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The theory of second-order phase transitions is one of the foundations of
modern statistical mechanics and condensed-matter theory. A central concept
is the observable order parameter, whose nonzero average value characterizes
one or more phases. At large distances and long times, fluctuations of the order
parameter(s) are described by a continuumfield theory, and these dominate the
physics near such phase transitions. We show that near second-order quantum
phase transitions, subtle quantum interference effects can invalidate this par-
adigm, and we present a theory of quantum critical points in a variety of
experimentally relevant two-dimensional antiferromagnets. The critical points
separate phases characterized by conventional “confining” order parameters.
Nevertheless, the critical theory contains an emergent gauge field and “de-
confined” degrees of freedom associated with fractionalization of the order
parameters. We propose that this paradigm for quantum criticality may be the
key to resolving a number of experimental puzzles in correlated electron sys-
tems and offer a new perspective on the properties of complex materials.

Much recent research in condensed-matter
physics has focused on the behavior of matter
near zero-temperature “quantum” phase tran-
sitions that are seen in several strongly cor-
related many-particle systems (1). Indeed, a
popular view ascribes many properties of cor-
related materials to the competition between
qualitatively distinct ground states and the
associated phase transitions. Examples of
such materials include the cuprate high-
temperature superconductors and the rare
earth intermetallic compounds (known as the
heavy fermion materials).

The traditional guiding principle behind
the modern theory of critical phenomena is
the association of the critical singularities
with fluctuations of an order parameter that
encapsulates the difference between the
two phases on either side of the critical
point (a simple example is the average
magnetic moment, which distinguishes
ferromagnetic iron at room temperature
from its high-temperature paramagnetic
state). This idea, developed by Landau and
Ginzburg (2), has been eminently success-
ful in describing a wide variety of phase-
transition phenomena. It culminated in the

sophisticated renormalization group theory
of Wilson (3), which gave a general pre-
scription for understanding the critical sin-
gularities. Such an approach has been
adapted to examine quantum critical phe-
nomena as well and provides the generally
accepted framework for theoretical descrip-
tions of quantum transitions.

We present specific examples of quantum
phase transitions that do not fit into this
Landau-Ginzburg-Wilson (LGW) paradigm
(4). The natural field theoretic description of
their critical singularities is not in terms of the
order parameter field(s) that describe the bulk
phases, but in terms of new degrees of freedom
specific to the critical point. In our examples,
there is an emergent gauge field that mediates
interactions between emergent particles that
carry fractions of the quantum numbers of the
underlying degrees of freedom. These fraction-
al particles are not present (that is, are confined)
at low energies on either side of the transition
but appear naturally at the transition point.
Laughlin has previously argued for fractional-
ization at quantum critical points on phenome-
nological grounds (5).

We present our examples using phase tran-
sitions in two-dimensional (2D) quantum mag-
netism, although other points of view are also
possible (6). Consider a system of spin S � 1/2
moments �Sr on the sites, r, of a 2D square
lattice with the Hamiltonian

H � J�
�rr��

�Sr � �Sr� � . . . (1)

where J � 0 is the antiferromagnetic ex-

change interaction, and the ellipses represent
other short-range interactions that may be
tuned to drive various zero-temperature
phase transitions.

