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Charge accumulation on a Luttinger liquid
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The average chargeQ on a quantum wire, modeled as a single-channel Luttinger liquid~LL !, connected to
metallic leads and coupled to a gate is studied theoretically. We find that the behavior of the charge as the gate

voltage ṼG varies depends strongly on experimentally adjustable parameters~length, contact transmission,
temperature, . . . ). When theintrinsic backscattering at the contacts is weak~i.e., the conductance is close to
2e2/h at high temperature!, we predict that this behavior should be described by a universal function. For short

such wires, the charge increases roughly linearly withṼG , with small oscillations due to quantum interference
between electrons scattered at the contacts. For longer wires at low temperature, Coulomb blockade behavior

sets in, and the charge increases in steps. In both limits]Q/]ṼG , which should characterize the linear-response

conductance, exhibits periodic peaks inṼG . We show that due to Coulomb interactions the period in the
former limit is twice that of the latter, and describe the evolution of the peaks through this crossover. The study
can be generalized to multichannel LL’s, and may explain qualitatively the recent observation by Lianget al.
@Phys. Rev. Lett.88, 126801~2002!# of a four-electron periodicity for electron addition in single-walled carbon
nanotubes.

DOI: 10.1103/PhysRevB.69.155332 PACS number~s!: 73.23.Hk, 71.10.Pm
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I. INTRODUCTION

The conductance of metallic single-walled carbon na
tubes has been shown to depend strongly on the nature o
contacts between the nanotube and the leads. In a typ
experimental setup a bias voltage is applied across a n
tube connected to metallic leads, while a gate voltage app
to a third electrode acts as a chemical potential and mo
lates the charge on the nanotube.1–5 When the contacts be
tween the nanotube and the leads are poor, Coulomb bl
ade behavior sets in, and the conductance exhibits a seri
sharp peaks as the gate voltage increases.2,5,6 In contrast, the
conductance of devices with near-perfect contacts is clos
the theoretical maximum of 4e2/h for all gate voltages, with
small quasiperiodic oscillations due to Fabry-Perot elect
interference.3

An interesting question that arises from these experime
is how the conductance of the system evolves in betw
these limits. Simple arguments indicate that the conducta
undergoes a change in periodicity between the Coulo
blockade regime and the Fabry-Perot limit. Deep in
Fabry-Perot limit, based on a noninteracting picture in wh
each conducting channel is approximately independent,
expects one electronper channel~i.e., four for a nanotube! to
be added to the wire per period of conductance oscillation
the Coulomb blockade limit, peaks occur uponeachelectron
addition process. This reasoning is in accord with rec
experiments,1,3 in which transport measurements were p
formed on devices exhibiting a broad range of lo
temperature conductances. These experiments confirm
Fabry-Perot picture in the most conducting samples, reg
Coulomb blockade behavior in the least conducting on
and observed an interesting clustering of peaks into gro
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of four in an intermediate limit.1

Theoretically, there are two qualitative issues brought
by these experiments. First, why should the simple Fab
Perot type structure obtained from a noninteracting quasi
ticle scattering approach apply even in the highly conduct
samples? This experimental result is somewhat surpris
since both theoretical expectation and numerous experim
indicate that Coulomb effects in nanotubes modify the
from Fermi to Luttinger liquids, and in particular should n
have electronlike quasiparticles! This question was addres
already in Ref. 7, where it was demonstrated that, for hig
conducting samples, the behavior expected from Luttin
liquid ~LL ! theory~at least at low source-drain bias! is quali-
tatively indistinguishable from the naı¨ve quasiparticle scat
tering prediction. With this understood, the second iss
raised is the nature of the crossover from this Fabry-Pe
limit to the Coulomb blockade. Qualitatively, one would lik
to understand how the positions of the peaks evolve betw
the two regimes. This key qualitative issue of how the cen
of the peaks evolve is the focus of our work. Of course,
full universal crossover is interesting, but is more quanti
tive than qualitative.

A proper theoretical treatment of this evolution would r
quire calculating the conductance of nanotube devices w
arbitrary contact resistances. While this has been done
turbatively in the case of near-perfect contacts,7 nonperturba-
tive techniques are required for intermediate contact re
tances. Finding the conductance in the crossover regim
therefore of considerable difficulty. For low bias voltage
however, thequalitative features of the conductance shou
be manifested in the derivative of the average charge on
nanotube with respect to the gate voltage. This can be de
mined from an equilibrium calculation of the free energy a
©2004 The American Physical Society32-1
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is consequently more tractable. Even with this simplificat
the problem is nontrivial, so we use Feynman’s variatio
principle8,9 to calculate the free energy and subsequently
charge. Since there is both experimental4 and theoretical10,11

evidence that carbon nanotubes behave as~LLs! ~Ref. 12!,
we consider more generally the average charge on a sin
channel LL~with spin! with arbitrary electron-electron inter
action strength. Our results can be generalized to multich
nel LL’s and therefore can be applied to nanotubes, wh
have two channels of conduction near the Fermi energy.

