0d the fermion
density to minimize the totalsfreed energy of the system. In
the majority of this paper we have takennf =r0, in order to
minimize the vortex kinetic energy. However, if antiferro-
magnetic quasiparticle interactions are large, andx!1, an-
other possibility arises. To optimally benefit from the antifer-

FIG. 2. Proposed values for the vortex and charge hopping scal-
ing dimensionsDvsxd andDcsxd as a function of the dopingx. These
hopping perturbations are relevant at the RFL fixed point when their
D,2. Within the doping rangex1,x,x2, the charge hopping is
more relevant and the RFL phase is unstable to superconductivity.

FIG. 3. Schematic phase diagram that follows from the doping
dependence ofDv,c shown in Fig. 2. With increasing dopingx, the
ground state evolves from a charge ordered insulatorsId, into a
superconductorsdSCd, and then back into a Fermi liquidsFLd. The
normal state behavior near optimal doping is controlled by the roton
Fermi-liquid sRFLd ground state. BelowT* , the quasiparticles pair.
A quantum phase transition between the RFL and FL ground states
occurs atxc but is preempted by superconductivity. Atx=xc, a nor-
mal state resistancelinear in temperature is predicted.
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romagnetic interactions, one may instead choose the fermion
density commensuratenf =1, for which the Fermi surface is
optimally nested and the quasiparticles can become fully
gapped, gaining the maximal “condensation energy” from
antiferromagnetic ordering. The cost of this choice is some
loss of vortex kinetic energy as the vortex motion becomes
somewhat frustrated by the resulting dual fluxpx. Although
we assume vortex energy scales are large, this flux itself is
small for smallx, so eventually asx→0 this rise in kinetic
energy becomes smaller than the lowering of fermionic en-
ergy due to antiferromagnetism and such a choice becomes
favorable. The ultimate physics of the remaining vortices in
this limit is difficult to analyze reliably, but it seems evident
that for Dv,Dc, the more relevant vortex-hopping will lead
to an insulating state. Since the quasiparticles are then
gapped, the remaining uncompensated fluxpx is expected to
lead to incommensurate charge ordering when the vortices
condense—the dual analog of the Abrikosov lattice.

4. The RFL normal state

Having established the phase diagram which follows from
the assumed doing dependence ofDvsxd, we turn to a discus-
sion of the normal state properties aboveTc. Under our
working assumption, in the energy range aboveTc we can
ignore the smallsbut ultimately relevantd charge hopping
perturbation, and use the RFL fixed point Hamiltonian to
describe the physics of the normal state. First consider the
special doping valuex=xc, whereDv=2 on the overdoped
side of the superconducting domessee Figs. 2 and 3d. For
x,xc the vortex hopping strengthtv decreases upon scaling
down in energy, so that it can be treated perturbatively. As
shown in Sec. VI A, at second order in the vortex hopping,
the electrical conductivity is additive in the roton and quasi-
particle conductivities. With impurities present the quasipar-
ticle conductivity s f will saturate to low temperatures,
whereassrot,T−g swith g=2Dv−3d diverges asT→0. The
low-temperature normal state electrical resistance is thus pre-
dicted to behave as a power law

RsTd , tv
2Tg, s261d

with a vanishing residual resistivity. Moreover, right atx
=xc, sinceg=1 alinear temperature dependence is predicted.
Notably, this transport behavior is a due to the presence of
the quasicondensate in the RFL phase, and as such is com-
pletely independent of the single-particle scattering rate.

