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We establish that spin liquids described in terms of gapless fermi@irac) spinons and gapledd(1)
gauge fluctuations can be stable in two dimensions, at least when the ph$8i&l spin symmetry is
generalized t&U(N). Equivalently, we show that compact QEBas a deconfined phase for a large number of
fermion fields, in the sense that monopole fluctuations can be irrelevant at low energies. A precise character-
ization is provided by an emergent global topologitkll) symmetry corresponding to the conservation of
gauge flux. Beginning with aBU(N) generalization of th&=1/2 square-lattice Heisenberg antiferromagnet,
we consider ther-flux spin liquid and, via a systematic analysis of all operators, show that thereoare
relevant perturbation@n the renormalization-group senssbout the largeN spin-liquid fixed point, which is
thus a stable phase. We provide a further illustration of this conclusion with an approximate renormalization-
group calculation that treats the gapless fermions and the monopoles on an equal footing. This approach
directly points out some of the flaws in the erroneous “screening” argument for the relevance of monopoles in
compact QER.
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I. INTRODUCTION 11-13 argue that, due to a screening effect in three dimen-
sions, the monopole fluctuations always result in the confine-

Phases of strongly correlated electrons in two dimensionment of theU(1) gauge field, thus destabilizing the sF state
exhibit a remarkable array of unusual and interesting behavand its close relatives. In this paper we resolve the ongoing
ior. Quantum spin liquids(Mott insulators with no broken debate and argue rather rigorously that the compact QED
symmetriey are a particularly exotic class of states that mayproblem is deconfined for largé and that at least sonmé(1)
play a critical role in our understanding of several interestingspin liquids are indeed stable in two dimensions. Whether
materials. While much theoretical progress has been made #imilar deconfinement also obtains in physically important
understanding the universal properties of such states, mar§u(2) spin models is left open for future work.
basic questions remain unanswered. One of these concerns These spin liquids generally possess at low energies much
the stability of spin liquids described at low energies by gap-higher symmetry than the microscopic spin models in which
less fermionicS=1/2 spinons and a fluctuating(1) gauge they arise. Of particular importance is an emergent topologi-
field. We focus here on the cases where the spinons havecal globalU(1) that is associated in the gauge theory descrip-
linear dispersion in the vicinity of discrete Fermi points andtion with conservation of the gauge flux. Incampact W1)
can be described as Dirac fermions. One example of such gauge theory flux is only conserved module Bue to the
phase, the staggered flgsP spin liquid proposed in Ref. 2, presence of monopole fluctuations, so this emergent symme-
may play a key role in understanding the underdoped cupratey is equivalent to the irrelevance of monopoles at low en-
superconductors:® ergy. When monopoles arelevantit is believed that con-

In this class ofU(1) spin liquids the fermions and gauge finement is inevitable, so this symmetry provides precise
fluctuations interact strongly at low energies, and there areneaning to the notion of deconfinement of spinons in the
no well-defined low-energy quasiparticfe8®3* Therefore  spin liquid. We emphasize that our use of the term “decon-
the issue of whether these states can be stable is in genefailement” does not imply that the spinons are to be thought
difficult to resolve, but becomes tractable, for example, wherof as free at low energies. Roughly speaking, they are instead
the physicalSU(2) spin is generalized t&UN) andN is  as free as possible given their strong interaction with the
taken large. The problem can be formulated in termshf gauge fluctuations. A close parallel exists with the decon-
species of Dirac fermions coupled to a compd¢t) gauge  fined quantum critical point4'®that have been studied re-
field in two spatial dimensions, often referred to as compacgently where an emergent topological glokHll) also char-
QED;. The gauge fluctuations are suppressed at Ibrged ~ acterizes the low energy fixed point. Indeed the spin liquids
calculation within the framework of a N expansion is pos- discussed in the present paper may be viewed as deconfined
sible, but even in this case there has been significant contrguantum criticaphases
versy. Based on an analysis of the monopole fluctuations We shall consider aBU(N) generalization of th&=1/2
and the symmetries in the sF statét was argued that the SF  Heisenberg model on the square latficél’We define the
spin liquid is a stable phase and the gapless spin excitatiomsodel in terms of slave fermiong, (a=1,... N) trans-
are protectetiat least in the largé\ limit. However, Refs.  forming in the fundamental representationSif(N). Choos-
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ing N even and imposing the local constraflﬁfa=N/2 puts field, which will be generated by integrating out short wave-
the spin in the antisymmetric self-conjugate representatioriength modes. Earlier work has argued that this theory is

