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We establish that spin liquids described in terms of gapless fermionic(Dirac) spinons and gaplessUs1d
gauge fluctuations can be stable in two dimensions, at least when the physicalSUs2d spin symmetry is
generalized toSUsNd. Equivalently, we show that compact QED3 has a deconfined phase for a large number of
fermion fields, in the sense that monopole fluctuations can be irrelevant at low energies. A precise character-
ization is provided by an emergent global topologicalUs1d symmetry corresponding to the conservation of
gauge flux. Beginning with anSUsNd generalization of theS=1/2 square-lattice Heisenberg antiferromagnet,
we consider thep-flux spin liquid and, via a systematic analysis of all operators, show that there areno
relevant perturbations(in the renormalization-group sense) about the large-N spin-liquid fixed point, which is
thus a stable phase. We provide a further illustration of this conclusion with an approximate renormalization-
group calculation that treats the gapless fermions and the monopoles on an equal footing. This approach
directly points out some of the flaws in the erroneous “screening” argument for the relevance of monopoles in
compact QED3.
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I. INTRODUCTION

Phases of strongly correlated electrons in two dimensions
exhibit a remarkable array of unusual and interesting behav-
ior. Quantum spin liquids1 (Mott insulators with no broken
symmetries) are a particularly exotic class of states that may
play a critical role in our understanding of several interesting
materials. While much theoretical progress has been made in
understanding the universal properties of such states, many
basic questions remain unanswered. One of these concerns
the stability of spin liquids described at low energies by gap-
less fermionicS=1/2 spinons and a fluctuatingUs1d gauge
field. We focus here on the cases where the spinons have a
linear dispersion in the vicinity of discrete Fermi points and
can be described as Dirac fermions. One example of such a
phase, the staggered flux(sF) spin liquid proposed in Ref. 2,
may play a key role in understanding the underdoped cuprate
superconductors.3–6

In this class ofUs1d spin liquids the fermions and gauge
fluctuations interact strongly at low energies, and there are
no well-defined low-energy quasiparticles.5,7,8,34 Therefore
the issue of whether these states can be stable is in general
difficult to resolve, but becomes tractable, for example, when
the physicalSUs2d spin is generalized toSUsNd and N is
taken large.2 The problem can be formulated in terms ofN
species of Dirac fermions coupled to a compactUs1d gauge
field in two spatial dimensions, often referred to as compact
QED3. The gauge fluctuations are suppressed at largeN and
calculation within the framework of a 1/N expansion is pos-
sible, but even in this case there has been significant contro-
versy. Based on an analysis of the monopole fluctuations9

and the symmetries in the sF state,10 it was argued that the sF
spin liquid is a stable phase and the gapless spin excitations
are protected5 at least in the largeN limit. However, Refs.

11–13 argue that, due to a screening effect in three dimen-
sions, the monopole fluctuations always result in the confine-
ment of theUs1d gauge field, thus destabilizing the sF state
and its close relatives. In this paper we resolve the ongoing
debate and argue rather rigorously that the compact QED3
problem is deconfined for largeN and that at least someUs1d
spin liquids are indeed stable in two dimensions. Whether
similar deconfinement also obtains in physically important
SUs2d spin models is left open for future work.

These spin liquids generally possess at low energies much
higher symmetry than the microscopic spin models in which
they arise. Of particular importance is an emergent topologi-
cal globalUs1d that is associated in the gauge theory descrip-
tion with conservation of the gauge flux. In acompact Us1d
gauge theory flux is only conserved modulo 2p due to the
presence of monopole fluctuations, so this emergent symme-
try is equivalent to the irrelevance of monopoles at low en-
ergy. When monopoles arerelevant it is believed that con-
finement is inevitable, so this symmetry provides precise
meaning to the notion of deconfinement of spinons in the
spin liquid. We emphasize that our use of the term “decon-
finement” does not imply that the spinons are to be thought
of as free at low energies. Roughly speaking, they are instead
as free as possible given their strong interaction with the
gauge fluctuations. A close parallel exists with the decon-
fined quantum critical points14,15 that have been studied re-
cently where an emergent topological globalUs1d also char-
acterizes the low energy fixed point. Indeed the spin liquids
discussed in the present paper may be viewed as deconfined
quantum criticalphases.