The Hall conductivity, however, will be largely deter-
mined by the fermionic quasiparticle contribution, as de-
tailed in Sec. VII. Specifically, the cotangent of the Hall
angle cotsQHd;rxx/rxy, was found to vary as cotsQHd
,1/sTgt f

2d in the RFL phase, witht f
−1 the spinon momentum

relaxation rate. Moreover, at the hot spots on the Fermi sur-
face t f

−1,Tg+1/2, due to scattering off the gapless rotons.
Under the assumption that these same processes dominate
the temperature dependence of the quasiparticletransport
scattering rate, we deduce that

cotsQHd ,
1

Tgt f
2 , T1+g, s262d

and right atx=xc, a quadratic dependence cotsQHd,T2. In
striking contrast to conventional Drude theory which predicts

cotsQHd,t−1,R swith t the electron’s momentum relax-
ation timed, in the RFL phase the cotangent of the Hall angle
varies with adifferent powerof temperature than for the
electrical resistanceR,Tg. This non-Drude behavior is
consistent with the electrical transport generally observed
in the optimally doped cuprates,35–37 where R,T and
cotsQHd,T2.

Consider next the thermal conductivityk near optimal
doping within the RFL normal state. One of the most impor-
tant defining characteristics of a conventional Fermi liquid is
the Wiedemann–Franz law—the universal low-temperature
ratio of thermal and electrical conductivitiesL;k /sT. In a
Fermi liquid, electronlike Landau quasiparticles carry both
the conserved charge and the heat, and since the energy of
the individual quasiparticles becomes conserved asT→0,
the Lorenz ratio is universal,LFL=L0=p2kB

2 /3e2. In contrast,
the electrical conductivity is infinite in a superconductor, but
the condensate is ineffective at carrying heat so that the Lo-
renz ratio vanishes,LSC=0. Within the RFL phase, heat can
also be transported by the single fermion excitations, with a
contribution to the thermal conductivity linear in tempera-
ture: ks=L0s fT. At low enough temperatures this will domi-
nate over the phonon contributionkphon,T3. But the roton
excitations, which have a quasi-one-dimensional dispersion
at low energies, will presumably also contribute a linear tem-
perature dependencekrot,T. Thus, thetotal thermal conduc-
tivity in the RFL phase is expected to vanish linearly in
temperaturek,T. But since the roton contribution to the
electrical conductivity diverges asT→0, the RFL phase is
predicted to have a vanishing Lorenz ratio

LRFL =
k

sT
, Tg. s263d

The quasicondensate in the RFL phase is much more effec-
tive at transporting charge than heat, much as in a supercon-
ductor. Electron doped cuprates near optimal doping, when
placed in a strong magnetic field to quench the superconduc-
tivity, do exhibit a small Lorenz ratio at low temperatures38

L<L0/5. But extracting the zero field Lorenz ratio is prob-
lematic, since aboveTc the phonon contribution tok is non-
negligible.

It is instructive to consider the electrical resistance also in
the underdoped regime, particularly upon cooling below the
fermion pairing temperature. Above this crossover line the
predicted electrical resistance varies with a power of tem-
peratureR,Tg. Since, as we assume, the fermion’s kinetic
energy comes primarily in the form of spinon hoppingt
< ts@ te, the resulting superfluid density is, however, very
small ssee Sec. VI B 2d, and phase coherent superconductiv-
ity does not result, at least not in this temperature range.
Nevertheless, one would expect a dramatic increase in the
fermion conductivitys f upon cooling throughT*—much as
seen in superconducting thin films upon cooling through the
materials bulk transition temperature. Since the conductivity
is additive in the roton and spinon contributionsRsTd−1

,srotsTd+s fsTd, a large and rapid increase ins fsTd should
be detectable as a drop in the electrical resistance relative to
the “critical” power law form, i.e.,
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RsTd
Tg ,

1

1 + cTgs fsTd
. s264d

This behavior is generally consistent with that seen in the
underdoped cuprates,13,37 provided we takeg<1.