Defining Saﬁzflfﬁ—(llN)éan;fy, the Hamiltonian is critical and flows to a scale-invariant fixed point fdrsuffi-
] ciently large. The question then is whether properly account-
- / ing for the compactness of the gauge field, and including all
Tsum N p> Sap(1)Spelr) @ other perturbations allowed by the microscopic symmetries,

" destabilizes this scale-invariant fixed point—in other words

where the sum is over pairs of nearest-neighbor sites and trege monopolegor some other allowed operajaa relevant
exchange interaction is assumed positive;0. For N=2  perturbation in the renormalization-group sense?
this reduces to the familig®=1/2 Heisenberg antiferromag- The issue of stability to monopole fluctuations is subtle,
net, with globalSWU(2) spin rotation symmetry. and before attacking the problem with fermions it will be
This model can be solved in tié— o limit, where slave  useful to briefly recap Polyakov's argument for confinement
fermion mean-field theory becomes exact. The correspondn pure compactU(1) gauge theory. By analogy with ordi-
ing mean field Hamiltonian is quadratic and describes thanary electrostatics, it is clear that monopoles will have & 1/
hopping of fermionic spinons with a hopping matrix elementinteraction in space-time coming from the Maxwell term in
that is determined self-consistently. It is known that amonghe above Lagrangian. If we let integ€); represent the
mean field solutions that preserve all lattice symmetries thenonopole number sitting on the sites of a three-dimensional
energetically favored one has a flux af through every (say cubig lattice, the effective action for the monopole gas
plaquette of the square lattice that is seen by the spinonsvill be given by
This state, known as the-flux (#F) state, may also be made

the global minimum energy mean field state upon addition of 1 5
suitable biquadrati€ or ring exchang® terms. Here we are Sn= 52 QQV(ri=ry+ Scz Qi 3
only concerned withstability of the wF state, which is a 7] :

universal feature independent of such microscopic param-
eters. At the mean field level the spinon dispersion has twdVith V(r)=€/r (for larger), where we have defined a “mag-
distinct gapless Fermi points. Linearizing the dispersion innetic charge,®®,=1/2e. In the second term abovs, repre-
the vicinity of these points provides a description of the low-sents the action cost for the monopole cores, which will de-
energy physics in terms of a continuum theory df€pecies Ppend on short distance physics. Since a single monopole
of two-component Dirac fermions. costs a finite action, due to entropic effects one expects them

The crucial question is the fate of this picture upon in-to always proliferate and be in a “plasma” phase. This can be
cluding fluctuations beyond the mean field. In the lakye- Simply established by decoupling the monopole interaction
spin model the primary effect of fluctuations is to induce atérm using a Hubbard-Stratanovich figd and then tracing
coupling of the fermionic spinons to@mpact Y1) gauge out the monopoles on each site. Fgr>1 one thereby ob-
field. In (2+1) dimensions the compactness means that thertins
are point-like instantongalso known as monopolgsn
space-time. At any such monopole event the total gauge flux 1
associated with th&(1) gauge field changes by an integer S 2 f
multiple of 2. In pureU(1) gauge theorief.e., without any
dynamical spinon fieldssuch instantons always proliferate
and lead to confinemef?. This then raises the question of
whether the spinons of the mean fietdr state can escape
confinement once the coupling to the compli¢ii) gauge
field is included. In contrast to some recent studies} we
will argue that in the large limit spinon deconfinement will
indeed obtain. _ 1 2

Consider first a description of the low-energy physics of Lsg= 8779(&“)() ~zcody), 5)
the 7F state thatgnores the compactness of thélly gauge
field. The appropriate effective field theory contairl$ #a-  \yhere we have defined a coupling constgte?. In a
vors of two-component Dirac fermiong;(j=1,2,...2N)  Hamiltonian picture, the operatet* adds 2r magnetic flux,
minimally coupled to anoncompact 1) gauge fielda,  and can be thought of as a magnetic-flux creation operator. In
(with ©=X,y, 7). After rescaling spatial coordinates to set the space-time it creates a monopole, so that the coupiisy
Dirac fermion velocity to unity, the imaginary time action correctly interpreted as the monopole fugacity. Implementing

a1 2
i OX@F -2 cotx), ()

where V(q):47-rer2n/q2 and x(q) are Fourier transforms of
V(r) andy;, respectively, and=2e . Back in real space the
sine-Gordon action can be written in terms of a Lagrangian
density,Ssg:fd3r£Sg, which in the continuum limit is simply

S=[drd?xL is given simply by a simple momentum-space renormalization-grR(®) per-
- 1 turbatively up to second order ingives the RG flow equa-
L= l/lj ’y’u(a,u + Ia,u) 'r//] + @(Eﬂvxﬁva)\)za (2) tions
where they* are 2x 2 matrices satisfyindy*, y"}=26"". 9z _ <3 _%)Z (6)
We have included an explicit Maxwell term for the gauge 4 T

