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We present the critical theory of a number of zero-temperature phase transitions of quantum antiferromag-
nets and interacting boson systems in two dimensions. The most important example is the transition of the
S=1/2 square lattice antiferromagnet between the Néel gtmtéch breaks spin rotation invariancand the
paramagnetic valence bond sofighich preserves spin rotation invariance but breaks lattice symmpetfies
show that these two states are separated by a second-order quantum phase transition. This conflicts with
Landau-Ginzburg-Wilson theory, which predicts that such states with distinct broken symmetries are generi-
cally separated either by a first-order transition, or by a phase with co-existing orders. The critical theory of the
second-order transition is not expressed in terms of the order parameters characterizing either state, but
involves fractionalized degrees of freedom and an emergent, topological, global conservation law. A closely
related theory describes the superfluid-insulator transition of bosons at half filling on a square lattice, in which
the insulator has a bond density wave order. Similar considerations are shown to apply to transitions of
antiferromagnets between the valence bond solid andZjhepin liquid: the critical theory has deconfined
excitations interacting with an emergentl) gauge force. We comment on the broader implications of our
results for the study of quantum criticality in correlated electron systems.
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I. INTRODUCTION AND MOTIVATION In particular, the critical modes specific to a quantum critical

A central concept in the theory of phase transitions is thaP0int are presumed to be the long-distance, long-time fluc-
of the “order parameter,” which expresses the different Symtuations of the order parameter, described in a continuum
metries of the phases on either side of the critical point. If thdield theory.
transition is second order, there is interesting universal sin- In the last few years some interesting and tantalizing evi-
gular behavior that is manifested in many physical quantitiesdence has emerged that points toward the failure of the LGW
According to the prevalent paradigm largely due to Landaiparadigm at certain quantum phase transitions. First, there
and Ginzburd, these universal critical singularities are asso-are numerical calculatiof8 that see a direct second-order
ciated with long-wavelength low-energy fluctuations of thequantum phase transition between two phases with different
order-parameter degree of freedom. When combined withbroken symmetry characterized by two apparently indepen-
general renormalization-group ideashis notion provides dent order parameters. A LGW description of the competi-
the sophisticated Landau-Ginzburg-WilsdrGW) theoreti-  tion between such two kinds of orders would then generi-
cal framework for thinking about critical phenomena in vari- cally predict either a first-order transition, or an intermediate
ous diverse contexts. Specifically, static critical properties ategion of coexistence where both orders simultaneously ex-
nonzero temperature are supposed to be determined from é6t, or an intermediate region with neither order. A direct
fective models in which all modes other than the order pasecond-order transition between these two broken symmetry
rameter have been eliminated. Similarly, for dynamical criti-phases would seem to require fine tuning to a “multicritical”
cal properties, the only degrees of freedom that purportedlyoint. Are the numerics managing to achieve this “fine tun-
need be retained are the order parameter and at most a femg” or is the LGW paradigm simply invalid?
additional “hydrodynamic” modes having slow relaxation Second, there have been a number of fascinating experi-
times due to conservation laws. ments probing the onset of magnetic long-range order in a

Recent years have seen much interest in the study of zeralass of rare-earth intermetallics known as the heavy fermion
temperature phase-transition phenomena in correlated mamyetals®’ Remarkably, the behavior right at the quantum
body systems. Unlike their thermal counterpart, such transitransition between the magnetic and nonmagnetic metallic
tions are often driven by quantum fluctuation effects and ar@hases is usually very different from that of a Fermi liquid.
hence known as “quantum phase transitiohkitleed, it has  Furthermore, such behavior is in severe disagreement with
been proposed that proximity to quantum critical pointsexpectations based on LGW analyses. Specifically, theories
(QCP’y separating two distinct phases is responsible for theassociating the critical singularities with fluctuations of the
anomalous properties of some interesting correlated materiratural magnetic order parameter in a metallic environment
als such as, for instance, the cuprate superconductors. Theseem to have a hard time explaining the observed non-Fermi-
retically, the LGW paradigm has thus far provided the basidiquid phenomena. Once again it appears that more than the
framework to examine quantum critical phenomena as wellobvious possibly happens at some quantum critical points.

1098-0121/2004/10.4)/14440733)/$22.50 70144407-1 ©2004 The American Physical Society



SENTHIL et al. PHYSICAL REVIEW B 70, 144407(2004)

In this paper we demonstrate and study various specific
examples of quantum phase transitions which violate the
LGW paradigm. We will show that in a number of different
guantum transitions, the natural field-theoretic description of
the critical singularities is not in terms of the order-parameter
field(s) that describe the bulk phases but in terms of some
interesting “emergent” degrees of freedom that are specific to
the critical point. These different degrees of freedom may be >
thought of “fractional” quantum number particles that inter- e g
act with each other through an emergent gauge force in a _
sense made precise belogv. Laughlin %as Srev?ously argued FIG. 1. Ground states of the square latt#el /2 antiferromag-
for fractionalization at quantum critical points on phenom-net studied n this Paper. The couplnggcon.trols the strength of
enological ground8.Subsequently, Bernevig, Giuliano, and 94antum spin fluctuations about a magnetically ordered state, and
Laughlif® suggested that essentially all two-dimensional2PPears in Ea2.1) (the classical limit isg=0). There is broken
quantum critical points, including those described by theSPin rotation invariance in the Néel state épr g, described by the
LGW theory, should be considered “fractionalized.” \ig- ~ order parameteN; in Eq. (1.2). The VBS ground state appears for
agreewith this characterization. For LGW critical points, the 9> 9, and is characterized by the order paramefggs in Eq.
same degrees of freedom used to characterize the phases (@—the distinct lines represent distinct valueg8f-S./) on each
both sides of the critical point can be used to obtain a field4ink. The VBS state on the left has “columnar” bond order, while
theoretical description of the critical point; the fields do ac-that on the right has “plaquette” order. The thedlyin Eq. (1.7
quire an anomalous dimension at the critical point, but this isapplies only at the QCB=g, at its critical point obtained a=s.

a relatively minor modification of the noncritical theory. In

contrast, for the different “deconfined” critical points we sjtions. We assumé>0, i.e., antiferromagnetic interactions.

shall describe here, the critical theory involves fractionalized aiar we will consider various generalizations to other lat-

degrees of freedom not present in either phase. A precisg.ag higher spins, etc.

ﬁgt'wnCé'r(i)t?ca?fpg:]nihiSCS:&%e%o'Q;Sa;roen%et:‘ginﬂg‘é%?ggiggll The nature of some of the various possible ground states
conservation law which is only valid asymptotically at the of such a Hamiltonian are qwte_well understood. First, there
are states that develop magnetic long-range order and break

critical point. A nontechnical overview of our results has h . tati irv. The simplest dth
appeared previoushk. Further details contrasting our results € spin rotation symmetry. 1he Simples examfﬂﬂ €
one that we will focus onare collinear antiferromagnets

from the ideas of Ref. 9 appear in Ref. 11. -

We note, in passing, that there are already numerous welWhere the order parameter is a single vedtbr(the Néel
documented examples of the breakdown of the LGW paravectoD, defined to describe a state of staggered magnetiza-
digm in quantum systems in one dimensiénHowever, tion,
these rely rather crucially on the description of various states

in terms of the harmonic phase degrees of freedom of the §(: erlqr, (1.2
Tomonaga-Luttinger liquid, and do not have any direct gen-
eralization to higher dimensions. where
We also clarify that the main purpose of this work is to
demonstrate the breakdown of the LGW paradigm in specific &= (-1 (1.3

examples drawn from insulating quantum magnets. In par- .

ticular, we do not claim to have developed a theory of theS *1 on one checﬁkerboard sublattice and -1 on the other.

QCP’s in the cuprates or the heavy fermion materialsThe Néel state had\,) # 0 and independent af(see Fig. },

Whether a successful theory of observed phenomena in theggt more generall)ﬁr is presumed to vary “slowly” on the

materials can be developed based on our work is a questiqgttice scale over at least most of space. The low-energy ex-

that we leave for future work. citations of the Néel state are simply linear dispersing spin
For the most part in this paper, we will study phase tranyayes.

sitions in two-dimensional quantum magnetism. These may |t is now recognized that a Variety of guantum paramag-

also be fruitfully viewed from a different point of view as netic ground states are also possible where quantum fluctua-

representing transitions of interacting bosons on a lattice atons have prevented the spins from developing magnetic

commensurate density. Quantum magnets provide a partic% S\ ;
) ng-range order, and s(§)=0. Such paramagnetic states
larly useful laboratory to develop and test ideas on the theorg g g ) P 9

e ; n be broadly divided into two groups. First, there are states
of quantum phase transitions. Consider a quantum system ]aat can be described as “valence bond sai¢BS) statest?

spin S=1/2 momentsS; on a two-dimensional square lattice |, 5 simple caricature of such a state, each spin forms a
[r=(x,y)] with the Hamiltonian singlet with one particular other spin resulting in an ordered
H=J> é{ é{ b (1.2) pattern of “valence bonds.” Fpr spin-1/2 systems on a square
! ' ' lattice, such states necessarily break lattice translational sym-
' metry. The so-called “columnar” and “plaquette” ordering
The ellipses represent other short-ranged interactions thgiatterns(see Fig. 1 are described by a complex VBS order
may be tuned to drive various zero-temperature phase traparametet/sgs, where
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S .S _ )X discuss below, a key point is that the topological defects
S+ Sex ~ Relduesl(- 1%, (namely the hedgehogs in space-tinoé the Néel order pa-
L rameter have the same quantum numbers of the order param-
S - Sy~ IMlhps](- 1), (1.4 eter of the VBS paramagnet. If we insisted on describing the
direct second-order transition between these phases in terms
andr=(x,y) (here columnar states hay§gs real and posi-  of these order parameters, it would be necessary to associate
tive, while plaquette states havgs real and negative In  the VBS order parameter with the hedgehogs of the Néel
these states there is an energy gap for spin-carring  order parameter. This means that the two order-parameter
quasiparticle excitations; these “triplo$’are quite distinct fields will have long-ranged “statistical” interactions with
from spin waves, and are instead adiabatically connected teach other. Consequently there will be no local theory which
spin excitons in band insulators. A second class of more exncludes only the two order-parameter fieldsit no other
otic paramagnetic states is also possifin principle: in  fields). It is these difficulties that force the necessity for an
these states the valence bond configurations resonaggternate description which is conveniently provided by the
amongst each other and form a “liquid.” The resulting statespinon degrees of freedom.
has been argued to possess excitations with fractional spin The spinon fieldsz, defined in Eq.(1.5 have a W1)

1/2 and interesting topological structure. “gauge” redundancy. Specifically thecal phase rotation
Our focus will be on the nature of the evolution of the e
ground state between these various phases. Our primary ex- z— "7z (1.9

ample is that between the ordered magnet and a valenqg < . . :
. X I aves the Néel vector invariant and hence is a gauge degree
bond solid. We also discuss the phase transitions betwee gaug 9

valence bond solid and “spin” liquid phasesee Sec. VI 3t freedom. Herer is the imaginary time coordinate. Thus

L - . th [ led t fiel
Qualitatively similar phenomena will be shown to be ob- .ﬁ splnork:s are coku_p gd 0 a1) gauge fie daﬂ(r,g) (vk\:e
tmined at both these transitions. will use the Greek indiceg,v,... to represent the three

Both the magnetic Néel state and the valence bond soliépace't'me indices,y, 7). Our central _the3|s—sub§t_ant|a_\ted
. y a variety of arguments to follow—is that the critical field
are states of broken symmetry. The former breaks spin rota%-

tion symmetry, and the latter the symmetry of lattice transla heory for the Neel-VBS transition is just the simple con-

_ _ _ tinuum actionsS,=fd? rdr £,, and
tions. The order parametelRsand ¢4,55 associated with these

two different broken symmetries are very different. A LGW
picture of the evolution between these two distinct ground  £;= 2 (9, = ia,)Z* + 2%+ u(|2?)? + «(€,0d,8,)%,
states would be formulated in terms of an effective action a=l

that is a functional oN and s Such a construction would (1.7

suggest either a first-order transition, or passage through

intermediate phase which breaks both kinds of symmetry L onsider the case of genedd, [22=3N |zJ2, and the value
H H 13 H ” 4 H '_ ) a= )

an intermediate “disordered” state witteither order. A di of sis to be tuned to a critical valug=s, so thatZ, is at its

rect s_econd-prder transition WOL."d. .be expgcted only by furécale-invariant critical point. The same action with a simple
ther fine tuning to special multicritical points. Our central

thesis is that this expectation is wrona. A generi nd[‘nodification also describes the critical field theory for sys-
esis IS that this expectation IS wrong. A generic Seconty, o \yith easy-plane anisotropy, with the addition of the
order transition is possible between these two phases wit

different broken symmetries. The resulting critical theory is, mple term

however, unusual andot naturally described in terms of the Lep=Wz1%25]%, (1.9

order-parameter fields of either phase. Instead, the natural

description is in terms of spin-1/2 “spinon” @P* fieldsz,  with w<0. We will discuss in more detail later why these

(@=1,2 is aspinor indey. The Néel order parameter is bi- would describe stable critical points—perhaps the most di-

linear in the spinons: rect evidence comes from the numerical simulations reported
R in Ref. 23 of a lattice model of £P* field coupled to a
N~ Z'gz. (1.5 noncompact gauge fielfla lattice version of Eq(1.7)],

o ] ) ~where a continuous transition was found in both the isotropic
Here o is the usual vector of Pauli matrices and multiplica- 3ng easy-plane cases.

N

WhereN=2 is the number ofz componentgqlater we will

tion of the spinor index is implied. The fieldg create single How can this action describe the onset of VBS order
spin-1/2 quanta, “half” that of the spin-1 quanta created byyhen it does not contairkgs, and thez, are closely related
the Néel fieldN. to the Néel order parameter? In writing E4.7), we have

Although we have proposed above that the critical theorytacitly assumed,, to be a single-valued continuous field. In
is naturally described in terms of the spinon fields and noa more careful lattice implementation of Ed.5), however,
the order parameters of either phase, the reader may wondgte resulting gauge field that appearsasnpacti.e., defined
whether this is a unique theory, and that perhaps we havenly modulo 27. This allows for the presence of topological
overlooked some complicated formulation in terms of vari-defects occurring at a single instant of space-tiffiestan-
ables related to the two order parameters. It will becomeons”) called monopoles, at which magnetic flaga, - d,a, is
clear from our analysis below that such a possibility is highlycreated or destroyed in integer multiples af.2n general,
unlikely, and we anticipate the main reasons here. As wéq.(1.7) should thus be supplemented by terms which create
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or destroy such 2 fluxes, or equivalently insert monopoles yrr A4 4L Qv

into the partition function: reXx K XA+ 4+ 4P A0+

vkaK‘TT’fﬂXXV

* vxKK\\TTff)'Xxv

Lop= 2 MO ([vg "+ [0] 1), (1.9 BRSNS N N B A I S

n=1 1.1.1\\'\\ K 7‘ ///V/Vov.y

wherevrTT anduv,, insert monopoles of strengthr2and —2r RN RS SEck

at the space-time poitit, 7), respectively. Remarkably, it has e kA S

been shown by Read and Sachtfeé{that this operator may by | N NI

be identified with the VBS order parameter, i.e., kxxy s V4 l L AR >

kkx{{lllx\\\xi

Ve~ sl 7). (1.10 amEyg JJ.L Y %A AA

MRy g by A

A simple argument to this effect will be given in Sec. Ill. R S AR R 2 B B B
Thus VBS physics is implicitly(albeit highly nonlinearly (@)

contained in the gauge theory of E@%.7) and(1.9). x4

With the definition of the precise model considered in this J //4/%\ ' /'—'\‘\\ \
paper at han§Eqgs.(1.7)—(1.9)], we are in a position to sum- (b)
marize our interesting resul{en which we elaborate further ) ) ) o
in this introduction. Our primary claim is that Eq(1.7), FIG. 2. Askyrmlon_ conflguraFlon gf the fielig,. In (a) we show
without the monopole creation terms of Eq. (1.8scribes the vectqr(nx,ny) at different points in theXY plane; note thafi
the critical properties of the Néel-VBS transition. This claim *(~1*"S, and so the underlying spins have a rapid sublattice
requires that the monopole “fugacities), areirrelevantin ~ ©scillation which is not shown. lb) we show the vecto(n®, ")
the renormalization-group sense at the QCP. This irrelevanc§ond & section ofa) on thex axis. Along any other section @),
is a consequence of quantum Berry phase effects describ&gP/cture similar to(b) pertains, as the former is invariant under
by Haldan€! which render\(r) oscillatory and negligible r_o(tgtl(())n; a?]t(’joﬁu(tldtiei) f)(((')S'OTP; skyrmion above ha(r=0)
for n#0(mod 4 for spin S=1/2 (a different derivation ap- '’ I

pears in Appendix A and in the review in Ref.)2Dur claim . _
is based on the following results: the monopole condensation in the VBS phase—despite the

« We establish tha., are irrelevant at the QCP f& half fact that the\, are negligible at the QCP—indicates that

odd integer for theN=1 case of Eqs(1.7) and(1.9) in Sec ~ (S0M§ \, are “dangerously irrelevant.”
IV A. It is important to note that such monopoles have a natural

« As has been discussed in early wd#k024in Sec IV B topological interpretation in terms of the conformations of
we interpret the results of various larée computations to the Néel o_rdered state. I_n particular, low but nonzero energy
argue that the\,, are irrelevant at the QCP fall S for N cqnf|gurat|ons 01_‘ the afnt|ferromagnet are descr_|be_d py states
sufficiently large. with slowly varying Néel vectofat least at spatial infinijy

« In Sec. V, we consider thi=2 case of Eqg1.7~1.9)  °f constant amplitude,
in the easy-plane case with<<0. The QCP of this model is R
considered in Sec. VIA, and we establish that Meare N =[N[f. (1.1

irrelevant forS half odd integer. Such classical configurations with finite energy admit topo-
The case of central interest, the QCP W#h1/2,N=2,  |ogical defects known as skyrmiorisee Fig. 2 The total

and SU2) symmetry(w=0) is discussed in Sec. VI B: we skyrmion numbeassociated with a configuration defines an

argue there that the above results provide very strong evinteger topological quantum numbex.

dence that the\,, are irrelevant for this case too. Note also .

the distinction above between the lafygwhere the mono- - = 20596 S

poles are irrelevant for ah) and smallN (where the mono- Q= 41 f TR0 X 0. (113

poles are irrelevant only for half odd integ8y; it was this . .
distinction that obscured the complete theory in the la¥ge Remarkably(see Sec. |ll and R‘?f- 35the skyrmion de_nsny
analysisl320.24 is simply related to the magnetic flux of the gauge fia)d

Although monopoles can be neglected at the QCP, this is
not true at low energies in the VBS phase. Indeed, it is well 2mQ = f dZX(axay— Aay) . (1.13
known from studies of pure compact(l) gauge theories
that the fugacities\, are always relevant in the absence of Thus the monopole instantons that change the gauge flux by
gapless “matter fields(i.e., thez,), so that monopoles inevi- +27 describe events in which the skyrmion number changes
tably proliferate in this case. This proliferation leads to apy +1. Thus the flux creation operato}T can also be inter-
“condensation” of the monopole operatqr, ) ~(¢yes)#0,  preted as a skyrmion creation operator. The skyrmion num-
hence VBS ordel>29At the same time it generates a gap for ber changing events may be represented graphically as
the gauge “photon.” In renormalization-group terminology, “hedgehog” configurations of the Néel vector in space-time
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\ ‘ T /‘ present in the microscopic Hamiltonian. This provides a

'\ \ / / rather precise characterization of a deconfined critical point.
An important property of the deconfined fixed points dis-

'\ \ \ \ 7‘ / / /' cussed in this paper is the appearance of digtinctdiverg-

'\ \ f Vo ing length (or equivalently two timg scales close to the
transition—one of which rises as a power of the other. This is
— \ / N directly due to the dangerous irrelevance of monopoles. For
the Néel-VBS transition on approaching from the VBS side
— —— there is of course a diverging spin-correlation lengthlow-
" / \4 B ever, just beyond this length scale the system has not yet
N J \ NS chosen to pin itself into any particular VBS ordered state.
/ \‘ Rather it may be characterized as fluctuating between differ-

