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We present the critical theory of a number of zero-temperature phase transitions of quantum antiferromag-
nets and interacting boson systems in two dimensions. The most important example is the transition of the
S=1/2 square lattice antiferromagnet between the Néel state(which breaks spin rotation invariance) and the
paramagnetic valence bond solid(which preserves spin rotation invariance but breaks lattice symmetries). We
show that these two states are separated by a second-order quantum phase transition. This conflicts with
Landau-Ginzburg-Wilson theory, which predicts that such states with distinct broken symmetries are generi-
cally separated either by a first-order transition, or by a phase with co-existing orders. The critical theory of the
second-order transition is not expressed in terms of the order parameters characterizing either state, but
involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely
related theory describes the superfluid-insulator transition of bosons at half filling on a square lattice, in which
the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of
antiferromagnets between the valence bond solid and theZ2 spin liquid: the critical theory has deconfined
excitations interacting with an emergent Us1d gauge force. We comment on the broader implications of our
results for the study of quantum criticality in correlated electron systems.
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I. INTRODUCTION AND MOTIVATION

A central concept in the theory of phase transitions is that
of the “order parameter,” which expresses the different sym-
metries of the phases on either side of the critical point. If the
transition is second order, there is interesting universal sin-
gular behavior that is manifested in many physical quantities.
According to the prevalent paradigm largely due to Landau
and Ginzburg,1 these universal critical singularities are asso-
ciated with long-wavelength low-energy fluctuations of the
order-parameter degree of freedom. When combined with
general renormalization-group ideas,2 this notion provides
the sophisticated Landau-Ginzburg-Wilson(LGW) theoreti-
cal framework for thinking about critical phenomena in vari-
ous diverse contexts. Specifically, static critical properties at
nonzero temperature are supposed to be determined from ef-
fective models in which all modes other than the order pa-
rameter have been eliminated. Similarly, for dynamical criti-
cal properties, the only degrees of freedom that purportedly
need be retained are the order parameter and at most a few
additional “hydrodynamic” modes having slow relaxation
times due to conservation laws.

Recent years have seen much interest in the study of zero-
temperature phase-transition phenomena in correlated many
body systems. Unlike their thermal counterpart, such transi-
tions are often driven by quantum fluctuation effects and are
hence known as “quantum phase transitions.”3 Indeed, it has
been proposed that proximity to quantum critical points
(QCP’s) separating two distinct phases is responsible for the
anomalous properties of some interesting correlated materi-
als such as, for instance, the cuprate superconductors. Theo-
retically, the LGW paradigm has thus far provided the basic
framework to examine quantum critical phenomena as well.

In particular, the critical modes specific to a quantum critical
point are presumed to be the long-distance, long-time fluc-
tuations of the order parameter, described in a continuum
field theory.

In the last few years some interesting and tantalizing evi-
dence has emerged that points toward the failure of the LGW
paradigm at certain quantum phase transitions. First, there
are numerical calculations4,5 that see a direct second-order
quantum phase transition between two phases with different
broken symmetry characterized by two apparently indepen-
dent order parameters. A LGW description of the competi-
tion between such two kinds of orders would then generi-
cally predict either a first-order transition, or an intermediate
region of coexistence where both orders simultaneously ex-
ist, or an intermediate region with neither order. A direct
second-order transition between these two broken symmetry
phases would seem to require fine tuning to a “multicritical”
point. Are the numerics managing to achieve this “fine tun-
ing” or is the LGW paradigm simply invalid?

Second, there have been a number of fascinating experi-
ments probing the onset of magnetic long-range order in a
class of rare-earth intermetallics known as the heavy fermion
metals.6,7 Remarkably, the behavior right at the quantum
transition between the magnetic and nonmagnetic metallic
phases is usually very different from that of a Fermi liquid.
Furthermore, such behavior is in severe disagreement with
expectations based on LGW analyses. Specifically, theories
associating the critical singularities with fluctuations of the
natural magnetic order parameter in a metallic environment
seem to have a hard time explaining the observed non-Fermi-
liquid phenomena. Once again it appears that more than the
obvious possibly happens at some quantum critical points.
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In this paper we demonstrate and study various specific
examples of quantum phase transitions which violate the
LGW paradigm. We will show that in a number of different
quantum transitions, the natural field-theoretic description of
the critical singularities is not in terms of the order-parameter
field(s) that describe the bulk phases but in terms of some
interesting “emergent” degrees of freedom that are specific to
the critical point. These different degrees of freedom may be
thought of “fractional” quantum number particles that inter-
act with each other through an emergent gauge force in a
sense made precise below. Laughlin has previously argued
for fractionalization at quantum critical points on phenom-
enological grounds.8 Subsequently, Bernevig, Giuliano, and
Laughlin9 suggested that essentially all two-dimensional
quantum critical points, including those described by the
LGW theory, should be considered “fractionalized.” Wedis-
agreewith this characterization. For LGW critical points, the
same degrees of freedom used to characterize the phases on
both sides of the critical point can be used to obtain a field-
theoretical description of the critical point; the fields do ac-
quire an anomalous dimension at the critical point, but this is
a relatively minor modification of the noncritical theory. In
contrast, for the different “deconfined” critical points we
shall describe here, the critical theory involves fractionalized
degrees of freedom not present in either phase. A precise
distinction of such critical points from the conventional
LGW critical point is provided by an emergent topological
conservation law which is only valid asymptotically at the
critical point. A nontechnical overview of our results has
appeared previously.10 Further details contrasting our results
from the ideas of Ref. 9 appear in Ref. 11.

We note, in passing, that there are already numerous well-
documented examples of the breakdown of the LGW para-
digm in quantum systems in one dimension.12 However,
these rely rather crucially on the description of various states
in terms of the harmonic phase degrees of freedom of the
Tomonaga-Luttinger liquid, and do not have any direct gen-
eralization to higher dimensions.

We also clarify that the main purpose of this work is to
demonstrate the breakdown of the LGW paradigm in specific
examples drawn from insulating quantum magnets. In par-
ticular, we do not claim to have developed a theory of the
QCP’s in the cuprates or the heavy fermion materials.
Whether a successful theory of observed phenomena in these
materials can be developed based on our work is a question
that we leave for future work.

For the most part in this paper, we will study phase tran-
sitions in two-dimensional quantum magnetism. These may
also be fruitfully viewed from a different point of view as
representing transitions of interacting bosons on a lattice at
commensurate density. Quantum magnets provide a particu-
larly useful laboratory to develop and test ideas on the theory
of quantum phase transitions. Consider a quantum system of

spinS=1/2 momentsSW r on a two-dimensional square lattice
fr =sx,ydg with the Hamiltonian

H = Jo
krr8l

SW r ·SW r8 + ¯ . s1.1d

The ellipses represent other short-ranged interactions that
may be tuned to drive various zero-temperature phase tran-

sitions. We assumeJ.0, i.e., antiferromagnetic interactions.
Later we will consider various generalizations to other lat-
tices, higher spins, etc.

The nature of some of the various possible ground states
of such a Hamiltonian are quite well understood. First, there
are states that develop magnetic long-range order and break
the spin rotation symmetry. The simplest example(and the
one that we will focus on) are collinear antiferromagnets

where the order parameter is a single vectorNW r (the Néel
vector), defined to describe a state of staggered magnetiza-
tion,

SW r = erNW r , s1.2d

where

er ; s− 1dx+y s1.3d

is +1 on one checkerboard sublattice and −1 on the other.

The Néel state haskNW rlÞ0 and independent ofr (see Fig. 1),

but more generallyNW r is presumed to vary “slowly” on the
lattice scale over at least most of space. The low-energy ex-
citations of the Néel state are simply linear dispersing spin
waves.

It is now recognized that a variety of quantum paramag-
netic ground states are also possible where quantum fluctua-
tions have prevented the spins from developing magnetic

long-range order, and sokSW rl=0. Such paramagnetic states
can be broadly divided into two groups. First, there are states
that can be described as “valence bond solid”(VBS) states.13

In a simple caricature of such a state, each spin forms a
singlet with one particular other spin resulting in an ordered
pattern of “valence bonds.” For spin-1/2 systems on a square
lattice, such states necessarily break lattice translational sym-
metry. The so-called “columnar” and “plaquette” ordering
patterns(see Fig. 1) are described by a complex VBS order
parametercVBS, where

FIG. 1. Ground states of the square latticeS=1/2 antiferromag-
net studied in this paper. The couplingg controls the strength of
quantum spin fluctuations about a magnetically ordered state, and
appears in Eq.(2.1) (the classical limit isg=0). There is broken
spin rotation invariance in the Néel state forg,gc, described by the

order parameterNW r in Eq. (1.2). The VBS ground state appears for
g.gc, and is characterized by the order parametercVBS in Eq.

(1.4)—the distinct lines represent distinct values ofkSW r ·SW r8l on each
link. The VBS state on the left has “columnar” bond order, while
that on the right has “plaquette” order. The theoryLz in Eq. (1.7)
applies only at the QCPg=gc at its critical point obtained ats=sc.
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SW r ·SW r+x̂ , RefcVBSgs− 1dx,

SW r ·SW r+ŷ , ImfcVBSgs− 1dy, s1.4d

and r =sx,yd (here columnar states havecVBS
4 real and posi-

tive, while plaquette states havecVBS
4 real and negative). In

these states there is an energy gap for spin-carryingS=1
quasiparticle excitations; these “triplons”14 are quite distinct
from spin waves, and are instead adiabatically connected to
spin excitons in band insulators. A second class of more ex-
otic paramagnetic states is also possible15–19 in principle: in
these states the valence bond configurations resonate
amongst each other and form a “liquid.” The resulting state
has been argued to possess excitations with fractional spin
1/2 and interesting topological structure.

Our focus will be on the nature of the evolution of the
ground state between these various phases. Our primary ex-
ample is that between the ordered magnet and a valence
bond solid. We also discuss the phase transitions between
valence bond solid and “spin” liquid phases(see Sec. VIII).
Qualitatively similar phenomena will be shown to be ob-
tained at both these transitions.

Both the magnetic Néel state and the valence bond solid
are states of broken symmetry. The former breaks spin rota-
tion symmetry, and the latter the symmetry of lattice transla-

tions. The order parametersNW andcVBS associated with these
two different broken symmetries are very different. A LGW
picture of the evolution between these two distinct ground
states would be formulated in terms of an effective action

that is a functional ofNW andcVBS. Such a construction would
suggest either a first-order transition, or passage through an
intermediate phase which breaks both kinds of symmetry or
an intermediate “disordered” state withneither order. A di-
rect second-order transition would be expected only by fur-
ther fine tuning to special multicritical points. Our central
thesis is that this expectation is wrong. A generic second-
order transition is possible between these two phases with
different broken symmetries. The resulting critical theory is,
however, unusual andnot naturally described in terms of the
order-parameter fields of either phase. Instead, the natural
description is in terms of spin-1/2 “spinon” orCP1 fieldsza

(a=1,2 is aspinor index). The Néel order parameter is bi-
linear in the spinons:

NW , z†sWz. s1.5d

HeresW is the usual vector of Pauli matrices and multiplica-
tion of the spinor index is implied. The fieldsza create single
spin-1/2 quanta, “half” that of the spin-1 quanta created by

the Néel fieldNW .
Although we have proposed above that the critical theory

is naturally described in terms of the spinon fields and not
the order parameters of either phase, the reader may wonder
whether this is a unique theory, and that perhaps we have
overlooked some complicated formulation in terms of vari-
ables related to the two order parameters. It will become
clear from our analysis below that such a possibility is highly
unlikely, and we anticipate the main reasons here. As we

discuss below, a key point is that the topological defects
(namely the hedgehogs in space-time) of the Néel order pa-
rameter have the same quantum numbers of the order param-
eter of the VBS paramagnet. If we insisted on describing the
direct second-order transition between these phases in terms
of these order parameters, it would be necessary to associate
the VBS order parameter with the hedgehogs of the Néel
order parameter. This means that the two order-parameter
fields will have long-ranged “statistical” interactions with
each other. Consequently there will be no local theory which
includes only the two order-parameter fields(but no other
fields). It is these difficulties that force the necessity for an
alternate description which is conveniently provided by the
spinon degrees of freedom.

The spinon fieldsza defined in Eq.(1.5) have a Us1d
“gauge” redundancy. Specifically thelocal phase rotation

z→ eigsr,tdz s1.6d

leaves the Néel vector invariant and hence is a gauge degree
of freedom. Heret is the imaginary time coordinate. Thus
the spinons are coupled to a Us1d gauge fieldamsr ,td (we
will use the Greek indicesm ,n , . . . to represent the three
space-time indicesx,y,t). Our central thesis—substantiated
by a variety of arguments to follow—is that the critical field
theory for the Néel-VBS transition is just the simple con-
tinuum actionSz=ed2 rdt Lz, and

Lz = o
a=1

N

us]m − iamdzau2 + suzu2 + usuzu2d2 + ksemnk]n akd2,

s1.7d

where N=2 is the number ofz components(later we will
consider the case of generalN), uzu2;oa=1

N uzau2, and the value
of s is to be tuned to a critical values=sc so thatLz is at its
scale-invariant critical point. The same action with a simple
modification also describes the critical field theory for sys-
tems with easy-plane anisotropy, with the addition of the
simple term

Lep= wuz1u2uz2u2, s1.8d

with w,0. We will discuss in more detail later why these
would describe stable critical points—perhaps the most di-
rect evidence comes from the numerical simulations reported
in Ref. 23 of a lattice model of aCP1 field coupled to a
noncompact gauge field[a lattice version of Eq.(1.7)],
where a continuous transition was found in both the isotropic
and easy-plane cases.

How can this action describe the onset of VBS order
when it does not containcVBS, and theza are closely related
to the Néel order parameter? In writing Eq.(1.7), we have
tacitly assumedam to be a single-valued continuous field. In
a more careful lattice implementation of Eq.(1.5), however,
the resulting gauge field that appears iscompact, i.e., defined
only modulo 2p. This allows for the presence of topological
defects occurring at a single instant of space-time(“instan-
tons”) called monopoles, at which magnetic flux]xay−]yax is
created or destroyed in integer multiples of 2p. In general,
Eq. (1.7) should thus be supplemented by terms which create
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or destroy such 2p fluxes, or equivalently insert monopoles
into the partition function:

Lmp = o
n=1

`

lnsrdsfvrtgn + fvrt
† gnd, s1.9d

wherevrt
† andvrt insert monopoles of strength 2p and −2p

at the space-time pointsr ,td, respectively. Remarkably, it has
been shown by Read and Sachdev13,20 that this operator may
be identified with the VBS order parameter, i.e.,

vrt , cVBSsr,td. s1.10d

A simple argument to this effect will be given in Sec. III.
Thus VBS physics is implicitly(albeit highly nonlinearly)
contained in the gauge theory of Eqs.(1.7) and (1.9).

With the definition of the precise model considered in this
paper at hand[Eqs.(1.7)–(1.9)], we are in a position to sum-
marize our interesting results(on which we elaborate further
in this introduction). Our primary claim is that Eq.(1.7),
without the monopole creation terms of Eq. (1.9), describes
the critical properties of the Néel-VBS transition. This claim
requires that the monopole “fugacities”ln are irrelevant in
the renormalization-group sense at the QCP. This irrelevancy
is a consequence of quantum Berry phase effects described
by Haldane,21 which renderlnsrd oscillatory and negligible
for nÞ0smod 4d for spin S=1/2 (a different derivation ap-
pears in Appendix A and in the review in Ref. 22). Our claim
is based on the following results:

• We establish theln are irrelevant at the QCP forS half
odd integer for theN=1 case of Eqs.(1.7) and (1.9) in Sec
IV A.

• As has been discussed in early work,13,20,24in Sec IV B
we interpret the results of various largeN computations to
argue that theln are irrelevant at the QCP forall S for N
sufficiently large.

• In Sec. V, we consider theN=2 case of Eqs.(1.7)–(1.9)
in the easy-plane case withw,0. The QCP of this model is
considered in Sec. VI A, and we establish that theln are
irrelevant forS half odd integer.

The case of central interest, the QCP withS=1/2, N=2,
and SUs2d symmetrysw=0d is discussed in Sec. VI B: we
argue there that the above results provide very strong evi-
dence that theln are irrelevant for this case too. Note also
the distinction above between the largeN (where the mono-
poles are irrelevant for allS) and smallN (where the mono-
poles are irrelevant only for half odd integerS); it was this
distinction that obscured the complete theory in the largeN
analysis.13,20,24

Although monopoles can be neglected at the QCP, this is
not true at low energies in the VBS phase. Indeed, it is well
known from studies of pure compact Us1d gauge theories
that the fugacitiesln are always relevant in the absence of
gapless “matter fields”(i.e., theza), so that monopoles inevi-
tably proliferate in this case. This proliferation leads to a
“condensation” of the monopole operator,kvrtl,kcVBSlÞ0,
hence VBS order.13,20At the same time it generates a gap for
the gauge “photon.” In renormalization-group terminology,

the monopole condensation in the VBS phase—despite the
fact that theln are negligible at the QCP—indicates that
(some) ln are “dangerously irrelevant.”

It is important to note that such monopoles have a natural
topological interpretation in terms of the conformations of
the Néel ordered state. In particular, low but nonzero energy
configurations of the antiferromagnet are described by states
with slowly varying Néel vector(at least at spatial infinity)
of constant amplitude,

NW r = uNW un̂r . s1.11d

Such classical configurations with finite energy admit topo-
logical defects known as skyrmions(see Fig. 2). The total
skyrmion numberassociated with a configuration defines an
integer topological quantum numberQ:

Q =
1

4p
E d2r n̂ · ]xn̂ 3 ]yn̂. s1.12d

Remarkably(see Sec. III and Ref. 25), the skyrmion density
is simply related to the magnetic flux of the gauge fieldam,

2pQ =E d2xs]xay − ]yaxd. s1.13d

Thus the monopole instantons that change the gauge flux by
±2p describe events in which the skyrmion number changes
by ±1. Thus the flux creation operatorvrt

† can also be inter-
preted as a skyrmion creation operator. The skyrmion num-
ber changing events may be represented graphically as
“hedgehog” configurations of the Néel vector in space-time

FIG. 2. A skyrmion configuration of the fieldn̂r. In (a) we show
the vectorsnx,nyd at different points in theXY plane; note thatn̂

~ s−1dx+ySW r, and so the underlying spins have a rapid sublattice
oscillation which is not shown. In(b) we show the vectorsnx,nzd
along a section of(a) on thex axis. Along any other section of(a),
a picture similar to(b) pertains, as the former is invariant under
rotations about thez axis. The skyrmion above hasn̂sr =0d
=s0,0,1d and n̂sur u→`d=s0,0,−1d.
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(see Fig. 3). The irrelevance of the monopole fugacities at
the Néel-VBS critical point is thus equivalent to the irrel-
evance of hedgehog fugacities in a semiclassical description.
Further, the recognition that such monopole events can be
characterized as changing(as a function of time) the skyr-
mion numberQ enables another interpretation of their irrel-
evance. In particular, in the critical fixed point theory in Eq.
(1.7)—i.e., at low energies near the QCP—the skyrmion
numberQ is strictly conserved. The emergence of this con-
served topological quantum number is the most fundamental
meaning of the irrelevance of the instantons.

We will also use this emergent topological conservation
law as a definition of a “deconfined” QCP. Indeed, typically
the gauge theories that arise in various slave particle descrip-
tions of quantum magnets arecompact.Specializing to a
Us1d gauge theory, the compactness means that instanton or
monopole events in which the magnetic flux changes by 2p
are allowed configurations of the gauge field in space-time.
The proliferation of these instanton events leads to confine-
ment of the slave particles in the gauge theory. In contrast, in
a noncompact theory—which emerges at low energies when
monopoles are irrelevant—the total magnetic flux is strictly
conserved. This is a topological conservation law and may be
understood as a global Us1d symmetry in an appropriate dual
description. Indeed, we will explicitly construct such a dual
theory for the case of easy-plane anisotropy(and in some
other related models). Quite generally, then, the emergence
of a noncompact Us1d gauge theory at the critical point be-
tween the Néel and VBS phases signifies an extra emergent
(dual) global Us1d symmetry for the critical theory that is not

present in the microscopic Hamiltonian. This provides a
rather precise characterization of a deconfined critical point.