We shall consider anSUsNd generalization of theS=1/2
Heisenberg model on the square lattice.2,16,17 We define the
model in terms of slave fermionsf ra sa=1, . . . ,Nd trans-
forming in the fundamental representation ofSUsNd. Choos-
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ing N even and imposing the local constraintfa
† fa=N/2 puts

the spin in the antisymmetric self-conjugate representation.
Defining Sab= fa

† fb−s1/Nddabfg
†fg, the Hamiltonian is

HSUsNd =
J

N
o

krr 8l

Sabsr dSbasr 8d, s1d

where the sum is over pairs of nearest-neighbor sites and the
exchange interaction is assumed positive,J.0. For N=2
this reduces to the familiarS=1/2 Heisenberg antiferromag-
net, with globalSUs2d spin rotation symmetry.

This model can be solved in theN→` limit, where slave
fermion mean-field theory becomes exact. The correspond-
ing mean field Hamiltonian is quadratic and describes the
hopping of fermionic spinons with a hopping matrix element
that is determined self-consistently. It is known that among
mean field solutions that preserve all lattice symmetries the
energetically favored one has a flux ofp through every
plaquette of the square lattice that is seen by the spinons.
This state, known as thep-flux spFd state, may also be made
the global minimum energy mean field state upon addition of
suitable biquadratic16 or ring exchange18 terms. Here we are
only concerned withstability of the pF state, which is a
universal feature independent of such microscopic param-
eters. At the mean field level the spinon dispersion has two
distinct gapless Fermi points. Linearizing the dispersion in
the vicinity of these points provides a description of the low-
energy physics in terms of a continuum theory of 2N species
of two-component Dirac fermions.

The crucial question is the fate of this picture upon in-
cluding fluctuations beyond the mean field. In the large-N
spin model the primary effect of fluctuations is to induce a
coupling of the fermionic spinons to acompact Us1d gauge
field. In s2+1d dimensions the compactness means that there
are point-like instantons(also known as monopoles) in
space-time. At any such monopole event the total gauge flux
associated with theUs1d gauge field changes by an integer
multiple of 2p. In pureUs1d gauge theories(i.e., without any
dynamical spinon fields) such instantons always proliferate
and lead to confinement.19 This then raises the question of
whether the spinons of the mean fieldpF state can escape
confinement once the coupling to the compactUs1d gauge
field is included. In contrast to some recent studies,11–13 we
will argue that in the large-N limit spinon deconfinement will
indeed obtain.

Consider first a description of the low-energy physics of
the pF state thatignores the compactness of the Us1d gauge
field. The appropriate effective field theory contains 2N fla-
vors of two-component Dirac fermionsc jsj=1,2, . . .2Nd
minimally coupled to anoncompact Us1d gauge fieldam

(with m=x,y,t). After rescaling spatial coordinates to set the
Dirac fermion velocity to unity, the imaginary time action
S=edtd2xL is given simply by

L = c̄ jg
ms]m + iamdc j +

1

8pe2semnl]nald2, s2d

where thegm are 232 matrices satisfyinghgm ,gnj=2dmn.
We have included an explicit Maxwell term for the gauge

field, which will be generated by integrating out short wave-
length modes. Earlier work has argued that this theory is
critical and flows to a scale-invariant fixed point forN suffi-
ciently large. The question then is whether properly account-
ing for the compactness of the gauge field, and including all
other perturbations allowed by the microscopic symmetries,
destabilizes this scale-invariant fixed point—in other words
are monopoles(or some other allowed operator) a relevant
perturbation in the renormalization-group sense?