/ / / 1 x \ \ \ ent VBS configurations. It settles down to a particular or-

dered state at a larger length scdlgs. This new length
/ / ‘/ l l \ \ \4 scale may also be characterized as the thickness of a domain
(a) wall in the VBS order. The universal crossovers associated

with the critical fixed point describe the behavior on passing

through the length scalé These are described by the critical

(b) theory in Eq.(1.7). As explained above, this critical theory is
monopole free. The second crossover associated with the

FIG. 3. Amonopole event, taken to occur at the origin of space-Iength scaleyps describes how the system evolves from the

time. An equal-time slice of space-time at the tunneling time isParamagnetic phase associated with the monopole-free
represented following the conventions of Fig. 2.(@pcontains the ~ theory Eq.(1.7) to the true VBS phase that obtains when
vector (n,nY); the spin configuration is radially symmetric, and Mmonopoles eventually proliferate. Further details of the phys-
consequently a similar picture is obtained along any other planéCS at the scale§ andé,gs appear in Sec. VII, where we also
passing through the origin. Similarlyb) is the representation of Show in Eq.(7.3) thatégs diverges as a power @fwhich is
(n*,n?) along thex axis, and a similar picture is obtained along any greater than unity.
line in space-time passing through the origin. The monopole above Over the last several years we have become familiar with
hasf,=r/|r|. the notion of fractionalization of quantum numbers in stable
phases in condensed matter. In contrast, the fractionalization
(see Fig. 3 The irrelevance of the monopole fugacities atphenomena obtained in this paper are specific to the critical
the Néel-VBS critical point is thus equivalent to the irrel- point separating two conventional phases. These “fractional”
evance of hedgehog fugacities in a semiclassical descriptioparticles—the spinons—are not presdhg., confined or
Further, the recognition that such monopole events can beondensepat low energies on either side of the transition but
characterized as changirigs a function of timgthe skyr-  appear naturally at the transition point. Likewise the emer-
mion numberQ enables another interpretation of their irrel- gent gauge field that mediates interactions between the frac-
evance. In particular, in the critical fixed point theory in Eq. tional particles is also specific to the critical point. On ap-
(1.7—i.e., at low energies near the QCP—the skyrmionproaching the critical point, the confinement length scale
numberQ is strictly conserved. The emergence of this con-diverges. Thus deconfinement appears right at the transition.
served topological quantum number is the most fundamental We will also briefly discuss the phase transitions between
meaning of the irrelevance of the instantons. different quantum paramagnetic ground states. In particular
We will also use this emergent topological conservationwe will argue that the existing theory for the transition be-
law as a definition of a “deconfined” QCP. Indeed, typically tween a VBS state and a fractionalized spin liquid implies
the gauge theories that arise in various slave particle descriphat the corresponding critical point is also described by a
tions of quantum magnets a@mmpact.Specializing to a deconfined W1) gauge theory in precisely the same manner
U(1) gauge theory, the compactness means that instanton as above. Furthermore, Refs. 26 and 27 argue (ttaleast
monopole events in which the magnetic flux changes By 2 under certain conditionghere are direct transitions between
are allowed configurations of the gauge field in space-timetwo different VBS phases that are also described by decon-
The proliferation of these instanton events leads to confinefined critical points with a (01) gauge structure.
ment of the slave particles in the gauge theory. In contrast, in  There are several general lessons to be learned from the
a noncompact theory—which emerges at low energies wheresults in this paper. First, we see that two-dimensional spin-
monopoles are irrelevant—the total magnetic flux is strictly1/2 quantum magnetism is full of examples of deconfined
conserved. This is a topological conservation law and may bguantum critical points which contradict the LGW paradigm
understood as a global(ll) symmetry in an appropriate dual for critical phenomena. This suggests that in more complex
description. Indeed, we will explicitly construct such a dualquantum systemse.g., with fermions or disordgmovel
theory for the case of easy-plane anisotrgapd in some critical phenomena may well be quite commonplace. Such
other related modelsQuite generally, then, the emergence deconfinement may be at the root of interesting non-Fermi-
of a noncompact (L) gauge theory at the critical point be- liquid critical phenomena observed in the heavy fermion ma-
tween the Néel and VBS phases signifies an extra emerget#rials and possibly in the cuprates as well. Second, our re-
(dual) global U(1) symmetry for the critical theory that is not sults resolve some long-standing controversies in the field of
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two-dimensional quantum magnetism and have direct implivalueS of the microscopic spin on each lattice si#: is the
cations for experiments and numerical work in the field.  area enclosed by the curve mapped out by the time evolution
Third, our results shed some light on questions of confineof A,(7) on the unit sphere. These Berry phases play an un-
ment in gauge theories in two spatial dimensions. It wagmportant role in the low-energy properties of the Néel
shown by Polyakov several years &§that in two spatial phase® but are crucial in correctly describing the quantum
dimensions for pure gauge theorig., without any matter paramagnetic phasé*°We will expand these earlier results
fields) instantons generically always proliferate and drive theto show here that they also modify the quantum critical point
theory into a confined phase. The behavior in the presence &etween these phases, so that the critical exponents are dis-

dynamic matter fieldgparticularly with Fermionic mattgis  tinct from the theory withousSg studied earlief>’
much less understood and is a subject of some To understand the summation ovein Sg, recall that, as

controversy®-31:3334The results in this paper show that with described in Sec. |, in two spatial dimensions, smooth con-
Bosonic matter there are at least isolated critical péfirdas gg?éggogia?;é?;iz'\é%eIbvetﬁgriﬂgmétr igygﬂoﬁgfﬁﬁ%ﬁal
which deconfinement is obtaingdnd the instantons disap- y 9 polog

ear at long scalgsWhile typically reaching criticality in a The Berry phaseSg vanishe$™ for all smoothconfigura-
P 9 ¢ ypically 9 y tions even if they contain skyrmions. For such smooth con-

Bosonic system require_s_ some fine t“’?ingv Fermionic SYSfigurations, the total skyrmion numb€) is conserved. Cru-
tems can have stable crl_tlcal phases. Tr_us supports the SPeqYally, however, the skyrmion number changing monopole
lation that stable deconfined phases exist in two dimensional,ents are not everywhere smooth. It was shown by

compact W1) gauge theories coupled to Fermionic matter. pajdan@ that the summation overin Sg is nonvanishing in
If true this would have interesting implications for the theorythe presence of such monopole events. Precise
of spin liquid phases of quantum spin systems. These poinigalculatiot®?! gives a Berry phase associated with each
are discussed further in Sec. VB and Appendix F. such skyrmion changing process which, f@=2L(mod 4,
Apart from these general notions, there are also a numbejscillates rapidly on four sublattices of the dual lattisee
of specific physical ramifications of the proposed critical Appendix A). This leads to destructive interference which
theory for the Néel-VBS transition. One immediate conse-ffectively suppresses all monopole events unless they are
quence is that the anomalous dimension of the magnon ORuadruple®2°2L(i.e., they change skyrmion number by, 4
erator is much larger than is usual @E2+1 dimensional The NLoM field theory augmented by these Berry phase
fixed points. Thus the magnon spectral function will be ex-terms is, in principle, powerful enough to correctly describe
tremely broad right at the critical point. Many other implica- the quantum paramagnet. Summing over the various mono-
tions are explored in some detail later in this paper and sumyole tunneling events shows that in the paramagnetic phase

marized in the overview in Sec. II. the presence of the Berry phases leads to VBS dfdér.
This crucial result from prior work identifies the VBS phase
Il. OVERVIEW as resulting from a proliferation of monopoles in the pres-

) ] ] ) o ence of nontrivial Berry phases. The nontrivial identification
~ In this section we provide an overview of the main ideasof the VBS order parameter expressed from bond energies in
in this paper. Eqg. (1.4 as the skyrmion creation operator is remarkable.
When this operator acquires an expectation value VBS order
A. History and precedents results. In this manne§, contains within it the ingredients
describing both the ordered phasegbf
Within the Landau framework there are several possibili-
s that can be imagined for the evolution between the Néel
d VBS ground states as some microscopic parameter is
tuned. For instance, there could be two transitions with an
X . . intermediate phase that breaks both Néel and lattice symme-
model (NL‘TM,) with th? Euclidean act|or(vx{e have Pro-  tries (an intermediate phase that breaks neither symmetry is
moted the lattice coordinate=(x,y) to a continuum spatial excluded, or simply a first-order transition. However, a di-
coordinate, and- is imaginary timg: rect second-order transition is unexpected without further
S, =So+ S, tuning (as at a multicritical point
The possibility of a direct second-order transition between
A\ 2 Néel and VBS phases is hinted at by several results in the
_1 2| (9N 2(v /)2 existing literature. First, note that in the Néel phase mono-
SO——fdrfdr[(—> +c(Vrn)}, g hter , p _
29 ar pole tunneling events are absent at long length and time
scales. In the quantum paramagnet these monopole tunneling
SB:iSE A, . (2.1) events have proliferated. The Haldane phases then Iead_to
. VBS order. The existence of a monopole condensate is
R clearly incompatible with long-range Néel order. Thus to the
Heref, = €S is a unit three component vector that representsxtent that the broken lattice symmetry of the VBS state is a
the Néel order parametdthe factore, is defined in Eq. consequencef the proliferation of monopoles it competes
(1.3)]. The termSg contains crucial quantum-mechanical with the Néel state. A direct transition from Néel to VBS
Berry phase effects, and is sensitive to the precise quantizetien becomes conceivalf20:39

We begin by recalling some important prior results in the
theory of quantum magnetism on the two-dimensional squarg,
lattice. In the Néel phase or close to it, the Iong-distancean
low-energy fluctuationgof the orientatioin of the Néel order
parameter are captured by the quantu(@)®onlinear sigma
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A second hint comes from examining larbjestudies of  order transition between the Néel and VBS phases, but ar-
SU(N) quantum spin modef$:2°In the limit N= (and ina gued that any such transition could not be described by the
bosonicrepresentation of the spinthere is a second-order O(3) LGW model.
transition between the Néel phase and a quantum paramag- Our discussion here makes it clear it is necessary that the
net. In this limit the paramagnet breaks no symmetties  corresponding fixed point have no monopoles at long scales.
cluding lattice symmetrigs Furthermore, it supports gapped The natural candidate is then precisely the fixed point gov-
spin-1/2 excitationgknown as spinons However, both fea- erning the transition in the model with monopoles forbidden.
tures are known to be artifacts of the linht=cc. Upon in-  The arguments of Motrunich and Vishwan&thand our
cluding finiteN corrections, broken lattice symmetry appearspresent analysis, on such models show that the appropriate
(leading to a VBS phageThe spinons also feel a gauge critical theory is that ofZ, in Eq. (1.7). It must be kept in
force that leads to their confinement and disappear from theind that this critical theory is entirely distinct, with all criti-
spectrum. What about the vicinity of the transition? To an-cal exponents different, from the(8) LGW model obtained
swer this, it is instructive to examine the various lengthby droppingSg from Eq.(2.1). The first indication that such
scales in the problem in the paramagnetic state. First, there & distinct continuous transition could exist in the monopole
the spin-correlation length that diverges on approaching theuppressed @) NLoM was from the work of Kamal and
transition. Note that deep in the paramagnetic phase thisurthy*? Recently, the transition in this model with mono-
length stays constant whéwi— c. Then, there is the length pole suppression was studied in Ref. 23, where a different
scale at which VBS order appears. As there is no VBS ordeapproach that sidestepped the potential problems of Ref. 42
at N=c this length scale musdivergeas N—c—hence it was used. A continuous, non-Heisenberg transition with
must be much bigger than the spin-correlation length in theroperties consistent with those of Ref. 42 was found. More-
largeN limit. Finally, there is a thirdsomewhat loosely de- over, an independent numerical simulation o€&* model
fined) length scale that may be thought of as the length scal@ith a noncompact gauge field was performjegsentially
associated with spinon confinement. Clearly this scale alsgq. (1.7)] which also yielded a continuous transition and
diverges asN— and is much bigger than the spin- exponents consistent with the simulations of the monopole
correlation length. Indeed calculatidfisf the VBS and con-  suppressed @) NLoM. This provided a nontrivial check of
finement length scales in the larlelimit show that they are  poth the essential correctness of the numerical calculations
O(&™), where ¢ is the spin-correlation length andis a  and direct support for the identification of E€L.7) as the
constant. critical theory for the monopole suppressed3DNLoM

This suggests the possibilf§?%2*of a direct transition transition. The easy-plane deformation of these models was
between Néel and VBS states in the lafgdimit where the  also studied in Ref. 23, where again a continuous transition
monopoles(and hence their Berry phageare irrelevant at  was obtained. This transition was argued to possess the re-
the critical fixed point, but are important in producing VBS markable property of beingelf-dual
order and confinement in the paramagnetic state. In critical The possibility of deconfinement of spinons at the critical
phenomena parlance, the monopoles @aagerouslyirrel-  point between Néel and VBS phases is also hinted at by a
evant at the critical fixed point. different consideration that is again motivated by the laxge-

A picture similar to this was in fact proposed several yearsalculations. The excitations of both the Néel and VBS
ago by Chubukoet al3” However, it was not appreciated phases are conventiondle., do not contain any fractional-
that the quadrupling of the monopoles, induced by the Berryzed spinons In a Schwinger boson description in terms of
phases, rendersoth the monopoles and their Berry phasesspin-1/2 spinons this is achieved through confinement. How-
irrelevant at the critical pointthe distinction between the ever, the detailed mechanism of such spinon confinement is
relevance of single versus quadrupled monopoles is absent fifferent in the two phases. In the Néel phaédescribed as a
the largeN limit“°). In particular, it was assumed that the spinon condensateconfinement is achieved through the
confinement length scale will stay finite at the transition,usual Higgs mechanism. On the other hand, in the VBS
which was then modelleffor physical SU2) sping by the  phase confinement is achieved through proliferation of in-
LGW theory obtained simply by neglectings in Eq.(2.1):  stantons. This difference in the confinement physics then
this is the @3)-invariant Wilson-Fisher fixed poirftin light  makes it conceivable that neither mechanism is actually op-
of the discussion above, it is clear that as the confinemerdrational at the critical point and deconfinement obtains.
goes hand in hand with the VBS order both confinement and
VBS length scales diverge at the transition. Thus we might
expect deconfinement to appear at the transition.

A weakness in the arguments of Chubuketval®’ was There have been a large number of numerical studies of
pointed out by Sachdev and PdfkThe latter authors argued the destruction of Néel order in th8=1/2 square lattice
that there was a finite density of monopoles in space-timantiferromagnet® While there is evidence for the existence
right at the critical point of the (8) LGW model, and the of VBS order in the paramagnetic phdée?® the nature of
Berry phases then implied the presence of finite VBS order ahe transition between the Néel and paramagnetic states has
any such critical point. Based on this they suggested that been difficult to address. A major obstacle is the well-known
possible evolution between the Néel and VBS phases wdsign” problem, which prevents large-scale Monte Carlo
through a region of coexistence of both broken symmetriessimulations. Until recently, all large-scale studies of the de-
However, they left open the possibility of a direct second-struction of Néel order have been on models with an even

B. Numerics
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number ofS=1/2 spins per unit cell, with a paramagnetic densityS. One may understand the relation to (BE* vari-
phase which does not break any lattice symmeffiéS. ables bTy recognizing thag] creates a +2 vortex in z,

The first large-scale study of the destruction of Néel ordewhile ¢ creates a -2 vortex in z;, both of which create
in a S=1/2 square lattice antiferromagnet, in a Hamiltonian physical 2r vorticity in n"=n*-inY=zz,. The dual theory,
which preserves a singfg=1/2spin per unit cell and the full Ly, for ¢, andA,, is presented in Eq5.6).
symmetry of the square lattice, was that of Sandsfikal® The dual representatiofiy,y has an appealing semiclas-
This was on a model with a strong easy-plane anisotropysical interpretation, described in detail in Sec. V A. Briefly,
Such easy-plane models have been studied analyticallhe two types of vortices correspond to “meroiiisalf skyr-
previously#!>tand will be pursued further in the present pa- mions, in which the Néel vector points either up or down
per. Reference 5 found convincing evidence for VBS order innside the vortex core. The skyrmion number changing
the paramagnetic phase. Furthermore, the VBS and Néel omonopole events thereby correspond precisely to an event in
der appear to vanish at points close to each other, suggestimghich a vortex core tunnels from the up to down staggered
a direct second-order transition in the class discussed in th@agnetization or vice versa.
present paper. The advantage of this representation is that (hea-

We also note the wave-function Monte Carlo work of drupled monopole fugacity appears explicitly as a local op-
Capriottiet al>? on the SW2) S=1/2 antiferromagnet on the erator in terms of the vortex fields. Remarkably, if this fugac-
square lattice with first and second neighbor exchange. They, A, is set to zer@as appropriate at the QCP provided it is,
found a “resonating valence bond” wave function characteras we argue, irrelevantthe dual action in Eq(5.6) has
istic of a spin liquid state. Our results here suggest that theprecisely the same form as the original one, 8q7). More
were perhaps observing the deconfined state characteristic pfecisely, an exact equivalence can be demonstrated between
the critical point, and that they had not yet reached the crosdattice regularizations of the original and dual theory in the
over to VBS order at the longest scales. absence of monopoléd Thus, as found in Ref. 23, the pro-
posed critical theory in the easy-plane case has an unusual
self-duality property.

The irrelevance of monopoles can then be argued in sev-

In this paper, the proposal of a deconfined continuou®ral ways. First, using the self-duality, each power of the
Néel-VBS transitior{as well as a VBS-spin liquid transitipn  skyrmion creation operator has the same correlations at the
is substantiated by a variety of arguments. First, in Sec. [IQCP as the corresponding power of ¥ staggered raising
we consider a concrete latticPN"* model which, forN operatorn®. At the deconfined critical point, fluctuations of
=2, embodies the physics of the Néel state, the monopoles;” are expected to be stronger than they are at a conventional
and their Haldane Berry’s phaséecusing onS=1/2), and  (confined XY critical point. The corresponding quadrupled
the VBS state. This model, introduced by Sachdev andperator is already irrelevant in the latter céas mentioned
Jalaber® and referred to here as the SJ model, provides above, so we expect the four-skyrmion fugacity to be only
convenient starting point for theoretical analysis of themore irrelevant around the deconfined critical theory. This
SU(2) invariant critical region. We address the nature of theexpectation is supported by an explicit calculation in a large-
physically interestindN\=2 case by showing that, in the two N (different from theN in the SJ modglgeneralization of the
limits N=1 (Sec. IV A) and N=o (Sec. IV B), this model dual critical theory in Sec VI A. Further arguments are given
indeed sustains a deconfined critical point in the precisén Appendix C.
sense defined above. Fbi=1, this can be directly shown In Sec. IXA we demonstrate for the easy plane case a
using lattice duality transformations, which demonstrate artlirect derivation of the dual critical theory from a micro-
exact equivalence of the SJ model tdDa3 classicalXY  scopic Bosonic representation of the underlyiy model,
model with a fourfold symmetry breaking term which corre- without utilizing either the NioM or SJ models.
sponds physically to strength four monopoles. Such fourfold In Sec. VIII, we show that analogous deconfinement ob-
anisotropy is known to be irrelevant at thB=3 XY  tains for a VBS to spin-liquid transition. The latter has al-
transition®? establishing the deconfinement of this case. Forready been discussed by several authd?éand shown to be
N=c, the scaling dimension of the four-skyrmion creationequivalent to the transition in a fully frustrated quantum
operator was computed previously by Murthy and SacRélev, Ising model, which has a simpl€Y critical fixed point un-
and is such that monopoles are again irrelevant. Hence waffected at low energies by an irrelevant eightfold symmetry-
expect by continuity that monopoles are irrelevantdbr, breaking term. We show that this description is in fact dual to
including the interesting cadé=2. a deconfined gauge theory in the same sense as above, and

Second, in Sec. V, we consider specificaly:2, in the that the (dangerously irrelevant eightfold symmetry-
presence of additiondbtrong easy-plane anisotropy. In this breaking term can likewise be interpreted as an irrelevant
case, the SJ model may be rewritten as a pair @) @otors ~ monopole fugacity.

