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Charge accumulation on a Luttinger liquid
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The average charg® on a quantum wire, modeled as a single-channel Luttinger lifLlid, connected to
metallic leads and coupled to a gate is studied theoretically. We find that the behavior of the charge as the gate
voltage Vg varies depends strongly on experimentally adjustable param@eigth, contact transmission,
temperaturg. . . ). When thentrinsic backscattering at the contacts is wéid., the conductance is close to
2e?/h at high temperatujewe predict that this behavior should be described by a universal function. For short
such wires, the charge increases roughly linearly Wigh with small oscillations due to quantum interference
between electrons scattered at the contacts. For longer wires at low temperature, Coulomb blockade behavior
sets in, and the charge increases in steps. In both IHQIQVG , which should characterize the linear-response
conductance, exhibits periodic peaksﬁ"@. We show that due to Coulomb interactions the period in the
former limit is twice that of the latter, and describe the evolution of the peaks through this crossover. The study
can be generalized to multichannel LL's, and may explain qualitatively the recent observation byt &ng
[Phys. Rev. Lett88, 126801(2002] of a four-electron periodicity for electron addition in single-walled carbon

nanotubes.
DOI: 10.1103/PhysRevB.69.155332 PACS nunter73.23.Hk, 71.10.Pm
I. INTRODUCTION of four in an intermediate limit.

Theoretically, there are two qualitative issues brought up

The conductance of metallic single-walled carbon nanoby these experiments. First, why should the simple Fabry-
tubes has been shown to depend strongly on the nature of thRerot type structure obtained from a noninteracting quasipar-
contacts between the nanotube and the leads. In a typicttle scattering approach apply even in the highly conducting
experimental setup a bias voltage is applied across a nansamples? This experimental result is somewhat surprising,
tube connected to metallic leads, while a gate voltage appliesince both theoretical expectation and numerous experiments
to a third electrode acts as a chemical potential and modundicate that Coulomb effects in nanotubes modify them
lates the charge on the nanotubeWhen the contacts be- from Fermi to Luttinger liquids, and in particular should not
tween the nanotube and the leads are poor, Coulomb blockave electronlike quasiparticles! This question was addressed
ade behavior sets in, and the conductance exhibits a series @feady in Ref. 7, where it was demonstrated that, for highly
sharp peaks as the gate voltage incredsésn contrast, the conducting samples, the behavior expected from Luttinger
conductance of devices with near-perfect contacts is close tiquid (LL) theory(at least at low source-drain bjas quali-
the theoretical maximum ofef/h for all gate voltages, with tatively indistinguishable from the has quasiparticle scat-
small quasiperiodic oscillations due to Fabry-Perot electroriering prediction. With this understood, the second issue
interference raised is the nature of the crossover from this Fabry-Perot

An interesting question that arises from these experimenttmit to the Coulomb blockade. Qualitatively, one would like
is how the conductance of the system evolves in betweeto understand how the positions of the peaks evolve between
these limits. Simple arguments indicate that the conductandde two regimes. This key qualitative issue of how the center
undergoes a change in periodicity between the Coulomlof the peaks evolve is the focus of our work. Of course, the
blockade regime and the Fabry-Perot limit. Deep in thefull universal crossover is interesting, but is more quantita-
Fabry-Perot limit, based on a noninteracting picture in whichtive than qualitative.
each conducting channel is approximately independent, one A proper theoretical treatment of this evolution would re-
expects one electrquer channeli.e., four for a nanotubgo  quire calculating the conductance of nanotube devices with
be added to the wire per period of conductance oscillation. Irarbitrary contact resistances. While this has been done per-
the Coulomb blockade limit, peaks occur upeachelectron  turbatively in the case of near-perfect contdatenperturba-
addition process. This reasoning is in accord with recentive techniques are required for intermediate contact resis-
experiments;® in which transport measurements were per-tances. Finding the conductance in the crossover regime is
formed on devices exhibiting a broad range of low-therefore of considerable difficulty. For low bias voltages,
temperature conductances. These experiments confirm thewever, thequalitative features of the conductance should
Fabry-Perot picture in the most conducting samples, regulase manifested in the derivative of the average charge on the
Coulomb blockade behavior in the least conducting onespanotube with respect to the gate voltage. This can be deter-
and observed an interesting clustering of peaks into groupsiined from an equilibrium calculation of the free energy and
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G= dQ/dVG blockade regime. This behavior is represented by the curve 4
in Fig. 1.

The aim of this paper is to address how the crossover

2 N 4 between the Coulomb blockade and the nearly perfect con-

tacts regime takes place. One possibility is that as the contact
resistance decreases, the Coulomb blockade peaks remain
fixed in position but broaden asymmetrically so that they
eventually combine to form the Fabry-Perot oscillations. A

\”/G second possibility is that the Coulomb blockade peaks shift
EANY in position as they broaden and at some point collapse into
025 05 075 1 each other to form the Fabry-Perot peaks. We find the latter