Considerable progress has been made in
elucidating the possible ground states of such
a Hamiltonian. The Néel state has long-range
magnetic order (Fig. 1A) and has been ob-
served in a variety of insulators, including the
prominent parent compound of the cuprates:
La2CuO4. Apart from such magnetic states, it
is now recognized that models in the class of
H can exhibit a variety of quantum paramag-
netic ground states. In such states, quantum
fluctuations prevent the spins from develop-
ing magnetic long-range order. One class of
paramagnetic states is the valence bond solids
(VBS) (Fig. 1B). In such states, pairs of
nearby spins form a singlet, resulting in an
ordered pattern of valence bonds. Typically,
such VBS states have an energy gap to spin-
carrying excitations. Furthermore, for spin-
1/2 systems on a square lattice, such states
also necessarily break lattice translational
symmetry. A second class of paramagnets
has a liquid of valence bonds and need not
break lattice translational symmetry, but we
will not consider such states here. Our focus
is on the nature of the phase transition be-
tween the ordered magnet and a VBS. We
also restrict our discussion to the simplest
kinds of ordered antiferromagnets: those with
collinear order, where the order parameter is
a single vector (the Néel vector).
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Fig. 1. (A) The magnetic Néel ground state of
the Hamiltonian Eq. 1 on the square lattice. The
spins, �Sr, fluctuate quantum-mechanically in
the ground state, but they have a nonzero
average magnetic moment, which is oriented
along the directions shown. (B) A VBS quantum
paramagnet. The spins are paired in singlet
valence bonds, which resonate among the
many different ways the spins can be paired up.
The valence bonds crystallize, so that the pat-
tern of bonds shown has a larger weight in the
ground state wavefunction than its symmetry-
related partners (obtained by 90° rotations of
the above states about a site). This ground
state is therefore fourfold degenerate.
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Both the magnetic Néel state and the VBS
are states of broken symmetry. The former
breaks spin rotation symmetry and the latter
that of lattice translations. The order param-
eters associated with these two different bro-
ken symmetries are very different. A LGW
description of the competition between these
two kinds of orders generically predicts either
a first-order transition or an intermediate re-
gion of coexistence where both orders are
simultaneously present. A direct second-
order transition between these two broken
symmetry phases requires fine-tuning to a
multicritical point. Our central thesis is that
for a variety of physically relevant quantum
systems, such canonical predictions of LGW
theory are incorrect. For H, we will show that
a generic second-order transition is possible
between the very different kinds of broken
symmetry in the Néel and VBS phases. Our
critical theory for this transition is, however,
unusual and is not naturally described in
terms of the order parameter fields of either
phase. A picture related to the one developed
here applies also to transitions between va-
lence bond liquid and VBS states (7) and to
transitions between different VBS states (8)
in the quantum dimer model (9, 10).

Field theory and topology of quantum
antiferromagnets. In the Néel phase or
close to it, the fluctuations of the Néel order
parameter are captured correctly by the well-
known O(3) nonlinear sigma model field the-
ory (11–13), with the following action Sn in
spacetime [we have promoted the lattice co-
ordinate r � (x, y) to a continuum spatial
coordinate, and � is imaginary time]:

Sn �
1

2g� d� � d2r� 1

c2 ��n̂

���
2

� 	
r n̂�2�
� iS�

r
	 �1� rAr (2)

Here n̂ � (1)r �Sr is a unit three-component
vector that represents the Néel order param-
eter [the factor (1)r is �1 on one checker-
board sublattice and 1 on the other]. The
second term is the quantum-mechanical Ber-
ry phase of all the S � 1/2 spins: Ar is the area
enclosed by the path mapped by the time

evolution of n̂r on a unit sphere in spin space.
These Berry phases play an unimportant role
in the low-energy properties of the Néel
phase (12) but are crucial in correctly de-
scribing the quantum paramagnetic phase
(14). We show here that they also modify the
quantum critical point between these phases,
so that the exponents are distinct from those
of the LGW theory without the Berry phases
studied earlier (12, 15).

To describe the Berry phases, first note
that in two spatial dimensions, smooth con-
figurations of the Néel vector admit topolog-
ical textures known as skyrmions (Fig. 2).
The total skyrmion number associated with a
configuration defines an integer topological
quantum number Q

Q �
1

4��d2r n̂ � �xn̂ � �yn̂ (3)

The sum over r in Eq. 2 vanishes (1, 11)
for all spin time histories with smooth equal-
time configurations, even if they contain
skyrmions. For such smooth configurations,
the total skyrmion number Q is independent
of time. However, the original microscopic
model is defined on a lattice, and processes
where Q changes by some integer amount are
allowed. Specifically, such a Q changing
event corresponds to a monopole (or hedge-
hog) singularity of the Néel field n̂(r,�) in
spacetime (a hedgehog has n̂ oriented radially
outward in all spacetime directions away
from its center). Haldane (11) showed that the
sum over r in Eq. 2 is nonvanishing in the
presence of such monopole events. Precise
calculation (11) gives a total Berry phase
associated with each such Q changing
process, which oscillates rapidly on four
sublattices of the dual lattice. This leads to
destructive interference, which effectively
suppresses all monopole events unless they
are quadrupled (11, 14) (that is, they change
Q by 4).