As expected,13 in the Coulomb blockade regime, when th
contact resistance is large, we find that the charge incre
discontinuously in steps whenever the gate voltage~in units
in which two electrons are added to the wire wheneverṼG is
increased by one unit! ṼG5(2n11)/4, wheren is an inte-
ger. The discontinuous character of these charge jumps
artifact of our variational method and translates in
d-function peaks ins5dQ/dṼG . The charge should be
continuous function ofṼG , and the height of the peaks ins
should be finite. The variational method predicts accura
the locations of these peaks, but not their heights. If we c
rect for this artifact,s should behave qualitatively as de
picted in curve 1 in Fig. 1. Despite the spin degeneracy, e
peak corresponds to the addition of a single electron to
wire. Indeed, in this case single electrons can enter the
only when they acquire the additional energy required
overcome the Coulomb repulsion energy and in this reg
the periodicity of the peaks isdṼG51/2.

Although the method we use has the advantage of all
ing us to consider arbitrary contact resistances, it yields
physical results when the contact resistance is low. In
regime we resort instead to perturbation theory . In this lim
we find that the effects of the electron-electron interactio
are small. The spin-up and spin-down electrons propag
independently of each other so thattwo electrons are adde
to the LL per Fabry-Perot oscillation ins. Consequently,s
exhibits a broad sinusoidal oscillation14 with a period ṼG
51, which is twice as large as the period in the Coulom

FIG. 1. The qualitative features of the crossover between g
and poor contacts. The derivative of the charge with respect to
gate voltage~or the conductance! is depicted schematically for vari
ous values of the backscattering strength at the contacts. Cur
represents the Coulomb blockade situation, and curves 2 and
pict progressively smaller backscattering. Curve 4 illustrates
Fabry-Perot oscillations present in the low backscattering limit.
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blockade regime. This behavior is represented by the curv
in Fig. 1.

The aim of this paper is to address how the crosso
between the Coulomb blockade and the nearly perfect c
tacts regime takes place. One possibility is that as the con
resistance decreases, the Coulomb blockade peaks re
fixed in position but broaden asymmetrically so that th
eventually combine to form the Fabry-Perot oscillations.
second possibility is that the Coulomb blockade peaks s
in position as they broaden and at some point collapse
each other to form the Fabry-Perot peaks. We find the la
possibility to be the case, and we illustrate it schematically
Fig. 1, which contains a sketch ofs5dQ/dṼG ~or the con-
ductanceG) as a function ofṼG for different contact resis-
tances. As the contact resistance decreases, we find tha
peaks begin to shift toward the nearest half-integer value
ṼG and the magnitude of the charge jump diminishes. C
recting for the discontinuity in the charge,s should evolve
qualitatively as shown in Fig. 1~curves 2 and 3! when the
contact resistance decreases.

It should be stressed that in the limit of weak backscat
ing at the contacts, this crossover is universal. This follo
from general renormalization group reasoning. It is w
known that, for a spin-1/2 LL with full spin-rotational invari
ance ~and this generalizes to the LL-Fermi liquid contac
considered here!, there is a single relevant impurity back
scattering operator. Hence, if the strength of the backsca
ing at each contact is weak and they are well separated f
one another, all other effects of the imperfections of the c
tacts scale rapidly to zero on the scale of wire length. Hen
the behavior of such samples should be well described b
model containing only the ideal LL Hamiltonian and th
leading backscattering operator at each contact. In partic
then, the chargeQ on the wire is a universal function of th
interaction strengthg, the renormalized backscatterin
strength;uL12g, whereL is the length of the wire, the gat
voltage ṼG , the thermal lengthkBTL/\vF , etc. This still
contains many parameters that will affect the quantitat
form of this crossover, but we expect our results for t
evolution of the peak positions to be much more robust.

We establish the validity of our technique in Sec.
where we apply Feynman’s variational principle to calcula
the free energy of an infinite, spinless LL with a single im
purity. In Sec. III A, we discuss the variational solution fo
the charge on a spinless LL connected to semi-infinite lea
A similar analysis is performed in Sec. III B where w
take into account spin. Finally, our results are summarize
Sec. IV.

II. INFINITE LUTTINGER LIQUID
WITH A SINGLE IMPURITY

In this section we use Feynman’s variational principle
calculate the free energy for an infinite, spinless Lutting
with an interaction parameterg describing the strength of th
interactions and a single impurity of scattering strengthu.
Although the free energy for this system can be compu
exactly,15 applying the variational principle here allows us
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CHARGE ACCUMULATION ON A LUTTINGER LIQUID PHYSICAL REVIEW B 69, 155332 ~2004!
establish the validity of this technique by comparing our
sults to the well-known renormalization group scali
results.16,17

We begin by writing an effective bosonized action16 for
this system,

S5b(
vn

uvnu
pg

uu0~vn!u22uE
0

b

dt cos@2u0~t!#, ~1!

whereu0 representsu(x) evaluated at the impurity site. Th
bosonic fieldu and its dualf are related to the right- an
left-moving fermionic fieldscR/L via the transformation
cR/L;ei (f6u). The Fourier-transform conventions we u
throughout are

u~vn!5
1

bE0

b

dteivntu~t!,

u~t!5(
vn

e2 ivntu~vn!. ~2!

We use nonstandard conventions for simplicity so that b
u(v) andu(t) are dimensionless.