FIG. 1. The qualitative features of the crossover between goo&)ossmlllty to be the case, and we |Ilustrate~|t schematically in
and poor contacts. The derivative of the charge with respect to thEig. 1, which contains a sketch of=dQ/dVg (or the con-
gate voltageor the conductangés depicted schematically for vari- ductanceG) as a function oV for different contact resis-
ous values of the backscattering strength at the contacts. Curvetinces. As the contact resistance decreases, we find that the
represents the Coulomb blockade situation, and curves 2 and 3 dﬁeaks begin to shift toward the nearest half-integer value of

pict progresswe.ly S.ma"er baCks.Cémering' Curve 4 i".UStr"’.‘te.s the{‘/e and the magnitude of the charge jump diminishes. Cor-
Fabry-Perot oscillations present in the low backscattering limit. - . T
recting for the discontinuity in the charge, should evolve
qualitatively as shown in Fig. {curves 2 and Bwhen the
is consequently more tractable. Even with this simplificationcontact resistance decreases.
the problem is nontrivial, so we use Feynman’s variational It should be stressed that in the limit of weak backscatter-
principlé®® to calculate the free energy and subsequently théng at the contacts, this crossover is universal. This follows
charge. Since there is both experimeheid theoreticaf!*  from general renormalization group reasoning. It is well
evidence that carbon nanotubes behavélas) (Ref. 12, known that, for a spin-1/2 LL with full spin-rotational invari-
we consider more generally the average charge on a singl@nce(and this generalizes to the LL-Fermi liquid contacts
channel LL(with spin) with arbitrary electron-electron inter- considered hepe there is a single relevant impurity back-
action strength. Our results can be generalized to multicharicattering operator. Hence, if the strength of the backscatter-
nel LLs and therefore can be applied to nanotubes, whichnd at each contact is weak and the_y are weII_ separated from
have two channels of conduction near the Fermi energy. ©ON€ another, a!l other effects of the |mperfeptlons of the con-
As expected?in the Coulomb blockade regime, when the tacts scale rapidly to zero on the scale of wire length. Hence,

contact resistance is large, we find that the charge increasti€ Pehavior of such samples should be well described by a

discontinuously in steps whenever the gate volta@geaunits modgl containing qnly the ideal LL Hamiltonian and .this
in which two elect dded to the wi hendver leading backscattering operator at each contact. In particular,
I which two electrons are added 1o (e wire Wheneugns — nan the charg® on the wire is a universal function of the

increased by one uilVe=(2n+1)/4, wheren is an inte-  interaction strengthg, the renormalized backscattering
ger. The discontinuous character of these charge jumps is ajfirength~ulL'~9, whereL is the length of the wire, the gate

artifact of our variational ~method and translates intovoltageVG, the thermal lengtiksTL/%ve, etc. This stil
é-function peaks inc=dQ/dVs. The charge should be a contains many parameters that will affect the quantitative
continuous function oV, and the height of the peaksin  form of this crossover, but we expect our results for the
should be finite. The variational method predicts accuratelyevolution of the peak positions to be much more robust.
the locations of these peaks, but not their heights. If we cor- We establish the validity of our technique in Sec. II,
rect for this artifact,c should behave qualitatively as de- where we apply Feynman’s variational principle to calculate
picted in curve 1 in Fig. 1. Despite the spin degeneracy, eacthe free energy of an infinite, spinless LL with a single im-
peak corresponds to the addition of a single electron to theurity. In Sec. Il A, we discuss the variational solution for
wire. Indeed, in this case single electrons can enter the Lithe charge on a spinless LL connected to semi-infinite leads.
only when they acquire the additional energy required toA similar analysis is performed in Sec. 1lIB where we
overcome the Coulomb repulsion energy and in this regiméake into account spin. Finally, our results are summarized in
the periodicity of the peaks i8Vg=1/2. Sec. V.

Although the method we use has the advantage of allow-
ing us to consider arbitrary contact resistances, it yields un-
physical results when the contact resistance is low. In this II. INFINITE LUTTINGER LIQUID
regime we resort instead to perturbation theory . In this limit WITH A SINGLE IMPURITY
we find that the effects of the electron-electron interactions | this section we use Feynman’s variational principle to
are small. The spin-up and spin-down electrons propagaiga|culate the free energy for an infinite, spinless Luttinger
independently of each other so tfaio electrons are added \yjth an interaction parameterdescribing the strength of the
to the LL per Fabry-Perot oscillation ien. Consequentlys  interactions and a single impurity of scattering strength
exhibits a broad sinusoidal oscillatidnwith a periodVg  Although the free energy for this system can be computed
=1, which is twice as large as the period in the Coulombexactly'® applying the variational principle here allows us to
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establish the validity of this technique by comparing our re-wheree, is a high-energy cutoff. Fog=1, Eq.(5) is satis-
sults to the well-known renormalization group scalingfied only when\=0. Thus the variational free energy is
results!®?’ minimized by choosing a trial action which completely ne-
We begin by writing an effective bosonized actidfor  glects the effects of scattering. Fge>1 this result is con-
this system, sistent with renormalization group argumetftsyhich state
thatu is irrelevant for the case of attractive interactions and
that the scattering strength is therefore renormalized to zero
at energies much smaller thag. However, wherg=1 the
system reduces to a one-dimensional free fermion gas im-
where 6, represents)(x) evaluated at the impurity site. The pinging on a barrier of height. In this case the scattering
bosonic fieldd and its dualci) are related to the right— and strength is marginal, and the physics of the Sym value
left-moving fermionic fields iy, via the transformation of the conductance, eicshould depend on the scattering
YrL~€'(?*?. The Fourier-transform conventions we use strength, which our variational technique fails to predict. For

|nl

n
g

B
=83 2 oton)*-u [ drcog2oom], @

throughout are g<1, there exists a nontrivial solution to E@) given by
18, 2 9/(1-9)
Blo €o