The sigma model field theory augmented
by these Berry phase terms is, in principle,
powerful enough to correctly describe the
quantum paramagnet. Summing over the var-
ious monopole tunneling events shows that in
the paramagnetic phase, the presence of the

Berry phases leads to VBS order (14). Thus,
Sn contains within it the ingredients describ-
ing both the ordered phases of H. However, a
description of the transition between these
phases has so far proved elusive and will be
provided here.

Our analysis of this critical point is aided
by writing the Néel field n̂ in the so-called
CP1 parametrization

n̂ � z†��z (4)

with �� a vector of Pauli matrices. Here z �
z(r, �) � (z1, z2) is a two-component complex
spinor of unit magnitude, which transforms
under the spin-1/2 representation of the
SU(2) group of spin rotations. The z1,2 are the
fractionalized “spinon” fields. To understand
the monopoles in this representation, let us
recall that the CP1 representation has a U(1)
gauge redundancy. Specifically, the local
phase rotation

z 3 ei�(r,�)z (5)

leaves n̂ invariant and hence is a gauge of
degree of freedom. Thus, the spinon fields are
coupled to a U(1) gauge field, a � [the space-
time index � � (r, �)]. As is well known, the
magnetic flux of a � is the topological charge
density of n̂ appearing in the integrand of Eq.
3. Specifically, configurations where the a �

flux is 2� correspond to a full skyrmion (in
the ordered Néel phase). Thus, the monopole
events described above are spacetime mag-
netic monopoles (instantons) of a� at which
2� gauge flux can either disappear or be
created. The fact that such instanton events
are allowed means that the a� gauge field is
to be regarded as compact.

We now state our key result for the
critical theory between the Néel and VBS
phases. We argue below that the Berry
phase–induced quadrupling of monopole
events renders monopoles irrelevant at the
quantum critical point. So in the critical
regime (but not away from it in the para-
magnetic phase), we may neglect the com-
pactness of a � and write down the simplest
critical theory of the fractionalized spinons
interacting with a noncompact U(1) gauge
field with action Sz � �d2rd�Lz and

Lz � �
��1

N

� (��  ia�) z��2 � s�z�2

� u	�z�2�
2
� �(������a�)

2 (6)

Where N � 2 is the number of z components,
we have softened the length constraint on the
spinons, with �z�2 � �� � 1

N �z� �2 allowed to
fluctuate and the value of s is to be tuned so
that Lz is at its scale-invariant critical point.
The irrelevance of monopole tunneling
events at the critical fixed point implies that
the total gauge flux �d2r(�x ay �yax), or
equivalently the skyrmion number Q, is as-

Fig. 2. A skyrmion
configuration of the
field n̂ (r). Note that
n̂ � (1)r �Sr, and so
the underlying spins
have a rapid sublattice
oscillation, which is
not shown. The
skyrmion above has n̂
(r � 0) � (0,0,1)
and n̂ ( � r� 3 �) �
(0,0,1).
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ymptotically conserved. This emergent glob-
al topological conservation law provides pre-
cise meaning to the notion of deconfinement.
It is important to note that the critical theory
described by Lz (16) is distinct from the
LGW critical theory of the O(3) nonlinear
sigma model obtained from Eq. 2 by drop-
ping the Berry phases and tuning g to a
critical value (17). In particular, the latter
model has a nonzero rate of monopole tun-
neling events at the transition, so that the
global skyrmion number Q is not conserved.