An important property of the deconfined fixed points dis-
cussed in this paper is the appearance of twodistinctdiverg-
ing length (or equivalently two time) scales close to the
transition—one of which rises as a power of the other. This is
directly due to the dangerous irrelevance of monopoles. For
the Néel-VBS transition on approaching from the VBS side
there is of course a diverging spin-correlation lengthj. How-
ever, just beyond this length scale the system has not yet
chosen to pin itself into any particular VBS ordered state.
Rather it may be characterized as fluctuating between differ-
ent VBS configurations. It settles down to a particular or-
dered state at a larger length scalejVBS. This new length
scale may also be characterized as the thickness of a domain
wall in the VBS order. The universal crossovers associated
with the critical fixed point describe the behavior on passing
through the length scalej. These are described by the critical
theory in Eq.(1.7). As explained above, this critical theory is
monopole free. The second crossover associated with the
length scalejVBS describes how the system evolves from the
paramagnetic phase associated with the monopole-free
theory Eq.(1.7) to the true VBS phase that obtains when
monopoles eventually proliferate. Further details of the phys-
ics at the scalesj andjVBS appear in Sec. VII, where we also
show in Eq.(7.3) thatjVBS diverges as a power ofj which is
greater than unity.

Over the last several years we have become familiar with
the notion of fractionalization of quantum numbers in stable
phases in condensed matter. In contrast, the fractionalization
phenomena obtained in this paper are specific to the critical
point separating two conventional phases. These “fractional”
particles—the spinons—are not present(i.e., confined or
condensed) at low energies on either side of the transition but
appear naturally at the transition point. Likewise the emer-
gent gauge field that mediates interactions between the frac-
tional particles is also specific to the critical point. On ap-
proaching the critical point, the confinement length scale
diverges. Thus deconfinement appears right at the transition.

We will also briefly discuss the phase transitions between
different quantum paramagnetic ground states. In particular
we will argue that the existing theory for the transition be-
tween a VBS state and a fractionalized spin liquid implies
that the corresponding critical point is also described by a
deconfined Us1d gauge theory in precisely the same manner
as above. Furthermore, Refs. 26 and 27 argue that(at least
under certain conditions) there are direct transitions between
two different VBS phases that are also described by decon-
fined critical points with a Us1d gauge structure.

There are several general lessons to be learned from the
results in this paper. First, we see that two-dimensional spin-
1/2 quantum magnetism is full of examples of deconfined
quantum critical points which contradict the LGW paradigm
for critical phenomena. This suggests that in more complex
quantum systems(e.g., with fermions or disorder) novel
critical phenomena may well be quite commonplace. Such
deconfinement may be at the root of interesting non-Fermi-
liquid critical phenomena observed in the heavy fermion ma-
terials and possibly in the cuprates as well. Second, our re-
sults resolve some long-standing controversies in the field of

FIG. 3. A monopole event, taken to occur at the origin of space-
time. An equal-time slice of space-time at the tunneling time is
represented following the conventions of Fig. 2. So(a) contains the
vector snx,nyd; the spin configuration is radially symmetric, and
consequently a similar picture is obtained along any other plane
passing through the origin. Similarly,(b) is the representation of
snx,nzd along thex axis, and a similar picture is obtained along any
line in space-time passing through the origin. The monopole above
hasn̂r =r / ur u.
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two-dimensional quantum magnetism and have direct impli-
cations for experiments and numerical work in the field.

Third, our results shed some light on questions of confine-
ment in gauge theories in two spatial dimensions. It was
shown by Polyakov several years ago28 that in two spatial
dimensions for pure gauge theories(i.e., without any matter
fields) instantons generically always proliferate and drive the
theory into a confined phase. The behavior in the presence of
dynamic matter fields(particularly with Fermionic matter) is
much less understood and is a subject of some
controversy.29–31,33,34The results in this paper show that with
Bosonic matter there are at least isolated critical points34 at
which deconfinement is obtained(and the instantons disap-
pear at long scales). While typically reaching criticality in a
Bosonic system requires some fine tuning, Fermionic sys-
tems can have stable critical phases. This supports the specu-
lation that stable deconfined phases exist in two dimensional
compact Us1d gauge theories coupled to Fermionic matter.35

If true this would have interesting implications for the theory
of spin liquid phases of quantum spin systems. These points
are discussed further in Sec. IV B and Appendix F.

Apart from these general notions, there are also a number
of specific physical ramifications of the proposed critical
theory for the Néel-VBS transition. One immediate conse-
quence is that the anomalous dimension of the magnon op-
erator is much larger than is usual atD=2+1 dimensional
fixed points. Thus the magnon spectral function will be ex-
tremely broad right at the critical point. Many other implica-
tions are explored in some detail later in this paper and sum-
marized in the overview in Sec. II.

II. OVERVIEW

In this section we provide an overview of the main ideas
in this paper.

A. History and precedents

We begin by recalling some important prior results in the
theory of quantum magnetism on the two-dimensional square
lattice. In the Néel phase or close to it, the long-distance
low-energy fluctuations(of the orientation) of the Néel order
parameter are captured by the quantum Os3d nonlinear sigma
model sNLsMd with the Euclidean action(we have pro-
moted the lattice coordinater =sx,yd to a continuum spatial
coordinate, andt is imaginary time):

Sn = S0 + SB,

S0 =
1

2g
E dtE d2rFS ] n̂

] t
D2

+ c2s¹rn̂d2G ,

SB = iSo
r

erAr . s2.1d

Heren̂r ~erSW r is a unit three component vector that represents
the Néel order parameter[the factor er is defined in Eq.
(1.3)]. The term SB contains crucial quantum-mechanical
Berry phase effects, and is sensitive to the precise quantized

valueSof the microscopic spin on each lattice site:Ar is the
area enclosed by the curve mapped out by the time evolution
of n̂rstd on the unit sphere. These Berry phases play an un-
important role in the low-energy properties of the Néel
phase,36 but are crucial in correctly describing the quantum
paramagnetic phase.13,20We will expand these earlier results
to show here that they also modify the quantum critical point
between these phases, so that the critical exponents are dis-
tinct from the theory withoutSB studied earlier.36,37

To understand the summation overr in SB, recall that, as
described in Sec. I, in two spatial dimensions, smooth con-
figurations of the Néel vector admit skyrmion topological
defects characterized by the integer topological chargeQ.
The Berry phaseSB vanishes3,38 for all smoothconfigura-
tions even if they contain skyrmions. For such smooth con-
figurations, the total skyrmion numberQ is conserved. Cru-
cially, however, the skyrmion number changing monopole
events arenot everywhere smooth. It was shown by
Haldane21 that the summation overr in SB is nonvanishing in
the presence of such monopole events. Precise
calculation20,21 gives a Berry phase associated with each
such skyrmion changing process which, for 2S=1smod 4d,
oscillates rapidly on four sublattices of the dual lattice(see
Appendix A). This leads to destructive interference which
effectively suppresses all monopole events unless they are
quadrupled13,20,21(i.e., they change skyrmion number by 4).

The NLsM field theory augmented by these Berry phase
terms is, in principle, powerful enough to correctly describe
the quantum paramagnet. Summing over the various mono-
pole tunneling events shows that in the paramagnetic phase
the presence of the Berry phases leads to VBS order.13,20

This crucial result from prior work identifies the VBS phase
as resulting from a proliferation of monopoles in the pres-
ence of nontrivial Berry phases. The nontrivial identification
of the VBS order parameter expressed from bond energies in
Eq. (1.4) as the skyrmion creation operator is remarkable.
When this operator acquires an expectation value VBS order
results. In this mannerSn contains within it the ingredients
describing both the ordered phases ofH.

Within the Landau framework there are several possibili-
ties that can be imagined for the evolution between the Néel
and VBS ground states as some microscopic parameter is
tuned. For instance, there could be two transitions with an
intermediate phase that breaks both Néel and lattice symme-
tries (an intermediate phase that breaks neither symmetry is
excluded), or simply a first-order transition. However, a di-
rect second-order transition is unexpected without further
tuning (as at a multicritical point).

The possibility of a direct second-order transition between
Néel and VBS phases is hinted at by several results in the
existing literature. First, note that in the Néel phase mono-
pole tunneling events are absent at long length and time
scales. In the quantum paramagnet these monopole tunneling
events have proliferated. The Haldane phases then lead to
VBS order. The existence of a monopole condensate is
clearly incompatible with long-range Néel order. Thus to the
extent that the broken lattice symmetry of the VBS state is a
consequenceof the proliferation of monopoles it competes
with the Néel state. A direct transition from Néel to VBS
then becomes conceivable.13,20,39
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A second hint comes from examining large-N studies of
SUsNd quantum spin models.13,20 In the limit N=` (and in a
bosonicrepresentation of the spins) there is a second-order
transition between the Néel phase and a quantum paramag-
net. In this limit the paramagnet breaks no symmetries(in-
cluding lattice symmetries). Furthermore, it supports gapped
spin-1/2 excitations(known as spinons). However, both fea-
tures are known to be artifacts of the limitN=`. Upon in-
cluding finiteN corrections, broken lattice symmetry appears
(leading to a VBS phase). The spinons also feel a gauge
force that leads to their confinement and disappear from the
spectrum. What about the vicinity of the transition? To an-
swer this, it is instructive to examine the various length
scales in the problem in the paramagnetic state. First, there is
the spin-correlation length that diverges on approaching the
transition. Note that deep in the paramagnetic phase this
length stays constant whenN→`. Then, there is the length
scale at which VBS order appears. As there is no VBS order
at N=` this length scale mustdivergeas N→`—hence it
must be much bigger than the spin-correlation length in the
large-N limit. Finally, there is a third(somewhat loosely de-
fined) length scale that may be thought of as the length scale
associated with spinon confinement. Clearly this scale also
diverges asN→` and is much bigger than the spin-
correlation length. Indeed calculations24 of the VBS and con-
finement length scales in the large-N limit show that they are
OsjcNd, where j is the spin-correlation length andc is a
constant.

This suggests the possibility13,20,24 of a direct transition
between Néel and VBS states in the large-N limit where the
monopoles(and hence their Berry phases) are irrelevant at
the critical fixed point, but are important in producing VBS
order and confinement in the paramagnetic state. In critical
phenomena parlance, the monopoles aredangerouslyirrel-
evant at the critical fixed point.

A picture similar to this was in fact proposed several years
ago by Chubukovet al.37 However, it was not appreciated
that the quadrupling of the monopoles, induced by the Berry
phases, rendersboth the monopoles and their Berry phases
irrelevant at the critical point(the distinction between the
relevance of single versus quadrupled monopoles is absent in
the largeN limit 40). In particular, it was assumed that the
confinement length scale will stay finite at the transition,
which was then modelled[for physical SUs2d spins] by the
LGW theory obtained simply by neglectingSB in Eq. (2.1):
this is the Os3d-invariant Wilson-Fisher fixed point.2 In light
of the discussion above, it is clear that as the confinement
goes hand in hand with the VBS order both confinement and
VBS length scales diverge at the transition. Thus we might
expect deconfinement to appear at the transition.

A weakness in the arguments of Chubukovet al.37 was
pointed out by Sachdev and Park.41 The latter authors argued
that there was a finite density of monopoles in space-time
right at the critical point of the Os3d LGW model, and the
Berry phases then implied the presence of finite VBS order at
any such critical point. Based on this they suggested that a
possible evolution between the Néel and VBS phases was
through a region of coexistence of both broken symmetries.
However, they left open the possibility of a direct second-

order transition between the Néel and VBS phases, but ar-
gued that any such transition could not be described by the
Os3d LGW model.

Our discussion here makes it clear it is necessary that the
corresponding fixed point have no monopoles at long scales.
The natural candidate is then precisely the fixed point gov-
erning the transition in the model with monopoles forbidden.
The arguments of Motrunich and Vishwanath,23 and our
present analysis, on such models show that the appropriate
critical theory is that ofLz in Eq. (1.7). It must be kept in
mind that this critical theory is entirely distinct, with all criti-
cal exponents different, from the Os3d LGW model obtained
by droppingSB from Eq. (2.1). The first indication that such
a distinct continuous transition could exist in the monopole
suppressed Os3d NLsM was from the work of Kamal and
Murthy.42 Recently, the transition in this model with mono-
pole suppression was studied in Ref. 23, where a different
approach that sidestepped the potential problems of Ref. 42
was used. A continuous, non-Heisenberg transition with
properties consistent with those of Ref. 42 was found. More-
over, an independent numerical simulation of aCP1 model
with a noncompact gauge field was performed[essentially
Eq. (1.7)] which also yielded a continuous transition and
exponents consistent with the simulations of the monopole
suppressed Os3d NLsM. This provided a nontrivial check of
both the essential correctness of the numerical calculations
and direct support for the identification of Eq.(1.7) as the
critical theory for the monopole suppressed Os3d NLsM
transition. The easy-plane deformation of these models was
also studied in Ref. 23, where again a continuous transition
was obtained. This transition was argued to possess the re-
markable property of beingself-dual.

The possibility of deconfinement of spinons at the critical
point between Néel and VBS phases is also hinted at by a
different consideration that is again motivated by the large-N
calculations. The excitations of both the Néel and VBS
phases are conventional(i.e., do not contain any fractional-
ized spinons). In a Schwinger boson description in terms of
spin-1/2 spinons this is achieved through confinement. How-
ever, the detailed mechanism of such spinon confinement is
different in the two phases. In the Néel phase(described as a
spinon condensate) confinement is achieved through the
usual Higgs mechanism. On the other hand, in the VBS
phase confinement is achieved through proliferation of in-
stantons. This difference in the confinement physics then
makes it conceivable that neither mechanism is actually op-
erational at the critical point and deconfinement obtains.

B. Numerics

There have been a large number of numerical studies of
the destruction of Néel order in theS=1/2 square lattice
antiferromagnet.43 While there is evidence for the existence
of VBS order in the paramagnetic phase,44–48 the nature of
the transition between the Néel and paramagnetic states has
been difficult to address. A major obstacle is the well-known
“sign” problem, which prevents large-scale Monte Carlo
simulations. Until recently, all large-scale studies of the de-
struction of Néel order have been on models with an even
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number ofS=1/2 spins per unit cell, with a paramagnetic
phase which does not break any lattice symmetries.49,50

The first large-scale study of the destruction of Néel order
in a S=1/2 square lattice antiferromagnet, in a Hamiltonian
which preserves a singleS=1/2spin per unit cell and the full
symmetry of the square lattice, was that of Sandviket al.5

This was on a model with a strong easy-plane anisotropy.
Such easy-plane models have been studied analytically
previously41,51 and will be pursued further in the present pa-
per. Reference 5 found convincing evidence for VBS order in
the paramagnetic phase. Furthermore, the VBS and Néel or-
der appear to vanish at points close to each other, suggesting
a direct second-order transition in the class discussed in the
present paper.

We also note the wave-function Monte Carlo work of
Capriottiet al.52 on the SUs2d S=1/2 antiferromagnet on the
square lattice with first and second neighbor exchange. They
found a “resonating valence bond” wave function character-
istic of a spin liquid state. Our results here suggest that they
were perhaps observing the deconfined state characteristic of
the critical point, and that they had not yet reached the cross-
over to VBS order at the longest scales.

C. Plan of attack

In this paper, the proposal of a deconfined continuous
Néel-VBS transition(as well as a VBS-spin liquid transition)
is substantiated by a variety of arguments. First, in Sec. III
we consider a concrete latticeCPN−1 model which, forN
=2, embodies the physics of the Néel state, the monopoles,
and their Haldane Berry’s phases(focusing onS=1/2), and
the VBS state. This model, introduced by Sachdev and
Jalabert,39 and referred to here as the SJ model, provides a
convenient starting point for theoretical analysis of the
SUs2d invariant critical region. We address the nature of the
physically interestingN=2 case by showing that, in the two
limits N=1 (Sec. IV A) and N=` (Sec. IV B), this model
indeed sustains a deconfined critical point in the precise
sense defined above. ForN=1, this can be directly shown
using lattice duality transformations, which demonstrate an
exact equivalence of the SJ model to aD=3 classicalXY
model with a fourfold symmetry breaking term which corre-
sponds physically to strength four monopoles. Such fourfold
anisotropy is known to be irrelevant at theD=3 XY
transition,53 establishing the deconfinement of this case. For
N=`, the scaling dimension of the four-skyrmion creation
operator was computed previously by Murthy and Sachdev,24

and is such that monopoles are again irrelevant. Hence we
expect by continuity that monopoles are irrelevant forall N,
including the interesting caseN=2.

Second, in Sec. V, we consider specificallyN=2, in the
presence of additional(strong) easy-plane anisotropy. In this
case, the SJ model may be rewritten as a pair of Os2d rotors
(the phases ofza) interacting with a compact Us1d gauge
field. The latter may be analyzed directly using duality tech-
niques(Appendix B). We obtain in this way an explicit dual
representation in terms of complex “vortex” annihilation op-
eratorsca sa=1,2d and a dualnoncompactgauge fieldAm,
whose flux represents the(exactly) conserved uniform spin

densitySz. One may understand the relation to theCP1 vari-
ables by recognizing thatc1

† creates a +2p vortex in z2,
while c2

† creates a −2p vortex in z1, both of which create
physical 2p vorticity in n−=nx− iny=z1

*z2. The dual theory,
Ldual for ca andAm is presented in Eq.(5.6).

The dual representationLdual has an appealing semiclas-
sical interpretation, described in detail in Sec. V A. Briefly,
the two types of vortices correspond to “merons”(half skyr-
mions), in which the Néel vector points either up or down
inside the vortex core. The skyrmion number changing
monopole events thereby correspond precisely to an event in
which a vortex core tunnels from the up to down staggered
magnetization or vice versa.

The advantage of this representation is that the(qua-
drupled) monopole fugacity appears explicitly as a local op-
erator in terms of the vortex fields. Remarkably, if this fugac-
ity, l, is set to zero(as appropriate at the QCP provided it is,
as we argue, irrelevant), the dual action in Eq.(5.6) has
precisely the same form as the original one, Eq.(1.7). More
precisely, an exact equivalence can be demonstrated between
lattice regularizations of the original and dual theory in the
absence of monopoles.23 Thus, as found in Ref. 23, the pro-
posed critical theory in the easy-plane case has an unusual
self-duality property.

The irrelevance of monopoles can then be argued in sev-
eral ways. First, using the self-duality, each power of the
skyrmion creation operator has the same correlations at the
QCP as the corresponding power of theXY staggered raising
operatorn+. At the deconfined critical point, fluctuations of
n+ are expected to be stronger than they are at a conventional
(confined) XY critical point. The corresponding quadrupled
operator is already irrelevant in the latter case(as mentioned
above), so we expect the four-skyrmion fugacity to be only
more irrelevant around the deconfined critical theory. This
expectation is supported by an explicit calculation in a large-
N (different from theN in the SJ model) generalization of the
dual critical theory in Sec VI A. Further arguments are given
in Appendix C.

In Sec. IX A we demonstrate for the easy plane case a
direct derivation of the dual critical theory from a micro-
scopic Bosonic representation of the underlyingXY model,
without utilizing either the NLsM or SJ models.

In Sec. VIII, we show that analogous deconfinement ob-
tains for a VBS to spin-liquid transition. The latter has al-
ready been discussed by several authors,19,54and shown to be
equivalent to the transition in a fully frustrated quantum
Ising model, which has a simpleXY critical fixed point un-
affected at low energies by an irrelevant eightfold symmetry-
breaking term. We show that this description is in fact dual to
a deconfined gauge theory in the same sense as above, and
that the (dangerously) irrelevant eightfold symmetry-
breaking term can likewise be interpreted as an irrelevant
monopole fugacity.