5. Entering the superconductor

We finally discuss the predicted behavior upon cooling
from the RFL normal state into the superconducting phase.
The main change occurs in the spectrum of roton excitations,
which become gapped inside the superconductor. The roton
gap Drot should be manifest in optical measurements, since
the optical conductivity will drop rapidly for low frequencies
v,Drot. As in BCS theory, the ratio of thesrotond gap to the
superconducting transition temperature 2Drot/Tc should be of
order one. This ratio is determined by the RG crossover flow
between the RFL and superconducting fixed points. It seems
likely that this ratio will benonuniversal, depending on the
marginal Bose liquid parameters characterizing the RFL
fixed point sthis is distinct from changes in this ratio in
strong coupling Eliashberg theories, since here variations in
the ratio are due to marginal parameters of the RFL fixed
manifold even at arbitrarily weak couplingd. Nevertheless, it
would be instructive to compute this ratio for the simple
near-neighbor RFL model we have been studying through-
out, and to analyze the behavior of the optical conductivity
above the gap.

Another important consequence of gapped rotons below
Tc, is that the electron lifetime should rapidly increase upon
cooling into the superconducting phase. With reduced scat-
tering from the rotons, the ARPES linewidth should narrow,
most dramatically near the normal state hot spotsswith tan-
gents parallel to thex or y axesd. This behavior is consistent
with the ARPES data in the cuprates,34 which upon cooling
into the superconductor does show a significant narrowing of
the quasiparticle peak, particularly so at the Fermi surface
crossing near momentumsp ,0d.

Despite these preliminary encouraging similarities be-
tween various properties of the RFL phase and the cuprate
phenomenology, much more work is certainly needed before
one can establish whether this exotic non-Fermi-liquid
ground state might actually underlie the physics of the high-
temperature superconductors. We have already emphasized
the strengths of this proposition, but there are, of course,
some experimental features which seem challenging to ex-
plain from this point of view. The “quasiparticle charge,” i.e.,
temperature derivative of the superfluid densityu]Ks/]TuT=0
appears, based upon a small number of experimental data
points, to be large and roughly independent of dopingx, in
apparent conflict with the RFL prediction. The linear tem-
perature dependence of the electron lifetime 1/t f ,kBT/"
observed for nodal quasiparticles near optimal doping in
ARPES also does not seem natural in the RFL. However, it
seems likely that it may be possible to explain a small num-
ber of such deviations from themost naiveRFL predictions
by more detailed considerations. Further investigations of the
RFL proposal should confront other experimental probes,
such as interlayer transport and tunneling. Toward this end, it
will be necessary to generalize the present approach to three

dimensions. More detailed predictions, such as for the opti-
cal conductivity upon entering the superconductor and the
thermal Hall effect in the RFL normal state, might also be
helpful in this regard. It would, of course, be most appealing
to identify a more convincing experiment for the roton
Fermi-liquid state, analogous to the vison-trapping ex-
periment8 for detecting 2D spin-charge separation. However,
given the critical nature of the RFL, with copious gapless
excitations with varieties of quantum numbers, finding such
an incontrovertible experimental signature may be difficult.
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APPENDIX A: FERMI LIQUID PHASE

We expect the Fermi liquid phase to occur upon complete
proliferation and unbinding of vortices. To obtain the Fermi
liquid in our formulation, we therefore in this appendix con-
sider the limit of large vortex hoppingtv→` and small vor-
tex energyu0→0. We have previously demonstrated the
equivalence of the Us1d gauge theory to aZ2 gauge theory,
and it is this latter formulation which is most convenient in
this limit.

To observe the Fermi liquid, we analyze theZ2 gauge
theory in its Hamiltonian form. Although this limit is very
straightforward, based on previous work onZ2 gauge theory,
it is instructive to go through it in some detail here, in order
to observe the effects of the spinon pairing term. The Hamil-
tonian density can be separated into pure gauge, charge, and
spin partsH=Hh+Hc