Among the important physical conse-
quences of the theory Lz (7, 18) are the
presence of two diverging length scales upon
approaching the critical point from the VBS
side (the spin correlation length and a longer
scale beyond which two spinons interact with
a linear confining potential) and a large
anomalous dimension for the Néel order pa-
rameter (because it is a composite of the
critical spinons).

The critical theory Lz is actually implied
by existing results in the N 3 � limit (18).
The following section illustrates the origin of
Lz by a physical derivation for the case of
“easy-plane” anisotropy, when the spins pre-
fer to lie in the xy plane. Such arguments can
be generalized to the isotropic case (7, 18).

Duality transformations with easy-
plane anisotropy. For the easy-plane case,
duality maps and an explicit derivation of a
dual form of Lz are already available in the
literature (6, 19). Here we obtain this theory
using simple physical arguments.

The easy-plane anisotropy reduces the
continuous SU(2) spin rotational invariance
to the U(1) subgroup of rotations about the z
axis of spin, along with a Z2 (Ising) spin
reflection symmetry along the z axis. With
these symmetries, Eq. 2 allows an additional
term uep �d�d2r(nz)2, with uep � 0.

The classical Néel ground state of the easy-
plane model n̂ is independent of position and
lies in the spin xy plane. Topological defects
above this ground state play an important role.
These are vortices in the complex field
n� � nx � iny, and along a large loop around
the vortex the phase of n� winds by 2�m, with
m an integer. In the core, the XY order is
suppressed and the n̂ vector will point along the
�ẑ direction. This corresponds to a nonzero
staggered magnetization of the z component of
the spin in the core region. Thus, at the classical
level, there are two kinds of vortices, often
called merons, depending on the direction of
the n̂ vector at the core (Fig. 3). Either kind of
vortex breaks the Ising-like nz3 nz symme-
try at the core. Let us denote by �1 the quantum
field that destroys a vortex whose core points in
the up direction and by �2 the quantum field
that destroys a vortex whose core points in the
down direction.

Clearly, this breaking of the Ising symme-
try is an artifact of the classical limit: Once

quantum effects are included, the two broken
symmetry cores will be able to tunnel into
each other, and there will be no true broken
Ising symmetry in the core. This tunneling is
often called an “instanton” process that con-
nects two classically degenerate states.

Surprisingly, such an instanton event is
physically the easy-plane avatar of the space-
time monopole described above for the fully
isotropic model. This may be seen pictorially.
Each classical vortex of Fig. 3 really repre-
sents half of the skyrmion configuration of
Fig. 2. Now imagine the �2 meron at time
� 3 � and the �1 meron at time � 3 �.
These two configurations cannot be smoothly
connected, and there must be a singularity in
the n̂ configuration, which we place at the
origin of spacetime. A glance at Fig. 3 shows
that the resulting configuration of n̂ can be
smoothly distorted into the radially symmet-
ric hedgehog/monopole event. Thus, the tun-
neling process between the two merons is
equivalent to creating a full skyrmion. This is
precisely the monopole event. Hence, a
skyrmion may be regarded as a composite of
an “up” meron and a “down” antimeron, and
the skyrmion number is the difference in the
numbers of up and down merons.

The picture so far has not accounted for
the Berry phases. The interference effect dis-
cussed above for isotropic antiferromagnets
applies here too, leading to an effective can-
cellation of instanton tunneling events be-
tween single �1 and �2 merons. The only
effective tunnelings are those in which four
�1 merons come together and collectively
flip their core spins to produce four �2 mer-
ons, or vice versa.