(the phases of,) interacting with a compact (1) gauge
field. The latter may be analyzed directly using duality tech-
niques(Appendix B. We obtain in this way an explicit dual
representation in terms of complex “vortex” annihilation op-  We will begin in Sec. Ill with a general discussion of the
eratorsy,, (a=1,2) and a duahoncompacgauge fieldA ,, important symmetries of the Hamiltonian, and their action on
whose flux represents th@exactly) conserved uniform spin a variety of order parameters and operators. This section will

C. Plan of attack

D. Organization of paper
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also introduce the SJ model. The solution of the SJ model iThe calculations in Refs. 20 and 21 give the total ph&se
a variety of tractable limits appears in Sec. IV and V B.spin-1/2 magnets that we consider—for a derivation see
Section V also contains a general, semiclassical descriptionere, Appendix A
of the physics in the easy-plane limit. The nature of the -
second-order critical point between the Néel and VBS states 11 exp(i—gnAQn). (3.2
is discussed in Sec. VI. A variety of predictions for the criti- n 2
cal properties on the Neel-VBS transitions with @Jand  pere the monopole is associated with a plaquette of the
XY symmetries follow from our analysis. These are elabo-yriginal lattice(or equivalently with a site of the dual square
rated in Sec. VII: readers not interested in the detailed theaattice), which is labeled by the index. The product is over
retical analysis may skip ahead to this section without sigall locations of monopoles, andQ,=+1 is the change in
nificant loss of continuity. Section VIII describes the skyrmion number associated with the monopole. Note that
deconfined critical point between the VBS and spin-liquidthe periodic boundary condition along the time direction re-
phases, as noted above. Finally, Sec. IX contains a variety @fuires that the net change in skyrmion number is zero so that
extensions of the results in this paper. Section IX A shows2,, AQ,=0. The fixed integer field,, is 0,1,2,3depending
that the easy-plane Néel to VBS transition can be reinteren whether the dual lattice coordinate(é&ven, eve) (even,
preted as a superfluid-insulator transition in an interactingdd), (odd, evei or (odd, odd, so that the phase factor as-
boson system; the insulator in this case contains a densiociated with each monopole isil+1,- on these sublat-
wave in the amplitude of the bosons to reside on “bond"ices(see Fig. 4 in Sec. IV A
states. This approach also provides an alternative derivation The oscillating nature of the Berry phase factors on adja-
of the dual model Eq(5.6). Section IX B briefly discusses cent plaquette leads to destructive interference between dif-
the extension of our results to antiferromagnets With1/2,  ferent tunneling paths for single monopoles. Indeed this in-
while Sec. IX C considers the case of the honeycomb latticeterference effectively kills all monopole events unless they
Section IX D discusses possible extension of our results tare quadrupledi.e., change skyrmion number by.4Hence
systems with Ising anisotropy. only such quadrupled monopole events need be included in
the quantum statistical mechanical partition sum.

We have already indicated the remarkable identification of
the VBS order parameter defined in Ed.4) with the skyr-

In this section, we describe the representation of magnetsion annihilation operator/,gs~v, as shown in Ref. 13.
with local tendencies to Néel order in the BM and CP*  This provides the crucial confluence of tluss of antiferro-
(SJ model representations. We describe the action of themagnetic orderand consequent proliferation of monopole
physical symmetries on the correspondingndz, fields in  event$ with the onsetof VBS order, counter to conventional
each case LGW wisdom. Because of the importance of this result, we

We start from the actioss,, in Eq.(2.1). The all-important  give a simplified derivation of this relation here.
Berry phase term iy is defined on the underlying square It is important to recognize that the VBS order parameter
lattice, and it is clear that lattice scale cancellations are imin Eq.(1.4) is entirely defined by its transformation under the
portant for the physics we are interested in. It is thereforesymmetries of the Hamiltonian. Any other field with the

IIl. REPRESENTATIONS AND SYMMETRIES

useful to return to a lattice formulation to obtain same symmetry properties dggg Will, on general scaling

B and renormalization-group grounds, be proportionaliigs

Sn=So+ Se, in the critical region. Thus to prove the identificationyfgs
with the skyrmion creation operator it is sufficient to show

1 (dn\? R that the latter transforms identically 6,55 under all sym-

So=| dr| 2 =| =] -I2 A A |, :
~ 29\ dr re metry operations.
(rr'y

As a topological index, the skyrmion number is un-
changed under smooth global &) spin rotations, hence the
. cooo diy skyrmion number changing operator is also anBcalar.
S8 = IS}:‘ & | drAn]- dr’ (3. Likewise, ¢4/gs, being defined through scalar bond operators,
_ is SU2) invariant. Let us consider the effect of lattice sym-
We have now rewritten the aread in terms of A, which  metry transformations om. In the functional integral this
represents the vector potential of a magnetic monopole witloperator is defined by insertion of a space-time monopole. It
flux 47 placed at the center df space at each lattice site. is easy to see that undet/2 rotations in the counterclock-
This lattice model is a faithful representation of the originalwise direction about a direct lattice sitavhich we denote
guantum antiferromagnet so long gsis large. The con- R,;,), the Berry phase associated with the skyrmion creation
tinuum limit of S, in this model is clearly just what appears event changes bg ™. Thus if we denote by' the skyrmion
in Eq. (2.1). The representation of the Berry phase used herereation operator and specialize$s1/2, wehave
leads directly to Eq(Al) in Appendix A. t it (3.3
The Berry phases are crucial for a correct description of ' '
guantum paramagnetic phases. As described in the previod$e skyrmion creation operator is actually defined on a
sections, it was shown by Hald&Aehat the Berry phases plaquette—for the time being, we will label the plaquette by
are nonvanishing only in the presence of monopole eventshe lattice site at the top-right corner.

Rﬂ./z: Y
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Lattice translation operatiorig, corresponding to trans- As discussed above, to incorporate VBS phases it is im-
lations by one unit along,y directions of the microscopic portant to correctly account for the Haldane Berry phases
spin model have somewhat more subtle effects. First, in thassociated with these instantons. An appropriate model has
rotor representation df,, these translations are representedbeen constructed by Sachdev and Jalat¥ethe Euclidean

as action of the Sachdev-Jalabg8) model is
Ty — = Prag, (3.4) S53= S+ Sa+ Ses
Ty — = A (3.5 ;=12 2,8%Zu;,0+ C.C., (3.1
|

The change in sign di is due to the staggering implicit in its

definition. Now note that the skyrmion numb€r is odd _K

underi— —n. Consequently, , convert a skyrmion creation Sa= 2 by (€l = Zﬂq#)z’ 3.12

operator to an antiskyrmion creation operator at the trans-

lated plaquette. Furthermore, due to the difference in the o

Berry phase factors for monopoles centered on adjacent Sg= IEE {nl 0, (3.13

plaquettes, there is a phase factor that is introduced by the n

tran§lation. Simple calculatiéflgiyes the fpllowing transfor-  Here we have put the complex spinon fielgson the sites

mation properties foo", specializing again t&=1/2: of a cubic space-time lattice in dimensioBs=2+1 (now, n

(3.6) denotes the sites of the dual cubic latjicend they satisfy a
' unit length constraink,, |z,/?=1 on each lattice site. The,

N ) represent the compact() gauge field, and are defined on

Tyvp = +ivpy. (3.7 the links of the space-time lattice. Note that theare mini-

mally coupled to the gauge field. The te@prepresents the

gauge field kinetic energy. The quantity, is an integer

. —i
Tev, = — v,

It is now clear that a paramagnetic state with a uniform
expectation value ob' breaks these lattice symmetries. For . . . .
gauge flux that is defined on the links of the dual cubic

. .
ms_tance, ifh=(v)#0, then Ry, Ty, Ty are all broken. lattice. Its divergence which enters the tefgirepresents the
This suggesits a plaquette ordered state such as that ShOWnn'ﬂmber of monopoles on the sites of the dual lattice. Conse-
ﬂ;]e IOV\t/ﬁrtrightt of Eig. LA straig?tfc;rwar? ctom?r?rilsci? uently, Eq.(3.13 is identical to the contribution iﬁ Eq
shows that, up to an innocuous constant pre-factor, the lai |c% ' I )
transformatioﬁ properties of are identicalpto those afyps ?( aﬂdSB prowdes thg Halfdande Be_rtr)y phas_e fa/ctors t? at
determined from a more mundane analysis of 8g4). In make the action appropriate for describing spin-1/2 antifer-
. romagnets on the square lattice. The Néel ordered phase is a
particular, “Higgs” phase where the have condensed, while the VBS
v~ €™ s (3.9 phase is a “confined” phase where the Berry phases have led
to broken lattice symmetry.
properly reproduces all the transformation properties of the The actionSs; is clearly closely related to the lattice ac-
VBS order parameter. Thus we may indeed |dent|fy the Skyrtion Sn in Eq (31), after rep|acingﬁ by Z via Eq (15)
mion creation operator with the order parameter for the VBSHowever, the correspondings terms in Egs.(3.1) and
order. (3.13) do appear rather different—they are related by the
We have already introduced in the Introduction thE* Berry phase summation carried out by Ha|déhb{ere, we
“spinon” fields to represent the Néel order parameter. Thesgstablish the connection between these two forms of Berry

may be introduced on the lattice, phases in Appendix A; further details on the derivation of
P Eqg. (3.13 from the microscopic antiferromagnet appear in
=207 (39 Refs. 22, 39, and 41.

To maintain the unit magnitude d¥, the constrainfz|? If, as we will argue in the following, monopole events can

+|2,J2=1 should be imposed upon the spinarz(r,7) indeed be neglected at low energies near the QCP, we can set

=(21,2,). g,=0. Taking then a naive continuum limit of Egs.

(3.11)—(3.13) gives precisely the proposed field theory of Eq.

One can sho® that the partition function of the con- ] - _ -
(1.7). We will, however, work directly with the lattice SJ

tinuum NLoM [with the action in Eq(2.1) neglecting Ber- | X ) X
ry's phase termisis exactly reproduced by the continuum model including monopoles in several of the sections to fol-
I

CP! model with the action ow. N
As in any critical phenomenon, symmetry plays a key role

B ) . 5 in the discussion of the Néel-VBS transition. We therefore
Sep= | drdr|(d,~ia,)z". (310 |ist here the various physicéi.e., nongaugesymmetries of
the problem and their action upon the Néel and spinon fields.
Here a, enters mathematically as a Hubbard-StratonovichThe only continuous physical symmetry is spin rotational
field, and by considering its quadratic Euler-Lagrange equainvariance, either S(2) or U(1) in the case of easy-plane
tion, one can deduce the relation of the skyrmion nunter anisotropy. Under such rotations, the Néel veciorand
to the gauge flux o&,, given in Eq.(1.13. spinon fieldz, transform as global vectors and spinors, re-
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TABLE I. Transformations of the Néel and spinor fields on the eter. Also included are the easy- plane and hard-axis compo-
square lattice under the d|screte symmetry generators. iHdre2 nents of the uniform magnetlzatldVI all three being con-
=X,y is a spatial index, and;=io}/  is the fully antisymmetric rank served for SU2) symmetry but only the latter being
2 tensor. Codrdinate transformatlons of the arguments of the fields

2onserved with easy-plane anisotropy. Two currents are also
have been suppressed.

of interest: the spatial currefftof the conserved Isinghard-
axis) magnetization, and the vorticity three-currgfjt—the

Operation  Coordinates Néel Spinor Gauge ; . . .
latter being meaningful in the presence of easy-plane aniso-
R,/ Xi—e€jX; invariant  invariant = a— €;a; tropy. Finally, we may consider th@P* gauge three-current
Ty X —x+1 A——f Za_)igséﬁzzg a,—-a, Jﬁ €,1d,@,, Which in the contmuum theory is identified
Ry X —-x  invariant invariant & ——a; with the topological curren; ~Z €,mN-d,NX3,N. Inami-
| P invariant  invariant  ag,——-ay, croscopic model, using the transformatlon properties _o_f these
P y operators, one can construcfrather complexsuperposition
T t— -t n—-n z,—ic ﬁzﬂ Ay =~y

of three-spin operators with these same transformation prop-
erties. Consider for instance, the time comporjénteij 9q.
spectively. The remaining unitary symmetries are discretéOn a square plaquette with central coordingtaumber the
operations of the space group of the square lattice, and cates starting at the uppper-left corner of the plaquette and
be composed fromr/2 rotations, translations, reflections, moving clockwise as 1,2,3,4. Then one has

and inversions. As above, we denatf£2 clockwise rotations

-G g - = g - = > = -
(around a direct lattice sitdy R,,, and unit translations in jo ~ DS S XGH-S SX§+H-§X G
andy by T,,T,, respectively. Reflectiong—-x or y—-y e >
around a lattice plané.e., leaving a row or column invari- S S X 8], (3.14

anp are denotede,Ry, and inversions about a site By  where the(-1)" takes opposite signs on the two sublattices of
Finally, there is a nonunitary time- reversal operati®n  the dual lattice.

which as usual takes microscopic sp&s—> S The trans-
formation properties of the Néel, spinor, and gauge fields are IV. SJ MODELS
given in Table I. o .

Using these symmetry properties, one can determine the One useful generalization of the SJ model is to allew
operators of the field theory corresponding to physically in—— 1 **N above, so that is anN-component complex vector
teresting microscopic quantities in a spin model. Some off Unit magnitude. The S(2) spin model corresponds 19
these are tabulated in the second column of Table Il of Se¢; 2- |t will be possible to analyze the limit=1 andN=c.

VB and describe general situations which allow for easy/AS argued in Sec. VIII C, th&l=1 model actually may be
plane anisotropy on the underlying magr@he SU2) sym- realized in a spln-1/2 _model in a stagger_gd Zeeman f|_eld.
metric situation may be obtained as a special ¢aBeese The largeN limit describes ordering transitions of certain

include the easy-plane and hard-axis components of the NegiJ(N) quantum antiferromagnets and is less directly physi-
order parametef*=N*+iNY, N? and the VBS order param- cal. Its main ut|I|'Fy is its tractab|ll'§y. Similar behavior in both_
extreme limits—in particular the irrelevance of monopoles in

TABLE II. Operators in the easy plar@P! (column 3 and dual ~ both cases—suggests the same is true for the models with

(column 3 representations corresponding to physical operatordntermediateN.

(column 2, in the notations of Sec. Ill. Here we have introduced

the classical gauge field configuration for a unit point flux, with A. SJ model atN=1

€A (X) = 278%(x). The symbole; represents thg¢ component of

the electric-field operator that corresponds to the gauge field in the

CcP! representatlon We have also used the synﬂgokjeflned by

faug 2[fa g-(d,fgl. The symboljI is the current of conserved S,=- ZtE codAd-a), (4.2)

magnetization, whllq andJM are the three-currents of vorticity

and gauge flux, respectlvely

Consider firstN=1 wherez=¢€% is simply a complex
number of unit magnitude. Then

where the sum is over the link& of the cubic lattice. We

Field cp! Dual indicate spacetime three-vectors here in bold face, and the
. discrete lattice gradient bA. As discussed by SJ, this

N* Z'o*z elEi4, =1 model displays a transition between a Higgs and a trans-

es gleid yroty lation broken phase. The latter has a fourfold degenerate

NZ oz Jro2y ground state due to lattice symmetry breaking. Simple sym-

M iz o (5 —iag)z &IE Ayt o2y metry arguments suggest a transition modeled By elock

M2 e A model—as the fourfold anisotropy is irrelevant at e 3

iz'o*(dy—iag)z €Al ™ XY fixed point53 this is i _di ;

_Z ’ - point;® this is in the three-dimension&BD) XY

Ji iz'o*(d—ia;)z €ij(doA — djA0) universality class. SJ also provided numerical evidence sup-

in vorticity iyl(d,-iA )y porting this expectation. As shown below, all of this is

i$ N iy oA (T, ~iA,) reagil?/ established by a duality transformation of the 1

model.
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FIG. 4. Specification of the fixed field)=-¢/4. The filled

circles are the sites of the direct lattice, ahdesides on the sites of

the dual lattice.

To dualize theN=1 SJ action we use a Villain represen-

tation of theS, term in Eq.(4.2):
1., .
53 (2 ao-a) @2
¢ \2t

The integer valued fielgrepresents the current of txdield.
We also decouple th&, term in Eq.(3.12 by a Hubbard-
Stratanovich fieldb to write

Sa—>2(§|b|2+ib-(A><a—27-rq)). (4.3

PHYSICAL REVIEW B 70, 144407(2004)

S=> (— t cog2mAY) - 2, \,, cog2mn(y - 0)]) .

(4.11

This describes aXY model with variousn-fold anisotropy
terms of strengtha,,. The shift by leads to rapid spatial
oscillations of these anisotropy terms unlessO(mod 4.
Near the critical point in the continuum limit, the leading
nonvanishing anisotropy term is at4. The critical proper-
ties are therefore that of adY model with fourfold aniso-
tropy \4. The latter has a scaling dimensidy > 3, which
renders it irrelevant at thB=3 XY critical point>3

An overly cautious reader may object that uncontrolled
approximations have been made in softening the integer con-
straints on théA, y fields. However, all manipulations up to
Eqg. (4.9) are exact, and from this point an exact world-line
representation may be obtained by implementing the integer
constraints using the Poisson resummation formula. The lat-
ter representation clearly describes charged relativistic par-
ticles for which charge nonconservation events oscillate spa-
tially unless the charge is changed in multiples of four. On
universality grounds, one expects this model to be in the
same universality class as %Y model with fourfold aniso-
tropy. Though we will not pursue it, a similar exact duality
can be performed on thd=2 SJ model in a world-line rep-

Here, and below, the leading sum in the action extends ovdSeéntation, and may be used to somewhat more rigorously
all sites/links/plaquettes over the cubic lattice, as neededir9ue for self-duality of the critical theory in this case.

Performing the sum over the integer fieljdwe get
b-A9=B (4.9

with 9,=-¢,/4 (see Fig. 4 and B an integer. If we now

integrate overp, we get the current conservation condition

A-j=0. (4.5
This may be solved by writing
j=AXA (4.6

with A an integer. Integrating over the gauge fieldwe
obtain

A XB=j. 4.7
This may be solved by writing
B=A+Ayx (4.9

with x an integer. The action then reads
S=2 i(A><A)2+i[A(X+ N+AP|. (4.9
2t 2K ' '

The hard integer constraints oh,y may be softened by
adding terms

—t cog27A) — > N, cog2mny). (4.10

We may now shifty—y=x+39, A—A'=A+Ay. The A’

The results above can be interpreted physically as fol-
lows. Let us first consider the vortices in thecondensate.
These will carry gauge flux that is quantized in units af. 2
Such a Zr flux can end at a space-time monopole. Hence
monopoles act as sources of the vortices ofzlireld. The
Berry phases imply that these monopole events are qua-
drupled so that only processes where four vortices disappear
(or are createdtogether are important in the continuum
limit. Now if we forbid monopoles by hand, then the usual
duality arguments map the model to a globa model in
terms of the vortex fields. The dual globa{1) symmetry of
this XY model is precisely associated with conservation of
vorticity. Including monopolegswhich act as sources for four
vorticeg introduces a fourfold anisotropy on this globaY
model. Such an anisotropy is irrelevant at the 8D critical
fixed point. Thus monopole events are again irrelevant and
(in the original representatigpm theory where the boson is
coupled to a noncompact(ll) gauge field describes the tran-
sition.