D. Organization of paper

We will begin in Sec. III with a general discussion of the
important symmetries of the Hamiltonian, and their action on
a variety of order parameters and operators. This section will
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also introduce the SJ model. The solution of the SJ model in
a variety of tractable limits appears in Sec. IV and V B.
Section V also contains a general, semiclassical description
of the physics in the easy-plane limit. The nature of the
second-order critical point between the Néel and VBS states
is discussed in Sec. VI. A variety of predictions for the criti-
cal properties on the Néel-VBS transitions with SUs2d and
XY symmetries follow from our analysis. These are elabo-
rated in Sec. VII: readers not interested in the detailed theo-
retical analysis may skip ahead to this section without sig-
nificant loss of continuity. Section VIII describes the
deconfined critical point between the VBS and spin-liquid
phases, as noted above. Finally, Sec. IX contains a variety of
extensions of the results in this paper. Section IX A shows
that the easy-plane Néel to VBS transition can be reinter-
preted as a superfluid-insulator transition in an interacting
boson system; the insulator in this case contains a density
wave in the amplitude of the bosons to reside on “bond”
states. This approach also provides an alternative derivation
of the dual model Eq.(5.6). Section IX B briefly discusses
the extension of our results to antiferromagnets withS.1/2,
while Sec. IX C considers the case of the honeycomb lattice.
Section IX D discusses possible extension of our results to
systems with Ising anisotropy.

III. REPRESENTATIONS AND SYMMETRIES

In this section, we describe the representation of magnets
with local tendencies to Néel order in the NLsM and CP1

(SJ model) representations. We describe the action of the
physical symmetries on the correspondingn̂ andza fields in
each case

We start from the actionSn in Eq. (2.1). The all-important
Berry phase term inSB is defined on the underlying square
lattice, and it is clear that lattice scale cancellations are im-
portant for the physics we are interested in. It is therefore
useful to return to a lattice formulation to obtain

Sn = S0 + SB,

S0 =E dtFo
r

1

2g
Sdn̂r

dt
D2

− Jo
krr8l

n̂r · n̂r8G ,

SB = iSo
r

er E dt AW fn̂g ·
dn̂r

dt
. s3.1d

We have now rewritten the areasAr in terms ofAW , which
represents the vector potential of a magnetic monopole with
flux 4p placed at the center ofn̂ space at each lattice site.
This lattice model is a faithful representation of the original
quantum antiferromagnet so long asg is large. The con-
tinuum limit of S0 in this model is clearly just what appears
in Eq. (2.1). The representation of the Berry phase used here
leads directly to Eq.(A1) in Appendix A.

The Berry phases are crucial for a correct description of
quantum paramagnetic phases. As described in the previous
sections, it was shown by Haldane21 that the Berry phases
are nonvanishing only in the presence of monopole events.

The calculations in Refs. 20 and 21 give the total phase(for
spin-1/2 magnets that we consider—for a derivation see
here, Appendix A)

p
n

expSi
p

2
znDQnD . s3.2d

Here the monopole is associated with a plaquette of the
original lattice(or equivalently with a site of the dual square
lattice), which is labeled by the indexn. The product is over
all locations of monopoles, andDQn= ±1 is the change in
skyrmion number associated with the monopole. Note that
the periodic boundary condition along the time direction re-
quires that the net change in skyrmion number is zero so that
on DQn=0. The fixed integer fieldzn is 0,1,2,3depending
on whether the dual lattice coordinate is(even, even), (even,
odd), (odd, even) or (odd, odd), so that the phase factor as-
sociated with each monopole is 1,i ,−1,−i on these sublat-
tices (see Fig. 4 in Sec. IV A).

The oscillating nature of the Berry phase factors on adja-
cent plaquette leads to destructive interference between dif-
ferent tunneling paths for single monopoles. Indeed this in-
terference effectively kills all monopole events unless they
are quadrupled(i.e., change skyrmion number by 4). Hence
only such quadrupled monopole events need be included in
the quantum statistical mechanical partition sum.

We have already indicated the remarkable identification of
the VBS order parameter defined in Eq.(1.4) with the skyr-
mion annihilation operator,cVBS,v, as shown in Ref. 13.
This provides the crucial confluence of thelossof antiferro-
magnetic order(and consequent proliferation of monopole
events) with theonsetof VBS order, counter to conventional
LGW wisdom. Because of the importance of this result, we
give a simplified derivation of this relation here.

It is important to recognize that the VBS order parameter
in Eq. (1.4) is entirely defined by its transformation under the
symmetries of the Hamiltonian. Any other field with the
same symmetry properties ascVBS will, on general scaling
and renormalization-group grounds, be proportional tocVBS
in the critical region. Thus to prove the identification ofcVBS
with the skyrmion creation operatorv, it is sufficient to show
that the latter transforms identically tocVBS under all sym-
metry operations.

As a topological index, the skyrmion number is un-
changed under smooth global SUs2d spin rotations, hence the
skyrmion number changing operator is also an SUs2d scalar.
Likewise,cVBS, being defined through scalar bond operators,
is SUs2d invariant. Let us consider the effect of lattice sym-
metry transformations onv. In the functional integral this
operator is defined by insertion of a space-time monopole. It
is easy to see that underp /2 rotations in the counterclock-
wise direction about a direct lattice site(which we denote
Rp/2), the Berry phase associated with the skyrmion creation
event changes byeipS. Thus if we denote byv† the skyrmion
creation operator and specialize toS=1/2, wehave

Rp/2:v
† → iv†. s3.3d

The skyrmion creation operator is actually defined on a
plaquette—for the time being, we will label the plaquette by
the lattice site at the top-right corner.
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Lattice translation operationsTx,y corresponding to trans-
lations by one unit alongx,y directions of the microscopic
spin model have somewhat more subtle effects. First, in the
rotor representation ofn̂r, these translations are represented
as

Tx:n̂r → − n̂r+x̂, s3.4d

Ty:n̂r → − n̂r+ŷ. s3.5d

The change in sign ofn̂ is due to the staggering implicit in its
definition. Now note that the skyrmion numberQ is odd
undern̂→−n̂. ConsequentlyTx,y convert a skyrmion creation
operator to an antiskyrmion creation operator at the trans-
lated plaquette. Furthermore, due to the difference in the
Berry phase factors for monopoles centered on adjacent
plaquettes, there is a phase factor that is introduced by the
translation. Simple calculation55 gives the following transfor-
mation properties forv†, specializing again toS=1/2:

Tx:vr
† → − ivr+x̂, s3.6d

Ty:vr
† → + ivr+ŷ. s3.7d

It is now clear that a paramagnetic state with a uniform
expectation value ofv† breaks these lattice symmetries. For
instance, if kv†l=kvlÞ0, then Rp/2,Tx,Ty are all broken.
This suggests a plaquette ordered state such as that shown in
the lower right of Fig. 1. A straightforward comparison
shows that, up to an innocuous constant pre-factor, the lattice
transformation properties ofv are identical to those ofcVBS
determined from a more mundane analysis of Eq.(1.4). In
particular,

v , e−ip/4cVBS s3.8d

properly reproduces all the transformation properties of the
VBS order parameter. Thus we may indeed identify the skyr-
mion creation operator with the order parameter for the VBS
order.

We have already introduced in the Introduction theCP1

“spinon” fields to represent the Néel order parameter. These
may be introduced on the lattice,

n̂r = zr
†sWzr . s3.9d

To maintain the unit magnitude ofn̂r, the constraintuz1u2
+ uz2u2=1 should be imposed upon the spinorz=zsr ,td
=sz1,z2d.

One can show25 that the partition function of the con-
tinuum NLsM [with the action in Eq.(2.1) neglecting Ber-
ry’s phase terms] is exactly reproduced by the continuum
CP1 model with the action

Scp =E dt d2r us]m − iamdzu2. s3.10d

Here am enters mathematically as a Hubbard-Stratonovich
field, and by considering its quadratic Euler-Lagrange equa-
tion, one can deduce the relation of the skyrmion numberQ
to the gauge flux ofam given in Eq.(1.13).

As discussed above, to incorporate VBS phases it is im-
portant to correctly account for the Haldane Berry phases
associated with these instantons. An appropriate model has
been constructed by Sachdev and Jalabert.39 The Euclidean
action of the Sachdev-Jalabert(SJ) model is

SSJ= Sz + Sa + SB,

Sz = − to
i

zia
* eiamzi+m̂,a + c.c., s3.11d

Sa =
K

2 o semnlDn al − 2pqmd2, s3.12d

SB = i
p

2o
n

znDmqm. s3.13d

Here we have put the complex spinon fieldszia on the sitesi
of a cubic space-time lattice in dimensionsD=2+1 (now, n
denotes the sites of the dual cubic lattice), and they satisfy a
unit length constraintoa uziau2=1 on each lattice site. Theam

represent the compact Us1d gauge field, and are defined on
the links of the space-time lattice. Note that thezia are mini-
mally coupled to the gauge field. The termSa represents the
gauge field kinetic energy. The quantityqm is an integer
gauge flux that is defined on the links of the dual cubic
lattice. Its divergence which enters the termSB represents the
number of monopoles on the sites of the dual lattice. Conse-
quently, Eq. (3.13) is identical to the contribution in Eq.
(3.2), andSB provides the Haldane Berry phase factors that
make the action appropriate for describing spin-1/2 antifer-
romagnets on the square lattice. The Néel ordered phase is a
“Higgs” phase where thezi have condensed, while the VBS
phase is a “confined” phase where the Berry phases have led
to broken lattice symmetry.

The actionSSJ is clearly closely related to the lattice ac-
tion Sn in Eq. (3.1), after replacingn̂ by z via Eq. (1.5).
However, the correspondingSB terms in Eqs.(3.1) and
(3.13) do appear rather different—they are related by the
Berry phase summation carried out by Haldane.21 Here, we
establish the connection between these two forms of Berry
phases in Appendix A; further details on the derivation of
Eq. (3.13) from the microscopic antiferromagnet appear in
Refs. 22, 39, and 41.

If, as we will argue in the following, monopole events can
indeed be neglected at low energies near the QCP, we can set
qm=0. Taking then a naïve continuum limit of Eqs.
(3.11)–(3.13) gives precisely the proposed field theory of Eq.
(1.7). We will, however, work directly with the lattice SJ
model including monopoles in several of the sections to fol-
low.

As in any critical phenomenon, symmetry plays a key role
in the discussion of the Néel-VBS transition. We therefore
list here the various physical(i.e., nongauge) symmetries of
the problem and their action upon the Néel and spinon fields.
The only continuous physical symmetry is spin rotational
invariance, either SUs2d or Us1d in the case of easy-plane
anisotropy. Under such rotations, the Néel vectorn̂ and
spinon fieldza transform as global vectors and spinors, re-
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spectively. The remaining unitary symmetries are discrete
operations of the space group of the square lattice, and can
be composed fromp /2 rotations, translations, reflections,
and inversions. As above, we denotep /2 clockwise rotations
(around a direct lattice site) by Rp/2 and unit translations inx
and y by Tx,Ty, respectively. Reflectionsx→−x or y→−y
around a lattice plane(i.e., leaving a row or column invari-
ant) are denotedRx,Ry, and inversions about a site byI.
Finally, there is a nonunitary time-reversal operationT,

which as usual takes microscopic spinsSW r →−SW r. The trans-
formation properties of the Néel, spinor, and gauge fields are
given in Table I.

Using these symmetry properties, one can determine the
operators of the field theory corresponding to physically in-
teresting microscopic quantities in a spin model. Some of
these are tabulated in the second column of Table II of Sec.
V B and describe general situations which allow for easy-
plane anisotropy on the underlying magnet.[The SUs2d sym-
metric situation may be obtained as a special case.] These
include the easy-plane and hard-axis components of the Néel
order parameter,N±=Nx± iNy, Nz and the VBS order param-

eter. Also included are the easy-plane and hard-axis compo-

nents of the uniform magnetizationMW , all three being con-
served for SUs2d symmetry but only the latter being
conserved with easy-plane anisotropy. Two currents are also
of interest: the spatial currentj i

z of the conserved Ising(hard-
axis) magnetization, and the vorticity three-currentjm

v —the
latter being meaningful in the presence of easy-plane aniso-
tropy. Finally, we may consider theCP1 gauge three-current
jm
G=emnl]nal, which in the continuum theory is identified

with the topological currentjm
G, 1

4emnln̂·]mn̂3]n n̂. In a mi-
croscopic model, using the transformation properties of these
operators, one can construct a(rather complex) superposition
of three-spin operators with these same transformation prop-
erties. Consider for instance, the time componentj0

G=ei j]iaj.
On a square plaquette with central coordinater, number the
sites starting at the uppper-left corner of the plaquette and
moving clockwise as 1,2,3,4. Then one has

j0
Gsrd , s− 1drfSW1 ·SW2 3 SW3 − SW2 ·SW3 3 SW4 + SW3 ·SW4 3 SW1

− SW4 ·SW1 3 SW2g, s3.14d

where thes−1dr takes opposite signs on the two sublattices of
the dual lattice.

IV. SJ MODELS

One useful generalization of the SJ model is to allowa
=1¯N above, so thatz is anN-component complex vector
of unit magnitude. The SUs2d spin model corresponds toN
=2. It will be possible to analyze the limitsN=1 andN=`.
As argued in Sec. VIII C, theN=1 model actually may be
realized in a spin-1/2 model in a staggered Zeeman field.
The large-N limit describes ordering transitions of certain
SUsNd quantum antiferromagnets and is less directly physi-
cal. Its main utility is its tractability. Similar behavior in both
extreme limits—in particular the irrelevance of monopoles in
both cases—suggests the same is true for the models with
intermediateN.

A. SJ model atN=1

Consider firstN=1 wherezi ;eifi is simply a complex
number of unit magnitude. Then

Sz = − 2to
,

cossDf − ad, s4.1d

where the sum is over the links, of the cubic lattice. We
indicate spacetime three-vectors here in bold face, and the
discrete lattice gradient byD. As discussed by SJ, thisN
=1 model displays a transition between a Higgs and a trans-
lation broken phase. The latter has a fourfold degenerate
ground state due to lattice symmetry breaking. Simple sym-
metry arguments suggest a transition modeled by aZ4 clock
model—as the fourfold anisotropy is irrelevant at theD=3
XY fixed point,53 this is in the three-dimensional(3D) XY
universality class. SJ also provided numerical evidence sup-
porting this expectation. As shown below, all of this is
readily established by a duality transformation of theN=1
model.

TABLE I. Transformations of the Néel and spinor fields on the
square lattice under the discrete symmetry generators. Herei =1,2
=x,y is a spatial index, andei j = isi j

y is the fully antisymmetric rank
2 tensor. Coördinate transformations of the arguments of the fields
have been suppressed.

Operation Coordinates Néel Spinor Gauge

Rp/2 xi →ei j xj invariant invariant ai →ei jaj

Txi
xi →xi +1 n̂→−n̂ za→ isab

y zb
† am→−am

Rxi
xi →−xi invariant invariant ai →−ai

I r →−r invariant invariant ax/y→−ax/y

T t→−t n̂→−n̂ za→ isab
y zb

† ax/y→−ax/y

TABLE II. Operators in the easy planeCP1 (column 2) and dual
(column 3) representations corresponding to physical operators
(column 1), in the notations of Sec. III. Here we have introduced
the classical gauge field configuration for a unit point flux, with
ei j]iAjsxd=2pd2sxd. The symbolej represents thej component of
the electric-field operator that corresponds to the gauge field in the
CP1 representation. We have also used the symbol]Jm, defined by
f]Jmg= 1

2ff]mg−s]mfdgg. The symbolj i
z is the current of conserved

magnetization, whilejm
v and jm

G are the three-currents of vorticity
and gauge flux, respectively.

Field CP1 Dual

N+ z†s+z eieEjA j

cVBS eieejA j c†s+c

Nz z†szz c†szc

M+ iz†s+s]J0− ia0dz eieEjA jc†szc

Mz iz†szs]J0− ia0dz ei j]iAj /p

j i
z

iz†szs]Ji − iaidz ei j s]0Aj −] jA0d /p

jm
v vorticity ic†s]Jm− iAmdc

jm
G emnl]mal /p ic†szs]Jm− iAmdc
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To dualize theN=1 SJ action we use a Villain represen-
tation of theSz term in Eq.(4.1):

Sz → o
,
S 1

2t̃
uj u2 − i j · sDf − adD . s4.2d

The integer valued fieldj represents the current of thez field.
We also decouple theSa term in Eq.(3.12) by a Hubbard-
Stratanovich fieldb to write

Sa → oS 1

2K
ubu2 + ib · sD 3 a − 2pqdD . s4.3d

Here, and below, the leading sum in the action extends over
all sites/links/plaquettes over the cubic lattice, as needed.
Performing the sum over the integer fieldq, we get

b − Dq = B s4.4d

with qr =−zr /4 (see Fig. 4) and B an integer. If we now
integrate overf, we get the current conservation condition

D · j = 0. s4.5d

This may be solved by writing

j = D 3 A s4.6d

with A an integer. Integrating over the gauge fielda, we
obtain

D 3 B = j . s4.7d

This may be solved by writing

B = A + Dx s4.8d

with x an integer. The action then reads

S = oS 1

2t̃
sD 3 Ad2 +

1

2K
fDsx + qd + Ag2D . s4.9d

The hard integer constraints onA ,x may be softened by
adding terms

− t coss2pAd − o
n

ln coss2pnxd. s4.10d

We may now shiftx→ x̃=x+q, A →A8=A +Dx̃. The A8
field is massive and may be integrated out. The remaining
action for thex̃ reads

S = o S− t coss2pDx̃d − o
n

ln cosf2pnsx̃ − qdgD .

s4.11d

This describes anXY model with variousn-fold anisotropy
terms of strengthsln. The shift byq leads to rapid spatial
oscillations of these anisotropy terms unlessn=0smod 4d.
Near the critical point in the continuum limit, the leading
nonvanishing anisotropy term is atn=4. The critical proper-
ties are therefore that of anXY model with fourfold aniso-
tropy l4. The latter has a scaling dimensionD4.3, which
renders it irrelevant at theD=3 XY critical point.53

An overly cautious reader may object that uncontrolled
approximations have been made in softening the integer con-
straints on theA ,x fields. However, all manipulations up to
Eq. (4.9) are exact, and from this point an exact world-line
representation may be obtained by implementing the integer
constraints using the Poisson resummation formula. The lat-
ter representation clearly describes charged relativistic par-
ticles for which charge nonconservation events oscillate spa-
tially unless the charge is changed in multiples of four. On
universality grounds, one expects this model to be in the
same universality class as anXY model with fourfold aniso-
tropy. Though we will not pursue it, a similar exact duality
can be performed on theN=2 SJ model in a world-line rep-
resentation, and may be used to somewhat more rigorously
argue for self-duality of the critical theory in this case.

The results above can be interpreted physically as fol-
lows. Let us first consider the vortices in thez condensate.
These will carry gauge flux that is quantized in units of 2p.
Such a 2p flux can end at a space-time monopole. Hence
monopoles act as sources of the vortices of thez field. The
Berry phases imply that these monopole events are qua-
drupled so that only processes where four vortices disappear
(or are created) together are important in the continuum
limit. Now if we forbid monopoles by hand, then the usual
duality arguments map the model to a globalXY model in
terms of the vortex fields. The dual global Us1d symmetry of
this XY model is precisely associated with conservation of
vorticity. Including monopoles(which act as sources for four
vortices) introduces a fourfold anisotropy on this globalXY
model. Such an anisotropy is irrelevant at the 3DXY critical
fixed point. Thus monopole events are again irrelevant and
(in the original representation) a theory where thez boson is
coupled to a noncompact Us1d gauge field describes the tran-
sition.

B. SJ model at largeN

Now let us considerN large. In the limitN→` the gauge
field is nonfluctuating and can be taken as a classical “back-
ground” in which thez particles move. The minimum energy
saddle point corresponds toam=0 (up to gauge rotation). The
z bosons are gapped and free in the paramagnetic state, while
they are condensed in the ordered state. Now consider the
nature of both states, and the transition, upon including fluc-
tuations in a 1/N expansion. It is useful to discuss the effects
of instantons separately from other fluctuations. Ignoring in-
stantons, the 1/N expansion proceeds along standard lines.