A different perspective on the �1,2 meron
vortices is provided by the CP1 representa-
tion. Ordering in the xy plane of spin space
requires condensing the spinons

��z1�� � ��z2�� � 0 (7)

so that n� � z*1 z2 is ordered and there is no
average value of nz � �z1�2  �z2�2. Now,
clearly, a full 2� vortex in n� can be
achieved by either having a 2� vortex in z1

and not in z2, or a 2� antivortex in z2 and no

vorticity in z1. In the first choice, the ampli-
tude of the z1 condensate will be suppressed
at the core, but �z2� will be unaffected. Con-
sequently, nz � �z1�2  �z2�2 will be nonzero
and negative in the core, as in the �2 meron.
The other choice also leads to nonzero nz,
which will now be positive, as in the �1

meron. Clearly, we may identify the �2 (�1)
meron vortices with 2� vortices (antivorti-
ces) in the spinon fields z1 (z2). Note that in
terms of the spinons, paramagnetic phases
correspond to situations in which neither spin-
on field is condensed.

The above considerations and the general
principles of boson duality in three spacetime
dimensions (20) determine the form of the dual
action Sdual � �d�d2rLdual for �1,2 (6, 19)

Ldual � �
��1,2

�(�� iA�)�� �2 � rd ���2

� ud	���2�
2

� vd��1�2��2�2

� �d 	������A�)2  �[(�2
*�2)

4

� (�2
*�1)

4] (8)

where

���2 � ��1�2 � ��2�2

The correctness of this form may be argued
as follows: First, from the usual boson-vortex
duality transformation (20), the dual �1,2

vortex fields must be minimally coupled to a
dual noncompact U(1) gauge field A�. This
dual gauge invariance is not related to Eq. 5
but is a consequence of the conservation of
the total Sz: the “magnetic” flux ε�����A� is
the conserved Sz current (20). Second, under
the Z2 reflection symmetry, the two vortices
get interchanged; that is, �17 �2. The dual
action must therefore be invariant under in-
terchange of the 1 and 2 labels. Finally, if
monopole events were to be disallowed by
hand, the total skyrmion number - (the dif-
ference in the number of up and down meron
vortices) would be conserved. This would
imply a global U(1) symmetry [not to be
confused with the U(1) spin symmetry about

Fig. 3. The meron vor-
tices �1 (above) and
�2 in the easy-plane
case. The �1 meron
above has n̂ (r � 0) �
(0,0,1) and n̂ ( �r� 3
�) � (x,y,0)/�r�; the �2
meron has n̂ (r � 0) �
(0,0,1) and the same
limit as �r� 3 �. Each
meron above is half
the skyrmion in Fig.
2: A composite of
�1 and �2* makes
one skyrmion.
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the z axis] under which

�13 �1exp	i�) ; �23 �2 exp(i�) (9)

where � is a constant. However, monopole
events destroy the conservation of skyrmion
number and hence this dual global U(1) sym-
metry. But because the monopoles are effec-
tively quadrupled by cancellations from the
Berry phases, skyrmion number is still con-
served modulo 4. Thus, the symmetry in Eq.
9 must be broken down to the discrete cyclic
group of four elements, Z4.

The dual Lagrangian in Eq. 8 is the sim-
plest one that is consistent with all these
requirements. In particular, we note that in
the absence of the � term, the dual global
U(1) transformation in Eq. 9 leaves the La-
grangian invariant. The � term breaks this
down to Z4 as required. Thus, we may iden-
tify this term with the quadrupled monopole
tunneling events. Berry phases are therefore
explicitly included in Ldual.

In this dual vortex theory, the XY ordered
phase is simply characterized as a dual “para-
magnet,” where ��1,2� � 0 and fluctuations
of �1,2 are gapped. On the other hand, spin
paramagnetic phases such as the VBS states
correspond to condensates of the fields �1,2,
which break the dual gauge symmetry. In
particular, if both �1 and �2 condense with
equal amplitude ���1�� � ���2�� � 0, then we
obtain a paramagnetic phase where the global
Ising symmetry is preserved. Note the re-
markable complementarity between the de-
scription of the phases in this dual theory
with that in terms of the spinon fields of
the CP1 representation: The descriptions
map onto one another upon interchanging
both z1,2 7 �1,2 and the role of the XY
ordered and paramagnetic phases. This is a
symptom of an exact duality between the
two descriptions that obtains close to the
transition (17, 18).