Z2+Hs
Z2, with

Hh = − ho
j

s j
xsr d, sA1d

wheres j
x is the usual Pauli matrix in the space of states on

link in the j direction coming from siter sand hence anti-
commutes withs j

zd. In the charge sector

Hc
Z2 = − 2tco

j

s j
zsr dcossfr+x̂ j

− frd + ucnrfnr − 1g,

sA2d

wherenr is the number operator conjugate tofr , satisfying
ffr ,nr8g= idr ·r8. For simplicity, in the spin sector we consider
a locals-wave pair field instead of ad-wave one. This is not
essential, but simplifies the presentation and still addresses
the essential issue of the relevance of spinon pairing in the
Fermi liquid. Hence,
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Hs
Z2 = − tss j

zsr dff r+x̂ js
† f rs + H.c.g + e0f rs

† f rs

+ Dsf r↑f r↓ + H.c.d + ufsf rs
† f rsd2. sA3d

Note that we have added a local on-site energye0 and inter-
actionuf, allowed in general by symmetry. The Hamiltonian
commutes with the gauge generators

Gr = s− 1dnr+frs
† frsp

j

s j
xsr ds j

xsr − x̂ jd. sA4d

We requireGr =1 to enforce gauge invariance.
In the analysis of the large vortex hopping limit above, we

obtained the action for aZ2 gauge theory with zero kinetic
term. This corresponds in the Hamiltonian to largeh sin par-
ticular we will take h@ tc,tsd. In this limit s j

x<1, and the
gauge constraint becomes

s− 1dnr+frs
† frs = 1, sA5d

i.e., requiring an even number of bosons and fermions on
each site. Further, for largeh, the chargon and spinon hop-
ping terms are strongly suppressed, and can be considered
perturbatively. At zeroth order intc, ts, then, the charge and
spin sectors are decoupled at each site and decoupled also
from one another except by the gauge constraint. In the
charge sector, foruc.0, it is energetically favorable to have
only either zero or one charge-on per sitenr =0,1. If nr =0,
then we must have either zero or two spinons per site. Note
than in this subspace, even for smallD, these two local
spinon singlet states are nondegenerate: the energy of the
two-spinon state differs from the zero-spinon state by the
energye0+4uf. With nonzeroD, one obtains as eigenstates
simply two different linear combination of these two states
on each site. The lower energy of the two will be realized in
the ground state, and the upper-energy state has no physical
significance. Physically, the lower-energy state, which is
neutralsnr =0d and is a spin singlet, corresponds to the local
vacuum, i.e., a site with no electron on it. Ifnr =1, then we
must have one spinon on this site, which may have either
spin orientation. This state has thus the quantum numbers of
a physical electron. Fixing the total charge of the system
Q=ornr Þ0 will require some number of electrons in the
system. At zeroth order these are localized, but at Ostcts/hd,
the electrons acquire a hopping between sites, and one ob-
tains a system clearly in a Fermi liquid phasesit is not non-
interacting, since one has a hardcore constraint in the limit
consideredd.

The above considerations can be applied for zero or non-
zeroD, and there are no qualitative differences in the results
sthe detailed nature of the vacuum state depends smoothly on
D, leading to a weak dependence of the effective electron-
hopping on the ratioD /ufd in either case. This strongly sug-
gests thatD is not a relevantsin the renormalization group
sensed perturbation in the Fermi liquid phase. This notion can
be confirmed more formally by considering the limit of very
weak D!uf, in which it may be treated perturbatively. At
zeroth order in this perturbation theory, the vacuum stateson
a single sited is just the state with zero spinons. Formally, the
perturbative relevance ofD is determined by the behavior of
the two-point function of the pair-field operator, e.g.,

CDstd = kf r↑stdf r↓stdf r↓
† s0df r↑

† s0dl. sA6d

Since the pair-field operator creates a site doubly occupied
by spinons, the energy of the intermediate states encountered
in the imaginary time evolution from 0 tot is increased by
uf, so that the spinon pair-field correlator decays exponen-
tially, CDstd,e−4uft. This indicates that the spinon pair field
is strongly irrelevantsformally with infinite scaling dimen-
siond. The importance of this observation in the context of
this paper is that it provides an example in which the spinon
pair field—which naively has a special significance because
it alone violates spinon number conservation—is irrelevant.
This irrelevance is a consequence of strong vorticity fluctua-
tions, which bindsconfined charge to the spinons to form
electrons. Since charge is conserved, electron numbermust
be conserved in the resulting effective theory. Similarsbut
not quite so larged vorticity fluctuations in the RFL have the
effect of rendering the spinon pair field irrelevant.