214437-2



STABILITY OF U(1) SPIN LIQUIDS IN TWO DIMENSIONS PHYSICAL REVIEW B70, 214437(2004

o cg® against all perturbative fluctuations within the monopole-free

-9 s (7) sector of the theor}f2:

More recent work has, however, argued that this reason-
with ¢ the usual logarithmic length rescaling anda high ing is too na:rve_and raised important and 'troubling questiqns.
momentum ultraviolet cutoff. Here is a cutoff-dependent 'Ndeed, beginning with the same quadratic gauge field action
positive dimensionless constant. The combinatias, obtained within RPA by mttig_ratmg out the fermions, it has
—gA/ is the effective scaling dimension of the monopolebeen argued that the “bare” interaction between monopoles,

creation operatoe, and relevancefirrelevance ptlepends  Vra(r) ~In(r), will be screened by fluctuating monopole-
as usual on whether the scaling dimension is larger/smalléttimonopole pairs present at finite monopole density. Spe-
than the space-time dimensi@=3. Since the coupling cifically, screening was argued to reduce the logarithmic in-
scales to zero, the monopole fugacity clearly grows, indicati€raction to a 1v form—the same potential that arises from
ing a proliferation of monopoles on long length scales. TheNe Maxwell term alone in the absence of any fermitns.
field y gets pinned in the minimum of the cosine potengial 1hen Polyakov's argumershown abovgwas invoked to
“smooth” phasg which dominates over the gradient term conclude that monopoles would always proliferate and lead

and generates a mass fgr This corresponds to a spatially @ SPinon confinement.

short-ranged effective interaction potential, so the monopole _TNiS argument was explicitly demonstrated in the recent
gas is clearly in a plasma phase that can screen effectivelfC treatment of Herbut and Seradjéhwho  effectively
Due to the proliferation of “magnetically” charged mono- éatéd & gas of monopoles interacting via a pairwise loga-
poles, this corresponds to the phase ofliié) gauge theory ~fithmic interaction, as in Eq.(3) except with V(r)
which confines the “electric charges”—in this case the fer-._>VRPA(r)-. They ma_de explicit use of the duality transforma-
mionic spinons. tion to arrive at a sine-Gordon theory as above, but with an
We now turn to the effects of thgaplessfermions on the anomalous kemel. They_argued that the presence of_ the
issue of monopole proliferation. Existing arguments for andnonopole fugaut_ylterm W'g lead to a self-energy correction
against stability of the monopole-free critical theory beginat second ordeV/ () — Vgp(@) +2(q), with a self-energy
with a kind of random-phase approximatioRPA), where 3(q) ~Z2g? at smallg. The effective “screened” interaction
one integrates out the fermions to obtain an effective actio®€tween monopole pairs is then simply
for the gauge field. Denoting bg; the transverse part of the

gauge field, this action has the following highly schematic Ver(Q) = L/*(q), (9)
form: 1 +3(q)Vrpa(a)
1 which takes an intuitive “RPA-like” form with2(q) the
Seff[au]:N<f d3q|q||at|2+f(d3q)3—|at|4+ O(af)). monopole density-density correlation function. Since
ql Vrpa(@) ~q73, the 2(q)Vrpa(d) term dominates in the de-

(8)  nominator, giving Veg(q) ~1/2(q) < 1/q? or Vex(r)~1/r.