Determining the free energy for this system is nontriv
due to the presence of the cosine term in the effective act
We therefore approximate the free energy using Feynm
variational principle,8,9 which states that for some trial actio
S8, the exact free energy obeys the following inequality:

F,2
1

b
ln Z81

1

b
^S2S8&S8[Fv , ~3!

whereZ8 is the partition function corresponding toS8 (Z8

5*Due2S8). The trial actionS8 is chosen to have a tractab
form and to depend on variational parameters that are de
mined by minimizing the variational free energyFv . The
resulting variational free energy will be the best estimate
the exact free energy given the form of the trial action us

In our case, the most general tractable trial action is q
dratic in u, so we take our trial action to be

S85b(
vn

S l1
uvnu
pg D uu~vn!u2, ~4!

where l is a non-negative, frequency-independent var
tional parameter. This form can be obtained by expanding
cosine term in the effective action to second order inu and
replacing the scattering strengthu by an effective scattering
strengthl/2. This turns out to be the most general quadra
action that one needs to consider. Even if one takes
account an explicit frequency dependence forl, the solution
that minimizes the free energy is frequency independent

Computing the variational free energy using Eq.~4! and
setting ]Fv /]l50, we find in the zero-temperature lim
that the free energy is minimized whenl satisfies the fol-
lowing equation:

l52uS l

l1e0 /~pg! D
g

. ~5!
15533
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wheree0 is a high-energy cutoff. Forg>1, Eq. ~5! is satis-
fied only whenl50. Thus the variational free energy
minimized by choosing a trial action which completely n
glects the effects of scattering. Forg.1 this result is con-
sistent with renormalization group arguments,16 which state
that u is irrelevant for the case of attractive interactions a
that the scattering strength is therefore renormalized to z
at energies much smaller thane0. However, wheng51 the
system reduces to a one-dimensional free fermion gas
pinging on a barrier of heightu. In this case the scatterin
strength is marginal, and the physics of the system~the value
of the conductance, etc.! should depend on the scatterin
strength, which our variational technique fails to predict. F
g,1, there exists a nontrivial solution to Eq.~5! given by

l'2uS 2pgu

e0
D g/(12g)

~6!

that minimizes the free energy. It follows from Eq.~6! thatl
increases from 0 atg51 to 2u at g50 so that the effective
scattering strength increases with the strength of the inte
tions. This behavior is also consistent with renormalizat
group arguments sinceu is relevant in this range ofg. For
this simple system, our variational technique therefore rep
duces the well-known scaling results16 except in the caseg
51.

III. FINITE-SIZE LUTTINGER LIQUID CONNECTED
TO LEADS AND COUPLED TO A GATE

A. Spinless fermions

In this section we calculate the charge on a spinless LL
length 2L and interaction parameterg connected to two
semi-infinite leads characterized by an interaction param
gL . For simplicity, we assume that the Fermi velocityv is
uniform in the LL and the leads. The contacts with the lea
at positionsx56L are modeled as impurities of equal sca
tering strengthũ, measured in units ofeL5v/2pLg2. A gate
voltage ṼG is applied to the LL, whereṼG is expressed in
units of p2eL so that one electron is added to the LL wh
ṼG→ṼG11.

The effective action for this system is

S

eLb
5(

vn
(

a56
uua~vn!u2Ka~vn!2A2pṼGu2~0!

2
ũ

bE0

b

dt (
z561

cos@A2u1~t!1zA2u2~t!#, ~7!

where u65@u(x5L)6u(x52L)#/A2 and u2(0) repre-
sentsu2(vn50). The functionsK6(v) appearing in Eq.~7!
are given by

K6~v!5
uvu

2peL
H 1

gL
1

1

g F tanhS uvu
2peLgD G61J . ~8!

To calculate the variational free energy, we take a trial act
of the form
2-3
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S8

eLb
5(

vn
(

a56
uua~vn!u2@Ka~vn!1la#

2A2p@~ṼG1lG!u2~0!1m1u1~0!#, ~9!

and assume that the variational parametersl6 are frequency
independent and non-negative. If one allowsl6 to depend
on frequency, one finds as in the single-impurity case that
free energy is minimized whenl6 are frequency indepen
dent. The quadratic terms in Eq.~9! can be obtained by ex
panding the cosine term in the effective action to seco
order and replacingũ by l6/2, so we can once more inte
pretl6 as effective scattering strengths. To obtain the lin
terms in Eq.~9!, we shift ṼG by a variational parameterlG
and introduce another variational parameterm1 that multi-
pliesu1(0). Theinclusion of the latter term, which does no
appear in the effective action in Eq.~7!, is necessary in orde
to preserve the invariance of the original Hamiltonian un
the addition of an extra unit of charge.

The variational free energy computed from the trial act
in Eq. ~9! is given in Eq.~A1! in Appendix A. Setting the
derivatives of the free energy with respect to the variatio
parameters to zero, we find that the free energy will be m
mized whenl6 satisfy the following equation:

l15l2[l5zglDe2I (l)cos@pṼG

1hAg2l2De22I (l)2l2#, ~10!

where cos(pm1 /l)[z561, h561, and D52gLg/(gL
1g). The dimensionless parameter that determines the
havior of the system isg52ũ(pDeL /e0)D, and in the zero-
temperature limitI (l) is given by

I ~l!5E
0

`

dxF (
a56

1

Ka~2peLx!1l
2

1

x/D1l/2G . ~11!