The issue of stability to monopole fluctuations is subtle,
and before attacking the problem with fermions it will be
useful to briefly recap Polyakov’s argument for confinement
in pure compactUs1d gauge theory. By analogy with ordi-
nary electrostatics, it is clear that monopoles will have a 1/r
interaction in space-time coming from the Maxwell term in
the above Lagrangian. If we let integerQi represent the
monopole number sitting on the sites of a three-dimensional
(say cubic) lattice, the effective action for the monopole gas
will be given by

Sm =
1

2o
iÞ j

QiQjVsr i − r jd + sco
i

Qi
2 s3d

with Vsrd=em
2 / r (for larger), where we have defined a “mag-

netic charge,”em=1/2e. In the second term above,sc repre-
sents the action cost for the monopole cores, which will de-
pend on short distance physics. Since a single monopole
costs a finite action, due to entropic effects one expects them
to always proliferate and be in a “plasma” phase. This can be
simply established by decoupling the monopole interaction
term using a Hubbard–Stratanovich fieldxi, and then tracing
out the monopoles on each site. ForEc@1 one thereby ob-
tains

Ssg=
1

2
E d3q

s2pd3V−1sqduxsqdu2 − zo
i

cossxid, s4d

where Vsqd=4pem
2 /q2 and xsqd are Fourier transforms of

Vsrd andxi, respectively, andz=2e−sc. Back in real space the
sine-Gordon action can be written in terms of a Lagrangian
density,Ssg=ed3rLsg, which in the continuum limit is simply

Lsg=
1

8pg
s]mxd2 − zcossxd, s5d

where we have defined a coupling constantg=em
2 . In a

Hamiltonian picture, the operatoreix adds 2p magnetic flux,
and can be thought of as a magnetic-flux creation operator. In
space-time it creates a monopole, so that the couplingz is
correctly interpreted as the monopole fugacity. Implementing
a simple momentum-space renormalization-group(RG) per-
turbatively up to second order inz gives the RG flow equa-
tions

]z

],
= S3 −

gL

p
Dz s6d
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]g

],
= − g −

cg3z2

L4 s7d

with , the usual logarithmic length rescaling andL a high
momentum ultraviolet cutoff. Herec is a cutoff-dependent
positive dimensionless constant. The combinationDm
=gL /p is the effective scaling dimension of the monopole
creation operatoreix, and relevance/irrelevance ofz depends
as usual on whether the scaling dimension is larger/smaller
than the space-time dimensionD=3. Since the couplingg
scales to zero, the monopole fugacity clearly grows, indicat-
ing a proliferation of monopoles on long length scales. The
field x gets pinned in the minimum of the cosine potential(a
“smooth” phase), which dominates over the gradient term
and generates a mass forx. This corresponds to a spatially
short-ranged effective interaction potential, so the monopole
gas is clearly in a plasma phase that can screen effectively.
Due to the proliferation of “magnetically” charged mono-
poles, this corresponds to the phase of theUs1d gauge theory
which confines the “electric charges”—in this case the fer-
mionic spinons.

We now turn to the effects of thegaplessfermions on the
issue of monopole proliferation. Existing arguments for and
against stability of the monopole-free critical theory begin
with a kind of random-phase approximation(RPA), where
one integrates out the fermions to obtain an effective action
for the gauge field. Denoting byat the transverse part of the
gauge field, this action has the following highly schematic
form:

Sefffamg = NSE d3ququuatu2 +E sd3qd3 1

uqu
uatu4 + Osat

6dD .