FIG. 4. Specification of the fixed fieldq=−z /4. The filled
circles are the sites of the direct lattice, andq resides on the sites of
the dual lattice.
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In the ordered state, the gauge fields acquire a mass by the
usual Anderson-Higgs mechanism. The gauge flux is quan-
tized in units of 2p—the associated point defects are the
large-N avatars of the skyrmion described previously directly
at N=2. However, on the paramagnetic side the gauge fields
are gapless and describe a “photon” which disperses linearly
at low energies. The transition is described by a field theory
of z bosons coupled minimally to a noncompact Us1d gauge
field. This transition is second order with critical exponents
that evolve continuously from their values atN=`. In par-
ticular, consider the gauge invariant physical spin operator
(which is the appropriate generalization to large-N of the
familiar Néel order parameter atN=2). This is bilinear in the
z fields. At N=`, the spin operator therefore has a large
anomoulous dimensionh=1. This will acquire(calculable)
corrections56,57 of Os1/Nd upon considering finite but large
N. Henceh will be large for large but finiteN.

Now consider including instantons. It is important to re-
alize that the entire gauge action is of orderN in this theory.
Consequently,24 the “bare” instanton core action, obtained by
integrating out thez fields in the presence of a background
instanton configuration of the gauge fields in space-time, is
of orderN. Thus the bare instanton fugacity is small(expo-
nentially small inN). In the ordered state, the inclusion of
instanton events means that point defects with quantized 2p
flux are no longer stable. The physics in the paramagnetic
state is more interesting. Here the instantons proliferate and
lead to confinement of the gappedz bosons. Furthermore, the
gapless photon(present in the noncompact model) is ren-
dered unstable. The Haldane Berry phases associated with
the instantons lead to lattice symmetry breaking. As ex-
plained in Sec. III, this follows from the observation that the
instanton operators transform nontrivially under lattice sym-
metries. Hence if they acquire an expectation value, lattice
symmetry is broken.

Now let us consider the effect of instantons at the transi-
tion. From the discussion in preceding sections, it is clear
that the crucial question is whether the four-monopole event
is relevant/irrelevant at the fixed point of this noncompact
model. The scaling dimension of thep-monopole operator in
this model was computed by Murthy and Sachdev.24 For p
=4, their results give a scaling dimension~N. Hence the
instantons are strongly irrelevant40 for largeN.

This then implies that the critical point of the noncompact
theory is stable to inclusion of instanton events, even though
the states on both sides of the critical point are qualitatively
changed. In particular, consider approaching the transition
from the paramagnetic side. The proliferation of instantons
in the paramagnetic state had two effects—to confine the
spinons and to produce VBS order. The irrelevance of the
instantons at the critical fixed point implies that both the
VBS order and the spinon confinement disappear at the tran-
sition. We note that as the bare instanton fugacity is expo-
nentially small in N, this perturbative analysis of their
relevance/irrelevance is sufficient to determine the nature of
the transition. In particular the alternate possibility that there
is a coexistence region with width shrinking to zero asN
→` appears unlikely at largeN.

It is also useful to interpret the results above in the con-
text of other recent discussions of instantons in the

literature.31–35 The strategy of these, and other works, is to
integrate out thez bosons, and to work with an effective
action for the gauge field. This action will be of orderN.
Consequently, it seems reasonable to assume that the gauge
field dynamics is described to leading order in 1/N by a
Gaussian action(this is equivalent to the RPA approxima-
tion), and to address issues of instanton physics within this
Gaussian gauge action. Such an approach will correctly de-
scribe the qualitative physics of the paramagnetic state. For
the critical point itself, the form of the Gaussian gauge action
is determined by scaling to be31,33 [see also Eq.(8.2)]

SG =E d3K

s2pd3Ns0uKuuaTsK du2, s4.12d

whereK is the Euclidean three-momentum,aT refers to the
transverse part of the gauge field, ands0 is a universal con-
stant associated with the universal critical conductivity of the
z bosons at the transition atN=`. Note that this action is
more singular than the usual “Maxwell” action—this origi-
nates in the integration over the massless critical modes of
the za fields. The action for a single instanton can be calcu-
lated within this Gaussian approximation, and is of order
N ln L where L is the system size. This suggests that
instanton–anti-instanton pairs interact logarithmically with
each other. It also suggests that the effect of instantons could
be captured by studying a classical three-dimensional Cou-
lomb gas of instantons with pairwise logarithmic
interactions.31,32 If this gas is in a plasma phase, free instan-
tons have proliferated. On the other hand, one might also
conceive a different phase where instanton–anti-instanton
pairs are strongly bound to each other.32 For the classical 3D
Coulomb gas, examination of this issue33,34 has led to the
conclusion that the logarithmic interaction is screened at
long length scales into a short-ranged interaction, by bound
instanton pairs at shorter scales(however, it was noted33,34

that the screening could fail at fine-tuned critical points; see
also Ref. 32). This screening then forces proliferation of free
instantons, so that the Coulomb gas is in a plasma phase.
How are we to reconcile this apparently general conclusion
with our claim that the instantons are suppressed at the Néel-
VBS critical point?

This conundrum is resolved as follows. The Gaussian
“random-phase approximation”(RPA) action does not prop-
erly account for the effects of highly nonlinear perurbations
such as instantons. This is already clear from the results of
Ref. 24. Within the Gaussian theory, the action of a strength
p instanton scales withp as p2. This would imply that the
scaling dimension of thep instanton operator scale as
p2—this disagrees with results of Ref. 24, which obtained a
highly nontrivial dependence onp. In other words, even in
the large-N limit, the Gaussian action is not sufficient to
correctly calculate the scaling dimension of the instantons:
the nonlinear terms in the gauge action all contribute in de-
termining the instanton action58 even atN=`. More signifi-
cantly, we can likewise conclude that the RPA treatment of
instanton interactions by a simple pairwise interaction is in-
adequate. The true instanton gas(even in the large-N limit )
has a rather specific structure of higher-order interactions,
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some of whose features are universally determined by the
fact that they arose from integrating out particular gapless
critical modes. If we attempt to compute the screening of
instanton interactions by integrating out bound instanton–
anti-instanton pairs, effects which renormalize the screening
length are intricately intertwined with those that shift the
position of the critical point between the magnetic and para-
magnetic phases. Indeed, fine tuning to be at the critical
point between the magnetic and paramagnetic phases is all
that is needed to also suppress the instanton plasma phase,
and the “naïve” conclusion that the instantons are irrelevant
at this critical point24 is correct. Appendix F considers a spe-
cific toy model for which these arguments can be demon-
strated explicitly.

As we noted at the end of Sec. I, the above reasoning may
also apply to Fermionic models which have a line of critical
points:33,35 in this case, the suppression of instantons may
occur along the entire line, and not just at an isolated point.

V. SPIN MODELS WITH EASY-PLANE ANISOTROPY

An alternate and particularly fruitful deformation of the
model is provided by the situation where there is some easy-
plane anisotropy on the underlying SUs2d spin model. Such
an anisotropy tends to orient the spins preferentially perpen-
dicular to thez axis in spin space. Indeed precisely such an
easy plane spin-1/2 model with both two-particle and four-
particle ring exchanges has recently been studied
numerically.5 A direct transition between Néel and valence
bond solid phases was found.

Consider first the fate of the global symmetries in the
presence of easy-plane anisotropy. A Us1d subgroup of sym-
metry of spin rotations about thez axis of spin still survives.
In addition there are a number of discrete symmetries. Either
under a unit translation or time reversal(see Table I), the
Néel vector changes sign,

n̂r → − n̂r . s5.1d

This may be combined with a Us1d spin rotation in theXY
plane which restores the sign ofnx,ny to simply change the
sign ofnz alone. Thusnz→−nz is a discrete symmetry in the
easy-plane case.

Easy-plane anisotropy is readily incorporated into the
nonlinear sigma model description in Eqs.(2.1) or (3.1)as a
term

Sep= −E dt d2x wsnzd2 s5.2d

with w,0 [this is clearly related to Eq.(1.8)]. The global
Us1d symmetry simply corresponds to a uniform rotation of
all the n̂ vectors about thez axis.

A. Semiclassical analysis

Let us first think classically about this easy-plane model.
By classical we mean to focus on time-independent configu-
rations of then̂ field and to ignore the Berry phase effects.
The classical ground state simply consists of lettingn̂ be

independent of position and lie entirely in the spinXY plane.
Topological defects in this ground state will play an impor-
tant role. With the easy-plane anisotropy, these are simply
vortices in the fieldn+=nx+ iny. More precisely, on going
around a large loop containing a vortex the phase ofn+ winds
around by 2pm with m an integer.

What is the nature of the core of these vortices? In the
core theXY order will be suppressed and then̂ vector will
point along the ±ẑ direction. In terms of the microscopic spin
model, this corresponds to a nonzero staggered magnetiza-
tion of thez component of the spin in the core region. Thus
at the classical level there are two kinds of vortices depend-
ing on the direction of then̂ vector at the core(see Fig. 5).
Note that either kind of vortexbreaks the Ising-like nz→
−nz symmetry at the core.

Clearly this breaking of the Ising symmetry is an artifact
of the classical limit—once quantum effects are included, the
two broken symmetry cores will be able to tunnel into each
other and there will be no true broken Ising symmetry in the
core. This tunneling is often called an “instanton” process
that connects two classically degenerate states.

Interestingly-such an instanton event is physically the
easy-plane avatar of the space-time monopole described
above for the fully isotropic model. This may be seen picto-
rially. Pictorially each classical vortex really represents half

FIG. 5. The “meron” vortices in the easy-plane case. There are
two such vortices,c1,2, andc1 is represented in(a) and (b), while
c2 is represented by(a) and(c), following the conventions of Fig. 2.
The c1 meron above hasn̂sr =0d=s0,0,1d and n̂sur u→`d
=sx,y,0d / ur u; the c2 meron hasn̂sr =0d=s0,0,−1d and the same
limit as ur u→`. Each meron above is “half” the skyrmion in Fig. 2:
this is evident from a comparison of(b) and (c) above with Fig.
2(b). Similarly, one can observe that a composite ofc1 and c2

*

makes one skyrmion.
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of a skyrmion configuration. Such half skyrmions are known
as merons. As shown in Fig. 5, the tunneling process be-
tween the two merons is equivalent to creating a full skyr-
mion. This is precisely the monopole event.

Now the results of Haldane imply once again that(in the
continuum) monopole events are quadrupled. Thus the only
tunneling processes that survive in the continuum limit are
those in which four merons with core spins along one direc-
tion come together and collectively flip the orientation of
their core spins to produce four merons of the opposite kind.

B. Easy plane in theCP1 representation

It is extremely useful to also consider easy-plane aniso-
tropy in the framework of theCP1 representation. In this
representation, the easy-plane anisotropy was already pre-
sented in Eq.(1.8). Let us first translate the above classical
thinking into theCP1 representation. Suppose for this pur-
posew is negative but small, so that states withuz1u= uz2u are
favored but not rigidly enforced. Clearly, the preferred uni-
form classical ordered states satisfy

ukz1lu = ukz2lu Þ 0, s5.3d

so thatn+=z1
*z2 is orderedand there is no average value of

nz= uz1u2− uz2u2. Now consider vortex configurations. Clearly a
full 2p vortex in n+ can be achieved by either having a 2p
vortex in z1 and not inz2 or a 2p antivortex inz2 and no
vortex in z1. Far from the vortex core both fields will have
equal amplitude, but in the first choice the amplitude of the
z1 condensate will be suppressed at the core butkz2l will be
unaffected. Consequentlynz= uz1u2− uz2u2 will be nonzero and
negative in the core. The other choice also leads to nonzero
nz which will now be positive. Thus we may identify the two
kinds of meron vortices with 2p vortices in the spinon fields
z1,2, respectively.

To explore this analytically, we consider the behavior now
deep in the easy-plane limit, in whichnz= uzi1u2− uzi2u2<0.
Together with theCP1 constraintuzi1u2+ uzi2u2=1, this implies
fixed magnitude for each component ofzi, so we may write

zia ,
1
Î2

eifia, s5.4d

where fiaP f0,2pd is the phase of the spinon field. The
“kinetic” term of the SJ model action in Eq.(3.11) is then
modified to

Sz = − to
,,a

cossDfa − ad, s5.5d

with the other termssSa,SBd given as before in Eqs.(3.12)
and (3.13).

It is very useful both for further insight and for concrete
calculations to explore a “dual” representation which focuses
on the meron vortex fields. Although the form of the dual
action is dictated completely by the general considerations of
the previous subsection, we provide an explicit derivation in
Appendix B by proceeding as in Sec. IV A with the duality
transformation. We obtain the dual actionSdual
=ed2r dt Ldual with

Ldual= o
a=1,2

us]m − iAmdcau2 + sducu2 + udsucu2d2 + wduc1u2uc2u2

+ kdsemnk]n Akd2 − l Refsc1
*c2d4g. s5.6d

We have used the shorthand notationucu2;uc1u2+ uc2u2. Here
c1,2 denote quantum fields that destroy meron vortices whose
core points in the up direction forc1 and down forc2.

We now show how the dual action of Eq.(5.6) can be
understood entirely on general grounds. As usual in dual
theories, the net vorticity is conserved, corresponding to the
overall Us1d symmetry of Eq. (5.6). This symmetry is
gauged by the noncompact vector potentialAm, as usual in
dual descriptions of two-dimensional Bosonic systems.
Physically, the gauge field is required to embody spinsSzd
conservation of the original model,jm=emnl]n Al /p being
the three-current ofSz. Hence the dual magnetic and electric
fields correspond to the spin density and spin current, respec-
tively. Minimal coupling of the vortex fields toAm also gives
them proper logarithmic interactions and magnus force dy-
namics.

Clearly under the discrete Ising-likenz→−nz symmetry,
the two vortices get interchanged, i.e.,c1→c2 and vice
versa. The dual action must therefore be invariant under in-
terchange of 1 and 2 labels.

Finally, if monopole events were to be completely ignored
(i.e., disallowed by hand) the total skyrmion number must be
conserved. As is apparent from Fig. 5, a composite of ac1
vortex and ac2

* antivortex is precisely a skyrmion configu-
ration of then̂ field. Thus we may view skyrmion number
conservation as the conservation of thedifferenceof the total
number of either species of vortices. This implies the global
Us1d symmetry

c1 → c1 expsi%d,

c2 → c2 exps− i%d, s5.7d

where% is a constant.
As discussed at length above, monopole events destroy

the conservation of skyrmion number, and hence this dual
global Us1d symmetry. However as the monopoles are effec-
tively quadrupled due to the Berry phase terms, skyrmion
number is still conserved(mod 4). Thus the dual global Us1d
symmetry must be broken down toZ4.

The dual LagrangianLdual in Eq. (5.6) is the simplest one
that is consistent with all these requirements. In particular,
we note that atl=0 the dual global Us1d transformation in
Eq. (5.7) leaves the Lagrangian invariant. Thel term breaks
this down toZ4 as required. Thus we may identifyl as the
fugacity of the(quadrupled) monopole tunneling events,l
,l4 in Eq. (1.9).

Actually this action was derived by completely different
means in Refs. 51 and 41. The discussion above is, however,
more directly physical, and gives an interpretation of thel
term and of the other symmetries of this dual action.

An important coupling constant in the above dual action
is wd, which appears as a sort of “anisotropy.” The exact
lattice duality in the appendix in fact leads to a “hard spin”
(rotor) model in whichuc1u= uc2u=1. The above continuum
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theory is arrived at by “softening” this constraint. However,
it is clear that the appropriate sign ofwd to connect micro-
scopically to the original SJ model iswd,0 (and large).
While the above symmetry arguments do not specify this
sign, the model withwd.0 presumably corresponds to
rather different physics, and has no clear connection to the
original SJ model. See the discussion in Sec. IX D for a
possible physical application of this case.

Note that apart from thel term, Eq.(5.6) has exactly the
same structure as the continuumCP1 theoryLz in Eq. (1.7)
in the presence of the easy-plane anisotropy Eq.(1.8). As we
will discuss below, thel term (which represents the qua-
drupled monopole tunneling events) are irrelevant at the
QCP: consequently, the QCP has a self-dual structure.

We should further note that there is no connection be-
tweenwd in the vortex action and the analogous parameterw
in the continuum limit of the SJ model. The latter is clearly
simply related to the physical spin anisotropy, corresponding
for w,0 to easy-plane and forw.0 to easy-axis anisotropy.
The pointw=0 describes the SUs2d invariant magnetic QCP.
This does notcorrespond towd=0 in the dual theory. Indeed,
there may be no dual theory whatsoever for any but the easy
plane case(though see Sec. IX D).

A list of the representation of physical operators of inter-
est in the original and dual representations is given in Table
II. In the dual vortex theory, theXY ordered phase is simply
characterized as a dual “paramagnet” where both thec1,2
fields are gapped. On the other hand, true spin paramagnetic
phases correspond to condensates of the fieldsc1,2, which
break the dual gauge symmetry. In particular if bothc1 and
c2 condense with equal amplitudekc1l=kc2lÞ0, then a
paramagnetic phase where the global Ising symmetry is pre-
served results. Note the strong similarity between the de-
scription of the phases in this dual theory with that in terms
of the spinon fields of theCP1 representation if we inter-
change the role of theXY ordered and paramagnetic phases.
This is a symptom of an exact duality between the two de-
scriptions that obtains close to the transition. At this point,
the two descriptions do not appear wholly identical, due to
the Z4 symmetry-breaking terml not present in theCP1

theory, and the compactness of theCP1 gauge field not
present in the dual one. As argued above, the two differences
represent one and the same physics, since the vortex tunnel-
ing events generated byl represent exactly the nonoscillat-
ing four-monopole events allowed in the SJ model. In the
next section, we will argue that these events are irrelevant in
the scaling limit near the QCP, making the duality between
the two descriptions complete.

As indicated in Table II, the combinationcVBS,c1
*c2

serves as the order parameter for the translational symmetry
broken VBS ground state. This may be seen from the analy-
sis of Refs. 41 and 51. Alternately this may be seen by the
identification described in Sec. III of the skyrmion creation
operator with the order parameter for translation symmetry
breaking. Such a condensate ofc1,2 breaks the globalZ4
symmetry of the action in Eq.(5.6). The preferred phase of
cVBS depends on the sign ofl, the two inequivalent sets of
preferred directions corresponding to columnar and plaquette
patterns of translational symmetry breaking.

VI. PHASE TRANSITIONS

A. Easy-plane limit

Consider the dual vortex action in Eq.(5.6). In mean-field
theory the transition happens when the parametersd becomes
smaller than zero and can clearly be second order. Fluctua-
tion effects will modify the mean-field behavior in important
ways. Consider first the properties of the transition whenl
=0, i.e., in the absence of instanton events. The resulting
model has recently been studied in Ref. 23. Remarkably, as
argued there, the model has the property of being self-dual—
the ordered and paramagnetic phases get interchanged under
the duality transformation. To understand this first note that
in the l=0 limit, the dual action Eq.(5.6) has precisely the
same structure as an easy-planeCP1 model with anoncom-
pact Us1d gauge field[as in Eq.(1.7)]. As this same limit
actually corresponds to disallowing all monopole events, in
the spinon description we must work with anoncompact
gauge field. Then the exact same field theory obtains both in
terms of the spinon fieldsz [in Eq. (1.7)] and in terms of the
meron vorticesc in the easy plane limit[in Eq. (5.6)] and
ignoring instantons.

It was established in Ref. 23 via numerical Monte Carlo
simulations that a continuous ordering transition exists in
this model with the noncompact gauge field. The fixed point
controlling this transition in this limit is therefore described
by a self-dual field theory. Note that in either representation
the natural fields of the theory are not those associated with
the “physical” boson operator
(either n+ or the skyrmion creation operator). Rather the
theory is expressed most simply in terms of “fractionalized”
fields—namely the spinons or the meron vortices. In particu-
lar, the physicaln+ field is a composite of two spinon fields
and likewise the skyrmion field is a composite of the two
meron fields.