_ that minimizes the free energy. It follows from E) that\
0(1)=2 e " f(w,). (2)  increases from 0 aj=1 to 2u atg=0 so that the effective
“n scattering strength increases with the strength of the interac-
We use nonstandard conventions for simplicity so that botfions. This behavior is also consistent with renormalization
6(w) and 6(7) are dimensionless. group arguments since is relevant in this range of. For
Determining the free energy for this system is nontrivialthis simple system, our variational technique therefore repro-
due to the presence of the cosine term in the effective actiorfluces the well-known scaling resdftexcept in the casg
We therefore approximate the free energy using Feynman's 1.
variational principlé®® which states that for some trial action

S’, the exact free energy obeys the following inequality: IIl. FINITE-SIZE LUTTINGER LIQUID CONNECTED
L L TO LEADS AND COUPLED TO A GATE
F<-— Eln Z'+ E(S— SHYg=F,, (3 A. Spinless fermions

L . . . , In this section we calculate the charge on a spinless LL of
whereZ' is the partition function corresponding & (Z'  |ength 2. and interaction parametey connected to two
=[D@e"%). The trial actiorS’ is chosen to have a tractable semi-infinite leads characterized by an interaction parameter
form and to depend on variational parameters that are deteg; . For simplicity, we assume that the Fermi velocityis
mined by minimizing the variational free ener@y,. The  uniform in the LL and the leads. The contacts with the leads
resulting variational free energy will be the best estimate forat positionsx=+ L are modeled as impurities of equal scat-

the exact free energy given the form of the trial action usedtering strengthi, measured in units of, =v/27Lg2 A gate

In our case, the most general tractable trial action is qua- < . ~ .
9 q voltage Vg is applied to the LL, wheré&/ is expressed in

units of %€, so that one electron is added to the LL when
9 VGHVG_F 1 .
|6(wn)|?, (4) The effective action for this system is

dratic in 6, so we take our trial action to be

|wn|

g

N+

S’=B;

where A is a non-negative, frequency-independent varia- i_ 2 B -

tional parameter. This form can be obtained by expandingthe ¢ g wEn agt |Oa(@n)|*Ka(@n) ‘/EWVG‘Q—(O)

cosine term in the effective action to second ordepiand 5

replacing the scattering strengthby an effective scattering uf(s

strength\/2. This turns out to be the most general quadratic - Efo dTg;l co§ 20, (1) +{N26_(7)], (7)

action that one needs to consider. Even if one takes into B

account an explicit frequency dependenceNothe solution  where 6. =[ 9(x=L)* 6(x=—L)]/y2 and 6_(0) repre-

that minimizes the free energy is frequency independent. sentsg_(w,=0). The functionsC. (w) appearing in Eq(7)
Computing the variational free energy using E4). and  are given by

setting dF ,/oN=0, we find in the zero-temperature limit

that the free energy is minimized whensatisfies the fol- lo| (1 1 || *1
lowing equation: IC+(w)—27T6L{a g tanl'(zwqg) ] (8)
\=2U ’ 5) To calculate the variational free energy, we take a trial action
N+eo/(mg)) ° of the form
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g ) tions we find that. =0 is the only solution whedA=1. For
522 Z+ |0a(@n) [ Ca(@n) +N\g] A<1, which is the relevant physical situation since we are
- “n @47 interested in repulsive interactions, the free energy is mini-

_ \/EW[(VG+ Ne) 0 (0) 4w, 0,(0)], (9) mized by a nontrivial value ok. The charge is then

and assume that the variational paramekersare frequency
independent and non-negative. If one allows to depend Q~n+ny
on frequency, one finds as in the single-impurity case that the

free energy is minimized wheR.. are frequency indepen-
dent. The quadratic terms in E(R) can be obtained by ex-
panding the cosine term in the effective action to secon

order and replacing by \ ./2, so we can once more inter-
preth . as effective scattering strengths. To obtain the linea

terms in Eq.(9), we shiftVg by a variational parameterg
and introduce another variational parameter that multi-

n—Vg

| (13
JH=2)

wheren is the closest integer t¥. This solution corre-
éponds to the Coulomb blockade limit since the charge in-