_ Following Polyakov's original argument, the 1/ interac-
As N— = one hasa,~1/N for fluctuations with finite ac- tion is further screened to become short ranged, signaling a
tion, and the nonlinear terms aapparentlyhigher order in  proliferation of monopole events and confinement. It appears
1/N than the leading Gaussian term; the action is therefor¢hat regardless of the value bf the proliferation of mono-
truncated at Gaussian order. For this quadratic theory, thpoles destabilizes theF state and leads to spinon confine-
effective interaction between monopoles is very long rangednent.
Vrpa(r) ~In(r), growing logarithmically in the space-time A first hint at the fallacy of this argument is that in the
separation. Moreover, the action of a single monopole conpresence of monopoles the usual RPA treatment of the gauge
figuration diverges logarithmically in the infrargthe sys- interaction obtained by integrating out the fermionsytea-
tem size, say The coefficient of the logarithm is propor- dratic order ina, is not correct, even in the largedimit.3°
tional toN and very naively can be equated with the scalingThis is because while the gauge fluctuations are indeed sup-
dimensionA,, of the monopole creation operatdrowever, pressed at larghh they are suppresseuth respect to some
see later. The argument for the stability of theF phase is classical background configuratioiMonopoles are drastic
then based on two observatioa) Since the(apparentscal- ~ perturbations to the uniforra, =0 background, so in prin-
ing dimension of the monopole creation operator in theciple one needs to do a different fermion functional integral
largeN limit is (much greater than the space-time dimen- for every configuration of monopoles. Another way to say
sion, monopole fluctuations are irrelevdrf, and a naive this is that, in the effective action E¢8), the finite-action
perturbation theory that includes the monopoles should b&— o fluctuations about a static background of monopoles
free of infrared divergencesgb) The global lattice and spin are not controlled only by the Gaussian term. This happens
rotation symmetries of the underlying spin model imposeprecisely because this action is written as an expansion about
constraints on the continuumoncompagttheory of thewF  thewrongclassical background. The same situation occurs in
state, precluding, for example, a mass term for the fermionghe largeN CP(N) model at its critical poirfé and related
This is aprojective symmetrgescribed by a projective sym- models!® these are similar to the model of interest in this
metry group If this symmetry is unbroken, it protects the paper, but have bosonic matter fields. In all these cases, the
gaplessness of the spinons and tHél) gauge bosons monopoles are described by a strongly coupledn-
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Gaussiantheory with a rather specific structure of multi- symmetries. In the second term, the first sum is over sites of
monopole interactions. There is thus no reason to believe thélte A sublattice and the second is over nearest neighbors of
a treatment based on a model as a generic Coulomb gas bf Herea,,, is a 2m-periodic vector potential living on the
monopoles with juspairwise logarithmic interactions is le- nearest-neighbor bonds, agg: is its canonically conjugate
gitimate. Arguments and results valid for such a generic gaiteger-valued electric field. We must also specify the gauge
could potentially be modified for the rather special monopoleconstraintErrWre,rr+flfa:1; the first term is a lattice diver-
gas that correctly obtains in the larfelimit in the present gence of the electric field. With this choice EGO) reduces
problem. exactly to the spin model in the limft/t— o with J~t?/h.

But the fallacious monopole screening argument doedhe apparent breaking of lattice symmetry is a gauge artifact,
raise an important point. To discuss the stability of E.to  which is taken care of by requiring the lattice symmetry
monopoles it is not enough to simply show that the scalingransformations to act on the spinons with additional gauge
dimension of the monopole operator is larger than the spacdransformations, thus specifying therojective symmetry
time dimension. It is equally important to ensure that as theyroup of this spin liquid® (see Appendix A This informa-
monopole fugacity renormalizes towards zero, the monotion allows us to verify that the gauge theory Hamiltonian
poles do not inducenther operators in the monopole-free Eg. (10) has the exact same global symmetry group as the
sector which are relevant. Indeed the screening occurring inriginal spin Hamiltonian, and to determine what additional
the above sine-Gordon theofye., the self-energy contribu- perturbations are allowed.
tion) may be viewed as providing an explicit example where The continuum theory is obtained by first settiag=0
precisely this sort of thing happens. and solving for the band structure of EQO) (this repro-

Thus the key to demonstrate stability of th€ state de- duces theN=« mean field state Choosing a four-site unit
scribed by Eq(2) is to show that there are simply no rel- cell, the spinon dispersion has nodes(at2,7/2) in the
evant perturbations with or without the inclusion of mono-reduced Brillouin zone,, k, € [0,). For each component
poles. In this paper, we shall give a systematic analysis of albf SU(N) spin, the linear dispersion about the nodal point is
operators in therF state and show that there are indeed nadescribed by two two-component massless Dirac fermions.
relevant perturbations, at least in the lafgdimit. Then withN flavors of lattice spinons, one has a total &f 2