Let us now imagine including instanton events. This is
most easily accessed in the vortex representation where it
simply amounts to lettinglÞ0. This is the main advantage
of the dual representation—the nontrivial nonlocal effect of
instantons is represented as a simple local perturbation in the
dual theory. We may now address the question of relevance/
irrelevance of instantons at thel=0 fixed point. This is de-
termined by the scaling dimensionD of the sc1

*c2d4=cVBS
s4d

operator, in principle determined from the two-point correla-
tion function of this operator in the(nontrivial) theory with
l=0:

kcVBS
s4d sxdcVBS

s4d* sx8dll=0 ,
1

ux − x8u2D , s6.1d

where x,x8 are space-time coordinates. HenceD is deter-
mined by the correlations of the fourth power of the physical
VBS order parameter, and one requiresD.D=3 for irrel-
evance. Being self-dual, the same anomalous dimension
should be ascribed to the correlations of the physical boson(
XY order parameter). The l=0 critical fixed point describes
anXY ordering transition where the physical boson field is a
composite of the fundamental fields of the theory. We there-
fore expect that correlators of the physical boson(and its
various powers) will decay with an anomalous dimension
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that islarger than the corresponding one for the ordinaryXY
transition in D=2+1 dimensions. Now for the usualXY
fixed point fourfold symmetry breaking perturbations are
known to beirrelevant, i.e., have a scaling dimensionD4.3.
This then implies that a smalll will be irrelevant by power
counting at thel=0 fixed point of the present model as well
(see also Appendix C).

This latter expectation can be checked in an appropriate
large N generalization. In particular, consider the noncom-
pact gauge theory with Lagrangian

L = o
i=1

2N

fus]m − iAmdciu2 + r uciu2 + uuciu4g + kNsemnl]n Ald2

− lo
i=1

N

fsci
*ci+Nd4 + c.c.g, s6.2d

where the Us1d3Us1d symmetry(for l=0) of the dual ac-
tion has been elevated to a Us1d2N invariance(under inde-
pendent phase rotations of eachci field). Of this, only the
single Us1d subgroup of identical rotations of all 2N fields
has been gauged with the noncompact gauge fieldAm. Thel
term breaks the Us1d2N symmetry to Us1dN, of which N−1
are global, and the single gauge Us1d is preserved. In addi-
tion, there is a residual globalZ4

N symmetry underc j
→einjp/4c j, c j+N→e−injp/4c j+N, with nj P h0,1,2,3j, for j
=1¯N.

In the N=` limit, the theory may be analyzed by saddle-
point methods. In particular, consider for simplicity the par-
tition function with l=0, which may be formally written

Z =E fdAgexpH− Nf2SXY
effsAmd +E d2r dt ksemnl]nAld2gJ ,

s6.3d

where

SXY
eff = − lnE fdcgexpH−E d2r dtfus]m − iAmdcu2 + r ucu2

+ uucu4gJ s6.4d

is the effective action of theD=3 XY model as a functional
of Am. Formally, atN=`, from Eq. (6.3), a saddle-point ap-
proximation in Am is justified, with the saddle-point value
being zero,Am

* =0. The relevance ofl is then determined by
the two-point function of in the saddle-point theory with
Am=0. Since in this theory theci are decoupledXY fields
(fluctuating according to the nontrivial 3DXY fixed point),
one has then

kcVBS;N
s4d sxdcVBS;N

s4d* sx8dll=0 , Nuk„c*sxd…4
„csx8d…4l3D XYu2

,
N

ux − x8u4D4
. s6.5d

The final expression obtains since the expectation value in
the second line is none other but the two-point function of
the fourfold symmetry breaking field at theD=3 XY fixed
point. Hence one hasD=2D4, implying D.6 sinceD4.3.

Thus in this limit the “monopole”(symmetry breaking)
terms are strongly irrelevant. We note in passing that the
irrelevance ofl can also be established by working forl
Þ0, and taking the large-N limit. The saddle point remains at
Am=0, and irrelevance follows simply from the irrelevance
of “bi-quartic” coupling between two 3DXY models by their
fourfold symmetry-breaking fields.

We conclude that a direct second-order transition with
irrelevant instanton tunneling events is possible in this easy-
plane case. Note the crucial role played by the Berry phase
term for the instantons in reaching this conclusion. Indeed it
was the Berry phases that forced quadrupling of instantons
thereby increasing their scaling dimension and making it
possible for them to be irrelevant.

While the l term may be irrelevant at the critical fixed
point it is clearly very important in deciding the fate of either
phase. In particular in the paramagnetic phase it picks out the
particular pattern of translation symmetry breaking(colum-
nar versus plaquette) and forces linear confinement of
spinons. In critical phenomena parlance, it may be described
as adangerously irrelevantperturbation.

B. Isotropic magnets

In the context of the SJ models, the results of previous
sections show that theN=1, N=`, and easy-planeN=2
models all provide the same picture. A direct second-order
transition between thez condensed and VBS phases is pos-
sible with a “deconfined” critical point. Right at this point,
monopole tunneling events become irrelevant and spinon de-
grees of freedom emerge as the natural fields of the critical
theory. This provides strong evidence that the same thing
happens for the SUs2d symmetric model(i.e., atN=2).

What then is the proposed description of the critical point
in the SUs2d symmetric model? This is simply theCP1

model with a noncompact gauge field and no Berry phase
terms in Eq.(1.7). Equivalently it may be thought of as the
critical point of theD=3 classical Os3d model when mono-
poles have been forbidden by hand. This transition was stud-
ied by Kamal and Murthy42 and more recently by Motrunich
and Vishwanath,23 where it was established that a continuous
transition indeed exists that is different from the Heisenberg
transition. The noncompactCP1 theory Eq.(1.7) was also
directly studied via numerical Monte Carlo methods and
found to possess a continuous transition with the same uni-
versal properties as the monopole suppressed Os3d NLsM.
Numerical results for exponents associated with several ob-
servables are available. Further evidence for the continuous
nature of the transition in theCP1 model coupled to a non-
compact gauge field is obtained by considering the larger
class of models withCPN−1 fields coupled to a noncompact
gauge theory. It is well known that theN=1 model has a
continuous transition59 which is dual to theXY transition,
and a continuous transition is also expected for large values
of N. Thus the model of interestN=2 is sandwiched between
these two extremes where a continuous transition is well
known to be obtained.

VII. PHYSICAL PROPERTIES NEAR THE DECONFINED
CRITICAL POINT

We now discuss the consequences of the theory for the
physical properties near the direct Néel-VBS transition. We
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will first discuss those properties that follow generally from
the (dangerous) irrelevance of monopoles. Later we will spe-
cialize to the easy-plane limit where the self-duality enables
more progress.

It is useful to think first about the various length scales in
the problem in the VBS phase. First there is the spin-spin
correlation lengthj which will diverge at the transition. Sec-
ond, there is a length scalejVBS associated with the “thick-
ness” of the domain walls of the(discrete) VBS order. The
latter is clearly determined by the strength of the quadrupled
monopole operator,l;l4, in Eq. (1.9); in the easy-plane
case,l appears as the co-efficient of a local term in the dual
action Eq. (5.6). These two length scales will diverge
differently—the domain wall thickness will diverge faster
than the spin-spin correlation length. One can determine the
scaling ofjVBS with j by a matching argument. On scaling
grounds, one expects

jVBS , jfslj3−Dd, s7.1d

wheref is a scaling function, and 3−D is the RG eigenvalue
of l assuming the scaling dimension of the four monopole
operator isD.3, and d=2,z=1. Beyond the scale of the
correlation lengthj, one can regard the VBS phase asXY
ordered incVBS, though with very weak fourfold anisotropy
sincel is irrelevant at the QCP. Hence the low-energy varia-
tions of the phaseu of cVBS,ucVBSueiu are described as a
pseudo-Goldstone mode, with energy

Esud =E d2xF K̃

2
u ¹ uu2 − l̃ cos 4ug, s7.2d

whereK̃ and l̃~l are renormalized parameters on the scale
of j. A twist of u (of, e.g.,p /2) is carried hence by a domain
wall which, by dimensional analysis, has widthjVBS

,ÎK̃ / l̃. Knowing then thatjVBS,l−1/2, one requires that
fsxd,x−1/2 in Eq. (7.1), which implies37

jVBS , jsD−1d/2. s7.3d

SincesD−1d /2.1, jVBS indeed grows more rapidly thanj
as the QCP is approached.

Thus there are two independent diverging length scales.
Either of these length scales may be given several different
interpretations. For instance, the spin-correlation lengthj
may also be interpreted as the length scale at which correla-
tions of the dual global order-parameter crossover from that
of the critical fixed point to that of the(unstable) fixed point
which breaks the dual global continuous symmetry. Simi-
larly, the domain-wall thicknessjVBS of the VBS order is
also the length scale at which the photon that couples to the
spinons acquires a mass due to instanton effects. This is also
the length beyond which the logarithmic Coulomb potential
between spinons crosses over to a linear confining one. This
is distinct from the “confinement” length scale describing the
spatial size of the resulting two-spinon bound states
(triplons). This length scale is actually a nontrivial combina-
tion of the two other diverging length scales. It, however,
diverges faster than the spin-correlation lengthj.

Note that the critical theory is isotropic in space-time and
therefore has dynamic scaling exponentz=1. The values of

other critical exponents may be obtained from the numerical
work of Ref. 23. In the Os3d symmetric case the correlation
length exponentn<1 (for j), and the Néel order parameter
exponentb<0.80. Perhaps most remarkably the anomolous
dimension of the Néel order parameter fieldh is large
s<0.6d. This should be contrasted with the extremely small
value for h at the usual Wilson-Fisher Os3d fixed point in
D=3 dimensions(and indeed for most other familiar three-
dimensional critical points). The large value ofh can be
rationalized by the thinking that the Néel order parameter
field decays into spinons right at the critical point. Indeed as
argued in previous sections it is the spinons which appear as
the more natural degrees of freedom at the deconfined criti-
cal point. We note, however, that the spinons are not to be
considered “free particles”—they are critical and furthermore
interact through the coupling to the noncompact gauge field.

Consider the effect of twisting the boundary conditions on
the VBS order—for instance, for columnar dimerization pre-
fer even columns at one boundary and odd columns at the
opposite boundary. Let us suppose the twist is applied be-
tween the top and bottom endssy=0,Wd of anL3W sample.
On general grounds, the energy cost at long scales will be
E,sLd−1=sL, wheres is a “surface tension” or domain-
wall energy per unit length. This surface tension is set, how-
ever, by the irrelevant monopole term and vanishes in a man-
ner set by the divergence of the domain-wall thickness. In
particular, the surface tension scaling obtains only for twists
sustained over a distanceW*jVBS. For twists of the VBS
order over a shorter distanceW such thatjVBS@W@j, the
energy cost for this twist is greatly reduced toE
,KL / s2Wd, whereK is the “stiffness” associated with the
continuous dual global symmetry(and we are at length
scales where the system has not realized this symmetry is
actually discrete). The two energy costs for the twist become
comparable forW,jVBS, so that one expectss,K /jVBS.
This stiffness itself vanishes upon approaching the quantum
critical point in a manner set by the divergence of the spin-
correlation length. Furthermore, the corresponding exponent
is the same as for the spin stiffness on the other side of the
transition. Specifically, the VBS stiffnessK,j2−d−z wherej
is the dual correlation length,d=2 is the spatial dimension,
andz=1 is the dynamic critical exponent. ThusK~1/j.

Note that this isnot a test of self-duality but rather a test
of the irrelevance of monopoles: the scaling of the VBS stiff-
ness is a consequence of dual current conservation which
obtains if monopoles are irrelevant. Thus the same behavior
is also expected for the isotropic model.

In practice, a measurement of the domain-wall energy in
the columnar state is likely best obtained by simply compar-
ing energies of systems of sizeL3W (in the x andy direc-
tions, respectively) with periodic boundary conditions in
both directions(i.e., on the torus) and varyingW. In particu-
lar, let us considerW.L, with L odd. In this case, the col-
umns will prefer to align along the short direction(i.e., col-
umns parallel to thex axis, breaking translational symmetry
alongy) in order to avoid introducing a domain wall(which
would be required in the other orientation due to the oddL)
with energy costsW. If W is odd, there will still be a domain
wall required, but it is shorter and less costly, with energy
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sL. Hence one expects the ground-state energy of the system
to be ELW<eWL for W even, andELW<eWL+sL for W
odd. Heree is the ground-state energy density. Hence the
surface tension can be obtained by

EL,W+1 − 2EL,W + EL,W−1 , 2sLs− 1dW, L odd. s7.4d

This behavior will obtain providedW.L@jVBS. When the
system is smaller than the domain-wall thickness, however,
this energy is determined instead by the stiffness, i.e.,

EL,W+1 − 2EL,W + EL,W−1 , K
L

W
s− 1dW, L odd, s7.5d

for j!L,W!jVBS.
It is also clear that at the critical point, both columnar

dimer and plaquette order parameters will have power-law
correlators with the same exponent. This is independent of
which one of these two phases we eventually end up in. This
is because both order parameters are contained in the dual
global boson creation operator. They correspond to the phase
of this boson locking in different directions. Which one of
these phases is selected is determined by the sign of the
anisotropy term, but as this is renormalizing to zero at the
critical fixed point, there will be no distinction between the
two order-parameter correlations at the critical point.

This suggests the following interesting numerical check.
Consider, for instance, the situation where the disordered
phase has columnar VBS order. Now consider measuring the
stiffness toplaquetteorder in this columnar phase. Since this
order is not spontaneous in the VBS phase, measuring this
stiffness cannot be accomplished as above by simply com-
paring systems with odd and even lengths. Instead, one
should imagine introducing, e.g., two rows separated by half
W on which the magnetic couplings have been increased or
decreased in a pattern mimicking the strong bonds of the
plaquette state. The ground-state energy of this system
should be compared with that obtained by shifting one of
these rows by one lattice spacing, and the difference of these
two energies interpreted as the energy cost for a twist of the
plaquette order parameter. Deep in the phase, this energy
cost will be exponentially small,DE,Le−W/jVBS. However,
in the regimejVBS@W@j the cost for the twist of the
plaquette order parameter will be determined by the stiffness,
i.e., DE,KplL / s2Wd. There will thus be a dramatic change
from exponential to power-law behavior in this quantity on
approaching the critical point.

The coefficient of proportionalityKpl will equal the cor-
responding stiffnessK for columnar order and scale identi-
cally to the physical spin stiffness on the other side of the
transition. Once again, this is not a test of self-duality but
follows from the irrelevance of monopoles and will hold in
the isotropic case as well.

Specializing to the easy-plane case, the self-duality of the
critical fixed point implies some further interesting proper-
ties. First, it is clear that the dual global boson will have the
same power-law decay as the physical spin correlator. The
former is identified with the VBS order parameter while the
latter corresponds to the staggeredXY correlators in the mi-
croscopic spin model. We thus have the remarkable result

that the columnar dimer, plaquette, and staggeredXY mag-
netization all decay with the same power law right at the
critical point. Furthermore, theb exponent for the particular
VBS order that actually develops will be the same as theb
for the spin order. This is because the anisotropy only serves
to lock the phase of the dual order parameter. The amplitude
is already nonzero in the scaling limit near the critical point.

A. Ordered state

As elaborated in the previous subsection, there are two
diverging length (or equivalently time) scales upon ap-
proaching the transition from the VBS side. How does this
manifest itself in the Néel ordered side? To understand this
first note that in the ordered phase close to the transition
there will be “soft” modes that correspond to the incipient
VBS order on the other side of the transition. Indeed the
frequency of these modes will go to zero at the critical point.
For concreteness consider the case where the VBS order that
develops is columnar. Then as is natural there will be a soft
mode corresponding to columnar order with frequency van-
ishing on approaching the critical point. Remarkably there
will be other soft modes that correspond to plaquette order-
ing whose frequency also vanish on approaching the transi-
tion. Once again this is despite there being no such order in
the VBS phase. This result is already implied by the discus-
sion in the preceding subsection. Indeed both the plaquette
and columnar order parameters have power-law correlations
at the critical point regardless of which one of the two orders
actually develops in the VBS phase. Thus it is natural that
the frequencies of both modes go to zero on approaching the
critical point from the ordered side. Furthermore, both soft
mode frequencies vanish in exactly the same universal way
on approaching the transition. Formally the columnar and
plaquette order parameters are distinguished only by the ori-
entation of the phase of the complex VBS order parameter.
In the absence of monopole tunneling events(which tend to
pin this phase to certain values), these two distinct order
parameter fields will both behave in a common manner de-
termined by the complex VBS order parameter. Thus in the
scaling limit near the critical point both the plaquette and
columnar order parameters will display the same universal
behavior. On general scaling grounds we expect the VBS
soft-mode frequencyvVBS,rs wherers is the ground-state
spin stiffness of the Néel ordered state.

Despite the common universal behavior of the vanishing
frequency of the two distinct VBS soft modes, there will be
a small splitting between the two frequencies that is due to
the irrelevant(quadrupled) monopole tunneling events. In-
deed the information about which of the two VBS orders
eventually develops in the paramagnetic phase is contained
in this small splitting. If columnar order develops, then the
corresponding soft mode will have slightly lower frequency
in the ordered phase as compared to the plaquette soft mode.
Note that this splitting will go to zero as the critical point is
approached as the monopole fugacity renormalizes to zero.
This will, however, vanish in a very different way from the
overall VBS energy scalevVBS. Indeed this splitting defines
a new energy scale that vanishes faster thanvVBS. Thus we
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see that two different energy scales also characterize the
physics of the ordered phase.

In the easy-plane case, one intriguing aspect of our theory
is the physics of the vortex cores in theXY ordered phase
close to the transition. As discussed extensively, there are
two kinds of classical meron vortices which tunnel into each
other in the quantum theory. However, the irrelevance of
these instanton tunneling events near the transition implies
that the Ising order in the core will survive for a very long
time.

We have, up to this point, not considered any effects
which explicitly break the lattice translational symmetry.
Hence the discussion should be read as appropriate for ex-
tended, plane-wave states of vortices. Crucially, these states
may be classified by their(quasi)wave vectors. Consider the
continuum theory in which the spatially oscillating single
instanton events are neglected, and only the(irrelevant) qua-
drupled instanton fugacityl is included. In the dual formu-
lation, the two Ising vortex states appear as relativistic
charged particles. They carry a conserved Us1d noncompact
gauge charge(physically their vorticity), i.e., the number of
these vorticiesN1+N2 is conserved. There is a discreteZ4
global symmetry, which implies thatN1−N2 is conserved
modulo 8. The latter is a consequence of the continuum limit
which removes the single instanton events, and is promoted
to a continuous Us1d symmetry (with N1−N2 fully con-
served) if the quadrupled instantons are also neglected.
Physically, then, excitations of the vortex vacuum, i.e., the
XY ordered state, can be labeled by these quantum numbers.
And one should expect there to be “quasiparticles”(really
“quasivortices” or “quasimerons”) carrying an elementary
unit s±1d noncompact gauge charge(physically ±2p vortic-
ity) and an elementaryZ4 chargeN1−N2= ±1. These are vor-
tices (as befits anXY ordered phase), with a “core energy”
scaling as 1/j. There will be other gapped excitations[also
with a gap ofOs1/jd] with zero noncompact gauge charge
(zero vorticity) andN1−N2= ±2, which can be viewed as the
VBS soft modes, or alternatively as “vortex excitons.”

Let us now consider the effects of the neglected oscillat-
ing single monopole term. Naïvely, this violates theZ4 con-
servation law, and can mix the quasimeron states withN1
−N2= ±1. However, due to the four-sublattice oscillation, the
process in which one meron state is converted to another is
accompanied by the addition of a large momentum. In the
absence of a sink for this momentum, therefore,even the
single instanton term cannot mix the two meron quasiparticle
states. At nonzero temperature, thermally excitated excita-
tions with a large gaps@1/jd can provide this momentum,
but are present only with an exponentially small probability
due to their gap. Hence violations of the conservation of the
“Ising” charge of a single quasiparticle are exponentially
weak at low temperature. Of course,four quasiparticles with
“up” Ising cores can scatter off one another to produce four
quasiparticles with “down” Ising cores via the nonoscillating
l term. The amplitude for even this process is, however,
suppressed by the irrelevance ofl if one is near the QCP.

Thus we arrive at the remarkable conclusion that the “el-
ementary” gapped vortex excitations of theXY ordered phase
carry a sharp extra Ising quantum number. Ramifications will
be explored in Sec. IX A.

A number of other predictions may also be made on the
effects of various perturbations that can be added to the
Hamiltonian near the zero-temperature critical point.