The combination �*1�2 � ��1�2�e
i(�

1�
2)

actually serves as an order parameter for the
translation symmetry–broken VBS ground state.
This may be seen from the analysis of (6, 19).
Alternatively, we may use the identification (14)
of the skyrmion creation operator with the order
parameter for translation symmetry breaking.

Such a condensate of �1,2 breaks the global Z4

symmetry of the action in Eq. 8. The preferred
direction of the angle �1  �2 depends on the
sign of �. The two sets of preferred directions
correspond to columnar and plaquette patterns of
translational symmetry breaking (Fig. 4). Also,
the breaking of the dual U(1) symmetry in Eq. 9
by � corresponds to a linear confinement of
spinons in the paramagnet.

Despite its importance in the paramagnet,
the � term is irrelevant at the critical point
(18). In critical phenomena parlance, it is a
dangerously irrelevant perturbation (15).
Consequently the critical theory is decon-
fined, and the z1,2 spinons (which are frac-
tions of n�), or in the dual description the
�1,2 merons (which are fractions of a
skyrmion), emerge as natural degrees of free-
dom right at the critical point. The spinons
are confined in both adjacent phases, but
the confinement length scale diverges on
approaching the critical point. At a more
sophisticated level, the critical fixed point
is characterized by the emergence of an
extra global U(1) symmetry in Eq. 9 that is
not present in the microscopic Hamiltonian.
This is associated with the conservation of
skyrmion number and follows from the ir-
relevance of monopole tunneling events
only at the critical point.

The absence of monopoles at the critical
point, when generalized to the isotropic case
(18), provides one of the justifications for the
claimed critical theory in Eq. 6.

Discussion. Our results offer a new per-
spective on the phases of Mott insulators in two
dimensions: Liquid resonating–valence-bond-
like states, with gapless spinon excitations, can
appear at isolated critical points between phases
characterized by conventional confining orders.
It appears probable that similar considerations
apply to quantum critical points in doped Mott
insulators, between phases with a variety of spin-
and charge-density-wave orders and d-wave su-
perconductivity. If so, the electronic properties in
the quantum critical region of such critical points
will be strongly non–Fermi-liquid-like, raising
the prospect of understanding the phenomenol-
ogy of the cuprate superconductors.

On the theoretical side, our results also

illuminate studies of frustrated quantum anti-
ferromagnets in two dimensions. A theory of
the observed critical point between the Néel
and VBS phases (21) is now available, and
precise tests of the values of critical expo-
nents should now be possible. A variety of
other SU(2)-invariant antiferromagnets
have been studied (22), and many of them
exhibit VBS phases. It would be interesting
to explore the characteristics of the quan-
tum critical points adjacent to these phases
and test our prediction of deconfinement at
such points.

Our results also caricature interesting phe-
nomena (23, 24) in the vicinity of the onset of
magnetism in the heavy fermion metals. Re-
markably, the Kondo coherence that charac-
terizes the nonmagnetic heavy Fermi liquid
seems to disappear at the same point at which
magnetic long-range order sets in. Further-
more, strong deviations from Fermi liquid
theory are seen in the vicinity of the quantum
critical point. All of this is in contrast to naı̈ve
expectations based on the LGW paradigm for
critical phenomena. However, this kind of
exotic quantum criticality between two con-
ventional phases is precisely the physics dis-
cussed in the present paper.
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Terahertz Magnetic Response

from Artificial Materials
T. J. Yen,1* W. J. Padilla,2* N. Fang,1* D. C. Vier,2 D. R. Smith,2

J. B. Pendry,3 D. N. Basov,2 X. Zhang1†

We show that magnetic response at terahertz frequencies can be achieved in
a planar structure composed of nonmagnetic conductive resonant elements.
The effect is realized over a large bandwidth and can be tuned throughout the
terahertz frequency regime by scaling the dimensions of the structure. We
suggest that artificial magnetic structures, or hybrid structures that combine
natural and artificial magneticmaterials, can play a key role in terahertz devices.