B. SJ model at largeN

Now let us consideN large. In the limitN— o the gauge
field is nonfluctuating and can be taken as a classical “back-
ground” in which thez particles move. The minimum energy
saddle point corresponds & =0 (up to gauge rotationThe
zbosons are gapped and free in the paramagnetic state, while
they are condensed in the ordered state. Now consider the
nature of both states, and the transition, upon including fluc-
tuations in a 1N expansion. It is useful to discuss the effects

field is massive and may be integrated out. The remainin@f instantons separately from other fluctuations. Ignoring in-

action for theyy reads

stantons, the IN expansion proceeds along standard lines.
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In the ordered state, the gauge fields acquire a mass by thieerature3-3% The strategy of these, and other works, is to
usual Anderson-Higgs mechanism. The gauge flux is quarintegrate out thez bosons, and to work with an effective
tized in units of 2r—the associated point defects are theaction for the gauge field. This action will be of ordwsr
large-N avatars of the skyrmion described previously directlyConsequently, it seems reasonable to assume that the gauge
atN=2. However, on the paramagnetic side the gauge fieldgeld dynamics is described to leading order inNLby a

are gapless and describe a “photon” which disperses linearlgaussian actiorthis is equivalent to the RPA approxima-

at low energies. The transition is described by a field theoryjon), and to address issues of instanton physics within this
of zbosons coupled minimally to a noncompadflygauge  Gayssian gauge action. Such an approach will correctly de-
field. This transition is second order with critical exponentsgqyipe the qualitative physics of the paramagnetic state. For

:ir::%ﬁaervoclgﬁs?gg:irt]r?g%S;iégomxjgreign\tlagﬁizg; me gggratotrhe critical point itself, the form of the Gaussian gauge action
) 1 1 3
(which is the appropriate generalization to lafgeof the s determined by scaling to Be**[see also Eq8.2)]

familiar Néel order parameter Bt=2). This is bilinear in the

3
z fields. At N=<, the spin operator therefore has a large Sg= d—K3N0'0|KHaT(K)|2, (4.12
anomoulous dimensiom=1. This will acquire(calculable (2m)
correction8%57 of O(1/N) upon considering finite but large
N. Hence# will be large for large but finiteN. whereK is the Euclidean three-momentu; refers to the

Now consider including instantons. It is important to re- transverse part of the gauge field, anglis a universal con-
alize that the entire gauge action is of ordiein this theory.  stant associated with the universal critical conductivity of the
Consequently? the “bare” instanton core action, obtained by z bosons at the transition &t=«. Note that this action is
integrating out thez fields in the presence of a background more singular than the usual “Maxwell” action—this origi-
instanton configuration of the gauge fields in space-time, imates in the integration over the massless critical modes of
of orderN. Thus the bare instanton fugacity is sm@kpo- thez, fields. The action for a single instanton can be calcu-
nentially small inN). In the ordered state, the inclusion of lated within this Gaussian approximation, and is of order
instanton events means that point defects with quantized 2N In L where L is the system size. This suggests that
flux are no longer stable. The physics in the paramagnetimstanton—anti-instanton pairs interact logarithmically with
state is more interesting. Here the instantons proliferate aneach other. It also suggests that the effect of instantons could
lead to confinement of the gappetiosons. Furthermore, the be captured by studying a classical three-dimensional Cou-
gapless photoripresent in the noncompact mogét ren- lomb gas of instantons with pairwise logarithmic
dered unstable. The Haldane Berry phases associated withiteractions®-3?|f this gas is in a plasma phase, free instan-
the instantons lead to lattice symmetry breaking. As exions have proliferated. On the other hand, one might also
plained in Sec. Ill, this follows from the observation that the conceive a different phase where instanton—anti-instanton
instanton operators transform nontrivially under lattice sym-pairs are strongly bound to each otk&For the classical 3D
metries. Hence if they acquire an expectation value, lattic€oulomb gas, examination of this is$&é* has led to the
symmetry is broken. conclusion that the logarithmic interaction is screened at

Now let us consider the effect of instantons at the transilong length scales into a short-ranged interaction, by bound
tion. From the discussion in preceding sections, it is cleainstanton pairs at shorter scal@swever, it was noted3
that the crucial question is whether the four-monopole eventhat the screening could fail at fine-tuned critical points; see
is relevant/irrelevant at the fixed point of this noncompactalso Ref. 32 This screening then forces proliferation of free
model. The scaling dimension of tipemonopole operator in  instantons, so that the Coulomb gas is in a plasma phase.
this model was computed by Murthy and SachtfeFor p  How are we to reconcile this apparently general conclusion
=4, their results give a scaling dimensierN. Hence the with our claim that the instantons are suppressed at the Néel-
instantons are strongly irrelevéffor largeN. VBS critical point?

This then implies that the critical point of the noncompact This conundrum is resolved as follows. The Gaussian
theory is stable to inclusion of instanton events, even thoughrandom-phase approximatiofRPA) action does not prop-
the states on both sides of the critical point are qualitativelyerly account for the effects of highly nonlinear perurbations
changed. In particular, consider approaching the transitiosuch as instantons. This is already clear from the results of
from the paramagnetic side. The proliferation of instantondRef. 24. Within the Gaussian theory, the action of a strength
in the paramagnetic state had two effects—to confine th@ instanton scales witlp as p?. This would imply that the
spinons and to produce VBS order. The irrelevance of thescaling dimension of thep instanton operator scale as
instantons at the critical fixed point implies that both the p>—this disagrees with results of Ref. 24, which obtained a
VBS order and the spinon confinement disappear at the trafighly nontrivial dependence op. In other words, even in
sition. We note that as the bare instanton fugacity is expothe largeN limit, the Gaussian action is not sufficient to
nentially small in N, this perturbative analysis of their correctly calculate the scaling dimension of the instantons:
relevancel/irrelevance is sufficient to determine the nature ahe nonlinear terms in the gauge action all contribute in de-
the transition. In particular the alternate possibility that theretermining the instanton actidheven atN=c«. More signifi-
is a coexistence region with width shrinking to zeroMis cantly, we can likewise conclude that the RPA treatment of
— oo gppears unlikely at largH. instanton interactions by a simple pairwise interaction is in-

It is also useful to interpret the results above in the con-adequate. The true instanton gasen in the largeN limit)
text of other recent discussions of instantons in thehas a rather specific structure of higher-order interactions,
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some of whose features are universally determined by the v\ \ “ r /l /

fact that they arose from integrating out particular gapless \ /
critical modes. If we attempt to compute the screening of \ r

instanton interactions by integrating out bound instanton— \ \ \ / / /

anti-instanton pairs, effects which renormalize the screening \ \ f S Ao
length are intricately intertwined with those that shift the

position of the critical point between the magnetic and para- —_—— N X X
magnetic phases. Indeed, fine tuning to be at the critical

point between the magnetic and paramagnetic phases is all T A X N TS T

that is needed to also suppress the instanton plasma phase,

and the “naive” conclusion that the instantons are irrelevant ' / ,[ \, \4 NS
at this critical poimt* is correct. Appendix F considers a spe- / / / x \ \ \

cific toy model for which these arguments can be demon-

strated explicitly. / / / j x \ \ \
(a

As we noted at the end of Sec. |, the above reasoning may
also apply to Fermionic models which have a line of critical )
points3335 in this case, the suppression of instantons may
occur along the entire line, and not just at an isolated point. \ ]‘

V. SPIN MODELS WITH EASY-PLANE ANISOTROPY

An alternate and particularly fruitful deformation of the o / j \ \ ~T
model is provided by the situation where there is some easy- (C)

plane anisotropy on the underlying &) spin model. Such
an anisotropy tends to orient the spins preferentially perpen- o

dicular to thez axis in spin space. Indeed precisely such an FIG. 5. The “meron” vortices in the easy-plane case. There are
easy plane spin-1/2 model with both two-particle and four-IWO Such vorticesy, 5, andy, is represented i) and (b), while
particle ring exchanges has recently been studied? s represented bga) and(c), following the conventions of Fig. 2.

numerically® A direct transition between Néel and valence "¢ #¥1 Meron above hasfi(r=0)=(0,0,) and A(lr| =)
bond solid phases was found. —_()f,y,O)/|r|, the y, meron hasn(r.'o)‘(o’o’_D and. th? same
Consider first the fate of the global symmetries in theI|m|t as |r|—cc. Each meron above is “half” the skyrmion in Fig. 2:

f | isot ALVsub f this is evident from a comparison @) and (c) above with Fig.
presence of easy-piane anisotropy. subgroup or sym- 2(b). Similarly, one can observe that a composite Jaf and ¢,

metry of spin rotations about theaxis of spin still survives. | 1es one skyrmion.
In addition there are a number of discrete symmetries. Either
under a unit translation or time reversaee Table ), the independent of position and lie entirely in the spiM plane.

Néel vector changes sign, Topological defects in this ground state will play an impor-
R R tant role. With the easy-plane anisotropy, these are simply
N — =N (5.1)  vortices in the fieldn*=n,+in,. More precisely, on going

around a large loop containing a vortex the phaseafinds
around by 2rm with m an integer.
What is the nature of the core of these vortices? In the
core theXY order will be suppressed and thevector will
ghoint along the # direction. In terms of the microscopic spin
model, this corresponds to a nonzero staggered magnetiza-
tion of thez component of the spin in the core region. Thus

This may be combined with a (@) spin rotation in theXY
plane which restores the sign of,n¥ to simply change the
sign of n? alone. Thus*— —n?is a discrete symmetry in the
easy-plane case.

Easy-plane anisotropy is readily incorporated into th
nonlinear sigma model description in Eg&.1) or (3.Das a

term at the classical level there are two kinds of vortices depend-
B ’ ) ing on the direction of thé vector at the corg¢see Fig. 5.
Sep=— | drdx w(n) (52 Note that either kind of vortesoreaksthe Ising-like n?—
—-n* symmetry at the core.
with w<0 [this is clearly related to E¢(1.8)]. The global Clearly this breaking of the Ising symmetry is an artifact
U(1) symmetry simply corresponds to a uniform rotation of of the classical limit—once quantum effects are included, the
all the i vectors about the axis. two broken symmetry cores will be able to tunnel into each

other and there will be no true broken Ising symmetry in the
core. This tunneling is often called an “instanton” process
that connects two classically degenerate states.

Let us first think classically about this easy-plane model. Interestingly-such an instanton event is physically the
By classical we mean to focus on time-independent configueasy-plane avatar of the space-time monopole described
rations of then field and to ignore the Berry phase effects. above for the fully isotropic model. This may be seen picto-
The classical ground state simply consists of lettindpe  rially. Pictorially each classical vortex really represents half

A. Semiclassical analysis
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of a skyrmion configuration. Such half skyrmions are known
as merons. As shown in Fig. 5, the tunneling process be
tween the two merons is equivalent to creating a full skyr- ) . g
mion. This is precisely the monopole event. + Kol €uuidy A)” = N REL(¢1¢2)"]. (5.6)

Now the results of Haldane imply once again ttiatthe  \ye have used the shorthand notatigtt = |ya|2+| |2 Here
continuum monopole events are quadrupled. Thus the only,, . denote quantum fields that destroy meron vortices whose
tunneling processes that survive in the continuum limit arg,qre points in the up direction fag; and down forys.
those in which four merons with core spins along one direc- \yie now show how the dual action of E¢5.6) can be
tion come together and collectively flip the orientation of ynqerstood entirely on general grounds. As usual in dual
their core spins to produce four merons of the opposite kindiheories, the net vorticity is conserved, corresponding to the

Laua= 2 (9, = 1A ] ® + sel th? + ug(| 41D + Wl 1]

- a=1,2

B. Easy plane in theCP* representation

It is extremely useful to also consider easy-plane aniso
tropy in the framework of theCP! representation. In this
representation, the easy-plane anisotropy was already pr
sented in Eq(1.8). Let us first translate the above classical
thinking into theCP! representation. Suppose for this pur-
posew is negative but small, so that states withj=|z,| are
favored but not rigidly enforced. Clearly, the preferred uni-
form classical ordered states satisfy

[(zp| = Kz)| # 0,

o) thatn*zz*lzz is orderedand there is no average value of
n?=|z|?-|z,|%. Now consider vortex configurations. Clearly a
full 27 vortex inn* can be achieved by either having & 2
vortex in z; and not inz, or a 2r antivortex inz, and no
vortex inz;. Far from the vortex core both fields will have

(5.3

overall W1) symmetry of Eq.(5.6). This symmetry is
gauged by the noncompact vector potenig| as usual in
dual descriptions of two-dimensional Bosonic systems.
Physically, the gauge field is required to embody s{8f
conservation of the original modej,,=¢,,,d, A,/ 7 being

fHe three-current 0. Hence the dual magnetic and electric
fields correspond to the spin density and spin current, respec-
tively. Minimal coupling of the vortex fields t8,, also gives
them proper logarithmic interactions and magnus force dy-
namics.

Clearly under the discrete Ising-lik&#— —n? symmetry,
the two vortices get interchanged, i.ely— ¢, and vice
versa. The dual action must therefore be invariant under in-
terchange of 1 and 2 labels.

Finally, if monopole events were to be completely ignored
(i.e., disallowed by handhe total skyrmion number must be
conserved. As is apparent from Fig. 5, a composite gf, a
vortex and aifs, antivortex is precisely a skyrmion configu-

equal amplitude, but in the first choice the amplitude of theration of then field. Thus we may view skyrmion number

z, condensate will be suppressed at the core(bitwill be
unaffected. Consequentiy=|z,|>~|z,? will be nonzero and

conservation as the conservation of thiéerenceof the total
number of either species of vortices. This implies the global

negative in the core. The other choice also leads to nonzend(1) symmetry

n* which will now be positive. Thus we may identify the two
kinds of meron vortices with 2 vortices in the spinon fields
7; 5, respectively.

To explore this analytically, we consider the behavior now

deepin the easy-plane limit, in whicm?=|z,[>~|z,/°~0.
Together with theCP* constraintz,|?+|z,>=1, this implies
fixed magnitude for each componentzpfso we may write

2~ e,

5 (5.4

where ¢, €[0,2m) is the phase of the spinon field. The
“kinetic” term of the SJ model action in E¢3.1)) is then
modified to

s, (5.5

-t codA ¢, - a),
{,a

with the other termsS,,Sg) given as before in Eqg3.12
and(3.13.
It is very useful both for further insight and for concrete

I — Y explio),

o — Ypexp(-ie), (5.7)

wherep is a constant.

As discussed at length above, monopole events destroy
the conservation of skyrmion number, and hence this dual
global U1) symmetry. However as the monopoles are effec-
tively quadrupled due to the Berry phase terms, skyrmion
number is still conserve@nod 4). Thus the dual global (1)
symmetry must be broken down &.

The dual Lagrangiaifq,, in EQ. (5.6) is the simplest one
that is consistent with all these requirements. In particular,
we note that ah =0 the dual global (1) transformation in
Eq. (5.7) leaves the Lagrangian invariant. Théerm breaks
this down toZ, as required. Thus we may identify as the
fugacity of the(quadruplegl monopole tunneling events,
~N\4in Eq. (1.9.

Actually this action was derived by completely different

calculations to explore a “dual” representation which focusesneans in Refs. 51 and 41. The discussion above is, however,

on the meron vortex fields. Although the form of the dual

more directly physical, and gives an interpretation of xhe

action is dictated completely by the general considerations dierm and of the other symmetries of this dual action.
the previous subsection, we provide an explicit derivation in  An important coupling constant in the above dual action

Appendix B by proceeding as in Sec. IV A with the duality
transformation. We obtain the dual actionSy,
=[d?r d7 Lg,4 With

is wy, which appears as a sort of “anisotropy.” The exact
lattice duality in the appendix in fact leads to a “hard spin”
(rotor) model in which|¢|=|#,|=1. The above continuum
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theory is arrived at by “softening” this constraint. However, VI. PHASE TRANSITIONS
it is clear that the appropriate sign wf; to connect micro-
scopically to the original SJ model w3<0 (and large. . o _
While the above symmetry arguments do not specify this Con5|derthe_d_ual vortex action in E¢.6). In mean-field
sign, the model withw,>0 presumably corresponds to theory the transition happens when the parangtbecomes
rather different physics, and has no clear connection to thémaller than zero and can clearly be second order. Fluctua-
original SJ model. See the discussion in Sec. IX D for gtion effects Wlll mpdlfy the mean.-ﬂeld behavior in important
possible physical application of this case. ways. Consider first the properties of the transition when

Note that apart from tha term, Eq.(5.6) has exactly the =0 i.e., in the absence of instanton events. The resulting
same structure as the Continu@;ﬁﬂ theory £, in Eq. (1.7) model has recently been studied in Ref. 23. Remarkably, as
in the presence of the easy-plane anisotropy(E®). As we argued there, the model has the property of being self-dual—
will discuss below, thex term (which represents the qua- the ordered and paramagnetic phases get interchanged under
drupled monopole tunneling eveptare irrelevant at the the duality transformation. To understand this first note that
QCP: consequently, the QCP has a self-dual structure. N the A=0 limit, the dual action Eq(5.6) has precisely the

We should further note that there is no connection beSame structure as an easy-pla®' model with anoncom-
tweenwg in the vortex action and the analogous paramater Pact U(1) gauge field[as in Eq.(1.7)]. As this same limit
in the continuum limit of the SJ model. The latter is clearly @ctually corresponds to disallowing all monopole events, in
simply related to the physical spin anisotropy, correspondingfe Spinon description we must work with reoncompact
for w< 0 to easy-plane and fav>0 to easy-axis anisotropy. dauge field. Then the exact same field theory obtains both in
The pointw=0 describes the S) invariant magnetic QCP. terms of the spinon fields[in Eq. (1.7)] and in terms of the
This does notorrespond tavg=0 in the dual theory. Indeed, Meron vorticesy in the easy plane limifin Eq. (5.6)] and
there may be no dual theory whatsoever for any but the easgoring instantons. _ _
plane caséthough see Sec. IX D It was established in Ref. 23 via numerical Monte Carlo

A list of the representation of physical operators of inter-Simulations that a continuous ordering transition exists in
est in the original and dual representations is given in Tabl&hiS model with the noncompact gauge field. The fixed point
II. In the dual vortex theory, thXY ordered phase is simply controlling this transition in this limit is therefore described
characterized as a dual “paramagnet” where both e by a self-dual field theory. Note that in either representation
fields are gapped. On the other hand, true spin paramégneﬁ'&e natural fields of the theory are not those associated with
phases correspond to condensates of the figids which e~ “physical” boson operator
break the dual gauge symmetry. In particular if bgthand ~ (€ither n™ or the skyrmion creation operajorRather the
4, condense with equal amplitudgs,)=(»)#0, then a theory is expressed most simply in terms of “fractionalized”

paramagnetic phase where the global Ising symmetry is Ior({i_elds—namely the spinons or the meron vortices. In particu-

served results. Note the strong similarity between the del@" the physican” field is a composite of two spinon fields

scription of the phases in this dual theory with that in terms2nd I'k?.wl'ge the skyrmion field is a composite of the two
of the spinon fields of theCP! representation if we inter- melion 1elas. ine including instant ts. This i
change the role of thXY ordered and paramagnetic phases. et us now imagine including instanton events. This is

This is a symptom of an exact duality between the two demost easily accessed in the vortex representation where it

scriptions that obtains close to the transition. At this point,SIMPIy amounts to letting. 0. This is the main advantage

the two descriptions do not appear wholly identical, due toof the dual representation—the nontrivial nonlocal effect of

the Z, symmetry-breaking term not present in theCP! instantons is represented as a simple local perturbation in the
theoril and the compactness of teP! gauge field not dual theory. We may now address the question of relevance/

present in the dual one. As argued above, the two diﬁerencégebvame of Instantons at the=Q fixed point. Th4|s |s(4)de-
represent one and the same physics, since the vortex tunn&gmined by the scaling dimensiah of the (¢11,)"= ¢igs
ing events generated by represent exactly the nonoscillat- OPerator, in principle determined from the two-point correla-
ing four-monopole events allowed in the SJ model. In thetion function of this operator in thénontrivial) theory with
next section, we will argue that these events are irrelevant in=0:
the scaling limit near the QCP, making the duality between .
the two descriptions complete. (B PAs(X Dr=0 ~
As indicated in Table II, the combinatiow\,BSw/flwz
serves as the order parameter for the translational symmetiyhere x,x’ are space-time coordinates. Hengeis deter-
broken VBS ground state. This may be seen from the analymined by the correlations of the fourth power of the physical
sis of Refs. 41 and 51. Alternately this may be seen by th&/BS order parameter, and one requicks D=3 for irrel-
identification described in Sec. Il of the skyrmion creationevance. Being self-dual, the same anomalous dimension
operator with the order parameter for translation symmetrshould be ascribed to the correlations of the physical béson
breaking. Such a condensate @f , breaks the globaZ, XY order parametgr The A\=0 critical fixed point describes
symmetry of the action in Eq5.6). The preferred phase of anXY ordering transition where the physical boson field is a
Jips depends on the sign of, the two inequivalent sets of composite of the fundamental fields of the theory. We there-
preferred directions corresponding to columnar and plaquettiore expect that correlators of the physical bogand its
patterns of translational symmetry breaking. various powerp will decay with an anomalous dimension

A. Easy-plane limit

— 6.1
|X_X/|2A ( )
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that islarger than the corresponding one for the ordiny ~ Thus in this limit the “monopole”(symmetry breaking
transition in D=2+1 dimensions. Now for the usuakY terms are strongly irrelevant. We note in passing that the
fixed point fourfold symmetry breaking perturbations areirrelevance ofk can also be established by working fior
known to beirrelevant i.e., have a scaling dimensids, > 3. # 0, and taking the larg8tlimit. The saddle point remains at
This then implies that a small will be irrelevant by power A,=0, and irrelevance follows simply from the irrelevance
counting at thev=0 fixed point of the present model as well Of “bi-quartic” coupling between two 3IXY models by their
(see also Appendix C fourfold symmetry-breaking fields.