B. Uniform Zeeman field

First let us think about the excitation structure in the para-
magnetic side. Deep in the phase, the lowest spinful excita-
tions will be S=1 which will be gapful. On approaching the
transition, due to the diverging “confinement” length one
might naïvely think that this will break up into spinons.
However, even with a noncompact gauge field due to the log
attraction coming from the photon there will be logarithmic
confinement and the lowest energy spin carrying excitations
will continue to haveS=1. This “magnon” is a gauge neutral
bound state of two spinons. Now imagine sitting in the para-
magnetic side close to the transition, and turn on a Zeeman
field along thez axis in spin space. Once the Zeeman energy
exceeds the magnon gap, the chemical potential for such
magnons becomes positive and they should condense to
modify the ground state. This leads toXY antiferromagnetic
order. In the noncompact approximation, because this con-
densate is gauge neutral, it does not create a gap for the
photon via the Higgs mechanism. In reality(i.e., beyond the
noncompact approximation) what this means is that there
will be coexistence between VBS andXY order. As the
spinons are not condensed in this phase, there is no disrup-
tion of the VBS order(this can be seen, e.g., from the fact
that the spinons appear as dual “vortices” in the VBS order
parameter, while the magnons carry zero dual vorticity).

These considerations hold only provided another transi-
tion does not pre-empt magnon condensation as the Zeeman
field is increased. This will happen, e.g., if the magnons ex-
perience attractive interactions with one another. Indeed, in a
Coulomb interacting system, it is natural to expect that the
magnons, which are the analog of excitons, will have attrac-
tive interactions with one another at long distances, due to
the analog of “van der Waals” forces between their fluctuat-
ing dipole moments. This attraction, however, competes with
other local interactions due to the complex critical physics on
scales&j, so the outcome is not clear. Therefore we do not
see a clear argument against a continuous magnon conden-
sation transition into a coexistence phase. Likewise, of
course, we cannot rule out a direct first-order transition. In
any case it therefore seems as though a direct second-order
transition between the magnetically ordered and VBS phases
is unlikely at nonzero Zeeman field.

If the coexistence phase exists, it is interesting to contem-
plate the transition between the coexistence phase and the
pure magnetically ordered one(with canted antiferromag-
netic order). In the system withXY symmetry, a transition
with exactly these symmetries has been studied in Ref. 60. In
this paper, it was shown that, despite coexisting superfluid
order and the consequent gapless Goldstone mode, this tran-
sition is in the universality class of aD=3 XY model, theZ4
symmetry-breaking perturbationand the coupling to the
Goldstone mode being irrelevant. Thinking in terms of the
dual formulation suggests this analysis should apply here. In
particular, both vortex fieldsc1,2 remain gapped across the
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transition, since both phases areXY ordered. Only the com-
posite order parametercVBS=c1

†c2 is involved in the critical-
ity, and it does not couple minimally to the noncompact
gauge field. Integrating out the massive vortex fields while
keeping a compositecVBS field and the gauge fluctuations
describing the Goldstone mode, one arrives at a model
equivalent to Ref. 60. Note that this result implies that this
critical point is also deconfined in precisely the same sense
as the others discussed in this paper.

C. Staggered Zeeman field

Consider the effect of a staggered Zeeman field on the
original spin model. First assume easy-plane anisotropy in
the plane orthogonal to the applied field. The staggered field
will always induce some staggered magnetization but we can
ask aboutXY or VBS order superimposed on this. In theCP1

description, a staggered Zeeman field corresponds to a uni-
form “magnetic” field that couples to thez component ofn̂.
It is quite clear that there will now be a split transition be-
tween the VBS andXY ordered phases with an intermediate
phase with neitherXY nor VBS order(but of course with a
staggered magnetization).

Consider the approach from the VBS phase. In the pres-
ence of the staggered field, one of the twoCP1 fields will
condense first. This transition is described by theN=1 SJ
model (and is invertedD=3 XY). The resulting phase is the
advertised phase with neitherXY or SP order. Actually it is
more useful to think of this critical point in the gauge lan-
guage as a deconfined critical point than just as invertedXY.
This is so particularly if one asks about the magnon spectral
function at this transition. This will be determined by the
spinon dynamics which in turn are coupled to a noncompact
Us1d gauge field. Thus we might again expect anomalously
broad spectral functions even though both phases are con-
fined (note that totalSz is still conserved).

Eventually, as one tunes towards theXY ordered phase,
the otherCP1 field will also condense leading toXY order.
This transition is actually exactly dual to the other one dis-
cussed above. This is because the staggered Zeeman field
couples to the same operator in both theCP1 and dual rep-
resentations. For small staggered Zeeman fields, the phase
boundaries must come in with the same exponents, etc.

Finally, in the Os3d model, the second transition will not
happen as the Néel vector will immediately line up with the
staggered field. However, the first transition will continue to
be described by theN=1 SJ model. Details of the slopes of
various phase boundaries, etc., may be found in Ref. 23—in
the terminology of that reference, a uniform field corre-
sponds to the staggered Zeeman field discussed here.

D. Finite temperature transitions

Finite temperature properties near the transition may also
be discussed. Here it is clearly necessary to distinguish be-
tween the easy-plane and isotropic cases. In the latter, the
Néel order does not survive for any nonzeroT while in the
former case there is power-law order at lowT which even-
tually disappears through a Berezinski-Kosterlitz-Thouless
(BKT) transition. In both cases, however, the discrete broken

lattice symmetry of the VBS phase will survive upto a non-
zero finiteT. The associated finite-T transition will be in the
universality class of theZ4 clock model ind=2. This transi-
tion is known to be described by aline of fixed points with
continuously variable(i.e., nonuniversal) critical exponents.
The line of fixed points results from the exact marginality of
the fourfold symmetry-breaking termcVBS

4 , i.e., ourl coef-
ficient. As l approaches zero, the nature of the criticality
approaches that of a simpleD=2 classicalXY model, i.e., it
becomes BKT like. Thush→1/4 andn,1/ulu diverge in
this limit. Since at the zero temperature QCP instantons are
irrelevant, we may conclude that the fixed-point value ofl at
the classicalVBS-paramagnet transition(which is generally
finite and nonzero atTc) approaches zero asTc→0. Hence
the nonuniversal critical behavior of the VBS-paramagnet
transition becomes arbitrarily close to BKT behavior as this
transition line is followed into theT=0 QCP. This conclusion
is independent of theXY or Os3d symmetry of the magnetic
ordering.

In the XY case, the self-duality of the easy-plane fixed
point implies further that the phase boundaries associated
with the finite-T transition from both the Néel and VBS
phases have the same shape at lowT. Note that both are BKT
like for Tc asymptotically close to zero(i.e., near the QCP),
consistent with duality. Indeed, one expects not only the
phase boundary but also all critical correlations to match in
this limit, including amplitude ratios.

VIII. DECONFINED QUANTUM CRITICALITY AT THE
VBS TO SPIN LIQUID TRANSITION

In this section we argue that the transition between a va-
lence bond solid and a fractionalized spin liquid is also an
example of a deconfined quantum critical point in a precise
sense.

In two spatial dimensions, a fractionalized spin liquid is
expected to be described as the deconfined phase of aZ2
gauge theory with a gappedZ2 vortex—the vison. ThisZ2
gauge field is minimally coupled to spin-1/2 spinon excita-
tions. We only consider the case where the spinons are
gapped. A precise theoretical characterization is given by the
notion of topological order.18,61

Consider the evolution of the ground state of a spin-1/2
system(or equivalently for bosons at half filling) between
such a fractionalized spin liqiud and a VBS on, say, a square
lattice. Despite the lack of any obvious local order parameter
for the spin liquid there is a close similarity with the Néel-
VBS transition. Indeed both the spin liquid and VBS are
characterized by two distinct types of order(the former by
topological order and the latter by broken lattice symmetry).
Naïve thinking might then suggest that a direct second-order
transition is not possible. Rather one might have expected
two transitions with an intermediate “coexistence region”
which breaks lattice symmetry but is also topologically or-
dered(a VBS* phase, in the notation of Ref. 19). Once again
this naïve expectation is incorrect and a direct second-order
transition is indeed possible. Furthermore, the critical theory
may be regarded as anoncompactUs1d gauge theory with an
extra emergent dual global Us1d symmetry.
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It is convenient to begin with a theoretical formulation
that is powerful enough to describe both phases and all of
their distinct excitations. Such a formulation is provided in
the work of Refs. 17, 18, and 62. As before, the underlying
spin model is first reformulated as a theory of spin-1/2
spinon fields that are minimally coupled to a compact Us1d
gauge field with Berry phases. The VBS corresponds to a
confined paramagnet where the spinons have disappeared
from the spectrum. The spin liquid obtains when a singlet
pair of spinons—which carries gauge charge 2—condenses,
i.e., enters a Higgs phase. Let us represent this Higgs field by
the operatorQ=eiw. We imagine integrating out the indi-
vidual spinon fields(this is permissible because all spin car-
rying excitations are gapped in both the VBS and spin liquid
phases), and obtain the following theory for the
transition:19,54

S = Sw + Sa + SB,

Sw = − 2to
,

cossDw − 2ad, s8.1d

whereSa andSB are defined in Eqs.(3.12) and(3.13). Note
that Eq.(8.1) is just theN=1 SJ model studied in Sec. IV A,
but with the crucial difference thatw carries charge 2[com-
pare with Eq.(4.1)]. The duality transformations of Sec.
IV A are easily applied to Eq.(8.1), and we obtain anXY
model with eightfold anisotropy which is irrelevant at the
transition (this contrasts with the fourfold anisotropy ob-
tained in Sec. IV A).

In the spirit of previous sections(particularly Sec. IV A),
these results may be understood physically as follows. In the
fractionalized phase the condensation of the charge-2 scalar
leads to vortex excitations(the visons) which carryp gauge
flux. In the fractionalized phase instanton effects kill visons
in pairs—indeed, this is precisely what leads to their “Ising”
nature. The transition to the confined VBS phase occurs
when the visons condense. But near the transition, and in the
continuum limit, we expect once again that all instanton
events are quadrupled. Thus thep flux vortices can only
disappear eight at a time. This gives theXY model with
eightfold anisotropy.

We thus see that the eightfold anisotropy in the dualXY
model should be interpreted as instanton tunneling events in
the original compact gauge theory. Consequently, as before
we conclude that instantons are irrelevant at the critical fixed
point so that a gapless noncompact Us1d gauge theory ob-
tains.(We remind the reader that the globalXY model is the
dual of the condensing charge-2 scalar coupled to a noncom-
pact gauge field.)

Note once again the crucial role played by the Berry
phases which are responsible for leading to an eightfold an-
isotropy (as opposed to twofold as would obtain in their
absence).

Note also that spinons are well defined in the fractional-
ized phase but are confined in the VBS phase. What is the
fate of the gapped spinons right at the transition between
these two phases? The arguments above show that at the
critical point the spinons are minimally coupled to anoncom-
pact Us1d gauge field descending fromam (which in turn is

also coupled to the critical spinon pair field). The strong
scaling properties of this critical point(which is dual to the
D=3 XY model) implies that the gauge field has the follow-
ing two-point correlator at criticality

kamspdans− pdl ,
1

p
Sdmn −

pmpn

p2 D , s8.2d

where pm is the spacetime three-momentum. Note that this
propagator does not have the Maxwell 1 /p2 scaling, but a
1/p dependence fixed by the scaling dimension dimfamg=1.
This implies a 1/r interaction between static massive spinons
at criticality.

It is sometimes stated that the transition between the VBS
and spin liquid phases is described by aZ2 gauge theory. The
results here, however, show that the transition is in fact de-
scribed as a deconfined Us1d gauge theory in a very precise
sense. It is the spin liquid phase itself(as opposed to the
transition) that is described as a(deconfined) Z2 gauge
theory.

A. Spin liquids that break lattice symmetry

An important subtlety has been glossed over in the analy-
sis so far in this section. Spin liquid states with no broken
lattice symmetries are certainly possible,18,19,63,64 and for
these the above analysis applies. However, in Bosonic mean-
field theories of SUs2d spin liquid states on a variety of
lattices,62,65–68 the spin liquid state is commonly found to
break a global lattice rotation symmetry69—such a state has
“bond-nematic” order. The spin liquid is associated with
short-range, incommensurate spin correlations at a wave vec-
tor K, and the choice ofK often breaks a lattice symmetry,
e.g., a spin liquid state atK=sk,kd is distinct and inequiva-
lent to a state atK=sk,−kd. Such states appear naturally at
the boundary of a VBS state,62 and for these the theory above
has to be reconsidered. Before doing this, we note one im-
portant case for which this isnot necessary: the Cs2CuCl4
lattice,65,67 which interpolates between the square and trian-
gular lattices. Within a largeN Bosonic mean-field theory
treatment, the ground state in the square lattice limit is a
VBS, while in the triangular limit it is spin liquid which
breaks no lattice symmetries: the transition between these
states is described by the theory in Eq.(8.1).

Turning to a spin liquid that does break lattice symme-
tries, consider, e.g., the transition on the square lattice62 from
the VBS (Fig. 1) with short-ranged spin correlations peaked
at the wave vectorsp ,pd, to a bond-nematic spin liquid at
wave vectorK=sk,kd or K=sk,−kd. The choice of either of
the latter states breaks a symmetry of reflection about the
principal square lattice axes. In mean-field theory,62 this tran-
sition is characterized by the condensation of two Higgs
fields, which we denote asQx=eiwx andQy=eiwy. These fields
are odd under the lattice reflectionsRx and Ry in Table I
respectively,69 and this prohibits terms which are linear in
either Higgs field in the effective action. Using these sym-
metries, and the requirements of gauge invariance, we gen-
eralize Eq.(8.1) to

S = Sw + Sa + SB,
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Sw = − o
,

f2t cossDwx − 2ad + 2t cossDwy − 2ad

+ 2t8 coss2wx − 2wydg, s8.3d

where, as before,Sa and SB are defined in Eqs.(3.12) and
(3.13). Note the crucial factor of 2 in the argument of the
third cosine in Eq.(8.3): this is required by the inversion
constraints above. Apart from the usual compact Us1d gauge
invariance, Eq.(8.3) is also invariant under the globalZ2
transformation,

wx → wx + p/2,

wy → wy − p/2, s8.4d

which realizes the lattice reflection symmetry.[Note that the
square of the transformation in Eq.(8.4) is equivalent to the
identity modulo a compact Us1d gauge transformation.] Con-
sequently, there are now two inequivalent Higgs phases, with
kwx−wyl=0 (or kQxl=kQyl) and kwx−wyl=p (or kQxl=
−kQyl), and these correspond62 to the two possible spin liq-
uid phases atK=sk,kd andK=sk,−kd. The theory Eq.(8.3)
can be analyzed by the same duality transformation applied
to Eq. (8.1), but the critical properties have not been deter-
mined.

IX. ANALOGIES AND EXTENSIONS

A. Superfluid-insulator transition of correlated bosons

The models and the phenomena discussed in this paper
can be fruitfully discussed from a different point of view.
Consider a system of bosons with short-ranged repulsive in-
teractions on a square lattice such that there is half a boson
per site on average. It has long been appreciated that such a
Bosonic system is closely related to quantum spin models
with easy-plane(or easy-axis) anisotropy. Indeed, there is an
exact equivalence in the hard-core limit in which at most one
boson occupies each lattice site. Specifically, one may con-
sider a model of bosons[described as Os2d quantum rotors]
on a square lattice:

H = Uo
r
Snr −

1

2
D2

− to
krr8l

cossfr − fr8d + ¯ . s9.1d

Herefr P f0,2pd represents the boson phase,nr is the con-
jugate boson number and is an integerPf−` ,`g. The el-
lipses represent other short-ranged terms that can be tuned to
drive transitions from a superfluid to(for instance) the bond
stripe insulator. To relate the above boson Hamiltonian to the
antiferromagnetic systems considered in the bulk of the pa-
per, we note that one may define

Sr
± = ere

7ifr , s9.2d

Sr
z = nr −

1

2
. s9.3d

For largeU this gives a faithful representation of an easy-
plane spin-1/2 antiferromagnet, and the universal physics is
expected to be unchanged at smallerU.

Clearly a superfluid phase of the bosons is possible(and
corresponds to theXY ordered phase in the magnet analogy).
Various kinds of Mott insulating ground states are also pos-
sible (these correspond to quantum paramagnets in the mag-
netic case). A simple Mott state corresponds to the bosons
forming a checkerboard ordered pattern in which the sites of
one sublattice are preferentially occupied. This will be stabi-
lized by large nearest-neighbor repulsion and corresponds to
the Ising ordered antiferromagnet. In the boson language the
columnar VBS state may be understood as a “bond-centered”
stripe(or a bond density wave)—a state in which each boson
is shared in a bond between two nearest-neighbor sites such
that these favored bonds have lined up in columns. The con-
siderations of Sec. V more or less apply directly to the tran-
sition between the superfluid and the bond-centered stripe
insulator (or the analogous plaquette ordered insulator). In
particular the critical theory is deconfined and is expressed in
terms of two fields each with boson charge 1/2 that are mini-
mally coupled to a noncompact Us1d gauge field. However,
the discussion in Sec. V was intended for weak easy-plane
anisotropy on an isotropic spin model. It is somewhat more
satisfying to derive the crucial field theory Eq.(5.6) directly
for the Bosonic system. We point out that the approach of
Ref. 51 provides such a direct derivation of the required dual
action. However, the close connection with fractionalized
charge degrees of freedom is somewhat obscured by that
approach. We therefore sketch in Appendix E a derivation
proceeding in a manner more similar to the considerations of
the previous sections, in particular going directly from the
boson model of Eq.(9.1) to the dual meron action obtained
earlier.

In the context of boson models(in view of potential ap-
plications, e.g., to atomic bosons in optical lattices or to elec-
tronic systems where the bosons are Cooper pairs), some
physical properties arise which are less natural in the context
of quantum antiferromagnets discussed earlier. In particular,
it is interesting to consider the effects of an applied orbital
magnetic field coupling. This can bring out the unusual phys-
ics of Ising ordering in the vortex cores discussed earlier in
Sec. VII A.

Orbital magnetic field

Let us consider the structure in an appliedorbital mag-
netic field B. The QCP at zero field describes a transition
between a superfluid phase and a bond-centered striped
phase.

Suppose the system is on the superfluid(XY ordered) side
of the QCP, and a small magnetic field is applied(we use the
internal fieldB). This field produces vortices, separated by an
average distance,=Îf0/B, wheref0=hc/q is the flux quan-
tum, andq is the boson charge. In the weak-field limit, where
the length, is large, one expects these vortices to form an
Abrikosov lattice, since the long-range logarithmic interac-
tions between vortices dominate their kinetic energy. Now
suppose one is near the QCP, so that the correlation lengthj
is large. To a first approximation, one can neglect instanton
events, and treat the Ising quantum number of the vortices as
conserved. Then each vortex in the Abrikosov lattice has a
definite Ising “charge,” and hence the system as a whole
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some sort of Ising magnetic order. It is straightforward to see
that the basic interactions between these Ising “spins” are
antiferromagnetic, and that these interactions decay rapidly
when the two vortices in question are separated by a distance
much larger thanj. These interactions arise because the two
types of vortices carry opposite gauge fluxed2x ei j]iaj = ±p.
This gauge flux is confined to a region of the size of the
(gauge) “penetration depth.” Since the gauge field fluctua-
tions are part of the quantum critical theory, this penetration
depth is of theOsjd. Due to the Maxwell term in the action,
two nearby vortices have lowest energy with opposite gauge
fluxes(and hence smaller total gauge flux), provided the two
fluxes overlap. A mean-field analysis following Abrikosov
leads to the same conclusion as discussed below. In particu-
lar, consider the LagrangianLszad [in Eq. (1.7)] for the za

fields. We are interested inw,0 [in Eq. (1.8)], and it is
convenient to consider the limitw=−2u+dw, with 0,dw
!2u. For dw=0, the mean-field theory(which neglects fluc-
tuations ofaW) comprises simply of two decoupled copies of
Abrikosov’s lattices forz1 andz2. Thus the solution consists
of a triangular vortex lattice in eachza, with lattice spacing
Î2, (since eachza has chargeq/2). These two lattices are
completely decoupled in this approximation. Withdw.0,
the energy is minimized when the integral ofuz1u2uz2u2 is
smallest. This is accomplished by placing thez1 andz2 vor-
tices as far apart as possible, so thatuz1u2uz2u2 is reduced over
the maximum spatial area. The solution is to choose the two
triangularza vortex lattices as the two sublattices of a hon-
eycomb lattice. This corresponds to an antiferromagnetic ori-
entation of the Ising vortex cores on the honeycomb.