An important closely related issue is that, in most existingflavors of two-component Dirac fermions. Gauge fluctua-
discussions of this problem, scant attention has been paid tfons can be added to this continuum thefay in Eq.(2)] so
the constraints imposed by the microscopic symmetries ofong as we recognize that the gauge field is compact and
the original lattice spin model on the effective theory E3).  allow for appropriate monopole configurations. It is straight-
Apart from globalSU(N) spin rotation these symmetries in- forward to determine the action of the microscopic symme-
clude translations, rotations, parity and time reversal, as wetries on the continuum fields; this is outlined in Appendix A.
as “charge conjugation,” which takes the lattice fermionThis shows that all possible quadratic mass te(ies, fer-
fields f, to fz. [For SU(2) spins charge conjugation is a mion bilinears with no derivativesare forbidden. Moreover,
subgroup of spin rotations, corresponding to a rotationtby the velocities associated with the dispersion around the
around they-axis in spin space, but fad>2 is an indepen- nodes are all required to be the same. Thus the quadratic part
dent discrete global symmetry of the spin Hamiltonjaks  of the Dirac action describes\2flavors of two-component
emphasized in Ref. 10, the transformations of the fermiorDirac fermions with fullSU(2N) symmetry. Terms that break
fields and the gauge field under these symmetries define ththe SU(2N) symmetry are of quartic or higher order in the
projective symmetry group associated with the slavefermions, and as often happens the quadratic part has higher
fermion-gauge formulation and are crucial in prohibiting asymmetry than the full action.
class of potentially relevant operators in the continuum |t is important to observe that if monopoles are ignored,
(monopole-freg theory. As mentioned above, without the the theory in Eq.(2) has in addition an extra topological
projective symmetry, there is nothing to prevent the spinorglobal U(1) symmetry, as discussed in Sec. |. This corre-
mass term(a relevant perturbatiorfrom being induced by sponds to the conservation of the gauge flux through any
any generic perturbation to the theorpe it inclusion of  syrface spanning the system in space-time. A ch@rge-
monopoles or other less drastic perturbations such as foumonopole event changes the flux byrQ and spoils this

fermion interactionp conservation law.
Existing results in the literature show that the highly sym-
Il. GENERAL ARGUMENT metric continuum theory Eq2) flows to a conformally in-

variant critical fixed point at larg&l. Here we examine all

We now present the details of our argument. The physicserhations to this fixed point allowed in the present prob-

of the w-flux state and the associated fluctuations is encaPem and argue that they are irrelevant. It is convenient to
sulated in the lattice gauge theory Hamiltonian

group the perturbations into two classes: operators that do

h 5 _ . ‘ not change the flux, and those that do. The former contains
Hu<1>=§2 e, —t> X [(i+(D) YY)l et all perturbations that are allowed in the absence of mono-
(") refy’ s poles. The latter contains the monopoles, and their compos-

(10) ites with polynomials in the fermion fields.
Results from the 1IN expansion strongly suggest that the
where the ellipsis represents perturbations consistent with th®U(2N)-symmetric noncompact theory E) flows to a

+h.C.]+ e
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critical fixed point forN sufficiently large’-® The infiniteN problem is reduced to finding the ground state energyNof 2
theory is manifestly scale invariant, with a photon propagatofree Dirac fermions on the sphere in a background magnetic
proportional to 1/g| at small momentum. The effective ex- field. As shown explicitly in Ref. 3%and is physically rea-
pansion parameter for all diagrams in theNléxpansion is sonable the ground state energy in each such sector with
then dimensionless and one expects that only logarithmiaonzero flux isSO(N). Consequentlgll flux changing opera-
divergences will occur; these contribute to nontrivial anomators have a scaling dimension bounded below by a number of
lous dimensions in principle calculable order-by-order inO(N) and are irrelevant. Moreover, as shown in Ref. 31, the
1/N. It should also be noted that a fermion mass cannot bgcaling dimension of a charg@ monopole isnot equal toQ?
generated perturbatively in W/ (See Appendix B for a more times the scaling dimension of the cha@e 1 monopole, as
detailed discussion on the validity of theN fexpansion at s the case within the Gaussian RPA treatment in terms of a
large but finiteN.) The criticality of the theory is further gas of monopoles with a simpleairwise logarithmic inter-
supported by a simple RG analysis in 8-€imensions®  action. This makes clear that the conclusion in the monopole
which finds a nontrivial fixed point ad(e) that is presum-  “screening” argument that the logarithmic interaction is
ably smoothly connected to the lartjefixed point ind=2.  screened down to a & form rests on the flawed assumption
Furthermore, recent large-scale numerical studies find nof pairwise monopole interactions.
evidence for any symmetry breaking down to the smallest We conclude that the effective theory in Eg) flows to a
value of N simulated(N=2).24 This conclusion agrees with conformally invariant fixed point with no relevant
many approximate analyses of this model, findBig(2N) perturbations—with or without the inclusion of monopoles.
symmetry breaking only below some criticl},”?>?”con-  Consequently, ther-flux U(1) spin-liquid state survives as a
tradicting early claims that the symmetry is always stable deconfined gapless critical phase, at least at Mrge
broken?8-30