The signs ofz andh depend on the gate voltage and shou
be chosen such that the free energy is minimized andl is
non-negative. To satisfy these conditions, we choosez5

11 if 21/2,ṼG,1/2 and change the sign ofz whenever
ṼG→ṼG11. Also, we takeh521 if 0,ṼG,1/2 and
change the sign ofh wheneverṼG→ṼG11/2.

Since the gate voltage acts as a chemical potential,
average charge on the LL~in units of the electron charge! is
Q52(]Fv /]ṼG)/(p2eL). When the free energy is mini
mized, the charge can be written in terms ofl as

Q~l!5
ṼG1lG

11l
5ṼG1

h

p
Ag2l2De22I (l)2l2. ~12!

To determine the charge, one must therefore find the solu
to Eq. ~10! that minimizes the free energy.

In the limit g@1 we can solve Eq.~10! analytically by
assuming thatl is large and roughly independent ofṼG .
The dominant contribution to the integral inI (l) then comes
from the region wherex@1. We therefore approximat
K6(2peLx)'2x/D and takeI (l)'0. With these assump
15533
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tions we find thatl50 is the only solution whenD>1. For
D,1, which is the relevant physical situation since we a
interested in repulsive interactions, the free energy is m
mized by a nontrivial value ofl. The charge is then

Q'n1hF n2ṼG

g1/(12D)G , ~13!

where n is the closest integer toṼG . This solution corre-
sponds to the Coulomb blockade limit since the charge
creases in steps wheneverṼG equals a half integer. We not
that the charge jumps discontinuously at these values ofṼG ,
resulting in the emergence ofd-function peaks ins. This
discontinuity is an artifact of the variational method and c
be traced back to the replacement of the cosine term in
effective action by quadratic terms in our trial action. T
effect of this approximation is to suppress tunneling eve
between different minima in the cosine potential, which c
respond to quantum-mechanical mixing of the two nea
degenerate charge states of the LL. These instantons bec
important when the gate voltage is near a half integer
would cause the charge to increase smoothly in this reg
Since we ignore such events in our calculations, the cha
jumps discontinuously. Intuitively, the charge should be
continuous function ofṼG , and the peaks ins should be
rounded and have finite height.

For smaller values ofg, we obtain the charge by numer
cally solving Eq.~10! for the value ofl that minimizes the
free energy. To illustrate the evolution of the charge, we p
Q and its derivatives5]Q/]ṼG as functions ofṼG for dif-
ferent values ofg, focusing on a system at zero temperatu
with Fermi-liquid leads (gL51), g50.25, and eL /e0
52.5531023. The solid lines in Figs. 2 and 3 representQ
ands evaluated atg52.37 and 0.8, respectively. For com
parison, these quantities evaluated atg50 are shown as the
dashed lines. In Figs. 2 and 3~b!, we do not show the full
peaks ins at ṼG51/2 to emphasize the structure away fro
ṼG51/2. These figures illustrate that the magnitude of
discontinuous jump in the chargedQ diminishes asg de-
creases. Additionally, the slope of the charge away from h
integer values ofṼG increases from 0 toward 1.

As g decreases further, the behavior of the variatio
solution for the charge depends on whethergL is greater than
or less than 1/2. ForgL,1/2, dQ decreases smoothly to zer
asg→0. This is illustrated in Fig. 4~b!, which containsdQ
versusg whengL51/4. Apart from the discontinuity in the
charge at half-integer values ofṼG , in the low backscatter-
ing limit the variational method produces the expect
Fabry-Perot oscillations.

With gL>1/2, dQ drops abruptly to zero wheng equals a
critical value denoted bygc . This feature is illustrated in
Fig. 4~a!, wheregc'0.78. Belowgc , the variational method
predicts unphysical behavior in the charge that, in particu
is inconsistent with a perturbative calculation of the cha
in the limit g!1. Details of the variational solution in thi
regime will therefore be deferred to Appendix B. The var
tional method predicts the presence oftwo sharp peaks ins
2-4
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FIG. 2. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
gL51, g50.25, eL /e052.5531023, and g

52.37. The discontinuity in the charge atṼG

51/2 is an artifact of the variational techniqu
that arises from our replacing the cosine term
the effective action by quadratic terms in our tri
action. This results ind-function peaks ins
which should instead be rounded and have fin
height. For clarity, we do not show the full pea

in s at ṼG51/2 in ~b!.
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per period rather than the single broad peak expected f
the Fabry-Perot oscillations. Figure 5 containsQ ands for a
system withgL51 and g,gc . The double-peak structur
that emerges is a consequence of the free energy being m
mized whenl50 in the region between these peaks. W
attribute this shortcoming of the variational technique to
method failing to capture the analytic terms in the free
ergy, which presumably dominate in this regime. In contra
when gL,1/2 even the lowest-order term in perturbati
theory diverges, so there are no analytic terms in the
energy. This explains why the variational technique yie
reasonable results whengL,1/2 for arbitraryg but fails in
the low backscattering limit whengL>1/2.