This latter expectation can be checked in an appropriate e conclude that a direct second-order transition with
large N generalization. In particular, consider the noncom-!"relevant instanton tunnell_ng events is possible in this easy-
pact gauge theory with Lagrangian plane case. Note the cruual roI_e played by theT Berry phas_e

term for the instantons in reaching this conclusion. Indeed it
2N was the Berry phases that forced quadrupling of instantons

L= [1(9, = A >+ r[s]? + Ul ] + kN(e 00, A)? thereby increasing their scaling dimension and making it

i=1 possible for them to be irrelevant.
N While the N term may be irrelevant at the critical fixed
A [(4 ) + C.C, (6.2)  Ppointitis clearly very important in deciding the fate of either
i=1 phase. In particular in the paramagnetic phase it picks out the
particular pattern of translation symmetry breakiieglum-
where the W1) X U(1) symmetry(for A=0) of the dual ac- nar versus plaquetteand forces linear confinement of
tion has been elevated to a(1)?" invariance(under inde-  spinons. In critical phenomena parlance, it may be described
pendent phase rotations of eaghfield). Of this, only the as adangerously irrelevanperturbation.
single U1) subgroup of identical rotations of allN2fields
has been gauged with the noncompact gauge Agldrhe
term breaks the (1)>N symmetry to W1)N, of which N-1 In_ the context of the SJ models, the results of previous
are global, and the single gauge1llis preserved. In addi- Sections show that thé&l=1, N=«, and easy-plan&\=2
tion, there is a residual globaZ? symmetry undery; mode_l_s all provide the same picture. A direct secon_d-order
@y g — e Ay with ne{0,1,2,3, for JJ transition between the cond_e.nsed a_nd VBS phasgs is pos-
1N ) ) sible with a “deconfined” critical point. Right at this point,

In théN:w limit, the theory may be analyzed by saddle- monopole tunneling events become |rrele\{ant and splno'n.de—

point methods. In barticular, consider for simplicity the par_grees of freedom emerge as the natural fields of the critical

" : ; : . theory. This provides strong evidence that the same thing
tition function with A=0, which may be formally written happens for the S@2) symmetric modeli.e., atN=2).

What then is the proposed description of the critical point
Z:J[dA]eXD{—N[Zﬁf@(AM)*LJdZTdT K(e,mﬁﬁx)z]}, in the SU2) symmetric model? This is simply thep!
model with a noncompact gauge field and no Berry phase
(6.3 terms in Eq.(1.7). Equivalently it may be thought of as the
critical point of theD=3 classical @3) model when mono-
poles have been forbidden by hand. This transition was stud-
off _ ) i ) ) ied by Kamal and Murthd? and more recently by Motrunich
Sxy=-In"| [dylexp) - | dr dal|(9, —iA) ¥+ 1|y and Vishwanatt3 where it was established that a continuous
transition indeed exists that is different from the Heisenberg
4 transition. The noncompa@P* theory Eq.(1.7) was also
+uly”] (6.4 directly studied via numerical Monte Carlo methods and
found to possess a continuous transition with the same uni-
is the effective action of th®=3 XY model as a functional versal properties as the monopole suppressedj GLoM.
of A,. Formally, atN=2, from Eq.(6.3), a saddle-point ap- Numerical results for exponents associated with several ob-
proximation inA,, is justified, with the saddle-point value servables are available. Further evidence for the continuous
being zeroA’ =0. The relevance of is then determined by nature of the transition in th€P* model coupled to a non-
the two-point function of in the saddle-point theory with compact gauge field is obtained by considering the larger
A,=0. Since in this theory thes are decoupleY fields  class of models wittCP"™* fields coupled to a noncompact
(fluctuating according to the nontrivial 3RY fixed poin, gauge theory. It is well known that thd=1 model has a

B. Isotropic magnets

where

one has then continuous transitiot! which is dual to theXY transition,
@ @ o _ S NAL 2 and a continuous transition is also expected for large values
(s s M=o ~ NIK(& (0) (X)) D30 xvl of N. Thus the model of interedt=2 is sandwiched between
N these two extremes where a continuous transition is well
T xR (6.5  known to be obtained.

The final expression obtains since the expectation value in/!l- PHYSICAL PROPERTIES NEAR THE DECONFINED

the second line is none other but the two-point function of CRITICAL POINT

the fourfold symmetry breaking field at tHi2=3 XY fixed We now discuss the consequences of the theory for the
point. Hence one had=2A,, implying A>6 sinceA,>3.  physical properties near the direct Néel-VBS transition. We
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will first discuss those properties that follow generally from other critical exponents may be obtained from the numerical
the (dangerougirrelevance of monopoles. Later we will spe- work of Ref. 23. In the @3) symmetric case the correlation
cialize to the easy-plane limit where the self-duality enablesength exponenv=1 (for &), and the Néel order parameter
more progress. exponentB=0.80. Perhaps most remarkably the anomolous
It is useful to think first about the various length scales indimension of the Néel order parameter field is large
the problem in the VBS phase. First there is the spin-spir{=0.6). This should be contrasted with the extremely small
correlation lengtht which will diverge at the transition. Sec- value for % at the usual Wilson-Fisher @) fixed point in
ond, there is a length scalggs associated with the “thick- D=3 dimensiongand indeed for most other familiar three-
ness” of the domain walls of thediscrete VBS order. The  dimensional critical points The large value ofy can be
latter is clearly determined by the strength of the quadrupledationalized by the thinking that the Néel order parameter
monopole operatorA =\,, in Eq. (1.9); in the easy-plane field decays into spinons right at the critical point. Indeed as
case\ appears as the co-efficient of a local term in the duakrgued in previous sections it is the spinons which appear as
action Eq. (5.6. These two length scales will diverge the more natural degrees of freedom at the deconfined criti-
differently—the domain wall thickness will diverge faster cal point. We note, however, that the spinons are not to be
than the spin-spin correlation length. One can determine theonsidered “free particles”—they are critical and furthermore
scaling of&gs With ¢ by a matching argument. On scaling interact through the coupling to the noncompact gauge field.
grounds, one expects Consider the effect of twisting the boundary conditions on
_ 3-A the VBS order—for instance, for columnar dimerization pre-
&ups ~ EFONET), (7.0
fer even columns at one boundary and odd columns at the
wheref is a scaling function, and 3A-is the RG eigenvalue opposite boundary. Let us suppose the twist is applied be-
of N assuming the scaling dimension of the four monopoleween the top and bottom entis=0,W) of anL X W sample.
operator isA>3, andd=2,z=1. Beyond the scale of the On general grounds, the energy cost at long scales will be
correlation lengthé, one can regard the VBS phaseXd¥ E~ gL%1=¢L, whereo is a “surface tension” or domain-
ordered inysps, though with very weak fourfold anisotropy wall energy per unit length. This surface tension is set, how-
sinceA is irrelevant at the QCP. Hence the low-energy varia-ever, by the irrelevant monopole term and vanishes in a man-
tions of the phase of yyss~[Yyes/€’ are described as a ner set by the divergence of the domain-wall thickness. In

pseudo-Goldstone mode, with energy particular, the surface tension scaling obtains only for twists
~ sustained over a distand¥= &,g5. For twists of the VBS
E(6) = J dzx{5| V ¢2-\ cos 4], (7.2)  order over a shorter distand¥ such thatéygs>W>¢, the
2 energy cost for this twist is greatly reduced tB

e:KL/ (2W), whereK is the “stiffness” associated with the
; . ! ontinuous dual global symmetrgand we are at length
of & Atwist of ¢ (of, €.9.,m/2) is carried hence by a domain o565 \where the system has not realized this symmgetry is
wall_which, by dimensional analysis, has widifyss  actyally discrete The two energy costs for the twist become
~ VK/X. Knowing then thatégs~\"2 one requires that comparable forW~ &gs, SO that one expects~ K/ &ygs.
f(x) ~x2in Eq. (7.1), which implies’ This stiffness itself vanishes upon approaching the quantum
~ gz, (7.3 critical point in a manner set by the divergence of the spin-
correlation length. Furthermore, the corresponding exponent
Since(A-1)/2>1, &/gs indeed grows more rapidly thafi  is the same as for the spin stiffness on the other side of the
as the QCP is approached. transition. Specifically, the VBS stiffne$é~ £2792 where¢
Thus there are two independent diverging length scaless the dual correlation lengtli=2 is the spatial dimension,
Either of these length scales may be given several differerandz=1 is the dynamic critical exponent. Th¢s<1/¢.
interpretations. For instance, the spin-correlation length Note that this isnot a test of self-duality but rather a test
may also be interpreted as the length scale at which correlaf the irrelevance of monopoles: the scaling of the VBS stiff-
tions of the dual global order-parameter crossover from thaness is a consequence of dual current conservation which
of the critical fixed point to that of théunstablé fixed point  obtains if monopoles are irrelevant. Thus the same behavior
which breaks the dual global continuous symmetry. Simi-is also expected for the isotropic model.
larly, the domain-wall thicknesg,gs of the VBS order is In practice, a measurement of the domain-wall energy in
also the length scale at which the photon that couples to ththe columnar state is likely best obtained by simply compar-
spinons acquires a mass due to instanton effects. This is alsing energies of systems of sitex W (in the x andy direc-
the length beyond which the logarithmic Coulomb potentialtions, respectively with periodic boundary conditions in
between spinons crosses over to a linear confining one. Thisoth directiongi.e., on the torusand varyingW. In particu-
is distinct from the “confinement” length scale describing thelar, let us considelV>L, with L odd. In this case, the col-
spatial size of the resulting two-spinon bound statesumns will prefer to align along the short directigre., col-
(triplons). This length scale is actually a nontrivial combina- umns parallel to the axis, breaking translational symmetry
tion of the two other diverging length scales. It, however,alongy) in order to avoid introducing a domain walWhich
diverges faster than the spin-correlation length would be required in the other orientation due to the agld
Note that the critical theory is isotropic in space-time andwith energy cost'W. If W is odd, there will still be a domain
therefore has dynamic scaling exponentl. The values of wall required, but it is shorter and less costly, with energy

whereK and\ o« \ are renormalized parameters on the scal

éves
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oL. Hence one expects the ground-state energy of the systetinat the columnar dimer, plaquette, and stagget¥dmag-
to be E = €eWL for W even, andE, = eWL+coL for W  netization all decay with the same power law right at the
odd. Heree is the ground-state energy density. Hence thecritical point. Furthermore, thg exponent for the particular
surface tension can be obtained by VBS order that actually develops will be the same asghe
for the spin order. This is because the anisotropy only serves
ELwe1= 2ELw+ELws~20L(-DY, Lodd. (7.4  tolock the phase of the dual order parameter. The amplitude

This behavior will obtain providetV>L > & When the is already nonzero in the scaling limit near the critical point.
VBS-
system is smaller than the domain-wall thickness, however,

this energy is determined instead by the stiffness, i.e., A Ordered state

As elaborated in the previous subsection, there are two
diverging length (or equivalently timg scales upon ap-
proaching the transition from the VBS side. How does this
for E<L<W<§yps. manifest itself in the Néel ordered side? To understand this

It is also clear that at the critical point, both columnar first note that in the ordered phase close to the transition
dimer and plaquette order parameters will have power-lawhere will be “soft” modes that correspond to the incipient
correlators with the same exponent. This is independent ofBS order on the other side of the transition. Indeed the
which one of these two phases we eventually end up in. Thifrequency of these modes will go to zero at the critical point.
is because both order parameters are contained in the dugbr concreteness consider the case where the VBS order that
global boson creation operator. They correspond to the phasfevelops is columnar. Then as is natural there will be a soft
of this boson locking in different directions. Which one of mode corresponding to columnar order with frequency van-
these phases is selected is determined by the sign of thghing on approaching the critical point. Remarkably there
anisotropy term, but as this is renormalizing to zero at thewill be other soft modes that correspond to plaquette order-
critical fixed point, there will be no distinction between the ing whose frequency also vanish on approaching the transi-
two order-parameter correlations at the critical point. tion. Once again this is despite there being no such order in

This suggests the following interesting numerical checkthe VBS phase. This result is already implied by the discus-
Consider, for instance, the situation where the disorderedion in the preceding subsection. Indeed both the plaquette
phase has columnar VBS order. Now consider measuring thend columnar order parameters have power-law correlations
stiffness toplaquetteorder in this columnar phase. Since this at the critical point regardless of which one of the two orders
order is not spontaneous in the VBS phase, measuring thigctually develops in the VBS phase. Thus it is natural that
stiffness cannot be accomplished as above by simply conthe frequencies of both modes go to zero on approaching the
paring systems with odd and even lengths. Instead, oneritical point from the ordered side. Furthermore, both soft
should imagine introducing, e.g., two rows separated by halinode frequencies vanish in exactly the same universal way
W on which the magnetic couplings have been increased asn approaching the transition. Formally the columnar and
decreased in a pattern mimicking the strong bonds of th@laquette order parameters are distinguished only by the ori-
plaquette state. The ground-state energy of this systemntation of the phase of the complex VBS order parameter.
should be compared with that obtained by shifting one ofin the absence of monopole tunneling evemisich tend to
these rows by one lattice spacing, and the difference of thessin this phase to certain valueshese two distinct order
two energies interpreted as the energy cost for a twist of thparameter fields will both behave in a common manner de-
plaquette order parameter. Deep in the phase, this energgrmined by the complex VBS order parameter. Thus in the
cost will be exponentially smallAE~Le Wéves, However,  scaling limit near the critical point both the plaquette and
in the regimeé,gs>W> ¢ the cost for the twist of the columnar order parameters will display the same universal
plaquette order parameter will be determined by the stiffnessehavior. On general scaling grounds we expect the VBS
i.e., AE~KyL/(2W). There will thus be a dramatic change soft-mode frequency,gs~ ps Where pg is the ground-state
from exponential to power-law behavior in this quantity on spin stiffness of the Néel ordered state.
approaching the critical point. Despite the common universal behavior of the vanishing

The coefficient of proportionalit,; will equal the cor-  frequency of the two distinct VBS soft modes, there will be
responding stiffnes& for columnar order and scale identi- a small splitting between the two frequencies that is due to
cally to the physical spin stiffness on the other side of thethe irrelevant(quadruplegl monopole tunneling events. In-
transition. Once again, this is not a test of self-duality butdeed the information about which of the two VBS orders
follows from the irrelevance of monopoles and will hold in eventually develops in the paramagnetic phase is contained
the isotropic case as well. in this small splitting. If columnar order develops, then the

Specializing to the easy-plane case, the self-duality of theorresponding soft mode will have slightly lower frequency
critical fixed point implies some further interesting proper-in the ordered phase as compared to the plaguette soft mode.
ties. First, it is clear that the dual global boson will have theNote that this splitting will go to zero as the critical point is
same power-law decay as the physical spin correlator. Thapproached as the monopole fugacity renormalizes to zero.
former is identified with the VBS order parameter while the This will, however, vanish in a very different way from the
latter corresponds to the staggeded correlators in the mi-  overall VBS energy scaleygs. Indeed this splitting defines
croscopic spin model. We thus have the remarkable resuli new energy scale that vanishes faster thags. Thus we

L
ELwe1 = 2B wt ELw-1~ KV_V(_ DY, Lodd, (7.5
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see that two different energy scales also characterize the A number of other predictions may also be made on the

physics of the ordered phase. effects of various perturbations that can be added to the
In the easy-plane case, one intriguing aspect of our theoryamiltonian near the zero-temperature critical point.

is the physics of the vortex cores in téf ordered phase

close to the transition. As discussed extensively, there are

two kinds of classical meron vortices which tunnel into each B. Uniform Zeeman field

other in the quantum theory. However, the irrelevance of _. . . .
these instanton tunneling events near the transition implies First let us think about the excitation structure in the para-

that the Ising order in the core will survive for a very long magnetic side. Deep In the phase, the lowest Spmf.”' excita-
time. tions will be S=1 which will be gapful. On approaching the

We have, up to this point, not considered any eﬁectstra.lnsition.,. due to the diver_ging. “confinemeqt“ Ieng_th one
which explicitly break the lattice translational symmetry. Might naively think that this will break up into spinons.
Hence the discussion should be read as appropriate for eklowever, even with a noncompact gauge field due to the log
tended, plane-wave states of vortices. Crucially, these staté@traction coming from the photon there will be logarithmic
may be classified by theiquasjwave vectors. Consider the confinement and the lowest energy spin carrying excitations
continuum theory in which the spatially oscillating single will continue to haveS=1. This “magnon” is a gauge neutral
instanton events are neglected, and only(trelevany qua-  bound state of two spinons. Now imagine sitting in the para-
drupled instanton fugacity is included. In the dual formu- magnetic side close to the transition, and turn on a Zeeman
lation, the two Ising vortex states appear as relativisticfield along thez axis in spin space. Once the Zeeman energy
charged particles. They carry a conserved)lhoncompact exceeds the magnon gap, the chemical potential for such
gauge chargéphysically their vorticity, i.e., the number of magnons becomes positive and they should condense to
these vorticiesN; +N, is conserved. There is a discrelg  modify the ground state. This leads X¢ antiferromagnetic
global symmetry, which implies tha¥;—N, is conserved order. In the noncompact approximation, because this con-
modulo 8. The latter is a consequence of the continuum limifiensate is gauge neutral, it does not create a gap for the
which removes the single instanton events, and is promoteghoton via the Higgs mechanism. In realifye., beyond the
to a continuous (L) symmetry (with N;—N, fully con-  noncompact approximatipnwhat this means is that there
served if the quadrupled instantons are also neglectedwill be coexistence between VBS arXlY order. As the
Physically, then, excitations of the vortex vacuum, i.e., thespinons are not condensed in this phase, there is no disrup-
XY ordered state, can be labeled by these quantum numbetfon of the VBS ordenthis can be seen, e.g., from the fact
And one should expect there to be “quasiparticle€ally  that the spinons appear as dual “vortices” in the VBS order
“quasivortices” or “quasimerong”carrying an elementary parameter, while the magnons carry zero dual vortjcity
unit (¥x1) noncompact gauge chargehysically +2r vortic- These considerations hold only provided another transi-
ity) and an elementarg, chargeN; -N,=+1. These are vor- tion does not pre-empt magnon condensation as the Zeeman
tices (as befits arXY ordered phage with a “core energy” field is increased. This will happen, e.g., if the magnons ex-
scaling as 1¢. There will be other gapped excitatiofeso  perience attractive interactions with one another. Indeed, in a
with a gap ofO(1/§)] with zero noncompact gauge charge Coulomb interacting system, it is natural to expect that the
(zero vorticity) andN;—N,=*2, which can be viewed as the magnons, which are the analog of excitons, will have attrac-
VBS soft modes, or alternatively as “vortex excitons.” tive interactions with one another at long distances, due to