The range of electromagnetic material response
found in nature represents only a small subset
of that which is theoretically possible. This
limited range can be extended by the use of
artificially structured materials, or metamateri-
als, that exhibit electromagnetic properties not
available in naturally occurring materials. For
example, artificial electric response has been
introduced in metallic wire grids or cell meshes,
with the spacing on the order of wavelength (1);
a diversity of these meshes are now used in
THz optical systems (2). More recently, meta-
materials with subwavelength scattering ele-
ments have shown negative refraction at
microwave frequencies (3), for which both the
electric permittivity and the magnetic perme-
ability are simultaneously negative. The negative-
index metamaterial relied on an earlier theoret-
ical prediction that an array of nonmagnetic
conductive elements could exhibit a strong, res-
onant response to the magnetic component of
an electromagnetic field (4). In the present work,
we show that an inherently nonmagnetic metama-

terial can exhibit magnetic response at THz fre-
quencies, thus increasing the possible range in
which magnetic and negative-index materials can
be realized by roughly two orders of magnitude.

Conventional materials that exhibit magnetic
response are far less common in nature than ma-
terials that exhibit electric response, and they are
particularly rare at THz and optical frequencies.
The reason for this imbalance is fundamental in
origin: Magnetic polarization in materials follows
indirectly either from the flow of orbital currents
or from unpaired electron spins. In magnetic sys-
tems, resonant phenomena, analogous to the pho-
nons or collective modes that lead to an enhanced
electric response at infrared or higher frequencies,
tend to occur at far lower frequencies, resulting in
relatively little magnetic material response at THz
and higher frequencies.

Magnetic response of materials at THz and
optical frequencies is particularly important for
the implementation of devices such as compact
cavities, adaptive lenses, tunable mirrors, isola-
tors, and converters. A few natural magnetic
materials that respond above microwave fre-
quencies have been reported. For example,
certain ferromagnetic and antiferromagnetic
systems exhibit a magnetic response over a
frequency range of several hundred gigahertz
(5–7) and even higher (8, 9). However, the
magnetic effects in these materials are typically
weak and often exhibit narrow bands (10),
which limits the scope of possible THz devices.
The realization of magnetism at THz and higher

frequencies will substantially affect THz optics
and their applications (11).

From a classical perspective, we can view a
magnetic moment as being generated by micro-
scopic currents that flow in a circular path. Such
solenoidal currents can be induced, for exam-
ple, by a time-varying magnetic field. Although
this magnetic response is typically weak, the
introduction of a resonance into the effective
circuit about which the current flows can mark-
edly enhance the response. Resonant solenoidal
circuits have been proposed as the basis for
artificially structured magnetic materials (12),
although they are primarily envisaged for lower
radio-frequency applications. With recent ad-
vances in metamaterials, it has become increas-
ingly feasible to design and construct systems at
microwave frequencies with desired magnetic
and/or electric properties (3, 13, 14). In partic-
ular, metamaterials promise to extend magnetic
phenomena because they can be designed to
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Fig. 1. Illustration depicting the orientation of the
30° ellipsometry experiment. The polarization
shown is S-polarization, or transverse electric, for
excitation of the magnetic response. P-polarization,
transverse magnetic, was also measured. (Inset) A
secondary ion image of sample D1, taken by fo-
cused ion-beam microscopy. For each SRR, the split
gap is 2 �m. The corresponding gap between the
inner and outer ring (G), thewidth of themetal lines
(W), the length of the outer ring (L), and the lattice
parameter were 2, 4, 26, and 36 �m for sample D1;
3, 4, 32, and 44�m for sample D2, and 3, 6, 36, and
50 �m for sample D3, respectively. These values
were used in both design and simulation. K, the
wave vector of incident light; H, the magnetic field
intensity; –E, the electrical field intensity.
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