creases in steps whenewg equals a half integer. We note

;hat the charge jumps discontinuously at these valu&4of
resulting in the emergence @-function peaks ino. This
discontinuity is an artifact of the variational method and can
i X ) : be traced back to the replacement of the cosine term in the
plies ¢, (0). Theinclusion of the latter term, which does not gfective action by quadratic terms in our trial action. The
appear in the effective action in E(), is necessary in order gftect of this approximation is to suppress tunneling events
to preserve the invariance of the original Hamiltonian undefonyveen different minima in the cosine potential, which cor-
the addition of an extra unit of charge. _ . respond to quantum-mechanical mixing of the two nearly
_ The variational free energy computed from the trial actionyegenerate charge states of the LL. These instantons become
in Eq. (9) is given in Eq.(A1) in Appendix A. Setting the  ihortant when the gate voltage is near a half integer and
derivatives of the free energy with respect to the variationaly |4 cause the charge to increase smoothly in this region.
parameters to zero, we find that the free energy will be minigjnce we ignore such events in our calculations, the charge
mized when .. satisfy the following equation: jumps discontinuously. Intuitively, the charge should be a
Sy oy Aa—l() ~ continuous function o, and the peaks i should be
Ae=A_=A={y\"e Hcod Ve rounded and have finite height.
+ g PN PBe A )\ 2] (10) For smaller values of, we obtain the charge by numeri-
cally solving Eq.(10) for the value ofA that minimizes the
where costu./N)=¢{=*1, p==1, and A=29,0/(9. free energy. To illustrate the evolution of the charge, we plot
+9g). The dimensionless parameter that determines the by and its derivativer=9Q/dV as functions of/g for dif-
havior of the system iy=2u(mAe€_/€p)*, and in the zero-  ferent values ofy, focusing on a system at zero temperature

temperature limit (\) is given by with Fermi-liquid leads ¢, =1), 9g=0.25, and ¢ /¢q
=2.55x10 3. The solid lines in Figs. 2 and 3 represédt
0= fwdx D 1 1 1) and o evaluated aty=2.37 and 0.8, respectively. For com-
0 ame Ka(2me x)+N  XIA+N/2| parison, these quantities evaluatedyatO are shown as the

dashed lines. In Figs. 2 and3, we do not show the full
peaks ino at\~/G= 1/2 to emphasize the structure away from

VG=1/2. These figures illustrate that the magnitude of the
. ~ . discontinuous jump in the charg&Q diminishes asy de-
+11if —1/2<Ve<1/2 and change the sign gfwhenever . 0,505 additionally, the slope of the charge away from half-

Ve—Ve+1. Also, we taken=—1 if 0<Ve<1/2 and jneqer values of increases from 0 toward 1.

change the sign ofy whenevelVg—Vg+1/2. As vy decreases further, the behavior of the variational
Since the gate voltage acts as a chemical potential, theo|ution for the charge depends on whetbeis greater than
average charge on the L(in units of the electron chargés  or less than 1/2. Fag, <1/2, 5Q decreases smoothly to zero
Q=—(9F,/dVg)/(7%€.). When the free energy is mini- asy—0. This is illustrated in Fig. é), which containssQ
mized, the charge can be written in terms\oés versusy wheng, =1/4. Apart from the discontinuity in the

charge at half-integer values df;, in the low backscatter-
ing limit the variational method produces the expected
Fabry-Perot oscillations.

) ] ~ With g, =1/2, 5Q drops abruptly to zero whep equals a
To determine the charge, one must therefore find the solutiogyitical value denoted byy.. This feature is illustrated in

The signs of¢ and » depend on the gate voltage and should
be chosen such that the free energy is minimized Jard
non-negative. To satisfy these conditions, we chogse

Ve+\g
1+\

Q)= Vet AP TN (12

to Eq. (10) that minimizes the free energy. _ Fig. 4a), wherey,~0.78. Belowy,, the variational method
In the limit y>1 we can solve Eq(10) analytically by  predicts unphysical behavior in the charge that, in particular,
assuming that is large and roughly independent bf;. is inconsistent with a perturbative calculation of the charge

The dominant contribution to the integrallio\) then comes in the limit y<1. Details of the variational solution in this
from the region wherex>1. We therefore approximate regime will therefore be deferred to Appendix B. The varia-
K. (2me X)~2x/A and takel (\)~0. With these assump- tional method predicts the presencetwb sharp peaks ifr
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)

FIG. 2. The charge Q ang=dJQ/dVg as
functions of the gate voltage for a system with
g.=1, g=0.25, ¢ /€=2.55<10"%, and vy
=2.37. The discontinuity in the charge ¥
=1/2 is an artifact of the variational technique
that arises from our replacing the cosine term in
the effective action by quadratic terms in our trial
~ ~ action. This results ins-function peaks ino
0 02 04 06 08 1 V 0 02 04 06 08 1 V, which should instead be rounded and have finite

G G height. For clarity, we do not show the full peak

in o atVg=1/2 in (b).

1
0.8
0.6
0.4
0.2

a) b)

per period rather than the single broad peak expected froras the backscattering strength decreases, eventually evolving
the Fabry-Perot oscillations. Figure 5 conta@pando fora  into the broad Fabry-Perot peaks in the low backscattering
system withg, =1 and y<vy.. The double-peak structure limit.

that emerges is a consequence of the free energy being mini-

mized whenx=0 in the region between these peaks. We B. Spinful fermions

attribute this shortcoming of the variational technique to the : L
method failing to capture the analytic terms in the free en- /& NOW repeat the calculations of Sec. Il A taking into

ergy, which presumably dominate in this regime. In contrast2coUnt spin. It is convenient to decompose the system into

when g, <1/2 even the lowest-order term in perturbation cNarge and spin sectors via a change of basis to figlds
theory diverges, so there are no analytic terms in the fre& (61~ 91)/\/5-_ Since the interactions only affect the charge
energy. This explains why the variational technique yieldsS€Ctor, the spin sector in both the leads and in the LL is
reasonable results when <1/2 for arbitraryy but fails in ~ characterized by an interaction parametergt=1. The
the low backscattering limit wheg, = 1/2. charge sector is characterized by an interaction pararggter