Let us now consider the effects of the neglected oscillatthe analog of “van der Waals” forces between their fluctuat-
ing single monopole term. Naively, this violates #gcon-  ing dipole moments. This attraction, however, competes with
servation law, and can mix the quasimeron states With other local interactions due to the complex critical physics on
-N,=%1. However, due to the four-sublattice oscillation, thescales<¢, so the outcome is not clear. Therefore we do not
process in which one meron state is converted to another isee a clear argument against a continuous magnon conden-
accompanied by the addition of a large momentum. In thesation transition into a coexistence phase. Likewise, of
absence of a sink for this momentum, therefageen the course, we cannot rule out a direct first-order transition. In
single instanton term cannot mix the two meron quasiparticleany case it therefore seems as though a direct second-order
states At nonzero temperature, thermally excitated excita-transition between the magnetically ordered and VBS phases
tions with a large gag>1/¢) can provide this momentum, is unlikely at nonzero Zeeman field.
but are present only with an exponentially small probability  If the coexistence phase exists, it is interesting to contem-
due to their gap. Hence violations of the conservation of theplate the transition between the coexistence phase and the
“Ising” charge of a single quasiparticle are exponentiallypure magnetically ordered ongvith canted antiferromag-
weak at low temperature. Of courdeur quasiparticles with  netic ordey. In the system withXY symmetry, a transition
“up” Ising cores can scatter off one another to produce fouwith exactly these symmetries has been studied in Ref. 60. In
guasiparticles with “down” Ising cores via the nonoscillating this paper, it was shown that, despite coexisting superfluid
\ term. The amplitude for even this process is, howeverprder and the consequent gapless Goldstone mode, this tran-
suppressed by the irrelevanceoff one is near the QCP.  sition is in the universality class ofa=3 XY model, thez,

Thus we arrive at the remarkable conclusion that the “elsymmetry-breaking perturbatioand the coupling to the
ementary” gapped vortex excitations of ti¥ ordered phase Goldstone mode being irrelevant. Thinking in terms of the
carry a sharp extra Ising quantum number. Ramifications wildual formulation suggests this analysis should apply here. In
be explored in Sec. IX A. particular, both vortex fieldg), , remain gapped across the
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transition, since both phases a& ordered. Only the com- lattice symmetry of the VBS phase will survive upto a non-
posite order parametek,gs= lﬂlﬂz is involved in the critical-  zero finiteT. The associated finité-transition will be in the
ity, and it does not couple minimally to the noncompactuniversality class of th&, clock model ind=2. This transi-
gauge field. Integrating out the massive vortex fields whiletion is known to be described bylme of fixed points with
keeping a compositéygs field and the gauge fluctuations continuously variabldi.e., nonuniversalcritical exponents.
describing the Goldstone mode, one arrives at a modeThe line of fixed points results from the exact marginality of
equivalent to Ref. 60. Note that this result implies that thisthe fourfold symmetry-breaking terms, i.e., our\ coef-
critical point is also deconfined in precisely the same sensécient. As A approaches zero, the nature of the criticality

as the others discussed in this paper. approaches that of a simple=2 classicalXY model, i.e., it
becomes BKT like. Thusy—1/4 andv~1/|\| diverge in
C. Staggered Zeeman field this limit. Since at the zero temperature QCP instantons are

Consider the effect of ¢ d7 field thirrelevant, we may conclude that the fixed-point valua et
_onsider ihe efiect ol a staggered zeeman Tield on g, classicalVBS-paramagnet transitiofwhich is generally
original spin model. First assume easy-plane anisotropy i nite and nonzero af,) approaches zero a&— 0. Hence

the plane orthogonal to the applied field. The staggered fiel e nonuniversal critical behavior of the VBS-paramagnet

W|I|I(algvaybs(\|(ndu\3eB§om§ stagger_ed mag dnetlzt?]t_lonl btlgév)\ie @} ansition becomes arbitrarily close to BKT behavior as this
ask aboury or order superimposec on this. in transition line is followed into th&=0 QCP. This conclusion

description, a staggered Zeeman field corresponds to a uni- - .
form “magnetic” field that couples to thecomponent ofh. q(;srér;lienzendent of thiY or O(3) symmetry of the magnetic

e e o it o vy In he XY case, th selulty of the easy plane fc
P point implies further that the phase boundaries associated

phase with neitheY nor VBS order(but of course with a with the finiteT transition from both the Néel and VBS

staggered magnetizatipn h
; ases have the same shape atTowote that both are BKT
en(?eorc])?l?r?er tstlg arép:;%aﬁzlgrognnéhgf\{ﬁs tp@f;sgélldnstr\)ﬁ”pre ke for T, asymptotically close to zer@.e., near the QCP?
99 ' consistent with duality. Indeed, one expects not only the

condense first. This transition is described by Mel SJ L ; .
7 -~ : . phase boundary but also all critical correlations to match in
model(and is inverted =3 XY). The resulting phase is the this limit, including amplitude ratios.

advertised phase with neith&Y or SP order. Actually it is
more useful to think of this critical point in the gauge lan-
guage as a deconfined critical point than just as invextéd VIIl. DECONFINED QUANTUM CRITICALITY AT THE
This is so particularly if one asks about the magnon spectral VBS TO SPIN LIQUID TRANSITION
function at this transition. This will be determined by the . . .
spinon dynamics which in turn are coupled to a noncompact In this sect|o_n We argue that th_e ”a”S!“OF‘ b_etvyeen ava-
U(1) gauge field. Thus we might again expect anomalously"'ce bond solid and a fractionalized spin liquid is also an
broad spectral functions even though both phases are Coﬁxample of a deconfined quantum critical point in a precise
fined (note that totals” is still conservey SEnse.

Eventually, as one tunes towards tk¥ ordered phase In two spatial dimensions, a fractionalized spin liquid is
the otherCPlyfieId will also condense leading t8Y order. " expected to be described as the deconfined phasezf a

This transition is actually exactly dual to the other one dis-9249¢ theory with a gappex}, vortex—the vison. ThisZ,

cussed above. This is because the staggered Zeeman ﬁe[qauge\;:/eld |s|m|n|ma_léy c?ﬁpled to splr?—llzthspmon excita-
couples to the same operator in both ®E* and dual rep- lons. Ve only consider the case where the spinons are

resentations. For small staggered Zeeman fields, the phaggpped. A precise theoretical characterization is given by the

. ) 61
boundaries must come in with the same exponents, etc. notion O.f topological Orde}? .
Finally, in the Q3) model, the second transition will not Consider the evolution of the ground state of a spin-1/2

happen as the Néel vector will immediately line up with thesystem(or e_quwglently _for. b_osons at half filingoetween

. i " . . such a fractionalized spin ligiud and a VBS on, say, a square
staggered field. However, the first transition will continue tolattice Despite the lack of anv obvious local order parameter
be described by thbBl=1 SJ model. Details of the slopes of X b y b

. . . for the spin liquid there is a close similarity with the Néel-
various phase boundaries, etc., may be found in Ref, 23_IQIBS transition. Indeed both the spin liquid and VBS are

the terminology of that reference, a uniform field corre- ; L
sponds to the staggered Zeeman field discussed here. charact_enzed by two distinct types of ordda}ne_ former by
topological order and the latter by broken lattice symmyetry
Naive thinking might then suggest that a direct second-order
transition is not possible. Rather one might have expected
Finite temperature properties near the transition may alstwo transitions with an intermediate “coexistence region”
be discussed. Here it is clearly necessary to distinguish bevhich breaks lattice symmetry but is also topologically or-
tween the easy-plane and isotropic cases. In the latter, thdered(a VBS phase, in the notation of Ref. 190nce again
Néel order does not survive for any nonzd&ravhile in the  this naive expectation is incorrect and a direct second-order
former case there is power-law order at [@wvhich even- transition is indeed possible. Furthermore, the critical theory
tually disappears through a Berezinski-Kosterlitz-Thoulessnay be regarded asreoncompact(1) gauge theory with an
(BKT) transition. In both cases, however, the discrete brokeextra emergent dual global() symmetry.

D. Finite temperature transitions
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It is convenient to begin with a theoretical formulation also coupled to the critical spinon pair figldThe strong
that is powerful enough to describe both phases and all ofcaling properties of this critical poitvhich is dual to the
their distinct excitations. Such a formulation is provided in D=3 XY mode) implies that the gauge field has the follow-
the work of Refs. 17, 18, and 62. As before, the underlyingng two-point correlator at criticality
spin model is first reformulated as a theory of spin-1/2
spinon fields that are minimally coupled to a compa¢i)J (a,(p)a-p) ~ l<5 _ E/&l) (8.2
gauge field with Berry phases. The VBS corresponds to a e p\ *  p?
confined paramagnet where the spinons have disappearg\ﬁl.'ere

from the spectrum. _The spi_n liquid obtains when a single ropagator does not have the Maxwellp# /scaling, but a
pair of splnons—whlch carries gauge charge.2—.cond_ense /p dependence fixed by the scaling dimension [diph=1.
l.e., enters a Hl_ggs phasg. Let us represent this nggs'flel_d b?‘his implies a 1f interaction between static massive spinons
the operatorQ=€'¢. We imagine integrating out the indi- at criticality

vidual spinon fieldsthis is pgrmissiglehbecause ?j” spinlcar-d It is sometimes stated that the transition between the VBS
rying excitations are gapped in both the VBS and spin liqui T . .
phases and obtain the following theory for the and spin liquid phases is described b¥,sgauge theory. The

results here, however, show that the transition is in fact de-

p, is the spacetime three-momentum. Note that this

transition%54 . . . .
scribed as a deconfined(l) gauge theory in a very precise
S=85,+8,+ S, sense. It is the spin liquid phase itsé#fs opposed to the
transition that is described as #&leconfinegl Z, gauge
S,=—2t>, codAg - 2a), (8.1 theory.
4
whereS, andSg are defined in Eqg3.12) and(3.13. Note A. Spin liquids that break lattice symmetry

that Eq.(8.1) is just theN=1 SJ model studied in Sec. IV A, An important subtlety has been glossed over in the analy-
but with the crucial difference thag carries charge fcom-  sis so far in this section. Spin liquid states with no broken
pare with Eq.(4.1)]. The duality transformations of Sec. lattice symmetries are certainly possibfé?¢364and for
IVA are easily applied to Eq(8.1), and we obtain arXY  these the above analysis applies. However, in Bosonic mean-
model with eightfold anisotropy which is irrelevant at the field theories of S(R) spin liquid states on a variety of
transition (this contrasts with the fourfold anisotropy ob- |attices®265-68 the spin liquid state is commonly found to
tained in Sec. IVA. _ _ break a global lattice rotation symmet?y-such a state has

In the spirit of previous section@articularly Sec. IV A, “pbond-nematic” order. The spin liquid is associated with
these results may be understood physically as follows. In thehort-range, incommensurate spin correlations at a wave vec-
fractionalized phase the condensation of the charge-2 scal@gjr K, and the choice oK often breaks a lattice symmetry,
leads to vortex excitationghe visong which carrym gauge  e.g., a spin liquid state & =(k,k) is distinct and inequiva-
flux. In the fractionalized phase instanton effects kill visonsient to a state ak=(k,-k). Such states appear naturally at
in pairs—indeed, this is precisely what leads to their “ISing” the houndary of a VBS staféand for these the theory above
nature. The transition to the confined VBS phase occurgas to be reconsidered. Before doing this, we note one im-
when the visons condense. But near the transition, and in tr}gortant case for which this isot necessary: the G8uCl,
continuum limit, we expect once again that all instantonjattice 8567 which interpolates between the square and trian-
events are quadrupled. Thus theflux vortices can only gyjar lattices. Within a largé\ Bosonic mean-field theory
disappear eight at a time. This gives th& model with  treatment, the ground state in the square lattice limit is a
eightfold anisotropy. . _ . VBS, while in the triangular limit it is spin liquid which

We thus see that the eightfold anisotropy in the ¥l  preaks no lattice symmetries: the transition between these
model should be interpreted as instanton tunneling events igates is described by the theory in E8.1).
the original compact gauge theory. Consequently, as before Turning to a spin liquid that does break lattice symme-
we conclude that instantons are irrelevant at the critical fixeqries, consider, e.g., the transition on the square 14&fcem
point so that a gapless noncompadllJgauge theory ob-  the VBS(Fig. 1) with short-ranged spin correlations peaked
tains.(We remind the reader that the glob&f model is the 5t the wave vectof, ), to a bond-nematic spin liquid at
dual of the condensing charge-2 scalar coupled to a nonconygaye vectorK =(k,k) or K=(k,—k). The choice of either of
pact gauge field. _ the latter states breaks a symmetry of reflection about the

Note once again the crucial role played by the Berryyyincipal square lattice axes. In mean-field theBitis tran-
phases which are responsible for leading to an eightfold ansjsion is characterized by the condensation of two Higgs
isotropy (as opposed to twofold as would obtain in their |45 which we denote #3,=€*andQ,=€*. These fields
absencg _ o ___are odd under the lattice reflectiofi®, and R, in Table |
. Note also that spinons are well defined in the fractionalyegpectively® and this prohibits terms which are linear in
ized phase but are confined in the VBS phase. What is thgjther Higgs field in the effective action. Using these sym-

fate of the gapped spinons right at the transition betweep,atries. and the requirements of gauge invariance, we gen-
these two phases? The arguments above show that at tReyjize Eq.(8.1) to

critical point the spinons are minimally coupled to@ncom-
pactU(1) gauge field descending froa), (which in turn is E=8,+8,+ Sg,
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—_ _ _ Clearly a superfluid phase of the bosons is posgiate
Se= Ef [2t cosAg, - 2a) + 2t codApy = 22) correspo¥1ds toahKY oré)ered phase in the magn%t asaalpgy

Various kinds of Mott insulating ground states are also pos-
+ 2t cod2¢, ~ 2¢y)], (8.3 sible(these correspond to quantum paramagnets in the mag-

where, as beforeS, and Sg are defined in Eqs3.12 and netic_ casg A simple Mott state correspo_nds to the bo_sons
(3.13. Note the crucial factor of 2 in the argument of the forming a c_heckerboard ordgred pattern in whlch_the sites pf
third cosine in Eq.(8.3): this is required by the inversion ©ne sublattice are prefergnnally occup.|ed. This will be stabi-
constraints above. Apart from the usual compatt)gauge lized by large nearest-neighbor repulsion and corresponds to

invariance, Eq(8.3) is also invariant under the globa, the Ising ordered antiferromagnet. In the boson language the
columnar VBS state may be understood as a “bond-centered”

transformation, . ) . ;
stripe(or a bond density waye-a state in which each boson
oy — @yt 72, is shared in a bond between two nearest-neighbor sites such
that these favored bonds have lined up in columns. The con-
@y — @y =2, (8.4)  siderations of Sec. V more or less apply directly to the tran-

) ) ) ) sition between the superfluid and the bond-centered stripe
which realizes the lattice reflection symmefiflote that the  jnsyjator (or the analogous plaquette ordered insulaton

square of the transformation in E@.4) is equivalent to the  particular the critical theory is deconfined and is expressed in
identity modulo a compact (1) gauge transformationCon-  terms of two fields each with boson charge 1/2 that are mini-
sequently, there are now two inequivalent Higgs phases, Witkally coupled to a noncompact(l) gauge field. However,
(ex=¢y)=0 (or (QY=(Qy) and (¢x=@y)=m (Or QU= the discussion in Sec. V was intended for weak easy-plane
-(Qy)), and these correspofidto the two possible spin lig- anisotropy on an isotropic spin model. It is somewhat more
uid phases aK=(k,k) andK=(k,-k). The theory Eq(8.3)  satisfying to derive the crucial field theory E¢.6) directly

can be analyzed by the same duality transformation appliefbr the Bosonic system. We point out that the approach of
to Eq. (8.1, but the critical properties have not been deter-Ref. 51 provides such a direct derivation of the required dual

mined. action. However, the close connection with fractionalized
charge degrees of freedom is somewhat obscured by that
IX. ANALOGIES AND EXTENSIONS approach. We therefore sketch in Appendi a derivation
A. Superfluid-insulator transition of correlated bosons proceeding in a manner more similar to the considerations of

the previous sections, in particular going directly from the

The models and the phenomena discussed in this papghson model of Eq9.1) to the dual meron action obtained
can be fruitfully discussed from a different point of view. ogpjier.

Consider a system of bosons with short-ranged repulsive in- |, the context of boson modeiin view of potential ap-
teractions on a square lattice such that there is half a bosQf)ications, e.g., to atomic bosons in optical lattices or to elec-
per site on average. It has long been appreciated _that suchy@nic systems where the bosons are Cooper pas@me
Bosonic system is closely related to quantum spin model3ysical properties arise which are less natural in the context
with easy-plangor easy-axiganisotropy. Indeed, there is an ¢ quantum antiferromagnets discussed earlier. In particular,
exact equivalence in the hard-core limit in which at most ong g jnteresting to consider the effects of an applied orbital

boson occupies each lattice site. Specifically, one may conagnetic field coupling. This can bring out the unusual phys-
sider a model of bosonfslescribed as @) quantum rotors  jcs of |sing ordering in the vortex cores discussed earlier in
on a square lattice: Sec. VI A.