s8d

As N→` one hasat,1/ÎN for fluctuations with finite ac-
tion, and the nonlinear terms areapparentlyhigher order in
1/N than the leading Gaussian term; the action is therefore
truncated at Gaussian order. For this quadratic theory, the
effective interaction between monopoles is very long ranged,
VRPAsrd, lnsrd, growing logarithmically in the space-time
separation. Moreover, the action of a single monopole con-
figuration diverges logarithmically in the infrared(the sys-
tem size, say). The coefficient of the logarithm is propor-
tional to N and very naïvely can be equated with the scaling
dimensionDm of the monopole creation operator(however,
see later). The argument for the stability of thepF phase is
then based on two observations.(a) Since the(apparent) scal-
ing dimension of the monopole creation operator in the
large-N limit is (much) greater than the space-time dimen-
sion, monopole fluctuations are irrelevant,9,20 and a naïve
perturbation theory that includes the monopoles should be
free of infrared divergences.(b) The global lattice and spin
rotation symmetries of the underlying spin model impose
constraints on the continuum(noncompact) theory of thepF
state, precluding, for example, a mass term for the fermions.
This is aprojective symmetrydescribed by a projective sym-
metry group.10 If this symmetry is unbroken, it protects the
gaplessness of the spinons and theUs1d gauge bosons

against all perturbative fluctuations within the monopole-free
sector of the theory.10,21

More recent work has, however, argued that this reason-
ing is too naïve and raised important and troubling questions.
Indeed, beginning with the same quadratic gauge field action
obtained within RPA by integrating out the fermions, it has
been argued that the “bare” interaction between monopoles,
VRPAsrd, lnsrd, will be screened by fluctuating monopole-
antimonopole pairs present at finite monopole density. Spe-
cifically, screening was argued to reduce the logarithmic in-
teraction to a 1/r form—the same potential that arises from
the Maxwell term alone in the absence of any fermions.11,12

Then Polyakov’s argument(shown above) was invoked to
conclude that monopoles would always proliferate and lead
to spinon confinement.

This argument was explicitly demonstrated in the recent
RG treatment of Herbut and Seradjeh,12 who effectively
treated a gas of monopoles interacting via a pairwise loga-
rithmic interaction, as in Eq.(3) except with Vsrd
→VRPAsrd. They made explicit use of the duality transforma-
tion to arrive at a sine-Gordon theory as above, but with an
anomalous kernel. They argued that the presence of the
monopole fugacity term will lead to a self-energy correction
at second order,Veff

−1sqd→VRPA
−1 sqd+Ssqd, with a self-energy

Ssqd,z2q2 at smallq. The effective “screened” interaction
between monopole pairs is then simply

Veffsqd =
VRPAsqd

1 + SsqdVRPAsqd
, s9d

which takes an intuitive “RPA-like” form withSsqd the
monopole density-density correlation function. Since
VRPAsqd,q−3, the SsqdVRPAsqd term dominates in the de-
nominator, giving Veffsqd,1/Ssqd~1/q2 or Veffsrd,1/r.
Following Polyakov’s original argument,19 the 1/r interac-
tion is further screened to become short ranged, signaling a
proliferation of monopole events and confinement. It appears
that regardless of the value ofN, the proliferation of mono-
poles destabilizes thepF state and leads to spinon confine-
ment.

A first hint at the fallacy of this argument is that in the
presence of monopoles the usual RPA treatment of the gauge
interaction obtained by integrating out the fermions toqua-
dratic order inam is not correct, even in the large-N limit.35

This is because while the gauge fluctuations are indeed sup-
pressed at large-N, they are suppressedwith respect to some
classical background configuration. Monopoles are drastic
perturbations to the uniformam=0 background, so in prin-
ciple one needs to do a different fermion functional integral
for every configuration of monopoles. Another way to say
this is that, in the effective action Eq.(8), the finite-action
N→` fluctuations about a static background of monopoles
are not controlled only by the Gaussian term. This happens
precisely because this action is written as an expansion about
thewrongclassical background. The same situation occurs in
the large-N CPsNd model at its critical point22 and related
models;15 these are similar to the model of interest in this
paper, but have bosonic matter fields. In all these cases, the
monopoles are described by a strongly couplednon-
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Gaussiantheory with a rather specific structure of multi-
monopole interactions. There is thus no reason to believe that
a treatment based on a model as a generic Coulomb gas of
monopoles with justpairwise logarithmic interactions is le-
gitimate. Arguments and results valid for such a generic gas
could potentially be modified for the rather special monopole
gas that correctly obtains in the large-N limit in the present
problem.