In the limit y<1, the charge can instead be calculatedn the 1€ads and in the LL.

erturbativelv int whena. >1/2. To second order . we When spin is taken into account, the effective action in
b y 9 ' : Eq. (7) is generalized to

find
S ) ~
0=V AyPsin(2aVe) W ap- 2, |talonKa(wn)=27Vs0, (0)
whereA is a positive constant. It follows that is roughly _E A + +
constant, exhibiting small Fabry-Perot oscillations with peri- Blo dr(%z 0080y (T H 028, (74 L0 (7)

odicity 5Vs=1. Thus, although the variational method fails n 0. (1) (15)
in the low backscattering limit, the expected behavior is cap- §1820,-(7)],
tured perturbatively. wherea=p=*,o* are charge and spin indices, respectively,

In summary, we have shown that for a spinless, singleand, ,= +1. The functionsC,(w,,) are defined by
channel LL the periodicity ofr is the same in the low back- ’
la
} , (16

scattering and Coulomb blockade limits. After correcting for o [1 1 ||
the artifacts of the variational technique, we find that the ICa(w)=2 — +t—|tan 2
Coulomb blockade peaks n simply broaden symmetrically TEL g 2me g

gL

)
3
25 FIG. 3. The charge Q and=dQ/dV; as
2 functions of the gate voltage for a system with
L5 g.=1, g=0.25, € /€=2.55<10"%, and y
1 =0.8. Asy decreases the discontinuous jump in
05 the charge aVg=1/2 diminishes, and the slope
) ~ of the charge away frorﬁlezllz increases. The
0 0204 06 08 1 sharp peak inr at Vg=1/2 is not shown inb)
G for clarity.
a) b)
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0Q 6Q

0.8 / 8% //,/’
X o
06 e 05 Ve
04 04 FIG. 4. The magnitudéQ of the discontinu-
0.3 ous jump in the charge at half-integer values of
0.2 ¢ 02 Vs as a function ofy for a system withe, /€g
. 0.(1) =2.55x10"% and(a) g, =1 and(b) g, =0.25.
P

a) b)
where gf*=g,, 9°"=0, 9/ =09""=1, {,,+=1, and  Here, y'=2UA Y4 wAe le)** V2 is the dimensionless
{p1o—=—1. We assume a trial action of the form parameter that determines the behavior of the system, and
s , o _JWdu 2 1 1 1
EB—wEalﬁ(wn ) [Ka(@n)+Nal =27 4 6,..(0) M= | 7|2 Ka2me i) tn  WATNZ utN2
" (20)
+(Vetre)0,-(0)+ pgs 051 (0)+ g0, (0)]. in the zero temperature limit. The values pfand ¢ are the

(17 same as in the spinless case. In the second set of equations,
the charge is determined from the following equation:

|

Here,\ .+ represent effective scattering strengths agd
M+, and u,. are additional variational parameters. The 7|Q/2— Vgl
variational free energy computed from this trial action is

given in Eq.(A2) in Appendix A. As in the spinless case, the =y \(A+ D)% —1"(\)
free energy is minimized when the effective scattering
strengths are equal, so we defig,-=\.

As outlined in Appendix A, setting the derivatives of the «|sin i\/ 12y A+1g- 21 (N gjrR ﬂ) B 21)
free energy with respect to the variational parameters to zero g2 Y 2 '
leads to two sets of equations for the variational parameters
that result in physical solutions for the charge. In the first setvhereh is a function of the charge via
the charge is given in terms af by

NQ)=|m(Q/2—Vg)tan 7Q/2)|. (22)

To determine which set of equations leads to an absolute
minimum of the free energy, we find numerically the mini-
mum free energy solution to both sets and retain the one with

Q)= 2VG+_\/7,2)\A+1 —21"(\) _ A2, (18)

where\ is a solution to the lower free energy.
In the Coulomb blockade regime wheyé> 1, the charge
A=y N+ D21 Mgo TQ(N) . (19 is given by Eq.(18)~vvhenn—1/4<VG<nﬁ-L1/4 qnd by Eq.
2 (21) whenn+1/4<Vg<n+3/4, wheren is an integer. In
(0
3

FIG. 5. The charge Q and=dQ/dVs as
functions of the gate voltage for a system with
Fermi- I|qU|d leads ¢,=1), g=0.25, ¢ /¢
=2.55x10"3%, andy=0.47<1y,. The two peaks
present ino arise from the free energy being
minimized when\ =0 in the region between the

0 ~ ~ peaks. This double-peak structure is an artifact
0 02 04 06 08 1 V. 0 02 04 06 08 1 VG due to the variational method failing to capture
o G . the analytic terms in the free energy.
a) b)
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Q o

2 70
60
15 50
40 FIG. 6. The charge Q and=dQ/dVs as
1 30 functions of the gate voltage for a system with
0.5 20 g.=1, g=0.25, € /€,=2.55x10"3, and y'
’ 10 =1.56. At this value ofy’, the peaks irr appear
0 ~ | ~ only slightly shifted away fronVg=1/4 and 3/4.
0 02 04 06 08 1 VG 0 02 04 06 08 1 VG
a) b)

this limit the charge can be retrieved analytically by assum-of 3 in Fig. 7A@ and a factor of 4 in Fig. @. In Fig. 8, the
ing A>1 and takingl'(A)~0. As in the spinless case, we peaks ino have shifted significantly and appear at roughly
find nontrivial solutions for only whenA<1. The charge ¢ _-0.4 and 0.6.