2
H=UD (nr - %) —t>, cod ¢, - d)+ . (9. Orbital magnetic field
' U Let us consider the structure in an appliedital mag-

Here ¢, [0, 2m) represents the boson phasgjs the con- netic field B. The QCP at zero field describes a transition
jugate boson number and is an integef—o,%]. The el- between a superfluid phase and a bond-centered striped
lipses represent other short-ranged terms that can be tunedRBase- _ _

drive transitions from a superfluid tdor instance the bond Suppose the system is on the superf){¥ ordered side
stripe insulator. To relate the above boson Hamiltonian to th@f the QCP, and a small magnetic field is appliae use the
antiferromagnetic systems considered in the bulk of the pamternal fieldB). This field produces vortices, separated by an

per, we note that one may define average distancé= 1 ¢y/B, whereg,=hc/q is the flux quan-
B tum, andq is the boson charge. In the weak-field limit, where
S =ee"'?, (9.2 the length? is large, one expects these vortices to form an
Abrikosov lattice, since the long-range logarithmic interac-
1 tions between vortices dominate their kinetic energy. Now
S=n- > (9.3 suppose one is near the QCP, so that the correlation length

is large. To a first approximation, one can neglect instanton
For largeU this gives a faithful representation of an easy-events, and treat the Ising quantum number of the vortices as
plane spin-1/2 antiferromagnet, and the universal physics isonserved. Then each vortex in the Abrikosov lattice has a
expected to be unchanged at smaller definite Ising “charge,” and hence the system as a whole

144407-23



SENTHIL et al. PHYSICAL REVIEW B 70, 144407(2004)

some sort of Ising magnetic order. It is straightforward to see Clearly, upon increasing the quantum fluctuations, this
that the basic interactions between these Ising “spins” argortex lattice must disappear, since the VBS state on the
antiferromagnetic, and that these interactions decay rapidlgther side of the critical point is an orbital paramagnet, i.e.,
when the two vortices in question are separated by a distangg change in symmetry occurs on applying a weak field to it.
much Iarger.tharf. These inte_ractions arise because the tWoHence there is at least one phase boundary separating the
types of vortices carry opposite gauge fllfx €;da;=+m.  |sing ordered vortex lattice from the VBS phase that persists
This gauge flux is confined to a region of the size of thegt B> 0. We will not address this “vortex lattice melting”
(gaugg “penetration depth.” Since the gauge field fluctua-physics here, except to say that first-order, continuous, and
tions are part of the quantum critical theory, this penetratiorl, jiistage transitiongwith intermediate partially ordered
depth is of thed(¢). Due to the Maxwell term in the action, ynasexare all possible in principléand difficult to distin-

two nearby vortices have lowest energy with opposite gaug uish between on purelv theoretical arounds
fluxes(and hence smaller total gauge fjugrovided the two purely groun

fluxes overlap. A mean-field analysis following Abrikosov
leads to the same conclusion as discussed below. In particu- B. Higher spin

lar, consider the Lagrangiafi(z,) [in Eq. (1.7)] for the z, . .
fields. We are interested iw<O0 [in Eqg. (1.8)], and it is In the bulk of this paper we have focused on the spin-1/2

convenient to consider the limiv=—2u+4sw, with 0<sw  Sduare lattice antiferromagnetic model. Here we briefly dis-
<2u. For 3w=0, the mean-field theorgwhich neglects fluc-  CUSS the fate of higher spin models on the square Ia_ttice. It
tuations ofd) comprises simply of two decoupled copies of Should be clear by now that the answers depend crucially on
Abrikosov’s lattices forz, andz,. Thus the solution consists the Haldane phases that obtain for higher spin. In the isotro-
of a triangular vortex lattice in eadt, with lattice spacing Pic model, if 25=1(mod 4 then the monopoles are qua-
V2¢ (since eacle, has chargey/2). These two lattices are drupled. Thus for all such values of the spin, a direct second-
completely decoupled in this approximation. Wigkv>0,  order Néel-VBS transition described by the same deconfined
the energy is minimized when the integral [@|?|z,|? is critical theory as for spin 1/2 obtains. 1520(mod 4, then
smallest. This is accomplished by placing theandz, vor-  there areno oscillating phase factors for the monopoles. This
tices as far apart as possible, so tlzgf|z,|? is reduced over has the consequence that a translation symmetric quantum
the maximum spatial area. The solution is to choose the tw@aramagnetic state is now possible. The transition to this
triangularz, vortex lattices as the two sublattices of a hon-state from the Néel state will be described by the usual LGW
eycomb lattice. This corresponds to an antiferromagnetic orio(3) fixed point (i.e., with monopoles presentlf 2S
entation of the Ising vortex cores on the honeycomb. —  —5mod 4 then the appropriate Haldane phases lead to dou-
theT?e f?:é?t;:}sir;];?:n?éiblg;{/}é g{ Sthllns ?r:geghvgiemgrsr;t ereifﬁgosr'?airﬁling of m_onopole events. Now confir_1ed paramagnetic states
’ ecessarily break lattice symmetries. Whether a direct

events arssingleinstantons, which act like a transverse field econd-order Néel-VBS transition is allowed or not depends
on the Ising quantum number. While these average away iR ; ) ; P
on the scaling dimension of the two-monopole operator at

the continuum theory, the finite lattice spacing provides h | f. ) f this is irrel
an upper length cutoff for the oscillations of the single in- € monopole-suppressed fixed point. If this is irrelevant,

stanton fugacity, which can therefore have an effect. Near thf'en the same deconfined critical theory as for spin 1/2 will
QCP, it is possible for botli and& to be large, but to have ~ be obtained. _ _ _
not much greater thaa In this limit, which we consider, the It is interesting to consider the spin-1 case in the presence
overlap of the vortex cores is strong, hence the Ising antiferof some easy-plane anisotropy. This may equivalently be
romagnetic “exchange energy” between neighboring vorticeyiewed as a model of bosons at integer filling—unlike in the
is large, i.e., of order 1§ by scaling. The effective transverse isotropic limit, a translation symmetric confined paramagnet
field on the vortices is more difficult to estimate. In a mean-is clearly possible. A direct transition between tK& or-
field treatment, one simply averages the oscillating instantodered phase and such a paramagnet is clearly possible and
fugacity over the two-dimensionat & using some smooth will be in the usualD=3 XY universality class.
envelope function. This gives a transverse fieldy/ . However, presumably the interesting question even in the
Fluctuation effects may be expected to further decrease thisasy plane case is whether a direct second-order transition is
field. Hence the transverse field is much weaker for l&ge possible between theXY ordered phase and a lattice
than the antiferromagnetic coupling between cores. symmetrybrokenconfined paramagnet with bond order. To
Thus we arrive at the remarkable conclusion that the voranswer this question and to obtain a description of such a
tex state near the QCP exhibits antiferromagnetic Ising LRQparamagnet, it is convenient to start from the isotropic limit
of the staggered Ising magnetization of the vortex coresand introduce weak easy-plane anisotropy. In the isotropic
Note that this analysis applies when the magnetic ledgth limit the confined paramagnetic states will break lattice sym-
~ & For very small fields, or further from the QCP> ¢, metries and this will be preserved upon turning on some easy
and the antiferromagnetic interactions between coreplane anisotropy. In & P! description, there will now be
(~e7Y%) decay exponentially, while the transverse field ismonopole Berry phases that oscillate on two sublattices of
likely of power-law form. Hence for very small fields it the dual lattice. We may now dualize in the easy-plane limit
seems probable that the Ising cores become disordered. ta the meron vortex degrees of freedom. In this description it
this case, the physical manifestation of the long-lived Isings clear that the translation broken VBS state is again de-
staggered magnetization is the presence of a low-energy “ascribed by an equal amplitude condensate of both vortex
tibonding” excitation of each vortex. fields. Now the instanton term converts two merons of one
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kind into two of the other kind, i.e., the coefficient of the have the desired effect of yielding a transition between an
term in Eq.(5.6) is Re (¢74)%], with A= \,. The relevance/ Ising ordered phasegfor s<0) and a VBS phasgfor
irrelevance of this at the self-dual, easy-plane, noncompaé™>0—actually one naively obtains the Coulomb phase of

CP! fixed point will determine whether a direct second-orderthe gauge theory, neglecting the dangerously irrelevant in-
transition obtains or not: this question remains open aftantons There are, however, several caveats to this candi-

present. date theory that must be mentioned. First, supposing the

Note that near the transition to the usual paramagnet wit§auge fielda, noncompact, fluctuation effects are known in

no broken symmetries there will only be single species of°Me situationge.g., the classical Abrikosov transition be-

vortex with a featureless “paramagnetic” core. On the othefveen the normal state and vortex latticetig) to drive

hand, near the transition to the VBS phase there will OnCé1a'|'vely continuous transitions involving gauge fields first or-

again be two species ghearly stable vortices with cores der. While we believe this does not occur in the cases of
g p ; . . : SU(2) invariance andXY anisotropy, these conclusions are
that have very long-lived Ising ordé€if as discussed above

such a direct continuous transition is possjble based on several exact dualities and the numerical results of
Refs. 23 and 42 directly on models in which instantons have
been suppressed, and direct simulations G#* models
C. Honeycomb lattice coupled to noncompact gauge fiefdsSecond, even if the
) ) ) ) i noncompact transition is continuous, to constitute a stable
The considerations of this paper generalize readily tyeconfined QCP, it must be stable to theadrupledlinstan-

honeycomb lattice the Haldane Berry phase calculation im- At present we do not have supporting evidence in favor of
plies that all monopole events are triplegither than qua-  eijther of these two conditions. It would be of some interest to
drupled as on the square lattic&his implies that the issue develop a semiclassical description of the above scenario to
of whether or not a direct second-order transition describe@etter evaluate it in physically intuitive terms. We note that
by a deconfined critical pOint is obtained between the NéekY anisotropy, for very simp]e reasons, favors a deconfined
and VBS phases is determined by the scaling dimension afritical scenario. In particular, weakY anisotropy converts
the three-monopole operator at the monopole-suppressgfe topological defectssolitons of the antiferromagnet from
fixed point. Unlike the square lattice it is, however, less C|ea['gkyrmions to merons, “fractiona"zing” them a|ready in the
that the three-m0n0p0|e Operator will be irrelevant. For in'antiferromagnetic phase_ Add|ng |Sing anisotropy instead
stance, for theN=1 SJ model, the Higgs-VBS transition is renders the topological defects local “droplets,” or domains
determined by the&; clock universality class which is dis- of antiphase ordering. These can apparently be viewed as
tinct from the XY universality class. In other words, the distorted skyrmions, in which the smooth rotation from the
threefold anisotropy which represents instantoneelevant  antialigned core to infinity is replaced by a domain wall of
at the deconfined fixed point &=1. At largeN all mono-  finjte width. Thus there is no fractionalization of the topo-
poles continue to be irrelevant. The fate of the physical modiggical defects in the Ising antiferromagnet, although they do
els (with and without easy-plane anisotrgpgan only be appear to carry the integer skyrmion quantum number.
settled by direct numerical computation of the scaling di- = Nevertheless, the action in Eq4.7) and(1.8) appears to
mension of the three-monopole operator. describe a putative deconfined Ising AF to VBS transition.
There is clearly no self-dual description of this QCP, since
neglecting instantons, the VBS phase is replaced by a Cou-
lomb phase with a gapless photon, while the Ising AF has no
In this paper, we have focused on the properties of spingapless excitations. Formally, however, one may wonder
1/2 antiferromagnets with full S(2) spin rotational symme- \hat physics might be represented by considering the math-
try, or its easy-plane reduction to(l). These two cases are ematically similar “anisotropy” in the dual meron theory, i.e.,
amenable to analysis due, on the one hand, to natural coaking wy>0 in Eq. (5.6). Provided this transition remains
tinuations of the S(R) invariant CP' representation to continuous in 2+1 dimensions and theerm remains irrel-
CPV1, and through standardY duality. One may also ask evant in this case, this would describedifferent quantum
whether similar deconfined critical points might arise in sys-phase transition. In particular, fg5> 0, the ground state has
tems with easy-axiéi.e., Ising anisotropy, which also retain no vortices and there is a Meissner respofiMeaxwell term
the U(1) subgroup of S(R). Unfortunately, this limit is for A,), hence it describes axY superfluid. Fois;<<0, with
much less amenable to microscopic duality transformationsv>0, one or the othefnot both types of merons condense
on the lattice level, and so it is difficult to make firm state- and theA, gauge field develops a Higgs mass. Hence this
ments. While some of us suspect that no deconfined criticalescribes a nonsuperfluid state. From Table Il, one sees that
behavior is likely in this case, it is nevertheless of interest tathe nonzero expectation value bj|?—|¢,|?> implies Ising
present candidate field theories for such deconfined transAF order. Thus this critical point describes a putative direct
tions. continuous transition betweeXY and Ising antiferromag-
Very naively, one may attempt to begin with t8&* rep-  nets.
resentation of the quantum antiferromagnet, and simply Thus these two theories describe different potential routes
change the sign of the anisotropy term, takimg-0 in Eq.  of “disordering” a quantum Ising antiferromagnet witl{1)
(1.8). In a mean-field analysis of the continuum field theoryspin rotation symmetry, either to a VBS phase or avi
of Eq. (1.7), including anisotropy of this sign would indeed antiferromagnetic phase. If they are indeed continuous, with

D. Ising anisotropy and other transitions
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the instanton fugacity and term respectively irrelevant, perimentally physical observables are readily written down.
they are not self-dual but instead dual to one another. IFor instance, right at the critical point the spin response func-
would be interesting to determine with more certaintytion x(k;,w) near the ordering wave vectf®,=(, )] will
whether these putative critical theories can survive fluctuatake the form

tion effects. We note that the numerical simulations of Ref. 5

observed a first-order transition between VBS and Ising an- Yk, ) ~ i,:(ﬂ ﬁ_“’) (10.1)
tiferromagnetic phases. While this does not rule out the pos- ' kK27 \ck'kgT

sibility of a continuous transition in other microscopic mod-

L : Herek; is assumed to measure the deviation of the physical
els, it is perhaps some evidence to the contrary.

wave vector fromQ;, and T is the temperature. The corre-
sponding spectral function can be directly measured in
X. EXPERIMENTS neutron-scattering experiments. At a fixed small wave vector
i ) . o ) ki and temperaturd, this will show sharp spin-wave peaks
Before discussing experimental implications, we reiterateys a function of frequency in the Néel state and similar sharp
that we have so far only found explicit examples of decon-tripjon” peaks near the spin gap in the VBS state. However,
fined critical points in insulating magnetand allied boson  yight at the critical point, there will be an anomalously broad
points do exist in conducting systems at other doping densitat the scaling form in Eq:10.1) is, by itself, not evidence
ties, and that they will be of experimental relevance. How-for deconfined criticality, because it applies also to LGW
ever, in the absence of specific theories of such criticakyitical points?! the key point is that only deconfined critical

points, explicit discussion of experimental implications is points are likely to lead to a value of that is not unobserv-
perhaps premature. ably small.

Nevertheless, it is useful to discuss the implications of the  The |arge value ofy will also directly manifest itself in
phenomena discussed in this paper for experiments on iNsWi\VR experiments. Indeed the nuclear-spin-lattice relaxation
lating quantum magnets, in the hope that future experimentgge s essentially given by
may succeed in driving such systems across quantum phase
transitions by(say) applied pressure. Imagine a quasi-two- 1 fd2k . Y'(K, )

im=——,

w—0 (O]

(10.2

dimensional Mott insulator where each layer has a square T ~T

lattice of localized spin-1/2 moments. Ignoring all effects !

due to coupling between the layers and to other degrees afherey” is the imaginary part of the spin response function.

freedom(phonons, etg, a direct second-order-zero tempera-It is now easy to see from scaling thatTy/~T7” at finite

ture transition between the Néel ordered and translation braemperatures in the “quantum critical” region. Thus this ex-

ken VBS phases should be possitfier instance by applica- periment provides a direct measurementyoft is therefore

tion of pressure with properties described as in previous an excellent way to experimentally distinguish the predic-

sections. It is first important to emphasize that the proposaions of the present paper from those of the earlier accepted

of a deconfined critical point is on firmest ground for a sys-theory?’ of the Néel-VBS transition which gives=~0.

tem with a spin-1/2 moment per unit cell. With higher spin  In this context it is interesting to reconsider experiments

or with more than one spin-1/2 moment per unit cell othermeasuring the spin-lattice relaxation rate of the Cu ions in

(more ordinary kinds of phase transitions may well obtain. the undoped and lightly doped cupratésRemarkably at

In practice(even with spin-1/2 per unit célithe growing  high temperature the T} saturates to a temperaturand

VBS fluctuations associated with the lattice symmetry breakdoping-independent value. One suggested explarfatisn

ing will couple strongly to lattice disortions particularly at that at these high temperatures in the undoped sample the

low temperature. If the phonons can be regarded as thresystem is in a quantum critical regime associated with a dis-

dimensional(even though the magnetic interactions may beordering transition of the Néel order such thgt 0. Further-

well approximated as two dimensiopah small region of more, the effects of doping has been suggested to only make

coexistence will most likely be introduced at very low tem- the system appear closer to the critical pdattleast for the

perature. This may be roughly understood as follows. Théigh-temperature spin physjcsThe results of the present

elastic energy cost of a latttice disortion of magnitudiat  paper imply that if this interpretation of the experiments in

couples to the VBS order parameter is of orgerHowever, terms of proximity to quantum criticality is correct, then the

the electronic energy gain is much biggas the susceptibil- corresponding transition cannot be from the Néel to the VBS

ity associated with the VBS order parameter diverges at thetate, but is more likely to be a conventional LGW transition.

transitior), going asx* with k<2. In the easy plane case

~1.35 from the numerical resul%%.Thu_s_ the phonons will XI. DISCUSSION

then prempt a direct Néel-VBS transition and introduce a

small coexistence region. It will thus be necessary to look at This paper has described a variety of quantum critical

temperatures that are not too low to meaningfully compargoints in two dimensions which can be understood using the

with experiments. interesting paradigm of deconfined quantum criticdityhe
Barring these caveats the interesting critical phenomenaritical point has an emergent topological conservation law,

discussed in this paper should be visible in a number ofind the critical theory is expressed most naturally in terms of

different experimental probes. Scaling forms for various ex{ractionalized degrees of freedom. The order parameters
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characterizing the phases flanking the critical point emerge akhe Research Corporati@m.S.). We thank the Aspen Center
large length scales as composites of the fractionalizedor Physics for hospitality.
modes, or their duals. These examples clearly violate the
LGW paradigm, in that the order parameters are not directly
related to the critical modes.

Our primary example was the Néel to VBS transition for
the S=1/2 square lattice antiferromagnet. We showed that
deconfined critical point scenario emerged in a number ;C
tractable deformations of models appropriate to describe thi
transition. Several results existing in the literaygfer in-

APPENDIX A: BERRY PHASES IN THE SJ MODEL

The nonlinear sigma model representation in E}l)
ssociates the Berry phases with a summation over the indi-
idual Berry phases of each spin. Each such contribution
easures the area enclosed by the path of the spin on the unit
sphere, and this is represented 8y in Eqg. (3.1). Upon

stance on largét modely were shown to support this pro- o nstorming to the variables via Eq(L.5), there is a simple
posal when correctly interpreted. We briefly reiterate a fe“Way of measuring this aré&2241it is the Polyakov loop of

key physical aspects of this theory. First, the critical theorythe U(1) gauge field of theCP* model. This connection sug-

possesses an extra global topoogical conservatior{dagso- :
ciated with skyrmion numberlt is most naturally expressed gests that theg in Eq. (3.13 should be replaced by

not in terms of the natural order parameters of either phase .
but in terms of new spin-1/2 spinon degrees of freedom that Sg= '2 &, (A1)
are specific to the critical point. The emergence of these frac- '
tional spin fields at the critical fixed point manifests itself

o , hereg is the cubic lattices-independent representation of
quantitatively in the large value of the anamoulous exponen}f; €i 7 P P

t the transition. The extra topolodical conservation law i e square lattice sublattice staggering facépr One can
7 at Ie fransiion. The extra topological ConSEIvation 1aw 18,y consider a “modified” SJ modélwith action S5 S,
obtained because monopole events at which skyrmion num-

) . +8,+S8g defined by Eqs(3.11), (3.12, and(Al). This ap-
b can change re nolvent nd degpear o 07 Sl il ague that he properti o, e vy
aramagnetic hgse énd lead té) theya earance of brokg'irﬁn”ar’ and universal features are identical.
P 9 P PP First, we show that fort=0 (this is deep in the VBS

lattice symmetry. There are two diverging length or time hasg, the two theories are, in fact, exactly equivalent. In

s_cales near the crit_ical poinF. In the pgramagnetic phas_e s limit, we can proceed with a duality mapping as in Sec.
first (shortey length is the spin-correlation length. There is ay A, and obtain a dual representation &, which is Eq.

longer length scale at which the VBS order gets pinned. (4.9) with A=0:
We also considered a number of other critical points in* '

this paper. The transition between VBS and spin liquid states 1

was discussed in Sec. VI, and described by critical theory S=—[A(x+ 9] (A2)

closely related to that for the SJ models. The superfluid- 2K

insulator transition of bosons at half filling on the square ) _ _ )

lattice was considered in Sec. IX A: the insulator exhibitsProceeding with the analogous duality transformatiosdg

bond-density-wave order and the theory for the critical pointVe find instead

[Eq. (5.6)] had been obtained earli¥rHere we provided a L

physical reinterpretation of this theory, and showed how it y_ L 2

could also be understood as a deconfined QCP. §'= 2K(AX+ Bo)”, (A3)
Overall our work shows that such deconfined quantum

criticality is quite common in two-dimensional systems with where B, is a fixed integer-valued field on the links of the

a spin-1/2 moment per unit cell. This leads us to suspect thatual lattice chosen so that

the scope for finding deconfined QCP’s in other correlated

electron systems, including those with Fermionic excitations, A X By=eT, (A4)

is bright. These QCP’s naturally have large anomalous di-

mensions for observable order paramefessd so hold the where 7 is a unit vector in ther direction. A convenient

prospect of explaining a variety of experimental puzzles. choice forB, is shown in Fig. 6a).