In the limit g!1, the charge can instead be calculat
perturbatively inũ whengL.1/2. To second order inũ, we
find

Q5ṼG2Ag2sin~2pṼG!, ~14!

whereA is a positive constant. It follows thats is roughly
constant, exhibiting small Fabry-Perot oscillations with pe
odicity dṼG51. Thus, although the variational method fa
in the low backscattering limit, the expected behavior is c
tured perturbatively.

In summary, we have shown that for a spinless, sing
channel LL the periodicity ofs is the same in the low back
scattering and Coulomb blockade limits. After correcting
the artifacts of the variational technique, we find that t
Coulomb blockade peaks ins simply broaden symmetrically
15533
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as the backscattering strength decreases, eventually evo
into the broad Fabry-Perot peaks in the low backscatte
limit.

B. Spinful fermions

We now repeat the calculations of Sec. III A taking in
account spin. It is convenient to decompose the system
charge and spin sectors via a change of basis to fieldsur/s

5(u↑6u↓)/A2. Since the interactions only affect the char
sector, the spin sector in both the leads and in the LL
characterized by an interaction parameter ofgs51. The
charge sector is characterized by an interaction parametegL
in the leads andg in the LL.

When spin is taken into account, the effective action
Eq. ~7! is generalized to

S

eLb
5 (

vn ,a
uua~vn!u2Ka~vn!22pṼGur2~0!

2
ũ

bE0

b

dt (
z1 ,z2

cos@ur1~t!1z1ur2~t!1z2us1~t!

1z1z2us2~t!#, ~15!

wherea5r6,s6 are charge and spin indices, respective
andz1,2561. The functionsKa(vn) are defined by

Ka~v!5
uvu

2peL
H 1

gL
a

1
1

ga F tanhS uvu

2peLgaD G zaJ , ~16!
th

in

e

FIG. 3. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
gL51, g50.25, eL /e052.5531023, and g
50.8. Asg decreases the discontinuous jump

the charge atṼG51/2 diminishes, and the slop

of the charge away fromṼG51/2 increases. The

sharp peak ins at ṼG51/2 is not shown in~b!
for clarity.
2-5
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FIG. 4. The magnitudedQ of the discontinu-
ous jump in the charge at half-integer values

ṼG as a function ofg for a system witheL /e0

52.5531023 and ~a! gL51 and~b! gL50.25.
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where gL
r65gL , gr65g, gL

s65gs651, zr/s151, and
zr/s2521. We assume a trial action of the form

S8

eLb
5 (

vn ,a
uua~vn!u2@Ka~vn!1la#22p@mr1ur1~0!

1~ṼG1lG!ur2~0!1ms1us1~0!1ms2us2~0!#.

~17!

Here,lr/s6 represent effective scattering strengths andlG ,
mr1 , and ms6 are additional variational parameters. T
variational free energy computed from this trial action
given in Eq.~A2! in Appendix A. As in the spinless case, th
free energy is minimized when the effective scatter
strengths are equal, so we definelr/s6[l.

As outlined in Appendix A, setting the derivatives of th
free energy with respect to the variational parameters to z
leads to two sets of equations for the variational parame
that result in physical solutions for the charge. In the first s
the charge is given in terms ofl by

Q~l!52ṼG1
2h

p
Ag82lD11e22I 8(l)2l2, ~18!

wherel is a solution to

l5zg8l (D11)/2e2I 8(l)cosFpQ~l!

2 G . ~19!
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Here, g852ũD21/2(pDeL /e0)(D11)/2 is the dimensionless
parameter that determines the behavior of the system, a

I 8~l!5E
0

`du

2 F(
a

1

Ka~2peLu!1l
2

1

u/D1l/2
2

1

u1l/2G
~20!

in the zero temperature limit. The values ofh andz are the
same as in the spinless case. In the second set of equa
the charge is determined from the following equation:

puQ/22ṼGu

5g8l (D11)/2e2I 8(l)UcosS pQ

2 D U
3UsinF 1

g2
Ag82lD11e22I 8(l)sin2S pQ

2 D2l2GU , ~21!

wherel is a function of the charge via

l~Q!5up~Q/22ṼG!tan~pQ/2!u. ~22!

To determine which set of equations leads to an abso
minimum of the free energy, we find numerically the min
mum free energy solution to both sets and retain the one w
the lower free energy.

In the Coulomb blockade regime whereg8@1, the charge
is given by Eq.~18! whenn21/4,ṼG,n11/4 and by Eq.
~21! when n11/4,ṼG,n13/4, wheren is an integer. In
th

g

ct
re
FIG. 5. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
Fermi-liquid leads (gL51), g50.25, eL /e0

52.5531023, andg50.47,gc . The two peaks
present ins arise from the free energy bein
minimized whenl50 in the region between the
peaks. This double-peak structure is an artifa
due to the variational method failing to captu
the analytic terms in the free energy.
2-6
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FIG. 6. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
gL51, g50.25, eL /e052.5531023, and g8
51.56. At this value ofg8, the peaks ins appear
only slightly shifted away fromVG51/4 and 3/4.
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this limit the charge can be retrieved analytically by assu
ing l@1 and takingI 8(l)'0. As in the spinless case, w
find nontrivial solutions forl only whenD,1. The charge
in this range ofD is given by

Q'n12h8F n/22ṼG

g82/(12D)G , ~23!

where n is the closest integer to 2ṼG and h8521 if 0
,ṼG,1/4 and changes sign wheneverṼG→ṼG11/4. Thus
the charge increases in steps, jumping discontinuously b
amountdQ'1 at half-integer values of 2ṼG . This discon-
tinuity is again an artifact of our technique and results
d-function peaks ins rather than rounded peaks of fini
height. Thesed-function peaks occur at half-integer valu
of 2ṼG , so the period ofs in the Coulomb blockade regim
is dṼG51/2.