But the fallacious monopole screening argument does
raise an important point. To discuss the stability of Eq.(2) to
monopoles it is not enough to simply show that the scaling
dimension of the monopole operator is larger than the space-
time dimension. It is equally important to ensure that as the
monopole fugacity renormalizes towards zero, the mono-
poles do not induceother operators in the monopole-free
sector which are relevant. Indeed the screening occurring in
the above sine-Gordon theory(i.e., the self-energy contribu-
tion) may be viewed as providing an explicit example where
precisely this sort of thing happens.

Thus the key to demonstrate stability of thepF state de-
scribed by Eq.(2) is to show that there are simply no rel-
evant perturbations with or without the inclusion of mono-
poles. In this paper, we shall give a systematic analysis of all
operators in thepF state and show that there are indeed no
relevant perturbations, at least in the large-N limit.

An important closely related issue is that, in most existing
discussions of this problem, scant attention has been paid to
the constraints imposed by the microscopic symmetries of
the original lattice spin model on the effective theory Eq.(2).
Apart from globalSUsNd spin rotation these symmetries in-
clude translations, rotations, parity and time reversal, as well
as “charge conjugation,” which takes the lattice fermion
fields fa to fa

†. [For SUs2d spins charge conjugation is a
subgroup of spin rotations, corresponding to a rotation byp
around they-axis in spin space, but forN.2 is an indepen-
dent discrete global symmetry of the spin Hamiltonian.] As
emphasized in Ref. 10, the transformations of the fermion
fields and the gauge field under these symmetries define the
projective symmetry group associated with the slave
fermion-gauge formulation and are crucial in prohibiting a
class of potentially relevant operators in the continuum
(monopole-free) theory. As mentioned above, without the
projective symmetry, there is nothing to prevent the spinon
mass term(a relevant perturbation) from being induced by
any generic perturbation to the theory(be it inclusion of
monopoles or other less drastic perturbations such as four-
fermion interactions).

II. GENERAL ARGUMENT

We now present the details of our argument. The physics
of the p-flux state and the associated fluctuations is encap-
sulated in the lattice gauge theory Hamiltonian

HUs1d =
h

2 o
krr 8l

err 8
2 − t o

rPA
o

r8 r

fsi + s− 1dsry−ry8ddf ra
† e−iarr 8f r8a

+ h.c.g + ¯ , s10d

where the ellipsis represents perturbations consistent with the

symmetries. In the second term, the first sum is over sites of
the A sublattice and the second is over nearest neighbors of
r . Here arr 8 is a 2p-periodic vector potential living on the
nearest-neighbor bonds, anderr 8 is its canonically conjugate
integer-valued electric field. We must also specify the gauge
constraintor8 rerr 8+ fa

† fa=1; the first term is a lattice diver-
gence of the electric field. With this choice Eq.(10) reduces
exactly to the spin model in the limith/ t→` with J, t2/h.
The apparent breaking of lattice symmetry is a gauge artifact,
which is taken care of by requiring the lattice symmetry
transformations to act on the spinons with additional gauge
transformations, thus specifying theprojective symmetry
group of this spin liquid10 (see Appendix A). This informa-
tion allows us to verify that the gauge theory Hamiltonian
Eq. (10) has the exact same global symmetry group as the
original spin Hamiltonian, and to determine what additional
perturbations are allowed.