To establish the stability of this order, we must reconsider
the effect of instanton events in this phase. The important
events aresingle instantons, which act like a transverse field
on the Ising quantum number. While these average away in
the continuum theory, the finite lattice spacing,, provides
an upper length cutoff for the oscillations of the single in-
stanton fugacity, which can therefore have an effect. Near the
QCP, it is possible for both, andj to be large, but to have,
not much greater thanj. In this limit, which we consider, the
overlap of the vortex cores is strong, hence the Ising antifer-
romagnetic “exchange energy” between neighboring vortices
is large, i.e., of order 1/j by scaling. The effective transverse
field on the vortices is more difficult to estimate. In a mean-
field treatment, one simply averages the oscillating instanton
fugacity over the two-dimensional,j2 using some smooth
envelope function. This gives a transverse field,l0/j2.
Fluctuation effects may be expected to further decrease this
field. Hence the transverse field is much weaker for largej
than the antiferromagnetic coupling between cores.

Thus we arrive at the remarkable conclusion that the vor-
tex state near the QCP exhibits antiferromagnetic Ising LRO
of the staggered Ising magnetization of the vortex cores.
Note that this analysis applies when the magnetic length,
,j. For very small fields, or further from the QCP,,@j,
and the antiferromagnetic interactions between cores
s,e−,/jd decay exponentially, while the transverse field is
likely of power-law form. Hence for very small fields it
seems probable that the Ising cores become disordered. In
this case, the physical manifestation of the long-lived Ising
staggered magnetization is the presence of a low-energy “an-
tibonding” excitation of each vortex.

Clearly, upon increasing the quantum fluctuations, this
vortex lattice must disappear, since the VBS state on the
other side of the critical point is an orbital paramagnet, i.e.,
no change in symmetry occurs on applying a weak field to it.
Hence there is at least one phase boundary separating the
Ising ordered vortex lattice from the VBS phase that persists
at B.0. We will not address this “vortex lattice melting”
physics here, except to say that first-order, continuous, and
multistage transitions(with intermediate partially ordered
phases) are all possible in principle(and difficult to distin-
guish between on purely theoretical grounds).

B. Higher spin

In the bulk of this paper we have focused on the spin-1/2
square lattice antiferromagnetic model. Here we briefly dis-
cuss the fate of higher spin models on the square lattice. It
should be clear by now that the answers depend crucially on
the Haldane phases that obtain for higher spin. In the isotro-
pic model, if 2S=1smod 4d then the monopoles are qua-
drupled. Thus for all such values of the spin, a direct second-
order Néel-VBS transition described by the same deconfined
critical theory as for spin 1/2 obtains. If 2S=0smod 4d, then
there areno oscillating phase factors for the monopoles. This
has the consequence that a translation symmetric quantum
paramagnetic state is now possible. The transition to this
state from the Néel state will be described by the usual LGW
Os3d fixed point (i.e., with monopoles present). If 2S
=2smod 4d then the appropriate Haldane phases lead to dou-
bling of monopole events. Now confined paramagnetic states
necessarily break lattice symmetries. Whether a direct
second-order Néel-VBS transition is allowed or not depends
on the scaling dimension of the two-monopole operator at
the monopole-suppressed fixed point. If this is irrelevant,
then the same deconfined critical theory as for spin 1/2 will
be obtained.

It is interesting to consider the spin-1 case in the presence
of some easy-plane anisotropy. This may equivalently be
viewed as a model of bosons at integer filling—unlike in the
isotropic limit, a translation symmetric confined paramagnet
is clearly possible. A direct transition between theXY or-
dered phase and such a paramagnet is clearly possible and
will be in the usualD=3 XY universality class.

However, presumably the interesting question even in the
easy plane case is whether a direct second-order transition is
possible between theXY ordered phase and a lattice
symmetry-brokenconfined paramagnet with bond order. To
answer this question and to obtain a description of such a
paramagnet, it is convenient to start from the isotropic limit
and introduce weak easy-plane anisotropy. In the isotropic
limit the confined paramagnetic states will break lattice sym-
metries and this will be preserved upon turning on some easy
plane anisotropy. In aCP1 description, there will now be
monopole Berry phases that oscillate on two sublattices of
the dual lattice. We may now dualize in the easy-plane limit
to the meron vortex degrees of freedom. In this description it
is clear that the translation broken VBS state is again de-
scribed by an equal amplitude condensate of both vortex
fields. Now the instanton term converts two merons of one
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kind into two of the other kind, i.e., the coefficient of thel
term in Eq.(5.6) is Refsc1

*c2d2g, with l;l2. The relevance/
irrelevance of this at the self-dual, easy-plane, noncompact
CP1 fixed point will determine whether a direct second-order
transition obtains or not: this question remains open at
present.

Note that near the transition to the usual paramagnet with
no broken symmetries there will only be single species of
vortex with a featureless “paramagnetic” core. On the other
hand, near the transition to the VBS phase there will once
again be two species of(nearly) stable vortices with cores
that have very long-lived Ising order(if as discussed above
such a direct continuous transition is possible).

C. Honeycomb lattice

The considerations of this paper generalize readily to
other two-dimensional bipartite lattices. For instance, on the
honeycomb lattice the Haldane Berry phase calculation im-
plies that all monopole events are tripled(rather than qua-
drupled as on the square lattice). This implies that the issue
of whether or not a direct second-order transition described
by a deconfined critical point is obtained between the Néel
and VBS phases is determined by the scaling dimension of
the three-monopole operator at the monopole-suppressed
fixed point. Unlike the square lattice it is, however, less clear
that the three-monopole operator will be irrelevant. For in-
stance, for theN=1 SJ model, the Higgs-VBS transition is
determined by theZ3 clock universality class which is dis-
tinct from the XY universality class. In other words, the
threefold anisotropy which represents instantons isrelevant
at the deconfined fixed point atN=1. At largeN all mono-
poles continue to be irrelevant. The fate of the physical mod-
els (with and without easy-plane anisotropy) can only be
settled by direct numerical computation of the scaling di-
mension of the three-monopole operator.

D. Ising anisotropy and other transitions

In this paper, we have focused on the properties of spin-
1/2 antiferromagnets with full SUs2d spin rotational symme-
try, or its easy-plane reduction to Us1d. These two cases are
amenable to analysis due, on the one hand, to natural con-
tinuations of the SUs2d invariant CP1 representation to
CPN−1, and through standardXY duality. One may also ask
whether similar deconfined critical points might arise in sys-
tems with easy-axis(i.e., Ising) anisotropy, which also retain
the Us1d subgroup of SUs2d. Unfortunately, this limit is
much less amenable to microscopic duality transformations
on the lattice level, and so it is difficult to make firm state-
ments. While some of us suspect that no deconfined critical
behavior is likely in this case, it is nevertheless of interest to
present candidate field theories for such deconfined transi-
tions.

Very naïvely, one may attempt to begin with theCP1 rep-
resentation of the quantum antiferromagnet, and simply
change the sign of the anisotropy term, takingw.0 in Eq.
(1.8). In a mean-field analysis of the continuum field theory
of Eq. (1.7), including anisotropy of this sign would indeed

have the desired effect of yielding a transition between an
Ising ordered phase(for s,0) and a VBS phase(for
s.0—actually one naïvely obtains the Coulomb phase of
the gauge theory, neglecting the dangerously irrelevant in-
stantons). There are, however, several caveats to this candi-
date theory that must be mentioned. First, supposing the
gauge fieldam noncompact, fluctuation effects are known in
some situations(e.g., the classical Abrikosov transition be-
tween the normal state and vortex lattice atHc2) to drive
naïvely continuous transitions involving gauge fields first or-
der. While we believe this does not occur in the cases of
SUs2d invariance andXY anisotropy, these conclusions are
based on several exact dualities and the numerical results of
Refs. 23 and 42 directly on models in which instantons have
been suppressed, and direct simulations ofCP1 models
coupled to noncompact gauge fields.23 Second, even if the
noncompact transition is continuous, to constitute a stable
deconfined QCP, it must be stable to the(quadrupled) instan-
ton events allowed by the microscopic compact model.

At present we do not have supporting evidence in favor of
either of these two conditions. It would be of some interest to
develop a semiclassical description of the above scenario to
better evaluate it in physically intuitive terms. We note that
XY anisotropy, for very simple reasons, favors a deconfined
critical scenario. In particular, weakXY anisotropy converts
the topological defects(solitons) of the antiferromagnet from
skyrmions to merons, “fractionalizing” them already in the
antiferromagnetic phase. Adding Ising anisotropy instead
renders the topological defects local “droplets,” or domains
of antiphase ordering. These can apparently be viewed as
distorted skyrmions, in which the smooth rotation from the
antialigned core to infinity is replaced by a domain wall of
finite width. Thus there is no fractionalization of the topo-
logical defects in the Ising antiferromagnet, although they do
appear to carry the integer skyrmion quantum number.

Nevertheless, the action in Eqs.(1.7) and(1.8) appears to
describe a putative deconfined Ising AF to VBS transition.
There is clearly no self-dual description of this QCP, since
neglecting instantons, the VBS phase is replaced by a Cou-
lomb phase with a gapless photon, while the Ising AF has no
gapless excitations. Formally, however, one may wonder
what physics might be represented by considering the math-
ematically similar “anisotropy” in the dual meron theory, i.e.,
taking wd.0 in Eq. (5.6). Provided this transition remains
continuous in 2+1 dimensions and thel term remains irrel-
evant in this case, this would describe adifferent quantum
phase transition. In particular, forsd.0, the ground state has
no vortices and there is a Meissner response(Maxwell term
for Am), hence it describes anXY superfluid. Forsd,0, with
w.0, one or the other(not both) types of merons condense
and theAm gauge field develops a Higgs mass. Hence this
describes a nonsuperfluid state. From Table II, one sees that
the nonzero expectation value ofuc1u2− uc2u2 implies Ising
AF order. Thus this critical point describes a putative direct
continuous transition betweenXY and Ising antiferromag-
nets.

Thus these two theories describe different potential routes
of “disordering” a quantum Ising antiferromagnet with Us1d
spin rotation symmetry, either to a VBS phase or anXY
antiferromagnetic phase. If they are indeed continuous, with
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the instanton fugacity andl term respectively irrelevant,
they are not self-dual but instead dual to one another. It
would be interesting to determine with more certainty
whether these putative critical theories can survive fluctua-
tion effects. We note that the numerical simulations of Ref. 5
observed a first-order transition between VBS and Ising an-
tiferromagnetic phases. While this does not rule out the pos-
sibility of a continuous transition in other microscopic mod-
els, it is perhaps some evidence to the contrary.

X. EXPERIMENTS

Before discussing experimental implications, we reiterate
that we have so far only found explicit examples of decon-
fined critical points in insulating magnets(and allied boson
systems at half filling). We anticipate that similar critical
points do exist in conducting systems at other doping densi-
ties, and that they will be of experimental relevance. How-
ever, in the absence of specific theories of such critical
points, explicit discussion of experimental implications is
perhaps premature.

Nevertheless, it is useful to discuss the implications of the
phenomena discussed in this paper for experiments on insu-
lating quantum magnets, in the hope that future experiments
may succeed in driving such systems across quantum phase
transitions by(say) applied pressure. Imagine a quasi-two-
dimensional Mott insulator where each layer has a square
lattice of localized spin-1/2 moments. Ignoring all effects
due to coupling between the layers and to other degrees of
freedom(phonons, etc.), a direct second-order-zero tempera-
ture transition between the Néel ordered and translation bro-
ken VBS phases should be possible(for instance by applica-
tion of pressure) with properties described as in previous
sections. It is first important to emphasize that the proposal
of a deconfined critical point is on firmest ground for a sys-
tem with a spin-1/2 moment per unit cell. With higher spin
or with more than one spin-1/2 moment per unit cell other
(more ordinary) kinds of phase transitions may well obtain.
In practice(even with spin-1/2 per unit cell) the growing
VBS fluctuations associated with the lattice symmetry break-
ing will couple strongly to lattice disortions particularly at
low temperature. If the phonons can be regarded as three
dimensional(even though the magnetic interactions may be
well approximated as two dimensional), a small region of
coexistence will most likely be introduced at very low tem-
perature. This may be roughly understood as follows. The
elastic energy cost of a latttice disortion of magnitudex that
couples to the VBS order parameter is of orderx2. However,
the electronic energy gain is much bigger(as the susceptibil-
ity associated with the VBS order parameter diverges at the
transition), going asxk with k,2. In the easy plane casek
<1.35 from the numerical results.23 Thus the phonons will
then prempt a direct Néel-VBS transition and introduce a
small coexistence region. It will thus be necessary to look at
temperatures that are not too low to meaningfully compare
with experiments.

Barring these caveats the interesting critical phenomena
discussed in this paper should be visible in a number of
different experimental probes. Scaling forms for various ex-

perimentally physical observables are readily written down.
For instance, right at the critical point the spin response func-
tion xski ,vd near the ordering wave vector[Qi =sp ,pd] will
take the form

xski,vd ,
1

k2−hFS v

ck
,

"v

kBT
D . s10.1d

Hereki is assumed to measure the deviation of the physical
wave vector fromQi, and T is the temperature. The corre-
sponding spectral function can be directly measured in
neutron-scattering experiments. At a fixed small wave vector
ki and temperatureT, this will show sharp spin-wave peaks
as a function of frequency in the Néel state and similar sharp
“triplon” peaks near the spin gap in the VBS state. However,
right at the critical point, there will be an anomalously broad
power-law peak(due to the largeh<0.6). We emphasize
that the scaling form in Eq.(10.1) is, by itself, not evidence
for deconfined criticality, because it applies also to LGW
critical points;11 the key point is that only deconfined critical
points are likely to lead to a value ofh that is not unobserv-
ably small.

The large value ofh will also directly manifest itself in
NMR experiments. Indeed the nuclear-spin-lattice relaxation
rate is essentially given by

1

T1
, TE d2k lim

v→0

x9skW,vd
v

, s10.2d

wherex9 is the imaginary part of the spin response function.
It is now easy to see from scaling that 1/T1,Th at finite
temperatures in the “quantum critical” region. Thus this ex-
periment provides a direct measurement ofh. It is therefore
an excellent way to experimentally distinguish the predic-
tions of the present paper from those of the earlier accepted
theory37 of the Néel-VBS transition which givesh<0.

In this context it is interesting to reconsider experiments
measuring the spin-lattice relaxation rate of the Cu ions in
the undoped and lightly doped cuprates.70 Remarkably at
high temperature the 1/T1 saturates to a temperature-and
doping-independent value. One suggested explanation37 is
that at these high temperatures in the undoped sample the
system is in a quantum critical regime associated with a dis-
ordering transition of the Néel order such thath<0. Further-
more, the effects of doping has been suggested to only make
the system appear closer to the critical point(at least for the
high-temperature spin physics). The results of the present
paper imply that if this interpretation of the experiments in
terms of proximity to quantum criticality is correct, then the
corresponding transition cannot be from the Néel to the VBS
state, but is more likely to be a conventional LGW transition.

XI. DISCUSSION

This paper has described a variety of quantum critical
points in two dimensions which can be understood using the
interesting paradigm of deconfined quantum criticality.10 The
critical point has an emergent topological conservation law,
and the critical theory is expressed most naturally in terms of
fractionalized degrees of freedom. The order parameters

SENTHIL et al. PHYSICAL REVIEW B 70, 144407(2004)

144407-26



characterizing the phases flanking the critical point emerge at
large length scales as composites of the fractionalized
modes, or their duals. These examples clearly violate the
LGW paradigm, in that the order parameters are not directly
related to the critical modes.

Our primary example was the Néel to VBS transition for
the S=1/2 square lattice antiferromagnet. We showed that a
deconfined critical point scenario emerged in a number of
tractable deformations of models appropriate to describe this
transition. Several results existing in the literaure(for in-
stance on large-N models) were shown to support this pro-
posal when correctly interpreted. We briefly reiterate a few
key physical aspects of this theory. First, the critical theory
possesses an extra global topoogical conservation law(asso-
ciated with skyrmion number). It is most naturally expressed
not in terms of the natural order parameters of either phase
but in terms of new spin-1/2 spinon degrees of freedom that
are specific to the critical point. The emergence of these frac-
tional spin fields at the critical fixed point manifests itself
quantitatively in the large value of the anamoulous exponent
h at the transition. The extra topological conservation law is
obtained because monopole events at which skyrmion num-
ber can change are irrelevant and disappear at long scales at
the critical fixed point. However, they are relevant in the
paramagnetic phase and lead to the appearance of broken
lattice symmetry. There are two diverging length or time
scales near the critical point. In the paramagnetic phase the
first (shorter) length is the spin-correlation length. There is a
longer length scale at which the VBS order gets pinned.

We also considered a number of other critical points in
this paper. The transition between VBS and spin liquid states
was discussed in Sec. VIII, and described by critical theory
closely related to that for the SJ models. The superfluid-
insulator transition of bosons at half filling on the square
lattice was considered in Sec. IX A: the insulator exhibits
bond-density-wave order and the theory for the critical point
[Eq. (5.6)] had been obtained earlier.51 Here we provided a
physical reinterpretation of this theory, and showed how it
could also be understood as a deconfined QCP.

Overall our work shows that such deconfined quantum
criticality is quite common in two-dimensional systems with
a spin-1/2 moment per unit cell. This leads us to suspect that
the scope for finding deconfined QCP’s in other correlated
electron systems, including those with Fermionic excitations,
is bright. These QCP’s naturally have large anomalous di-
mensions for observable order parameters,8 and so hold the
prospect of explaining a variety of experimental puzzles.
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APPENDIX A: BERRY PHASES IN THE SJ MODEL

The nonlinear sigma model representation in Eq.(3.1)
associates the Berry phases with a summation over the indi-
vidual Berry phases of each spin. Each such contribution
measures the area enclosed by the path of the spin on the unit
sphere, and this is represented bySB in Eq. (3.1). Upon
transforming to thez variables via Eq.(1.5), there is a simple
way of measuring this area:22,39,41it is the Polyakov loop of
the Us1d gauge field of theCP1 model. This connection sug-
gests that theSB in Eq. (3.13) should be replaced by

SB8 = io
i

eiat, sA1d

whereei is the cubic lattice,t-independent representation of
the square lattice sublattice staggering factorer. One can
now consider a “modified” SJ model41 with action SSJ8 =Sz
+Sa+SB8 defined by Eqs.(3.11), (3.12), and (A1). This ap-
pendix will argue that the properties ofSSJ andSSJ8 are very
similar, and universal features are identical.

First, we show that fort=0 (this is deep in the VBS
phase), the two theories are, in fact, exactly equivalent. In
this limit, we can proceed with a duality mapping as in Sec.
IV A, and obtain a dual representation ofSSJ which is Eq.
(4.9) with A =0:

S =
1

2K
fDsx + qdg2. sA2d

Proceeding with the analogous duality transformation toSSJ8 ,
we find instead

S8 =
1

2K
sDx + B0d2, sA3d

whereB0 is a fixed integer-valued field on the links of the
dual lattice chosen so that

D 3 B0 = et̂, sA4d

where t̂ is a unit vector in thet direction. A convenient
choice forB0 is shown in Fig. 6(a).

Now note that we can write

B0 = Dq + D 3 b sA5d

with qr defined below Eq.(4.4) and shown in Fig. 4,b is a
fixed vector field on the links of the dual lattice with only its
temporal components nonzero as shown in Fig. 6(b). It is
now evident that Eqs.(A3) and (A5) are exactly equivalent
to Eq. (A2), as the couplings betweenb andx, q vanish.