APPENDIX B: ENSLAVING THE Z2 GAUGE FIELDS

To enslave theZ2 gauge fields, we employ two sequential
unitary transformationsU12=U1U2, with

U1 = p
r
Sp

x8=0

`

s1
zsr + x8x̂dDnr

f

= p
r

fs1
zsr dgo

x8=0
`

nr−x8x̂
f

,

sB1d

U2 = p
r
Sp

x8=0

`

s̄1
xsr + x8x̂dDNr

= p
r

fs̄1
xsrdgo

x8=0
`

Nr−x8x̂.

sB2d

The two operatorsU1 and U2 are mutually commuting.
Roughly,U1 transforms to a gauge in whichs1

z=1, andU2
transforms to a gauge withs̄1

x=1. More precisely, applying
the first unitary transformationHpl and HN are invariant,
while the fermion Hamiltonian transforms to

U1
†Hf

Z2U1 = uHf
Z2us j

zsr d→s j
z,slavesr ;Nd, sB3d

where

s1
z,slavesr d = 1,

s2
z,slavesr d = p

x8=0

`

p
hsr+w+x8x̂d

sz = p
x8=0

`

s− 1dNr+w+x8x̂. sB4d

The vortex kinetic terms also transform

U1
†Hkin

Z2 U1 = uHkin
Z2 us̄ j

xsrd→s̄ j
xs̄ j

x,slavesr;nd, sB5d

with

s̄1
x,slavesrd = 1,

s̄2
x,slavesrd = = p

x8=0

`

s− 1dnr−w−x8x̂
f

. sB6d

Simultaneously, the first constraint is rendered trivial
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Cr
1,slave= U1

†C̃r
1U1 = p

hsr d
s̄x = 1. sB7d

Further transformation withU2 removess̄ j
x from Hkin

Z2 and
trivializes the remaining constraint, i.e.,

Cr
2,slave= U2

†C̃r
2U2 = p

hsrd
sz = 1. sB8d

The final transformed Hamiltonian no longer involves any
dynamical gauge fieldsfwhose state is uniquely specified by
Eqs.sB7d and sB8dg, and is simply given by

HZ2

slave= U12
† H̃Z2

U12 = uH̃Z2
us j

m→s j
m,slave. sB9d

The electron destruction operator in theZ2 vortex-spinon

theory c̃rs= b̃r f rs with b̃r in Eq. s40d, transforms upon en-
slaving in an identical fashion

U12
† c̃rsU12 = uc̃rsus j

z→s j
z,slave. sB10d

APPENDIX C: ENSLAVING THE U „1… GAUGE
THEORY

As for theZ2 case, to enslave the gauge fields in the Us1d
formulation we apply two sequential unitary transformations
Uab=UaUb, with

Ua = eior,r8NrVsr−r8ds¹W ·aW dsr8deior ,r 8nr
fVsr−r8ds¹W ·bW dsr8d, sC1d

where¹2Vsr −r 8d=dr ·r8 and

Ub = esi/2dor ,r8nr
fQsr−r8dNr8, sC2d

where the lattice Laplacian is

¹2fsr d = o
j

] j
2fsr − x̂ jd = o

j

fsr + x̂ jd + fsr − x̂ jd − 2fsr d.

sC3d

Here we have introduced a “angle” functionQsr −r8d, to
be determined later. The two unitary transformations com-
mute with one another. Again, bothHpl andHN are invariant
commuting withUa andUb, whereas under application ofUa
the vortex kinetic energy transforms to