The continuum theory is obtained by first settingam=0
and solving for the band structure of Eq.(10) (this repro-
duces theN=` mean field state). Choosing a four-site unit
cell, the spinon dispersion has nodes atsp /2 ,p /2d in the
reduced Brillouin zonekx, kyP f0,pd. For each component
of SUsNd spin, the linear dispersion about the nodal point is
described by two two-component massless Dirac fermions.
Then withN flavors of lattice spinons, one has a total of 2N
flavors of two-component Dirac fermions. Gauge fluctua-
tions can be added to this continuum theory[as in Eq.(2)] so
long as we recognize that the gauge field is compact and
allow for appropriate monopole configurations. It is straight-
forward to determine the action of the microscopic symme-
tries on the continuum fields; this is outlined in Appendix A.
This shows that all possible quadratic mass terms(i.e., fer-
mion bilinears with no derivatives) are forbidden. Moreover,
the velocities associated with the dispersion around the
nodes are all required to be the same. Thus the quadratic part
of the Dirac action describes 2N flavors of two-component
Dirac fermions with fullSUs2Nd symmetry. Terms that break
the SUs2Nd symmetry are of quartic or higher order in the
fermions, and as often happens the quadratic part has higher
symmetry than the full action.

It is important to observe that if monopoles are ignored,
the theory in Eq.(2) has in addition an extra topological
global Us1d symmetry, as discussed in Sec. I. This corre-
sponds to the conservation of the gauge flux through any
surface spanning the system in space-time. A charge-Q
monopole event changes the flux by 2pQ and spoils this
conservation law.

Existing results in the literature show that the highly sym-
metric continuum theory Eq.(2) flows to a conformally in-
variant critical fixed point at largeN. Here we examine all
perturbations to this fixed point allowed in the present prob-
lem and argue that they are irrelevant. It is convenient to
group the perturbations into two classes: operators that do
not change the flux, and those that do. The former contains
all perturbations that are allowed in the absence of mono-
poles. The latter contains the monopoles, and their compos-
ites with polynomials in the fermion fields.

Results from the 1/N expansion strongly suggest that the
SUs2Nd-symmetric noncompact theory Eq.(2) flows to a
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critical fixed point forN sufficiently large.7,8 The infinite-N
theory is manifestly scale invariant, with a photon propagator
proportional to 1/uqu at small momentum. The effective ex-
pansion parameter for all diagrams in the 1/N expansion is
then dimensionless and one expects that only logarithmic
divergences will occur; these contribute to nontrivial anoma-
lous dimensions in principle calculable order-by-order in
1/N. It should also be noted that a fermion mass cannot be
generated perturbatively in 1/N. (See Appendix B for a more
detailed discussion on the validity of the 1/N expansion at
large but finiteN.) The criticality of the theory is further
supported by a simple RG analysis in 3−e dimensions,23

which finds a nontrivial fixed point atOsed that is presum-
ably smoothly connected to the large-N fixed point ind=2.
Furthermore, recent large-scale numerical studies find no
evidence for any symmetry breaking down to the smallest
value of N simulatedsN=2d.24 This conclusion agrees with
many approximate analyses of this model, findingSUs2Nd
symmetry breaking only below some criticalNc,

7,25–27 con-
tradicting early claims that the symmetry is always
broken.28–30

We next consider adding flux-preserving perturbations to
Eq. (2) that break its global symmetries down to those of the
original lattice model. As emphasized earlier themicroscopic
symmetries forbid all possible quadratic fermion mass terms,
as well as any velocity anisotropy. The leading such pertur-
bations will therefore be four-fermion terms. At largeN all
four-fermion operators have scaling dimension 4−Os1/Nd,
and are hence expected to be irrelevant. If some such opera-
tor had instead been relevant, it could have led to spontane-
ous breakdown of theSUs2Nd symmetry. Thus we expect
that at least forN large the general noncompact theory[i.e.,
with only the global symmetries of the lattice model Eq.
(10)] flows to anSUs2Nd-symmetric conformally invariant
fixed point.