We next consider adding flux-preserving perturbations to
Eq. (2) that break its global symmetries down to those of the IIl. RG ANALYSIS

original lattice model. As emphasized earlier thiroscopic These considerations can be illustrated by the following
symmetries forbid all possible quadratic fermion mass terms('approximatgz RG calculation which further helps clarify the
as well as any velocity anisotropy. The leading such perturga\s in the RPA screening argument in Refs. 12 and 13. We
bations will therefore be four-fermion terms. At larbeall 516 ment an approximate RG calculation following the ap-
four-fermion operators have scaling dimension@®/N),  proach used in Ref. 13. However, our calculation pays atten-
and are hence expected to be irrelevant. If some such operggp, to two important pointsta) we assume that the fermion
tor had instead been relevant, it could have led to spontangn,ss counter term is not allowesince it is forbidden by the
ous breakdown of th&U2ZN) symmetry. Thus we expect projective symmetry in therF state; (b) we let the infrared
that at least folN large the general noncompact thedre.,  cutoff length scales for the fermiorik;) and the monopoles
with only the global symmetries of the lattice model Eq. (L,,) approach infinity with a fixed ratio, say;/L,=1. This
(10)] flows to anSU2N)-symmetric conformally invariant s veasonable sindeoth the monopole and the fermion sec-
fixed point. _ _tors involve long-wavelength and gapless degrees of free-
Finally we consider the monopole operators. Followinggom. The choice in Ref. 13, with; taken to infinity before
Ref. 31 it will be extremely convenient to adopt a powerful| i not justified because it is based on an erroneous adia-
point of view familiar to conformal field theory aficionados 5tic approximation which requires the fermions to be rap-
(for a pedagogical review acces_sible 'go condensed mattc;(my varying variables compared with the monopoles.
theorists, see Ref. 32In any D-dimensional conformally In the absence of gapless fermions, the RG flow equations
invariant theory, there is a one-to-one mapping between locgf, the monopole sector in terms of the “running” monopole
operators and quantum states of the same theory quantiz%acity' 2(¢), and the running “magnetic chargeg(¢)
on the surface of the unit sphe®. Furthermore, energy =e2(¢), with £=In(L,), are already given in Eqs6) and
eigenstates on th? sphere corre_sponpl to eigenoperators of I?%r.nNext consider the monopole-free sector with gapless fer-
scale transformations. The scaling dimension of such an OBnions coupled to the noncompact gauge field with “electric

erator is equal to the energy of 'ghe cor.responding quant“@harge“e [with Lagrangian as given in EG2)]. An approxi-
state. Reference 31 used this point of view to calculate ver ate RG perturbative i can readily be implemented on

simply the scaling dimension and qther quantum numbers is theory, which is simply noncompact QEDThis is ac-
monopole operators for the theory in &@) at leading order complished by simply ignoring all nonlinear terms in the

n é/N. id | local tor that ch the i baction(except of course the minimal coupling verfei an
onsiaer a general focal operator that changes the TuX By, - ++ treatment these would have nonzero coefficients at the

an amount #Q. This correspgnds to a state on the sphere ir}ixed point of interest. Up to ordes® the RG flow equations
a sector with a total magnetic flux ofs® through the sur- take the simple form

face. The energy of the statand hence the scaling dimen-
sion of the corresponding operatds bounded below by the a) N,

ground state energy in the same sector. InNhe o limit the ot =(4-D)e’ - 4my Xe 1)
gauge fluctuations are completely suppressed and the mag-

netic flux can be treated as a static, uniform backgroundwith ¢=In(Ls) and A an ultraviolet high momentum cutoff.
Furthermore, the fermions do not interact in this limit, so theHere >0 is a dimensionless number. The first term is
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present because the electric charge is not dimensionless jgling of the gauge field to the fermions is treated in pertur-
three space-time dimensioi®=3), while the second term bation theory and all nonlinear terms in the action are
comes from a one-loop fermion bubble screening the Couignored. Nevertheless, it illustrates the failure of the mono-
lomb interaction and reducing the effective electric chargepole screening argument in this context.

as is familiar from four-dimensional QED. For lar@ethis

flow equation has a perturbatively accessibtable fixed IV. DISCUSSION
point [with coupling (e*)?=A/4%N] which describes the _ . _ .
critical 7-flux state. The low-energy fixed point that describes th& spin

At this level of approximation, where we keep only the liquid has a globalSU2N) symmetry and an extra global
quadratic Maxwell term in the gauge action, the inverse refopological U(1) symmetry. The latter is a precise conse-
lation e,= 1/ 2e is retained under the RG flows. Therefore we quence of the asymptotic irrelevance of monopoles and cor-
can deduce the effects of the fermions on the monopoles bigsponds to conservation of gauge flux. It thus provides pre-
replacing €2— 1/4g in the electric charge flow Eq(1ll)  cise meaning to the notion of deconfinement of thel)
above, which gives gauge field. These results may be expected to generalize to

other states that also have Dirac fermions coupled (b)
(12) gauge fields in two dimensions such as the staggered flux
ot A spin liquid. Our analysis, however, is controlled only at large