Now note that we can write
ACKNOWLEDGMENTS By=AO+AX B (A5)
We thank N. Read and R. Shankar for discussions. This

research was supported by the National Science Foundatiomith 9, defined below Eq¢4.4) and shown in Fig. 48 is a
under Grant Nos. DMR-0308945%T.S), DMR-9985255 fixed vector field on the links of the dual lattice with only its
(L.B.), DMR-0098226(S.S), and DMR-0210790 and PHY- temporal components nonzero as shown in Figdp).6lt is
9907949(S.S. and M.P.A.f. We would also like to ac- now evident that EqgA3) and(A5) are exactly equivalent
knowledge funding from the NEC Corporatiaii.S), the to Eq.(A2), as the couplings betweg® and y, ¥ vanish.
Packard Foundatio(L.B.), the Alfred P. Sloan Foundation Moving to the general case with# 0, let us examine the
(T.S. and L.B), the John Simon Guggenheim Memorial fate of the modified SJ model fa¥=1 as in Sec. IVA. In
Foundation(S.S), the Pappalardo Foundatiai\.V.), and this case, Eq(4.9) is replaced by
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[ ] ® [ ® ® i.=AXA, (B3)
+1 X 1 X
with A, integer fields. We treat the gauge field kinetic energy
® _1. o i_r A term as in Sec. IV A by first decoupling it with tHe field,
X X and then summing over the integgito obtain
® ® [ o [ ]
b-Ad=B (B4)
i+1 X i+1 X . | . . |
with B an integer field. Integrating over the gauge field
® ® [ o [ ]
(a) now replaces Eq4.7) by
AXB=j;+]j,. (B5)
+1/8 -1/8 +1/8 -1/8 Th be solved by wrii
X X X is may be solved by writing
-1/8 +1/8 -1/8 +1/8 B=A;+Ay+Ax (B6)
X X X with y an integer. The action then reads
+1/8 -1/8 +1/8 -1/8 1 1
b S= (—AXA 2+ —(A X AY?
(b) > 2f( 1) ZT( 2)
FIG. 6. Specification of the nonzero values of the fixed fi¢&ls 1
Bo and(b) B. The circles are the sites of the direct lattigewhile + 2—[A(X +9)+ A+ AZ]Z). (B7)
the crosses are the sites of the dual lattjcéhe latter are also offset K

=7 direction). The By, are all zero foru=r7,x, while the only non- A, x by adding the terms
zero values 0By, are shown in@. Only the u=7 components of

B, are nonzero, and these are showrlin -t cog2mA,) -t cog27A,) — 2 \, cog27my) (B8)
n

with n running over all positive integers. Now we can shift

x—x=x+9. Then we can put 2y=60,-6,, and integrate

(A6) over both phase field8,, leaving the partition function un-
changed up to an overall multiplicative constant. Upon shift-

It is now not difficult to show that the additional term asso-ing the two fieldsA; — A;-A6;/27 andA,— A, + A6,/ 2,

ciated with 8 above makes little difference to the universal the last term in Eq(B7) takes the form(A;+A,)% We can

properties of theory: integrating out the massivanodes is  then defineA,=A;+A, andA=m(A;-A,), and integrate out

now a little more involved, but the final theory farhas the  the massive field\,. Up to irrelevant terms we thereby ob-

same structure as that in Sec. IV A. Further details may beain for the full action:

found in Ref. 22. 4.2

Similar comments apply to the modified SJ modeNat S=8,+> (TW(A X A)2-t codAd, - A)
=2, with easy-plane anisotropy, as discussed in Appendix B. t

/_1 2 i 2
S _Z'f(AXA) +2K[A(X+1‘})+A+A><ﬁ].

-t cogAb,-A)
APPENDIX B: DUALITY TRANSFORMATION WITH

EASY-PLANE ANISOTROPY

The duality transformation for the SJ modelNat 2 in the S=-2 (E An cogn(6y = 6, - 27719)]) (B9)
easy-plane limit proceeds very similarly to that of tRe 1 n
case discussed in Sec. IV A. We begin by rewriting the “bo- Once again a?™ oscillates on four sublattices, for

son hopping” term in Eq(5.5) in a Villain approximation:  smooth variations od; ,, the lowest value ofi that survives
1 is n=4. We may therefore replacg, by
S,— =i P-ij. (A a—a), B1
Z eE,a(zT“ e . 5=~ 3 (\ cog4(6, - 6,)]) (B10)

wherea=1, 2labels the two species of bosons gpdire the  with A=\,. The resulting action is then a “hard-spin” ver-
corresponding integer valued currents defined on the links ofion of the actionS, in Eqg. (5.6) of Sec. V, with the identi-
the square lattice. Proceeding as before in Sec. IV A, intefication of the vortex operatorg, ~ €%,

grating out the¢, fields leads to the current conservation
APPENDIX C: ESTIMATE OF MONOPOLE

conditions
SCALING DIMENSION
A-j,=0 (B2) . .
We can ask about the answer for all these scaling dimen-
which can be solved by writing sions that would be obtained by first integrating out the mat-
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ter fields, truncating the resulting gauge action to quadraticondensate of the appropriate single instanton eventd In

order, and using that theory to calculate the scaling dimen=1 the transition is driven by doubled instanton eve&aisi-

sion. This would be an estimate, albeit uncontrolled; ondar to the quadrupling of instantons in two dimensipns

might hope that it will correctly capture the trends. which stay irrelevant at the critical fixed point. At a formal
Anyway, it turns out that this can be done without seriouslevel it is possible to construct an appropriate “SJ” model

calculation. First, note that in this procedure the answer dethat correctly describes the transition everdml.

pends only on the universal conductivity of the matter fields A complete presentation closely related to the discussion

at the transition ignoring all coupling to the gauge field. Thein this appendix appears in Ref. 41.

higher this universal conductivity the higher the instanton

anomalous dimension. APPENDIX E: DIRECT DERIVATION OF DUAL

The simplest case is thié=1 SJ model. Here the relevant MERON ACTION
universal conductivity is that of a single boson species. We e pass from Eq(9.1) to the analog of £P* represen-
know that at this transition the four instanton operator istation by letting
irrelevant. Now in theN=2 cases with either easy plane or

full SU(2) symmetry, it is clear that the universal conductiv- €% =bl b, = e (1 d2r), (ED)
ity will only be larger than alN=1. Thus we should expect a

higher anamolous dimension. This would then predict irrel- N =+l

evance of the four instanton term with or without easy plane N = 2 ' (E2)
anisotropy for the physical case bf=2 in agreement with

other expectations. Ny + Ny = €. (E3)

Here b1'2=ei¢1v2 represent charge-+1/2 Bosonic operators
APPENDIX D: SJ MODELS IN ONE DIMENSION andn, , are the corresponding boson numbers, anavas

There is a close and useful analogy between some of thgefined in Eq.(1.3). Note thatb, , are not canonical Bose
phenomena explored in this paper and corresponding ones fpperators, and the relevant commutation relations h_ere are
one spatial dimension. Specifically consider a onelnl*‘f’l]:‘_' and[ny, ¢p,]=-i. The e_lgenvalues 0‘1,; are in-
dimensional spin-1/2 magnet in the presence of some eas§€9ers which run from e to . As is usual, there is a gauge
plane anisotropy. The analog of the Néel phasd#1 is a redundancy assc_>0|ated with an arblt_rary_ choice of t_he local
phase with power-law correlators for the staggexatimag- phas_e of théd, , fields. The last equation isa constraint that
netization. This phase may be described as a Luttinger liquid®duires the total number of both species of bosons to be
There is a direct second-order transition between this phadéed at +1 on theA sublattice and —1 on thB sublattice.
and a VBS phase where there is spontaneous dimerization ¢h€ left-hand side of this constraint equation is precisely the
the spin chain. generator of _the local gauge transformation. We_have chosen

A useful theoretical description of this transition is ob- O Stagger this gauge charge on the two sublattices.
tained by focusing on vortices in the space-time configura- 1he Hamiltonian in Eq(9.1) is readily rewritten in terms
tion of the staggeredXY order-parameter field. From a Of these new variables:
quantum—mechgnical point of view.such vortices correspond H=Hy+H, (E4)
to phase-sligor instanton events. It is well known that a2
phase slip event carries a momentum and hence is not U
allowed as a term in the Hamiltoniain an equivalent de- Hy= EE [(Ny — €Ng)% + (Ny — €Ng)?], (E5)
scription of this Luttinger liquid phase in terms of interacting r
spinless fermions, thesen2phase slips correspond to inter-
change of left and right movejsin the VBS phase these Ht:_tE [(bIrbZr)(b;wblr’) +H.cl. (E6)
phase slip events have proliferated. Indeed it is precisely the ar'y
7 momentum that is carried by ther2phase slip that is . . )
responsible for the broken translation symmetry of the VBSYe have introduced a term proportional g which de-

A convenient order parameter for the VBS phase is therefor&C"ibes @ “chemical potential” for the total on-site gauge
provided by the 2 phase slip operator. charge. As the total gauge charge is fixed to 1 on each site,

Though 27 phase slip terms are not allowed in the Hamil- this addition is completely innocuougor any value ofi).
tonian 47 phase slipgwhich carry zero crystal momentym L@tér we will choosen, appropriately to ensure that ting »
are clearly allowed. The transition from the Luttinger liquid fi€lds have zero mean value. While this step is not necessary,
to the VBS is driven by the proliferation of theserphase it is convenient, and will be commented upon further at the
slips. These “doubled” phase slips are irrelevant throughou@PPropriate point. , _ _
the Luttinger liquid phase and are marginally irrelevant at the NOW we proceed to a path-integral representation to write
critical fixed point.' . _ _ . ' S=8,+S,+ gao +S,,

The analogy with the two-dimensional situations consid-
ered in this paper is now clear. Therphase slip is the direct U
analog of the skyrmion tunnelingi.e., single instanton Su=> de => [(ng = €Np)%+ (N — €n0)?],
event. In bothd=1,2 the VBSphase is understood as a N r 2% e aore
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coordinatesx,y) and B is the corresponding integer-valued
S,=> f d7[ing 0,y + N30 6000, magnetic field on a spatial plaquette. We have introduced the
' vector notationg; = (ay,a,) = (ar .z, & r+y). FOr simplicity we
have chosen the same constannultiplying the E? and B
830:2 de[iaO(nlr +n, —e)], itﬁrmz.lgre or_igi_nal microscopic action is formally obtained
; get limit (u— ).
To proceed it is first useful to note that the background
gauge charge present in this formulation will lead to a back-
&= f drH;. (E7)  ground electric field about which the true electric field will
actually fluctuate. It will be convenient to incorporate this
As usual, it is assumed that there is a fine discretization o¢ffect by finding a suitable mean field for the various fields
the imaginary time index. The boson numbens;, ,n,, live  in the action. Consider a mean fie{daddle point of the
on the temporal links at each spatial point; these will evenaction where the nonzero expectation values are
tually be taken to be integer valued, but it is useful to tem-

porarily consider them as arbitrary real numbers—the (ny =(ny) =n,
integer-valued constraint is imposed by summing over all
winding number sectors of the conjugate phase variaplgs (ap) = ag,

¢o. The “gauge” constraint is imposed by means of a
Lagrange multiplier fielday which will be interpreted as the (E)=E, (E15)
time component of a gauge field. We now proceed as is usual ' 10-

in slave particle theories of correlated systems. We decouptghe saddle-point equations are obtained by varying the ac-

the interactions inH, using a complex auxiliary field-  tion with respect to these fieldkere, as discussed below Eq.
defined on each spatial link to write (E7), we are allowing the integer-valued fields to be real
o 2 numbers:
St = _ A i(bar=dar)
esi=]] dX,exp< + Xy D, €GeS +c.c.), -
E8 _
. (9 AiEp=-2n+¢,
with x»=Xx,,. The fluctuations in the amplitude of the
field are expected to be innocuous. Hence we will write U(n-eny) = —iag (E16)
2 )
= ‘a !
Xrrr = Xo€™, (E9) We now use our freedom in choosing the constgnto set
with xo a constant that simply renormalizes the boson hop- _
ping amplitude. As usual the,, =-a,,, will be interpreted as n. = Qo6 (E17)
the spatial component of a gauge field. The full action now is °" u

invariant under the gauge transformation _ i i
so thatn=0; note also that EqE17) requires that the spatial

g?ul?) — @ bal, (E10  dependence of, is such thatay=¢. One may worry that
this special choice ofiy might indicate some nongeneric na-
dy,(7) ture of the resulting theory. We note, however, that qualita-
8 — 80~ dr ' (E1D) tively identical results are obtained for any other choice of
ng—in the dual action with such a choice the merons see
&y — A = ¥ (7) + (1), (E12  Some nonzero but spatially oscillating flux. Having a zero
spatial average, this flux does not qualitatively effect the
wherea=1,2. Toexamine universal critical properties near low-energy(extendegl meron states. The above choice sim-
the phase transitions of interest it is legitimate to add variouply renders the low-energy behavior more transparent. We
possible local terms that are consistent with the global symthen have
metries and gauge structure of the action. It is particularly
useful to add a “kinetic energy” term for the gauge fields on AiEjp= €. (E18

all plaquettegspatial and space-timén Villain form: . . . .
Plaq ssp P m Note also thak,, is the gradient of a potential determined by

ay. These conditions determirtg, (the background electric
field) uniquely to have the value 1/4 oriented from thé¢o

B sublattice. Inserting these values in E¢s16) and (E17),

u we obtainng=1/8.
Lg= EBZ*‘ iB(ejAiay). (E14 We may now examine the full theory by first shiftirag
=ay+ dag. Straightforward manipulation shows that the elec-

Here E; is an integer-valued “electric field” defined on the tric field now fluctuates about a background valtjgso that
spatial links at each time slicg,j extend over the spatial the Ej-dependent terms in the action read

Le= JEP+iE (0,8~ Ao, (E13)
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‘CE:g(Ei_Ei0)2+iEi(‘97ai_Ai5aO)- (Elg) 8:_\]2 cos(A¢—na)—K§P: COiAX&). (Fl)

The termLg in Eq. (E14) remains unchanged while the mat-

ter field terms in Eq(E7) are expressed in the Lagrangian Here €% represents a boson field on the sitesf a three-

dimensional cubic lattice. The sum in the first term is over
U, o i T . the links of the lattice, while that in the second term is over
Lyw=Z(n+m)+ FAE iny(9¢py + 53g) +iN2(d:¢b, the plaquette®. The field a; =a;+27 is a compact (1)
gauge field, and the integaris the charge of the boson. This
+ 6ap) —i€0ay+ij1i(Ajdy + &) +ija(Aipo + @), model has two phases. For largethere is a Higgs phase
(E20) where the boson field has “condensed.” Following the argu-
) ) ) ments of Ref. 71, the effective theory of this phase i&,a
It is now useful to define the integer-valued three vectorgyayge theory in its deconfined phase in 2+1 dimensions. The
(this makes contact with the notation and models of Sec. Ngycitations in this phase are stable vortices that carry flux
i1= (s, 2mq/n, forg=1,... h—1, pf the_ gauge field. For_sm_aIIJ, _
on the other hand, there is a different phase which is associ-
ated with confinement of the () gauge theory. In particu-
lar, the Z, vortices that appear in the Higgs phase are no
B=(B.-E,E,) (E21) longer present in the spectrum. As also argued in Ref. 71, the
A transition between these two phases is actually described by

Integrating over the variable$a, a,, ¢;, and¢, in the func-  that in aZ, gauge theory. This latter theory is_ dual to .the
tional integral overCy,+Lg+ L yields the constraint equa- global Z, clock model—forn=4 the clock anisotropy is

J2= (N2, j20]2y),

tions [compare with Eqs(B2) and(B5)] irrelevant and the universality class is 30¥.
o The n=1 case of EqF1) was considered in Ref. 31. For
A X (B-Bo=-j1-]2 this case, the “clock” anisotropy is strongly releva(it
rounds out the transition into a crossoyemd the physics is
A-j1=0, very different fromn=4.
Formally, the action above is readily dualizes in many
A-j,=0, (E22 of the other examples discussed at length in previous sec-

tions). The dual action takes the form
where

Bo= (Ou_EyO-EXO)- (E23

We can solve the constraint&22) by writing [compare Egs.
(B3) and (B6)]

Squa= —t 2 [cog2mAy) =\ cog2mny)]  (F2)

and has the expected structure of a glokal model with

J1=—A XAy, n-fold anisotropy.
It is useful, for our purposes, to have a physical interpre-
j2=—AXA,, tation of these results. In the Higgs phase, the vorticity of the
¢ field is quantized in units of 2/n (as is natural for a
B-By=A;+A,+Ax+Ad, (E24) chargen condensate The presence of instantons implies that

) ) ) ) the total flux can change by so thatn of these vortices
whereA; , andy are integer valued fields, aritlis the fixed  can appear or disappear together. Thus the vortices only
field in Fig. 4. The action now has the same structure as EGyarry a7, quantum number. The dual description focuses on
(B7), and the subsequent analysis proceeds as in Appendix esez, vortices. Without instantons, ther2n vortex is glo-
and Sec. V. bally conserved and its physics is described by a global

APPENDIX F: BREAKDOWN OF THE “SCREENING _model (this is just the duality in Ref. 59 The presence of

ARGUMENT” IN THE MONOPOLE GAS instantons Igads to the-fold amsotrop_y[the \ term in Eq.
(F2)] for this global XY model, leading to the globaf,

In this appendix we will consider a simple toy model of a model. Thus the irrelevance of thefold anisotropy, forn
compact W1) gauge theory without Berry phases which can=4, should be interpreted as the irrelevance of instantons at
be shown to possess a deconfined critical point. This wilthe transition. Indeed thXY universality class, is the exact
enable us to understand clearly the claim of Sec. IV B thatlual of the condensation transition of the chargéoson
the specific monopole gases that obtain at the critical pointsoupled to anoncompactJ(1) gauge fielcP?
studied in this paper evade the general monopole screening Now let us analyze the transition in the RPA approach
argument®34 for a three-dimensional Coulomb gas with outlined in Sec. IV B. The transition is associated with the
logarithmic interactions. condensation of the'? field. We therefore integrate out this

We consider a model of chargebosons(n=4) coupled field in the presence of a nontrivial gauge potential, and trun-
to a compact (1) gauge field inD=2+1 dimensions with  cate the resulting gauge action to quadratic oreitially
Euclidean action ignoring instantons The result is, as in Eq4.12),
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d3K e? X field is at the critical point of the 3IXY model. The
Se=f W00n2|K||aT(K)|2+ (F3)  RPA theory approximates this nontrivial interacting critical
theory by an equivalent Gaussian theory, which also happens
Hereay, is a universal constant, amg is the transverse com- 0 give power-law correlations for the?™x field (this is a
ponent of the gauge field. The Maxwell term present in theProperty of thek®|y|? form). In the full theory in Eq.(F2),
bare action is less important at long distances than the terif€ screening of monopole interactions is associated with
in the action displayed above, and we have dropped it. Wéorrections higher order in. In the context of conformal

now examine the stability ag to instantons. First, we du- Perturbation theory about the critical point of E§2), how-
alize Sg to obtairf:33 ever, it is clear that these higher-order effects\imctually

represent shifts in the position of the critical point, and not
d*k K3 5 any changes in the scaling dimensions of operators.
Se,dual™ (27)3;0|X(K)| -2\ cos2my).  (F4) Hence for the Néel-VBS transition we conclude that the
naive computation of monopole scaling dimensions in the
The last term represents instanton events. Notekthia the  largeN limit?* is actually correct, and that we should neglect
first term. Now thex term will in general generate’ term  screening between multiple monopoles in determining this
in the Gaussiany action which will then eventually make scaling dimension. The latter effects are more correctly ac-
instantons relevant. A fine tuning is requité@2*to prevent  counted for by shifting the position of the critical point.
the generation of th&? term in this argument, and for the Note that for then=1 case of Eq(F1) considered in Ref.
present model we can now easily see that this fine tuning i81, computation of the scaling dimension of the monopole
automatic at the critical point of the gauge theory in &). operator using EqF2) shows that monopoles are relevant at
The key is to note that the logarithmic interaction betweerthe critical point. Indeed, they round out the transition to a
the monopoles is equivalent to the statement that the correl@rossover, and the monopoles are always in a screened
tors ofe? ™ decay as a power lagat the fixed point without  plasma phase. So the conclusions of Refs. 33 and 34 for this
monopoleg. In the theory of the monopoles in E(2), the  case are correct, but not for completely sound reasons.
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