Finally we consider the monopole operators. Following
Ref. 31 it will be extremely convenient to adopt a powerful
point of view familiar to conformal field theory aficionados
(for a pedagogical review accessible to condensed matter
theorists, see Ref. 32): In any D-dimensional conformally
invariant theory, there is a one-to-one mapping between local
operators and quantum states of the same theory quantized
on the surface of the unit sphereSD−1. Furthermore, energy
eigenstates on the sphere correspond to eigenoperators of RG
scale transformations. The scaling dimension of such an op-
erator is equal to the energy of the corresponding quantum
state. Reference 31 used this point of view to calculate very
simply the scaling dimension and other quantum numbers of
monopole operators for the theory in Eq.(2) at leading order
in 1/N.

Consider a general local operator that changes the flux by
an amount 2pQ. This corresponds to a state on the sphere in
a sector with a total magnetic flux of 2pQ through the sur-
face. The energy of the state(and hence the scaling dimen-
sion of the corresponding operator) is bounded below by the
ground state energy in the same sector. In theN→` limit the
gauge fluctuations are completely suppressed and the mag-
netic flux can be treated as a static, uniform background.
Furthermore, the fermions do not interact in this limit, so the

problem is reduced to finding the ground state energy of 2N
free Dirac fermions on the sphere in a background magnetic
field. As shown explicitly in Ref. 31(and is physically rea-
sonable) the ground state energy in each such sector with
nonzero flux isOsNd. Consequentlyall flux changing opera-
tors have a scaling dimension bounded below by a number of
OsNd and are irrelevant. Moreover, as shown in Ref. 31, the
scaling dimension of a chargeQ monopole isnot equal toQ2

times the scaling dimension of the chargeQ=1 monopole, as
is the case within the Gaussian RPA treatment in terms of a
gas of monopoles with a simplepairwise logarithmic inter-
action. This makes clear that the conclusion in the monopole
“screening” argument that the logarithmic interaction is
screened down to a 1/r form rests on the flawed assumption
of pairwise monopole interactions.

We conclude that the effective theory in Eq.(2) flows to a
conformally invariant fixed point with no relevant
perturbations—with or without the inclusion of monopoles.
Consequently, thep-flux Us1d spin-liquid state survives as a
stable deconfined gapless critical phase, at least at largeN.

III. RG ANALYSIS

These considerations can be illustrated by the following
(approximate) RG calculation which further helps clarify the
flaws in the RPA screening argument in Refs. 12 and 13. We
implement an approximate RG calculation following the ap-
proach used in Ref. 13. However, our calculation pays atten-
tion to two important points:(a) we assume that the fermion
mass counter term is not allowed(since it is forbidden by the
projective symmetry in thepF state); (b) we let the infrared
cutoff length scales for the fermionssLfd and the monopoles
sLmd approach infinity with a fixed ratio, sayLf /Lm=1. This
is reasonable sinceboth the monopole and the fermion sec-
tors involve long-wavelength and gapless degrees of free-
dom. The choice in Ref. 13, withLf taken to infinity before
Lm, is not justified because it is based on an erroneous adia-
batic approximation which requires the fermions to be rap-
idly varying variables compared with the monopoles.

In the absence of gapless fermions, the RG flow equations
in the monopole sector in terms of the “running” monopole
fugacity, zs,d, and the running “magnetic charge,”gs,d
=em

2 s,d, with ,; lnsLmd, are already given in Eqs.(6) and
(7). Next consider the monopole-free sector with gapless fer-
mions coupled to the noncompact gauge field with “electric
charge”e [with Lagrangian as given in Eq.(2)]. An approxi-
mate RG perturbative ine can readily be implemented on
this theory, which is simply noncompact QED3. This is ac-
complished by simply ignoring all nonlinear terms in the
action(except of course the minimal coupling vertex); in an
exact treatment these would have nonzero coefficients at the
fixed point of interest. Up to ordere6 the RG flow equations
take the simple form

]se2d
],

= s4 − Dde2 − 4ph
N

L
e4 s11d

with ,; lnsLfd andL an ultraviolet high momentum cutoff.
Here h.0 is a dimensionless number. The first term is
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present because the electric charge is not dimensionless in
three space-time dimensionssD=3d, while the second term
comes from a one-loop fermion bubble screening the Cou-
lomb interaction and reducing the effective electric charge,
as is familiar from four-dimensional QED. For largeN this
flow equation has a perturbatively accessiblestable fixed
point [with coupling se* d2=L /4hN] which describes the
critical p-flux state.