Ua
†HkinUa = uHkinueia j→eia j

t
eia j

slavesnfd. sC4d

Here,a j
t is the transverse part ofa j anda j

slave satisfies

ei j]ia j
slavesr − wd = pnr

f , ¹W · aW slave= 0. sC5d

Similarly, the spinon and electron hopping Hamiltonians
transform to

Ua
†Hs/eUa = uHs/eueib j→eib j

t
eib j

slavesNd, sC6d

with b j
t the transverse part ofb j and

ei j]ib j
slavesr − wd = pNr, ¹W · bW slave= 0. sC7d

Notice that the longitudinal parts ofa and b have been
eliminated, and the remaining transverse pieces commute

with one another and can be treated asc numbers. Simulta-
neously, the two Us1d constraints are rendered trivial,

G f
slave= Ua

†G fUa = e−si/pdorLrei j]ia j
tsr−wd = 1, sC8d

Gv
slave= Ua

†GvUa = esi/pdorxrei j]ib j
tsr−wd = 1, sC9d

implying that a j
t =b j

t =0, and fully eliminating both gauge
fields from the full transformed Hamiltonian

Ua
†HUa = uHueia j,eib j→eia j

slave
,eib j

slave. sC10d

Further transformation withUb, which is essentially a
nonsingular gauge transformation of both the vortices and
spinons, modifies the enslaved gauge fieldssso that they van-
ish on the horizontal bonds and are integer multiples ofp on
the vertical bondsd while leaving the gauge fluxes invariant.
Specifically, we require

]xQsr d = 2b̃xsr d, ∀ r , sC11d

]yQsr d = 2b̃ysr d, ∀ r Þ xx̂ + w, x ù 0. sC12d

Here b̃ jsr d is the enslaved gauge field configuration for a
vortex located atr=0 fi.e., determined from Eqs.sC7d with

Nr=dr,0g. The transverseness ofb̃ j implies then

¹2Qsr + wd = cxsdy,0 − dy,−1d, sC13d

with an unknown functioncx such thatcx=0 for x,0. Tak-
ing a line sum around the origin requires then

]yQsxx̂ + wd = − 2p + 2b̃ysxx̂ + wd, sC14d

for xù0. EquationssC13d andsC14d are the lattice analog of
Laplace’s equation and the condition thatQ jumps by 2p
across the positivex axis. These conditions determinecx and
henceQ. After some algebra, the solution is expressible as a
Fourier integral

Qsr d =E
k

Qskdeik·r , sC15d

where

Qskd = −
2peik·w

K2Fskxd
FKy

*

Kx
* − Kx

*Ky
* IskxdG , sC16d

with

Fskxd = 1 −
usinskx/2du

Îsin2skx/2d + 1
, sC17d

Iskxd =
1

4 sinskx/2dÎsin2skx/2d + 1
. sC18d

For large arguments, the asymptotic behavior can be ob-
tained,
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Qsr d , arctanfy/xg, sC19d

for Îx2+y2@1, with the arctan defined on the interval
f0,2pg. HenceQsr d gives a proper lattice version of the
continuum angle function.

With this definition, one finds

Hslave= Uab
† HUab = uHeia j,eib j→s̄ j

x,slave,s j
z,slave, sC20d

with s̄ j
x,slavesr ;nfd and s j

z,slavesr ;Nd as defined in Eqs.sB6d
and sB4d, respectively. Remarkably, the enslaved Us1d
Hamiltonian isidentical to the enslavedZ2 Hamiltonian in
Eq. sB9d; Hslave;HZ2

slave.
We have thereby established the formal equivalence be-

tween theZ2 and Us1d formulations of the vortex-spinon
field theory—the unitarily transformed enslaved versions of

the original HamiltoniansH̃Z2
and H in Eqs. s28d and s43d

are identical to one another. Finally, we can verify that the
enslaved versions of the electron operators in the Us1d and
Z2 formulations also coincide. From the definition of the
electron operator in the Us1d formulationcrs in Eq. s55d, one
can readily show that

Uab
† crsUab = ucrsueib j→s j

z,slave. sC21d

With the analogous expression for the enslavedZ2 electron
operator in Eq.sB10d, and upon comparing the defining
expressions of the electron operators in theZ2 and Us1d for-
mulations in Eqs.s41d and s55d, respectively, one thereby
establishes the desired formal equivalenceU12

† c̃rsU12
;Uab

† crsUab.