in this range ofA is given by Wheny' reaches a critical valug, , the first set of equa-

tions yields the lowest free energy for ¥}, and the charge
, 23 is given everywhere by Eq18). The discontinuous jump in

the charge drops smoothly to zero gt, and the charge

remains continuous at smaller values)éf For y' <y/, the
where n is the closest integer to\2; and '=—1 if 0 variational method predicts unphysical behavior in the
<VG< 1/4 and changes sign whene\Ye(g—ﬂGJr 1/4. Thus charge that is inconsistent with perturbation theory when
the charge increases in steps, jumping discontinuously by an’ <1, so we defer details of the solution to Appendix B. In
amountdQ~1 at half-integer values of\2;. This discon- ~Ccontrast to the spinless case, where the method was reliable
tinuity is again an artifact of our technique and results infor arbitraryy’ wheng, <1/2, the variational technique fails
s-function peaks ino rather than rounded peaks of finite in this range ofy’ for all g . This is consistent with the fact
height. Theses-function peaks occur at half-integer values that in the spinful case the effective interaction parameter for
of 2V, so the period ofr in the Coulomb blockade regime the 1eads is g +1)/2, which is always greater than 1/2.
is V= 1/2. Figure 9 illustrates the unphysical behavior in the (,:harge

As y' decreases and the system moves away from thBredicted by the variational method wheyi=0.33<yc.

Coulomb blockade limit, the window &7, inside of which ~ For clarity, Q—2Vg has been scaled by a factor of 30 in the
the second set of equations yields the lowest free energ9harge. Nonlinear corrections to the charge are therefore
begins to shrink. The charge remains discontinuous at th@uite small at this value of’, ando is nearly constant. The
end points of the window, causing the peaksoirto shift.  variational method predicts two peaksdnper period rather
Figures 6, 7, and 8 represent=1.56, 0.67, and 0.58, re- than the single broad Fabry-Perot peak expected in this re-
spectively, and illustrate how® and o evolve asy’ de- gime. This double-peak structure persists ydsdecreases
creases. For our numerical data, we again focus on a systefiirther untilQ= 2V and the peaks disappear altogether. As
at zero temperature with Fermi-liquid leads=0.25, and in the spinless case, we attribute this failure of the variational
€L/€9=2.55<10"°. To illustrate the nonlinear behavior in  technique to the method neglecting analytic terms in the free
the charge more clearl) — 2V has been scaled by a factor energy. We therefore emphasize instead a perturbative calcu-

n/2—Vg

~ ! —_—
Q~n+2y INETER

(0

10

8 FIG. 7. The charge Q and=dQ/dVg as

6 functions of the gate voltage for a system with

g.=1, g=0.25, € /€,=2.55x10"%, and 4’

4 =0.67. For clarity, we have scal&—2Vg by a

_) factor of 3 in the plot of the charge. The peaks in
3 e e [ o are now located nea’s=0.3 and 0.7
0 02 04 06 08 1 Vg 0 02 04 06 08 1 Vg °
a) b)
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Q o

2 4
15 P FIG. 8. The charge Q and=dQ/dVg as
' 35 functions of the gate voltage for a system with
| 3 g.=1, g=0.25, ¢ /,=2.55<10"%, and v’
=0.58, which is close toy.. For clarity, Q
05 & 25 — 2V has been scaled by a factor of 4 in the plot
! of the charge. The peaks i continue to move
~ N Y ‘W
toward Vg=1/2 and now appear at rough
02 04 06 08 1 Vg A2 0446 03] Vg foward Ve =1/ pp ghWe
a) b)
lation of the charge in the low backscattering limit. To sec- IV. DISCUSSION

ond order inu, we find perturbatively that for ang, >0, We discussed the average charge on finite-size spinless

- - and spinful Luttinger liquids as a function of an applied gate
Q=2Vg—A’y'%sin(27Vg), (24 voltage. As expected, in both cases the charge increases al-
most linearly with gate voltage when the contacts are good,
= i ~ Rl while the charge increases in steps in the Coulomb blockade
Perot oscillations is therefor@/g=1, which is the same as egime. In the spinless case, the derivative of the charge with
in the spinless cassee Eq(14)]. , respect to the gate voltagehas the same periodicity in both

In summary, we have shown that the periodeofior a it When spin is taken into account, however, we showed
spinful LL increases by a factor of 2 as the system goes frortEhat each Fabry-Perot peak begins to separate into two peaks

the Coulomb blockade regime to the low backscattenngas the contact resistance increases. As illustrated schemati-

limit. The numerical data in Figs. 6—8 along with the pertur- S ) ]
. . . cally in Fig. 1, the spacing between these peaks increases
bative calculation of the charge in E@4) demonstrate that . ) . o
with the contact resistance until the Coulomb blockade limit

once we correct for variational artifacts, this crossover in. . .
periodicity takes place as sketched schematically in Fig. 1'S reacheq and the perlod of is redPCEd by a factor of 2.