As g8 decreases and the system moves away from
Coulomb blockade limit, the window ofṼG inside of which
the second set of equations yields the lowest free ene
begins to shrink. The charge remains discontinuous at
end points of the window, causing the peaks ins to shift.
Figures 6, 7, and 8 representg851.56, 0.67, and 0.58, re
spectively, and illustrate howQ and s evolve asg8 de-
creases. For our numerical data, we again focus on a sy
at zero temperature with Fermi-liquid leads,g50.25, and
eL /e052.5531023. To illustrate the nonlinear behavior i
the charge more clearly,Q22ṼG has been scaled by a facto
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of 3 in Fig. 7~a! and a factor of 4 in Fig. 8~a!. In Fig. 8, the
peaks ins have shifted significantly and appear at rough

ṼG50.4 and 0.6.
Wheng8 reaches a critical valuegc8 , the first set of equa-

tions yields the lowest free energy for allṼG , and the charge
is given everywhere by Eq.~18!. The discontinuous jump in
the charge drops smoothly to zero atgc8 , and the charge
remains continuous at smaller values ofg8. Forg8&gc8 , the
variational method predicts unphysical behavior in t
charge that is inconsistent with perturbation theory wh
g8!1, so we defer details of the solution to Appendix B.
contrast to the spinless case, where the method was rel
for arbitraryg8 whengL,1/2, the variational technique fail
in this range ofg8 for all gL . This is consistent with the fac
that in the spinful case the effective interaction parameter
the leads is (gL11)/2, which is always greater than 1/2
Figure 9 illustrates the unphysical behavior in the cha
predicted by the variational method wheng850.33,gc8 .

For clarity,Q22ṼG has been scaled by a factor of 30 in th
charge. Nonlinear corrections to the charge are there
quite small at this value ofg8, ands is nearly constant. The
variational method predicts two peaks ins per period rather
than the single broad Fabry-Perot peak expected in this
gime. This double-peak structure persists asg8 decreases

further until Q52ṼG and the peaks disappear altogether.
in the spinless case, we attribute this failure of the variatio
technique to the method neglecting analytic terms in the f
energy. We therefore emphasize instead a perturbative ca
th

in
FIG. 7. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
gL51, g50.25, eL /e052.5531023, and g8

50.67. For clarity, we have scaledQ22ṼG by a
factor of 3 in the plot of the charge. The peaks

s are now located nearṼG50.3 and 0.7.
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FIG. 8. The charge Q ands5]Q/]ṼG as
functions of the gate voltage for a system wi
gL51, g50.25, eL /e052.5531023, and g8
50.58, which is close togc8 . For clarity, Q

22ṼG has been scaled by a factor of 4 in the pl
of the charge. The peaks ins continue to move

toward ṼG51/2 and now appear at roughlyṼG

50.4 and 0.6.
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lation of the charge in the low backscattering limit. To se
ond order inũ, we find perturbatively that for anygL.0,

Q52ṼG2A8g82sin~2pṼG!, ~24!

where A8 is a positive constant. The period of the Fabr
Perot oscillations is thereforedṼG51, which is the same a
in the spinless case@see Eq.~14!#.

In summary, we have shown that the period ofs for a
spinful LL increases by a factor of 2 as the system goes fr
the Coulomb blockade regime to the low backscatter
limit. The numerical data in Figs. 6–8 along with the pertu
bative calculation of the charge in Eq.~24! demonstrate tha
once we correct for variational artifacts, this crossover
periodicity takes place as sketched schematically in Fig
As the backscattering strength at the contacts decreases
Coulomb blockade peaks shift in position as they broad
and eventually combine to form the broad Fabry-Perot os
lations. As mentioned before, the physics behind this cro
over in periodicity is that in the Coulomb blockade regim
electrons are added one-by-one due to electron-electron
teractions. In the low backscattering limit, however, t
spin-up and spin-down electrons essentially propagate in
pendently of one another, so that two electrons are adde
the LL per period of the Fabry-Perot oscillations ins.