APPENDIX D: THE VORTEX-ELECTRON FORMULATION

In this appendix we briefly discuss a third Hamiltonian
formulation of the vortex-fermion field theory. The vortex-
electron Hamiltonian will be expressed in terms of “electron
operators,” or more correctly operators which create excita-
tions having a nonvanishing overlap with the bare electron.
In order to transform to this formulation, we start with the
enslaved version of the Us1d vortex-spinon Hamiltonian as
obtained in Appendix C:

Ua
†HUa = uHeia j,eib j→eia j

slave
,eib j

slave, sD1d

wherea j
slave andb j

slave satisfy

ei j]ia j
slavesr − wd = pnr

f , ¹W · aW slave= 0, sD2d

ei j]ib j
slavesr − wd = pNr, ¹W · bW slave= 0. sD3d

Now consider the unitary transformation

Uel = esi/2dor ,r 8nr
fVsr−r8dei j]iejsr8−wd, sD4d

where again¹2Vsr −r 8d=dr ·r8. As is apparent from Eqs.s39d
and s59d this transformation takes one from the spinon op-
erator to the electron operator

Uel
† f rsUel = Sfsr df rs = crs. sD5d

Here Sfsr d=Pr
`e−ipej

t
is defined in Eq.s39d and the last

equality follows from Eq.s59d in the enslaved gauge with

purely transverse gauge fieldbl =0. The electrical charge
density in the vortex-spinon formulation transforms to in-
clude theelectrondensity

Uel
† ei j]iajsr − wdUel = ei j]iajsr − wd + pcrs

† crs. sD6d

The full Hamiltonian density within the vortex-electron
formulation is readily obtained from the enslaved vortex-
spinon Hamiltonian:Hve=Uel

†Ua
†HUaUel. It can be com-

pactly expressed as

Hve =
uv

2 o
j

ej
2 +

v0
2

2uv
fei j]iaj + crs

† crs − pr0g2 + Hvsajd

+ Hrsajd + H f , sD7d

whereHv andHr denote the vortex and roton hopping terms,
respectively, and are given explicitly as

Hvsajd = − tvo
j

cossajd, sD8d

Hrsajd = −
kr

2 o
i

cossei j]iajd. sD9d

The fermionic Hamiltonian is

H f = − o
j

tecr+x̂ js
† crs − o

j

eipējsr dftscr+x̂ js
† crs

+ D jBr
†cr+x̂ js

ess8crs8 + H.c.g. sD10d

The electric field appearing in the spinon hopping term
yields the same physical effects as the gauge field in the Us1d
formulation. Specifically, when the electron hops from one
site to a neighboring site, the factoreipē which shifts the
gauge-field aj by p, effectively hops a compensating
charge-on in the opposite direction. In addition, this minimal
coupling form encodes the requisite minus sign when a
spinon is hopped around a vortex and vice versa. The full
Hamiltonian must be supplemented with the constraint that

¹W ·eW =N, with integerN. We emphasize that the total spin

SW =
1

2o
r

crs
† tWss8crs8 sD11d

and electric charge

Q = o
r
F 1

p
ei j]iajsr − wd + crs

† crsG sD12d

are conserved, commuting withHve.
It is of course also possible to pass to a Euclidean path

integral representation of the partition function associated
with the above vortex-electron Hamiltonian. Specifically, the
corresponding Euclidean Lagrangian can be readily ex-
pressed as