As the backscattering strength at the contacts decreases, the® Physics behind this crossover is that when the contacts
Coulomb blockade peaks shift in position as they broader@® 900d, electrons from the two spin channels essentially
and eventually combine to form the broad Fabry-Perot oscilPropagate independently of one another so that two electrons
lations. As mentioned before, the physics behind this crossare added to the LL per period of the Fabry-Perot oscilla-

over in periodicity is that in the Coulomb blockade regimetions. In the Coulomb blockade regime, however, despite the
electrons are added one-by-one due to electron-electron isPin degeneracy electrons are added to the LL one at a time
teractions. In the low backscattering limit, however, thedue to electron-electron interactions, resulting in a reduction

spin-up and spin-down electrons essentially propagate indeéa periodicity.

pendently of one another, so that two electrons are added to The shifting of the peaks between these limits can be

where A’ is a positive constant. The period of the Fabry-

the LL per period of the Fabry-Perot oscillationsdn understood heuristically from a simple “Hartree” picture of
free electron levels and a global charging eneftippugh it
Q (o) should be kept in mind that such a picture misses many
2 = 21 details of the LL physics In this framework, there is a dif-
5 205 ference in energy required to add an electron to a LL with
odd versus even charge. If the number of electrons on the LL
! 2 is odd, then in the ground state there will be an energy level
05 1.95 occupied by a single spin. This energy level can then accom-

-~ 19 . modate an additional electron with the opposite spin. In the

0 0204 06 08 1 Vg “0 0204 06 08 1 Vg  ground state of a LL with an even number of electrons, how-
ever, each energy level is doubly occupied, so adding an

a) b) electron requires additional kinetic energy relative to the LL

with odd charge. Deep in the Coulomb blockade regime, this

FIG. 9. The charge Q and=dQ/dV as functions of the gate energy difference will be much less than the Coulomb energy
voltage for a spinful system witly, =1, g=0.25, ¢, /,=2.55 required to add an electron. As the contact resistance de-
x 1073, andy’=0.33, which is slightly belowy.. To emphasize creases and the Coulomb interactions become less important,
the nonlinear behavior in the charge, we have sc@led?V; by a  this energy difference can become appreciable. Since the
factor of 30 in the plot of the charge. The double-peak structure irgate voltage supplies the energy for electrons to tunnel onto
o is an unphysical artifact of the variational method that resultsthe LL, these arguments imply that as the contact resistance

from the technique neglecting analytic terms in the free energy. increases the peaks im should shift towards half-integer

155332-8
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gate voltages where the charge is odd, which is consistent
with what we find.

In an obvious generalization, we expect that if thererare
conduction channels, then the period should change by a
factor of 2n, with the factor of 2 arising from spin. This
crossover in periodicity should also appear in the behavior of
the conductance. Specifically, rather than pairs of Coulomb
blockade peaks combining to form the Fabry-Perot oscilla-
tions, we expect & Coulomb blockade peaks to collapse
onto each other in the low backscattering limit. Addressing
how these peaks collapse, however, requires further investi-
gation.

This crossover in periodicity can be used to interpret re-
cent experimental data on carbon nanotubes, which have
been shown to behave as two-channel [**&! As de-
scribed in the Introduction, the conductance of nanotubes has
been measured in devices with near-perfect confactshe

PHYSICAL REVIEW B 69, 155332 (2004

F, 7| (Vetie)? 2Vg(Vg+hg)
e_L_7 (1_1_)\_)2 1+N_
2 aZ In { [Ka(wn)"')\a]
1 Aa
2¢ B 0, a==* Nat Ka(wp)
—2Uco m(Vethe) cog TH+
1+N_ A

(A1)

y 1 2 1
exg ——— — .
2€ 8 w, a==* Ka(wn)+Ng

The variational free energy for the spinful LL corresponding

Coulomb blockade limif;®> and more recently in an interme- to the trial action in Eq(17) is

diate regimé-When the contacts are good, we have seen that

four electrons should be added to the nanotube per period of

the Fabry-Perot oscillations in the conductance. As the con-— = 7
€L

tact resistance increases, corresponding to an increage in
each of these oscillations should begin to separate into four
distinct peaks as the crossover begins to take place. The
manner in which this takes place cannot be implied from our
single-channel calculation, though a few possibilities can oc-
cur: all four peaks will appear simultaneously and then
evolve and separate symmetrically; two peaks will arise,
evolve and separate symmetrically, then each of them will
split into two peaks; two peaks will arise and separate first,
then when they reached a certain distance two more peaks
will appear. The recent observation of a four-electron period-
icity for electron addition by Liangt al' may be a manifes-
tation of this crossovefsee Fig. 1 in that referenceThe
conductance of their devices exhibited peaks grouped into
clusters of four as the gate voltage increased. We note that
their measurements are consistent with our prediction that
the peaks shift in position as the contact resistance changes
since adjacent conductance peaks within a given cluster are
closer together than adjacent peaks in neighboring clusters.
As the contact resistance increases further, the four peaks
within each cluster should continue to separate and become,
sharper until the Coulomb blockade limit is reached and the"
period of the conductance is reduced by a factor of 4.
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i 7(Vg+Ag)
uy co l+)\p, co