FIG. 9. The charge Q ands5]Q/]ṼG as functions of the gate
voltage for a spinful system withgL51, g50.25, eL /e052.55
31023, andg850.33, which is slightly belowgc8 . To emphasize

the nonlinear behavior in the charge, we have scaledQ22ṼG by a
factor of 30 in the plot of the charge. The double-peak structur
s is an unphysical artifact of the variational method that resu
from the technique neglecting analytic terms in the free energy
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IV. DISCUSSION

We discussed the average charge on finite-size spin
and spinful Luttinger liquids as a function of an applied ga
voltage. As expected, in both cases the charge increase
most linearly with gate voltage when the contacts are go
while the charge increases in steps in the Coulomb block
regime. In the spinless case, the derivative of the charge
respect to the gate voltages has the same periodicity in bot
limits. When spin is taken into account, however, we show
that each Fabry-Perot peak begins to separate into two p
as the contact resistance increases. As illustrated schem
cally in Fig. 1, the spacing between these peaks increa
with the contact resistance until the Coulomb blockade lim
is reached and the period ofs is reduced by a factor of 2
The physics behind this crossover is that when the cont
are good, electrons from the two spin channels essent
propagate independently of one another so that two elect
are added to the LL per period of the Fabry-Perot osci
tions. In the Coulomb blockade regime, however, despite
spin degeneracy electrons are added to the LL one at a
due to electron-electron interactions, resulting in a reduct
in periodicity.

The shifting of the peaks between these limits can
understood heuristically from a simple ‘‘Hartree’’ picture o
free electron levels and a global charging energy~though it
should be kept in mind that such a picture misses m
details of the LL physics!. In this framework, there is a dif-
ference in energy required to add an electron to a LL w
odd versus even charge. If the number of electrons on the
is odd, then in the ground state there will be an energy le
occupied by a single spin. This energy level can then acc
modate an additional electron with the opposite spin. In
ground state of a LL with an even number of electrons, ho
ever, each energy level is doubly occupied, so adding
electron requires additional kinetic energy relative to the
with odd charge. Deep in the Coulomb blockade regime,
energy difference will be much less than the Coulomb ene
required to add an electron. As the contact resistance
creases and the Coulomb interactions become less impor
this energy difference can become appreciable. Since
gate voltage supplies the energy for electrons to tunnel o
the LL, these arguments imply that as the contact resista
increases the peaks ins should shift towards half-intege

n
s

2-8
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gate voltages where the charge is odd, which is consis
with what we find.

In an obvious generalization, we expect that if there arn
conduction channels, then the period should change b
factor of 2n, with the factor of 2 arising from spin. Thi
crossover in periodicity should also appear in the behavio
the conductance. Specifically, rather than pairs of Coulo
blockade peaks combining to form the Fabry-Perot osci
tions, we expect 2n Coulomb blockade peaks to collaps
onto each other in the low backscattering limit. Address
how these peaks collapse, however, requires further inv
gation.

This crossover in periodicity can be used to interpret
cent experimental data on carbon nanotubes, which h
been shown to behave as two-channel LL’s.4,10,11 As de-
scribed in the Introduction, the conductance of nanotubes
been measured in devices with near-perfect contacts,3 in the
Coulomb blockade limit,2,5 and more recently in an interme
diate regime.1 When the contacts are good, we have seen
four electrons should be added to the nanotube per perio
the Fabry-Perot oscillations in the conductance. As the c
tact resistance increases, corresponding to an increase ig8,
each of these oscillations should begin to separate into
distinct peaks as the crossover begins to take place.
manner in which this takes place cannot be implied from
single-channel calculation, though a few possibilities can
cur: all four peaks will appear simultaneously and th
evolve and separate symmetrically; two peaks will ari
evolve and separate symmetrically, then each of them
split into two peaks; two peaks will arise and separate fi
then when they reached a certain distance two more p
will appear. The recent observation of a four-electron peri
icity for electron addition by Lianget al.1 may be a manifes-
tation of this crossover~see Fig. 1 in that reference!. The
conductance of their devices exhibited peaks grouped
clusters of four as the gate voltage increased. We note
their measurements are consistent with our prediction
the peaks shift in position as the contact resistance cha
since adjacent conductance peaks within a given cluster
closer together than adjacent peaks in neighboring clus
As the contact resistance increases further, the four pe
within each cluster should continue to separate and bec
sharper until the Coulomb blockade limit is reached and
period of the conductance is reduced by a factor of 4.
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APPENDIX A: VARIATIONAL FREE ENERGY

The variational free energy for the spinless LL compu
using the trial action in Eq.~9! is
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Fv

eL
5

p2

2 F ~ṼG1lG!2

~11l2!2
2

2ṼG~ṼG1lG!

11l2
G

1
1

2eLb (
vn

(
a56

lnFeLb

p
@Ka~vn!1la#G

2
1

2eLb (
vn

(
a56

la

la1Ka~vn!

22ũ cosFp~ṼG1lG!

11l2
GcosS pm1

l1
D

3expF2
1

2eLb (
vn

(
a56

1

Ka~vn!1la
G . ~A1!

The variational free energy for the spinful LL correspondi
to the trial action in Eq.~17! is

Fv

eL
5p2F ~ṼG1lG!2

~11lr2!2
2

2ṼG~ṼG1lG!

11lr2
1

g2ms2
2

~g21ls2!2G
1

1

2eLb (
vn ,a

lnFeLb

p
@Ka~vn!1la#G

2
1

2eLb (
vn ,a

la

la1Ka~vn!

24ũH cosFp~ṼG1lG!

11lr2
GcosS pmr1

lr1
D cosS pms2

g21ls2
D

3cosS pms1

ls1
D1sinFp~ṼG1lG!