Lve = iej]0aj + cr
†]0cr + ia0s¹W ·eW − Nrd + Hve, sD13d

where the time component of the gauge fielda0srd lives on
the sites of the dual lattice. In the partition function, the
vortex numberNr is a continuous field running over the real
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numbers, but the integration only contributes whenN is an
integer. To see why, it is instructive to letam→am−]mu, and
to integrate the vortex phase variableu over the reals. Since
the Hamiltonian is 2p periodic inu, upon splitting the inte-

gration as]0u=2pl +]0ũ with ũ=f0,2pg, the summation of
expsi2plNd over integerl vanishes unless the vortex number
N is an integer.

To obtain a more tractable representation of the Lagrang-
ian, we introduce a Hubbard–Stratonovich fielde0sr d to de-
couple the Coulomb interaction term above. Hereie0 has the
physical meaning of a dynamical electrostatic potential. In
this way the full Euclidean Lagrangian can be conveniently
decomposed as the sum of a bosonic charge sector and a
fermionic spin and charge carrying sectorLve=Lc+L f. The
full bosonic sector is given by

Lc =
uv

2
Fej

2 +
1

p2v0
2e0

2G + iejs]0aj − ] ja0d

−
i

p
e0ei j]iaj + is]0u − a0dN + Lv + Lr , sD14d

with vortex and roton hopping terms

Lv = − tvo
j

coss] ju − ajd, sD15d

Lr = −
kr

2
fcossDxyu − ]xayd + sx ↔ ydg. sD16d

The Lagrangian density in the fermionic sector is

L f = cr
†s]0 − ie0dcr + H f + ie0r0. sD17d

In addition to the global symmetries corresponding to spin
and charge conservation, the full Lagrangian has a local
gauge symmetry, being invariant under

ur → ur + Qr,

amsrd → amsrd + ]mQr, sD18d

with Qr an arbitrary function of space and imaginary time.
Because of this gauge invariance we are free to choose an
appropriate gauge.

APPENDIX E: POLARIZATION TENSOR

In this appendix, we calculate the corrections to the po-
larization tensorPi j at Ostv

2d including fluctuations of bothã
and u, for the general casev0,`. Integrating out all dy-
namical fields toOstv

2d, one finds that the effective action as
a functional ofAj takes the formSA

eff=SA
0 +SA

s2d, where

SA
s2d = −

tv
2

2
eSA

0o
r ,r8
E

tt8
kCisr,tdCjsr8,t8de−SAlA=0, sE1d

with the shorthand notationCisr ,td=coss]iu− ãidrt and with
the k¯lA=0 indicating a Gaussian average with respect to the
RL action. This can be written as

SA
s2d = −

tv
2

4
eSA

0
sekGx

2lA=0 + ekGy
2lA=0d, sE2d

with

Gx =E
k,vn

FSckvn

Kx
*

K +
ivnK j

*Aj

pK Dask,vnd

− ckvn
Kyusk,vndG , sE3d

ckvn
=eisk·r−vntd−eisk·r8−vnt8d, and Gy obtained from Gx by

x↔y. Evaluating the expectation value gives

SA
s2d , − tv

2o
xx8y

E
tt8

1

fx2 + vrot
2 st − t8d2gDv

expE
kvn

ivnuv

pK2

3c−k,−vn
sK̃yG12 + K̃xG11dK̃ jAjs− k,− vnd + x ↔ y.

sE4d

Since we are interested in the polarization tensor, we may
expand the exponential in Eq.sE4d to OsA2d to obtain Pi j

=Pi j
0 +Pi j

s2d, with

Pi j
s2d , −

tv
2vn

2uv
2

2K4 svn
2 + vrot

2 kx
2dDv−1uK̃yG12 + K̃xG11u2K̃iK̃j

+ sx ↔ yd. sE5d

In the limit of interest for the conductivityuk u→0 at fixed
frequencyG11@G12, and we obtain Eq.s153d of the main
text.
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