T
xcos( ”+) +sin
)\0'+
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y 1 1
exp —
4e B wp,a Ka(wn)+X\q

ith a=p=*,o+. Equation(A2) is minimized when\ ;-
=\ and either

+ L T+
sm( )\p )= m( . )=0, (A3)
T+ | Tp+ |
co{ N )—cos{ )\p )—0. (A4)

N\, 4o—, and the charg€:

APPENDIX A: VARIATIONAL FREE ENERGY

The variational free energy for the spinless LL computed
using the trial action in Eq9) is
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Forg, <1, the free energy is minimized by a nontrivial
, (A6)  for the entire range of gate voltages. This solution can be
obtained analytically by first noting that<1 wheny<1 so
that the dominant contribution to the integrallif\) comes
from the region of smallx where x=g. To approximate
I(\), we therefore cut off the integral at=g and expand

éCi(Zwe,_x) to first order inx. For V5 away from a half-
integer, the square-root term in EQLO) can be dropped,

allowing determination of. The resulting charge whévig
A=y NEFD2g=1T0) is away from a half-integer is

A=y NATDZem! ““cos{ ﬂ) cod o=
2 g2+

Q| L[ Q12—Vg

COSZ(T) —{1+7T (T

By inspection and confirmed by numerical analysis, thes
equations are satisfied whet),_=0 andA\ is a solution to

27-1
(A7)

X co§ mV g+ n\/yIZ)\A-Fle—ZV()\)_}\Z]. (A8) Q—Vgx 7y~ 9|sin(#Vg)||cog wVg) |9/~ 90),

(B1)
This decoupled equation for can be used in conjunction . .
with Eq. (A5) to obtain Eq.(18) for Q in terms of\. When 1/2<g, <1, Eq.(B1) predicts an unphysical double-

Equation(A4) yields a set of coupled equations identical peak structure iny similar to that shown in Fig. &), while

N : for g, <1/2, Eq.(B1) predicts oscillations irr with a single
to Egs. (AS)~(A7) except that the cosines are replaced by ak per period. An analysis of the charge at half-integer

sines. In this case, one can not obtain a decoupled equatidtf _ . )
for \. Instead, we first use the analog of E47) to write A values ofVg, however, reveals that the charge is discontinu-
as a function of the charge. We then use the remaining tw@US at these values wheg <1/2. If we correct for this

equations to obtain a decoupled equation for the charge, E@tifact, then the variational technique reproduces the ex-

(21). pected Fabry-Perot oscillations inwheng, <1/2.
In the spinful case, the variational technique yields un-
APPENDIX B: VARIATIONAL RESULTS IN THE LOW physical results for the charge wheri<1y. . Here,y, cor-
BACKSCATTERING LIMIT responds to the value af below which the charge is given

| in thi di ) h . for all VG by Eg.(18), which has a nearly identical structure
_ For completeness, in this appendix we review the variay, g4 (12) ‘governing the charge in the spinless case. The
tional solution in the limit of near-perfect contacts where the

technique yields unphysical results. In this limit the failure of
the technique is due to the method neglecting analytic termﬁnphysical double-peak structure anas depicted in Fig. 9.

in the free energy, which in this case provide non—negligibIeThe main difference here is that this failure occurs forgall

contributions. In the spinless case, the variational results arg e the effective interaction parameter in the leadgjs (
unphysical whemy, =1/2 andy<1y,. As Fig. 5 illustrates, in +1)/2>1/2. Forg, =1, the region between the peaksdn

this regimeo exhibits two peaks per period. Wheg, =1 here the free energy is minimized hy=0 increases as’

this structure arises because the free energy is minimized' | oo q Eventuallyr =0 everywhere and the peaks dis-

when\=0 in the region ofVs between those peaks. As appear altogether.
decreases, the width of this region increases and the peaks in | the Jimit 4’ <1, the charge can be obtained analytically
o spread farther apart until=0 everywhere and the peaks py invoking similar approximations that were made in the

drisalppear entirﬁly. This can be uncljlerst(zjod by ”Otrilng thatl iRpinless case. We again find only trivial solutions Xowhen
the limit y<1 the system essentially reduces to the single-, _ % _
impurity problem discussed in Sec. 1l for whigh=0 is the g.=1s0thaQ=2Vs. Forg <1, however, the free energy

only solution wheng,=1. In this limit the variational Is minimized by a nontrivial value of, and the charge away

method thus predicts th@=Vs. While this is consistent from half-integer values o is

with renorma!iz_atic_)n group arguments whgp>1, in the Q—2Vgx 27y 219 sin( 7Vg)||cog wVg)| Ao/ (1-0)),
case of Fermi liquid leadsg{ =1) one would expect to see (B2)
small Fabry-Perot oscillations in the charge as the gate volt- - .
age varies. These Fabry-Perot oscillations have been oﬁ)t— follows from Eq. (B2) that o eXh'b'tf an unphysical
served in the conductance of single-walled nanotubes wit§ouble-peak structure for afj <1. WhenVg equals a half
near-perfect Ohmic contactsand were also captured by a integer we find that=0 is the only solution for any,

behavior ofa in this regime is therefore very similar to that
in the spinless case, and the method once again predicts an

perturbative calculation of the charge in Sec. IV A. <1 so that the charge is a continuous functiorf/@f.
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