The first term represents the engineering dimension of th&: Which simply provides a limit where these issues can be

magnetic charge in 3D, while the second comes from th&eliably addressed; future work will be required to determine

screening of the fermions, which reduces the electric charg@nether similar deconfinement obtains in models with real

and thereby increases the magnetic charge. SU2) spins. _ _ _ 3

To arrive at a full set of RG flow equations incorporating Ve remark that in three dimensions the stability problem
both the monopoles and the fermions, we must add to thi$ essentially trivial even foSU2) spin. In this case the
right hand side of Eq(12) the contribution to the magnetic largeN limit does not play a role; for example, it is known
charge coming from screening by monopole-antimonopoldnatU(1) spin liquids can exist as stable phases#8 even
pairs, given explicitly in Eq(7). The full set of coupled RG if the spinons are completely gapped. It is very likely pos-
flow equations for the monop0|e fugacity ammagnetio sible to have a stable three-dimensional IIqUI(SOXZ) Spins

N__, TN

charge then take the form described by massless Dirac spinons interacting with an
emergentJ(1) gauge field—one need only show that all pos-

9%z _ (3 —%)z, (13)  sible fermion mass terms are forbidden by the microscopic

4 ™ symmetries. In this case the effective theory is QED in four

space-time dimensions, and at low energies the spinons and
photons interact onlyeakly Because this theory is under
o 9 A4 A (14) good control and detailed predictions can be made, it may be
_ o ) very fruitful to search for possible realizations of such a
If z(€) scales to zero in thé— c limit, the magnetic charge phase in experiments and numerical simulations.
approaches a fixed point valug(=) =g* = 7»N/A. In this We also note that issues similar to that resolved in this
case the scaling dimension of the monopole creation operat¢yaper arise in the problem of a Fermi surface of spinons
becomesA,=g* A/m=7N. For largeN, Ap, is much greater coupled to a compactU(1) gauge field in two
thanD =3 so thatz indeed does scale to zero consistent Withdimension§_3v33 Since this prob]em has an even h|gher den-
the original assumption. Thus, provided sity of low lying excitations compared with Dirac fermions,
N7y> 3, (15 the notion of integrating out all _the fermions and considgring
monopoles in the resulting action truncated to quadratic or-
this approximate RG scheme predicts that the monopolger is even more suspect. We expect that a correct treatment
fugacity scales to zero and tkeagnetig charge approaches will likely show that monopoles are irrelevant for lartein
a fixed point value. Th&J(1) gauge field is not confining at this case as well. Of course, here the monopole-free theory is
such a fixed point, which corresponds to the phase with likely vulnerable to Fermi surface instabilities. It is hence
gapless spin excitations. unlikely to survive as the ground state but could perhaps be
One can see that the result £45) is the same as that as stable as an ordinary Fermi liquid.
obtained by loffe-Larkif without considering the monopole

a9 _ cg322 N nN
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APPENDIX A: SYMMETRIES AND CONTINUUM FIELDS

1
0= =(a+qy), (A8)
V2

1
0= =(— 0+ qy)-
V2

For completeness, we provide here a discussion of the

continuum limit of thewF mean field state and the action of

We now simply quote the action of the microscopic sym-

The starting point is the mean field= Hamiltonian

Ho==t2 2 [+ (DD f,+hel. (A1)

reAv’ r

Note that this is simply Eq(10) with gauge fluctuations

completely suppressdd,, 1 =0).

It is convenient to work with a four-site unit cell labeled

by (R,i), with R=2nx+2ny andr(R,i)=R+v;, where

0 i=1
X =2

= X+y i=3 (A2)
y i=4.

The spinon operator at the sitR,i) is denotedfg;,. It is a
trivial exercise to go to momentum space and solve(Ed);

in the reduced Brillouin zong,, k, € [0,7) appropriate for

this unit cell one finds gapless Fermi points &1,

tions for the continuum fields. In order to kegfy, invariant,

in some cases the spinons transform with an addititiia)
gauge transformation; this is the hallmark of projective sym-
metry and the projective symmetry group, and has important
consequences for the action of the symmetries on the con-
tinuum fields. We often include an extaiformgauge trans-
formation f, ,— €¢f, , to (slightly) simplify the form of the
continuum transformation laws. It is convenient to adopt a
four-component notation, defining

“Pa — (¢la> .
lvaa
We can represent matrices acting in this four-component
space by the tensor products of Pauli matri¢ed. The 7
matrices act in the Dirac spin space, while fideact in the
flavor space connecting the upper and lower two-component

spinors of V. In the SU2N)-symmetric continuum theory,
the u' generate theSsU(2) subgroup ofSW(2N) consisting