Moving to the general case withtÞ0, let us examine the
fate of the modified SJ model forN=1 as in Sec. IV A. In
this case, Eq.(4.9) is replaced by
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S8 =
1

2t̃
sD 3 Ad2 +

1

2K
fDsx + qd + A + D 3 bg2.

sA6d

It is now not difficult to show that the additional term asso-
ciated withb above makes little difference to the universal
properties of theory: integrating out the massiveA modes is
now a little more involved, but the final theory forx has the
same structure as that in Sec. IV A. Further details may be
found in Ref. 22.

Similar comments apply to the modified SJ model atN
=2, with easy-plane anisotropy, as discussed in Appendix B.

APPENDIX B: DUALITY TRANSFORMATION WITH
EASY-PLANE ANISOTROPY

The duality transformation for the SJ model atN=2 in the
easy-plane limit proceeds very similarly to that of theN=1
case discussed in Sec. IV A. We begin by rewriting the “bo-
son hopping” term in Eq.(5.5) in a Villain approximation:

Sz → o
,,a
S 1

2t̃
uj au2 − i j a · sDfa − adD , sB1d

wherea=1,2 labels the two species of bosons andj a are the
corresponding integer valued currents defined on the links of
the square lattice. Proceeding as before in Sec. IV A, inte-
grating out thefa fields leads to the current conservation
conditions

D · j a = 0 sB2d

which can be solved by writing

j a = D 3 Aa sB3d

with Aa integer fields. We treat the gauge field kinetic energy
term as in Sec. IV A by first decoupling it with theb field,
and then summing over the integerq to obtain

b − Dq = B sB4d

with B an integer field. Integrating over the gauge fielda
now replaces Eq.(4.7) by

D 3 B = j 1 + j 2. sB5d

This may be solved by writing

B = A1 + A2 + Dx sB6d

with x an integer. The action then reads

S = oS 1

2t̃
sD 3 A1d2 +

1

2t̃
sD 3 A2d2

+
1

2K
fDsx + qd + A1 + A2g2D . sB7d

As in Eq. (4.10) we may soften the integer constraints on
Aa ,x by adding the terms

− t coss2pA1d − t coss2pA2d − o
n

ln coss2pnxd sB8d

with n running over all positive integers. Now we can shift
x→ x̃=x+q. Then we can put 2px=u1−u2, and integrate
over both phase fieldsua, leaving the partition function un-
changed up to an overall multiplicative constant. Upon shift-
ing the two fieldsA1→A1−Du1/2p andA2→A2+Du2/2p,
the last term in Eq.(B7) takes the formsA1+A2d2. We can
then defineA+=A1+A2 andA =psA1−A2d, and integrate out
the massive fieldA+. Up to irrelevant terms we thereby ob-
tain for the full action:

S = Sl + oS4p2

t̃
sD 3 Ad2 − t cossDu1 − Ad

− t cossDu2 − AdD
Sl = − o So

n

ln cosfnsu1 − u2 − 2pqdgD sB9d

. Once again ase2ipq oscillates on four sublattices, for
smooth variations ofu1,2, the lowest value ofn that survives
is n=4. We may therefore replaceSl by

Sl = − o hl cosf4su1 − u2dgj sB10d

with l;l4. The resulting action is then a “hard-spin” ver-
sion of the actionSz in Eq. (5.6) of Sec. V, with the identi-
fication of the vortex operatorsca,eiua.

APPENDIX C: ESTIMATE OF MONOPOLE
SCALING DIMENSION

We can ask about the answer for all these scaling dimen-
sions that would be obtained by first integrating out the mat-

FIG. 6. Specification of the nonzero values of the fixed fields(a)
B0 and(b) b. The circles are the sites of the direct lattice,j , while
the crosses are the sites of the dual lattice,j̄ ; the latter are also offset
by half a lattice spacing in the direction out of the paper(the m
=t direction). TheB0m are all zero form=t ,x, while the only non-
zero values ofB0y are shown in(a). Only them=t components of
bm are nonzero, and these are shown in(b).
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ter fields, truncating the resulting gauge action to quadratic
order, and using that theory to calculate the scaling dimen-
sion. This would be an estimate, albeit uncontrolled; one
might hope that it will correctly capture the trends.

Anyway, it turns out that this can be done without serious
calculation. First, note that in this procedure the answer de-
pends only on the universal conductivity of the matter fields
at the transition ignoring all coupling to the gauge field. The
higher this universal conductivity the higher the instanton
anomalous dimension.

The simplest case is theN=1 SJ model. Here the relevant
universal conductivity is that of a single boson species. We
know that at this transition the four instanton operator is
irrelevant. Now in theN=2 cases with either easy plane or
full SUs2d symmetry, it is clear that the universal conductiv-
ity will only be larger than atN=1. Thus we should expect a
higher anamolous dimension. This would then predict irrel-
evance of the four instanton term with or without easy plane
anisotropy for the physical case ofN=2 in agreement with
other expectations.

APPENDIX D: SJ MODELS IN ONE DIMENSION

There is a close and useful analogy between some of the
phenomena explored in this paper and corresponding ones in
one spatial dimension. Specifically consider a one-
dimensional spin-1/2 magnet in the presence of some easy-
plane anisotropy. The analog of the Néel phase ind=1 is a
phase with power-law correlators for the staggeredXY mag-
netization. This phase may be described as a Luttinger liquid.
There is a direct second-order transition between this phase
and a VBS phase where there is spontaneous dimerization of
the spin chain.

A useful theoretical description of this transition is ob-
tained by focusing on vortices in the space-time configura-
tion of the staggeredXY order-parameter field. From a
quantum-mechanical point of view such vortices correspond
to phase-slip(or instanton) events. It is well known that a 2p
phase slip event carries a momentump, and hence is not
allowed as a term in the Hamiltonian.(In an equivalent de-
scription of this Luttinger liquid phase in terms of interacting
spinless fermions, these 2p phase slips correspond to inter-
change of left and right movers.) In the VBS phase these
phase slip events have proliferated. Indeed it is precisely the
p momentum that is carried by the 2p phase slip that is
responsible for the broken translation symmetry of the VBS.
A convenient order parameter for the VBS phase is therefore
provided by the 2p phase slip operator.

Though 2p phase slip terms are not allowed in the Hamil-
tonian 4p phase slips(which carry zero crystal momentum)
are clearly allowed. The transition from the Luttinger liquid
to the VBS is driven by the proliferation of these 4p phase
slips. These “doubled” phase slips are irrelevant throughout
the Luttinger liquid phase and are marginally irrelevant at the
critical fixed point.

The analogy with the two-dimensional situations consid-
ered in this paper is now clear. The 2p phase slip is the direct
analog of the skyrmion tunneling(i.e., single instanton)
event. In bothd=1,2 the VBSphase is understood as a

condensate of the appropriate single instanton event. Ind
=1 the transition is driven by doubled instanton events(simi-
lar to the quadrupling of instantons in two dimensions)
which stay irrelevant at the critical fixed point. At a formal
level it is possible to construct an appropriate “SJ” model
that correctly describes the transition even ind=1.

A complete presentation closely related to the discussion
in this appendix appears in Ref. 41.

APPENDIX E: DIRECT DERIVATION OF DUAL
MERON ACTION

We pass from Eq.(9.1) to the analog of aCP1 represen-
tation by letting

eifr = b1r
† b2r = e−isf1r−f2rd, sE1d

nr =
n1r − n2r + 1

2
, sE2d

n1r + n2r = er . sE3d

Here b1,2=eif1,2 represent charge-±1/2 Bosonic operators
and n1,2 are the corresponding boson numbers, ander was
defined in Eq.(1.3). Note thatb1,2 are not canonical Bose
operators, and the relevant commutation relations here are
fn1,f1g=−i andfn2,f2g=−i. The eigenvalues ofn1,2 are in-
tegers which run from −̀ to `. As is usual, there is a gauge
redundancy associated with an arbitrary choice of the local
phase of theb1,2 fields. The last equation is a constraint that
requires the total number of both species of bosons to be
fixed at +1 on theA sublattice and −1 on theB sublattice.
The left-hand side of this constraint equation is precisely the
generator of the local gauge transformation. We have chosen
to stagger this gauge charge on the two sublattices.

The Hamiltonian in Eq.(9.1) is readily rewritten in terms
of these new variables:

H = HU + Ht, sE4d

HU =
U

2o
r

fsn1r − ern0d2 + sn2r − ern0d2g, sE5d

Ht = − to
krr8l

fsb1r
† b2rdsb2r8

† b1r8d + H.c.g. sE6d

We have introduced a term proportional ton0 which de-
scribes a “chemical potential” for the total on-site gauge
charge. As the total gauge charge is fixed to ±1 on each site,
this addition is completely innocuous(for any value ofn0).
Later we will choosen0 appropriately to ensure that then1,2
fields have zero mean value. While this step is not necessary,
it is convenient, and will be commented upon further at the
appropriate point.

Now we proceed to a path-integral representation to write

S = SU + St + Sa0
+ St,

SU = o
r
E dt

U

2o
r

fsn1r − ern0d2 + sn2r − ernod2g,
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St = o
r
E dt fin1r]tf1r + in2r]tf2rg,

Sa0
= o

r
E dt fia0sn1r + n2r − erdg,

St =E dt Ht. sE7d

As usual, it is assumed that there is a fine discretization of
the imaginary time indext. The boson numbersn1r ,n2r live
on the temporal links at each spatial point; these will even-
tually be taken to be integer valued, but it is useful to tem-
porarily consider them as arbitrary real numbers—the
integer-valued constraint is imposed by summing over all
winding number sectors of the conjugate phase variablesf1r,
f2r. The “gauge” constraint is imposed by means of a
Lagrange multiplier fielda0 which will be interpreted as the
time component of a gauge field. We now proceed as is usual
in slave particle theories of correlated systems. We decouple
the interactions inHt using a complex auxiliary fieldxrr8
defined on each spatial link to write

e−St = p
krr8l

E dxrr8 expS−
uxrr8u

2

t
+ xrr8o

a=1

2

eisfar−far8d + c.c.D ,

sE8d

with xrr8=xr8r
* . The fluctuations in the amplitude of thex

field are expected to be innocuous. Hence we will write

xrr8 < x0e
iarr 8, sE9d

with x0 a constant that simply renormalizes the boson hop-
ping amplitude. As usual thearr8=−ar8r will be interpreted as
the spatial component of a gauge field. The full action now is
invariant under the gauge transformation

eifarstd → eigrstdeifarstd, sE10d

a0 → a0 −
dgrstd

dt
, sE11d

arr8 → arr8 − grstd + gr8std, sE12d

wherea=1,2. Toexamine universal critical properties near
the phase transitions of interest it is legitimate to add various
possible local terms that are consistent with the global sym-
metries and gauge structure of the action. It is particularly
useful to add a “kinetic energy” term for the gauge fields on
all plaquettes(spatial and space-time) in Villain form:

LE =
u

2
Ei

2 + iEis]t ai − Dia0d, sE13d

LB =
u

2
B2 + iBsei jDiajd. sE14d

Here Ei is an integer-valued “electric field” defined on the
spatial links at each time slice(i , j extend over the spatial

coordinatesx,y) and B is the corresponding integer-valued
magnetic field on a spatial plaquette. We have introduced the
vector notationai =sax,ayd=sarW,rW+x̂,arW,rW+ŷd. For simplicity we
have chosen the same constantu multiplying theEi

2 andB2

terms. The original microscopic action is formally obtained
in the large-u limit su→`d.

To proceed it is first useful to note that the background
gauge charge present in this formulation will lead to a back-
ground electric field about which the true electric field will
actually fluctuate. It will be convenient to incorporate this
effect by finding a suitable mean field for the various fields
in the action. Consider a mean field(saddle point) of the
action where the nonzero expectation values are

kn1l = kn2l = n̄,

ka0l = ā0,

kEil = Ei0. sE15d

The saddle-point equations are obtained by varying the ac-
tion with respect to these fields[here, as discussed below Eq.
(E7), we are allowing the integer-valued fields to be real
numbers):

uEi0 = iDiā0,

DiEi0 = − 2n̄ + er ,

Usn̄ − ern0d = − iā0. sE16d

We now use our freedom in choosing the constantn0 to set

n0 =
iā0er

U
sE17d

so thatn̄=0; note also that Eq.(E17) requires that the spatial
dependence ofā0 is such thatā0~er. One may worry that
this special choice ofn0 might indicate some nongeneric na-
ture of the resulting theory. We note, however, that qualita-
tively identical results are obtained for any other choice of
n0—in the dual action with such a choice the merons see
some nonzero but spatially oscillating flux. Having a zero
spatial average, this flux does not qualitatively effect the
low-energy(extended) meron states. The above choice sim-
ply renders the low-energy behavior more transparent. We
then have

DiEi0 = er . sE18d

Note also thatEi0 is the gradient of a potential determined by
a0. These conditions determineEi0 (the background electric
field) uniquely to have the value 1/4 oriented from theA to
B sublattice. Inserting these values in Eqs.(E16) and (E17),
we obtainn0=1/8.

We may now examine the full theory by first shiftinga0
= ā0+da0. Straightforward manipulation shows that the elec-
tric field now fluctuates about a background valueEi0 so that
the Ei-dependent terms in the action read
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LE =
u

2
sEi − Ei0d2 + iEis]tai − Dida0d. sE19d

The termLB in Eq. (E14) remains unchanged while the mat-
ter field terms in Eq.(E7) are expressed in the Lagrangian

LM =
U

2
sn1

2 + n2
2d +

j1i
2

2t̃
+

j2i
2

2t̃
+ in1s]tf1 + da0d + in2s]tf2

+ da0d − ierda0 + i j 1isDif1 + aid + i j 2isDif2 + aid.

sE20d

It is now useful to define the integer-valued three vectors
(this makes contact with the notation and models of Sec. IV

j 1 = sn1, j1x, j1yd,

j 2 = sn2, j2x, j2yd,

B = sB,− Ey,Exd. sE21d

Integrating over the variablesda0, ai, f1, andf2 in the func-
tional integral overLM +LB+LE yields the constraint equa-
tions [compare with Eqs.(B2) and (B5)]

D 3 sB − B0d = − j 1 − j 2,

D · j 1 = 0,

D · j 2 = 0, sE22d

where

B0 = s0,−Ey0,Ex0d. sE23d

We can solve the constraints(E22) by writing [compare Eqs.
(B3) and (B6)]

j 1 = − D 3 A1,

j 2 = − D 3 A2,

B − B0 = A1 + A2 + Dx + Dq, sE24d

whereA1,2 andx are integer valued fields, andq is the fixed
field in Fig. 4. The action now has the same structure as Eq.
(B7), and the subsequent analysis proceeds as in Appendix B
and Sec. V.

APPENDIX F: BREAKDOWN OF THE “SCREENING
ARGUMENT” IN THE MONOPOLE GAS

In this appendix we will consider a simple toy model of a
compact Us1d gauge theory without Berry phases which can
be shown to possess a deconfined critical point. This will
enable us to understand clearly the claim of Sec. IV B that
the specific monopole gases that obtain at the critical points
studied in this paper evade the general monopole screening
arguments33,34 for a three-dimensional Coulomb gas with
logarithmic interactions.

We consider a model of chargen bosonssnù4d coupled
to a compact Us1d gauge field inD=2+1 dimensions with
Euclidean action

S = − Jo cossDf − nad − Ko
P

cossD 3 ad. sF1d

Here eifi represents a boson field on the sitesi of a three-
dimensional cubic lattice. The sum in the first term is over
the links of the lattice, while that in the second term is over
the plaquettesP. The field aij ;aij +2p is a compact Us1d
gauge field, and the integern is the charge of the boson. This
model has two phases. For largeJ, there is a Higgs phase
where the boson field has “condensed.” Following the argu-
ments of Ref. 71, the effective theory of this phase is aZn
gauge theory in its deconfined phase in 2+1 dimensions. The
excitations in this phase are stable vortices that carry flux
2pq/n, for q=1, . . . ,n−1, of the gauge fielda. For smallJ,
on the other hand, there is a different phase which is associ-
ated with confinement of the Us1d gauge theory. In particu-
lar, the Zn vortices that appear in the Higgs phase are no
longer present in the spectrum. As also argued in Ref. 71, the
transition between these two phases is actually described by
that in a Zn gauge theory. This latter theory is dual to the
global Zn clock model—for nù4 the clock anisotropy is
irrelevant and the universality class is 3DXY.

The n=1 case of Eq.(F1) was considered in Ref. 31. For
this case, the “clock” anisotropy is strongly relevant(it
rounds out the transition into a crossover), and the physics is
very different fromnù4.

Formally, the action above is readily dualized(as in many
of the other examples discussed at length in previous sec-
tions). The dual action takes the form

Sdual= − t o fcoss2pDxd − l coss2pnxdg sF2d

and has the expected structure of a globalXY model with
n-fold anisotropy.

It is useful, for our purposes, to have a physical interpre-
tation of these results. In the Higgs phase, the vorticity of the
f field is quantized in units of 2p /n (as is natural for a
chargen condensate). The presence of instantons implies that
the total flux can change by 2p, so thatn of these vortices
can appear or disappear together. Thus the vortices only
carry aZn quantum number. The dual description focuses on
theseZn vortices. Without instantons, the 2p /n vortex is glo-
bally conserved and its physics is described by a globalXY
model (this is just the duality in Ref. 59). The presence of
instantons leads to then-fold anisotropy[the l term in Eq.
(F2)] for this global XY model, leading to the globalZn
model. Thus the irrelevance of then-fold anisotropy, forn
ù4, should be interpreted as the irrelevance of instantons at
the transition. Indeed theXY universality class, is the exact
dual of the condensation transition of the chargen boson
coupled to anoncompactUs1d gauge field.59

Now let us analyze the transition in the RPA approach
outlined in Sec. IV B. The transition is associated with the
condensation of theeif field. We therefore integrate out this
field in the presence of a nontrivial gauge potential, and trun-
cate the resulting gauge action to quadratic order(initially
ignoring instantons). The result is, as in Eq.(4.12),
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SG =E d3K

s2pd3s0n
2uKuuaTsK du2 + ¯ . sF3d

Heres0 is a universal constant, andaT is the transverse com-
ponent of the gauge field. The Maxwell term present in the
bare action is less important at long distances than the term
in the action displayed above, and we have dropped it. We
now examine the stability ofSG to instantons. First, we du-
alize SG to obtain31,33

SG,dual=E d3K

s2pd3

K3

s0
uxsKdu2 − o l coss2pnxd. sF4d

The last term represents instanton events. Note theK3 in the
first term. Now thel term will in general generate aK2 term
in the Gaussianx action which will then eventually make
instantons relevant. A fine tuning is required31,33,34to prevent
the generation of theK2 term in this argument, and for the
present model we can now easily see that this fine tuning is
automatic at the critical point of the gauge theory in Eq.(F1).

The key is to note that the logarithmic interaction between
the monopoles is equivalent to the statement that the correla-
tors ofe2ipnx decay as a power law(at the fixed point without
monopoles). In the theory of the monopoles in Eq.(F2), the

e2ipx field is at the critical point of the 3DXY model. The
RPA theory approximates this nontrivial interacting critical
theory by an equivalent Gaussian theory, which also happens
to give power-law correlations for thee2ipx field (this is a
property of theK3uxu2 form). In the full theory in Eq.(F2),
the screening of monopole interactions is associated with
corrections higher order inl. In the context of conformal
perturbation theory about the critical point of Eq.(F2), how-
ever, it is clear that these higher-order effects inl actually
represent shifts in the position of the critical point, and not
any changes in the scaling dimensions of operators.

Hence for the Néel-VBS transition we conclude that the
naïve computation of monopole scaling dimensions in the
large-N limit 24 is actually correct, and that we should neglect
screening between multiple monopoles in determining this
scaling dimension. The latter effects are more correctly ac-
counted for by shifting the position of the critical point.

Note that for then=1 case of Eq.(F1) considered in Ref.
31, computation of the scaling dimension of the monopole
operator using Eq.(F2) shows that monopoles are relevant at
the critical point. Indeed, they round out the transition to a
crossover, and the monopoles are always in a screened
plasma phase. So the conclusions of Refs. 33 and 34 for this
case are correct, but not for completely sound reasons.
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