11lr2
GsinS pmr1

lr1
D

3sinS pms2

g21ls2
D sinS pms1

ls1
D J

3expF2
1

4eLb (
vn ,a

1

Ka~vn!1la
G , ~A2!

with a5r6,s6. Equation~A2! is minimized whenlr/s6

[l and either

sinS pmr1

l D5sinS pms1

l D50, ~A3!

or

cosS pms1

l D5cosS pmr1

l D50. ~A4!

Equation~A3! leads to the following coupled equations fo
l, ms2 , and the chargeQ:

pms2

g21l
5

1

g2
Ag82lD11e22I 8(l)cos2S pQ

2 D2l2, ~A5!
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l5zg8l (D11)/2e2I 8(l)cosS pQ

2 D cosS pms2

g21l
D , ~A6!

cos2S pQ

2 D5F11p2S Q/22ṼG

l
D 2G21

. ~A7!

By inspection and confirmed by numerical analysis, th
equations are satisfied whenms250 andl is a solution to

l5zg8l (D11)/2e2I 8(l)

3cos@pṼG1hAg82lD11e22I 8(l)2l2#. ~A8!

This decoupled equation forl can be used in conjunctio
with Eq. ~A5! to obtain Eq.~18! for Q in terms ofl.

Equation~A4! yields a set of coupled equations identic
to Eqs. ~A5!–~A7! except that the cosines are replaced
sines. In this case, one can not obtain a decoupled equ
for l. Instead, we first use the analog of Eq.~A7! to write l
as a function of the charge. We then use the remaining
equations to obtain a decoupled equation for the charge,
~21!.

APPENDIX B: VARIATIONAL RESULTS IN THE LOW
BACKSCATTERING LIMIT

For completeness, in this appendix we review the va
tional solution in the limit of near-perfect contacts where t
technique yields unphysical results. In this limit the failure
the technique is due to the method neglecting analytic te
in the free energy, which in this case provide non-negligi
contributions. In the spinless case, the variational results
unphysical whengL>1/2 andg,gc . As Fig. 5 illustrates, in
this regimes exhibits two peaks per period. WhengL>1
this structure arises because the free energy is minim
whenl50 in the region ofṼG between those peaks. Asg
decreases, the width of this region increases and the pea
s spread farther apart untill50 everywhere and the peak
disappear entirely. This can be understood by noting tha
the limit g!1 the system essentially reduces to the sing
impurity problem discussed in Sec. III for whichl50 is the
only solution whengL>1. In this limit the variational
method thus predicts thatQ5ṼG . While this is consistent
with renormalization group arguments whengL.1, in the
case of Fermi liquid leads (gL51) one would expect to se
small Fabry-Perot oscillations in the charge as the gate v
age varies. These Fabry-Perot oscillations have been
served in the conductance of single-walled nanotubes w
near-perfect Ohmic contacts,3 and were also captured by
perturbative calculation of the charge in Sec. IV A.
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For gL,1, the free energy is minimized by a nontriviall
for the entire range of gate voltages. This solution can
obtained analytically by first noting thatl!1 wheng!1 so
that the dominant contribution to the integral inI (l) comes
from the region of smallx where x&g. To approximate
I (l), we therefore cut off the integral atx5g and expand
K6(2peLx) to first order inx. For ṼG away from a half-
integer, the square-root term in Eq.~10! can be dropped,
allowing determination ofl. The resulting charge whenṼG
is away from a half-integer is

Q2ṼG}hg1/(12gL)usin~pṼG!uucos~pṼG!ugL/(12gL).
~B1!

When 1/2,gL,1, Eq. ~B1! predicts an unphysical double
peak structure ins similar to that shown in Fig. 5~b!, while
for gL<1/2, Eq.~B1! predicts oscillations ins with a single
peak per period. An analysis of the charge at half-inte
values ofṼG , however, reveals that the charge is discontin
ous at these values whengL,1/2. If we correct for this
artifact, then the variational technique reproduces the
pected Fabry-Perot oscillations ins whengL<1/2.

In the spinful case, the variational technique yields u
physical results for the charge wheng8&gc8 . Here,gc8 cor-
responds to the value ofg8 below which the charge is given
for all ṼG by Eq.~18!, which has a nearly identical structur
to Eq. ~12! governing the charge in the spinless case. T
behavior ofs in this regime is therefore very similar to tha
in the spinless case, and the method once again predic
unphysical double-peak structure ins as depicted in Fig. 9.
The main difference here is that this failure occurs for allgL
since the effective interaction parameter in the leads isgL
11)/2.1/2. ForgL>1, the region between the peaks ins
where the free energy is minimized byl50 increases asg8
is lowered. Eventually,l50 everywhere and the peaks di
appear altogether.

In the limit g8!1, the charge can be obtained analytica
by invoking similar approximations that were made in t
spinless case. We again find only trivial solutions forl when
gL>1 so thatQ52ṼG . ForgL,1, however, the free energ
is minimized by a nontrivial value ofl, and the charge away
from half-integer values ofṼG is

Q22ṼG}2hg82/(12gL)usin~pṼG!uucos~pṼG!u„11gL/(12gL)….
~B2!

It follows from Eq. ~B2! that s exhibits an unphysica
double-peak structure for allgL,1. WhenṼG equals a half
integer we find thatl50 is the only solution for anygL

,1 so that the charge is a continuous function ofṼG .
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