(A9)

=(w/2,m/2). Near this point the dispersion can be de- only of emergent symmetries; these are in some sense con-

scribed by AN two-component Dirac fermions. It is conve-

nient to denote these by/ (R). Here a=1,2 and a
=1,... N are theSU(2N) flavor indices[« is simply the

SU(N) spin indej. Also, A=1,2 labels the two components
of each spinor(this is often suppressgdThese fields are

related to the lattice spinons as follows:

1 .
Via(R) ~ ﬁel%ﬂ(fma +fraa), (A3)
\J
-i
VRalR) ~ 5 €90 (frau fraa), (A4)
\
_ e—i'rr/4 )
V2ulR) = 2.2¢ &R (fron + frad) (A5)
\
_ iml4 )
¢%Q(R) - 2 E€ eIQOIR(lea_ fR3a)! (A6)
\J

where is the lattice spacing.

In momentum space the continuum Hamiltonian takes th

form

d2
He= f 2 qz P+ P an(@),  (AT)
)

where we have chosen units to set the velocity to unity, and

tinuous extensions of the discrete lattice symmetries.
x-translations Translations by one lattice site in the
direction act on the spinons as follows:

i
fra— GX%— 3£r>fr+x,a!

where ,=0,1,2,3when the coordinates of are (even,
even, (odd, even, (odd, odd and(even, odgl, respectively.
The continuum transformation law is

v, — (iuhw,. (A11)

Rotations We choose to make a/2 counterclockwise
rotation about the center of a plaquette; that is, we rotate
about the point(x+y)/2, which givesr =(r,,ry)—r’=(-r,
+1,r,). The action on the spinon operators is

(A10)

fra— &frra (A12)
where
+1 reA
e,:{_l B (A13)
Efn the continuum we have
v, (R) — exp(%(%))exp(%r”)\lfam’).
(Al14)

7 are the usual Pauli matrices acting in the two-component Reflections We consider a reflection of the form
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=(ry,ry) —r'=(=ry,ry), under which the spinons transform
trivially

fro— g (A15)

In the continuum this leads to

T+ 7

—
/

i
¥, (R) — (i,ﬁ)exp(g( ))‘PQ(R'). (A16)
Charge conjugationAs discussed in Sec. Il charge con-
jugation is distinct from theSUN) spin rotation symmetry
only for N>2. The action on the spinons is

[P
fra— exp( > gr)fm. (A17)
In the continuum
Y, — [P )], (A18)
Ul [, (A19)

Time ReversalTime reversal is an antiunitary operation
acting on the lattice spinons as follows:

fro— &fl,. (A20)

In the continuum this becomes
W, — [V )T, (A21)
VI [PV, (A22)
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APPENDIX B: VALIDITY OF THE 1/ N EXPANSION
AT LARGE BUT FINITE N

While our results are based on an analysis within the
framework of the 1N expansion, they should hold for large
but finiteN. In order to see this it is important to consider the
precise connection between theNLtheory and actual finite-

N models.

Consider the field theory E@2) for some finite value of
N. We can formally integrate out the fermions to arrive at an
effective action for the gauge field as in E@)—one can
imagine using an appropriate lattice regularization in order to
ensure that this step is well defined. With the fermion fields
gone, there is no obstacle to treatiNgas a continuous vari-
able and doing perturbation theory in NL/ The resulting
family of field theories is manifestly nonlocal because we
have obtained it by integrating out the gapless fermions;
however, for integem it is equivalent to the local field
theory we started with. For nonintegdithere is no reason to
believe the theory is equivalent &my local theory. The key
point is that near IM=0 the points that do correspond to a
local theory become arbitrarily closely spaced, so it should
be a very good approximation to view the theories in a small,
continuous interval near N=0 as local.

The above considerations mean that we can think of our
expansion about the N=O fixed point in the standard
framework of the Wilsonian renormalization group, which
applies only to local theories. In this case a finite value of
1/N is an exactly marginal perturbation, and we can calcu-
late corrections to the scaling dimension of any operator as
1/Nis tuned away from zero. The W/expansion itself gives
only an asymptotic series for each of these scaling dimen-
sions. However, if the asymptotid— « result for a given
scaling dimension is greater than the space-time dimension
D, it is straightforward to use the mathematical definition of

It is at this point a simple exercise to show that theseasymptotic convergence to show thiat-D for some suffi-

symmetries forbid all possible mass terig =V x' 7V,
as well as any velocity anisotropy.

ciently large butfinite value of N, above which the corre-
sponding operator is irrelevant.
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