At this level of approximation, where we keep only the
quadratic Maxwell term in the gauge action, the inverse re-
lation em=1/2e is retained under the RG flows. Therefore we
can deduce the effects of the fermions on the monopoles by
replacing e2→1/4g in the electric charge flow Eq.(11)
above, which gives

]g

],
= − g +

phN

L
. s12d

The first term represents the engineering dimension of the
magnetic charge in 3D, while the second comes from the
screening of the fermions, which reduces the electric charge
and thereby increases the magnetic charge.

To arrive at a full set of RG flow equations incorporating
both the monopoles and the fermions, we must add to the
right hand side of Eq.(12) the contribution to the magnetic
charge coming from screening by monopole-antimonopole
pairs, given explicitly in Eq.(7). The full set of coupled RG
flow equations for the monopole fugacity and(magnetic)
charge then take the form

]z

],
= S3 −

gL

p
Dz, s13d

]g

],
= − g −

cg3z2

L4 +
phN

L
. s14d

If zs,d scales to zero in the,→` limit, the magnetic charge
approaches a fixed point value,gs`d;g* = phN/L. In this
case the scaling dimension of the monopole creation operator
becomes,Dm=g* L /p=hN. For largeN, Dm is much greater
thanD=3 so thatz indeed does scale to zero consistent with
the original assumption. Thus, provided

Nh . 3, s15d

this approximate RG scheme predicts that the monopole
fugacity scales to zero and the(magnetic) charge approaches
a fixed point value. TheUs1d gauge field is not confining at
such a fixed point, which corresponds to thepF phase with
gapless spin excitations.

One can see that the result Eq.(15) is the same as that
obtained by Ioffe-Larkin9 without considering the monopole
screening effect. Their analysis corresponds to the single re-
lation in Eq.(13) only, assumingg=g* ,N. This is eventu-
ally justified in our coupled Eqs.(13) and (14). The argu-
ments in Refs. 11 and 12 focus on the −z2 term on the right
side of Eq.(14) which represents screening of the magnetic
charge by monopole-antimonopole pairs, a term which scales
to zero in the present treatment.

We emphasize again that the RG calculation above is ap-
proximate(even in the large-N limit ). In particular the cou-

pling of the gauge field to the fermions is treated in pertur-
bation theory and all nonlinear terms in the action are
ignored. Nevertheless, it illustrates the failure of the mono-
pole screening argument in this context.

IV. DISCUSSION

The low-energy fixed point that describes thepF spin
liquid has a globalSUs2Nd symmetry and an extra global
topological Us1d symmetry. The latter is a precise conse-
quence of the asymptotic irrelevance of monopoles and cor-
responds to conservation of gauge flux. It thus provides pre-
cise meaning to the notion of deconfinement of theUs1d
gauge field. These results may be expected to generalize to
other states that also have Dirac fermions coupled toUs1d
gauge fields in two dimensions such as the staggered flux
spin liquid. Our analysis, however, is controlled only at large
N, which simply provides a limit where these issues can be
reliably addressed; future work will be required to determine
whether similar deconfinement obtains in models with real
SUs2d spins.

We remark that in three dimensions the stability problem
is essentially trivial even forSUs2d spin. In this case the
large-N limit does not play a role; for example, it is known
thatUs1d spin liquids can exist as stable phases ind=3 even
if the spinons are completely gapped. It is very likely pos-
sible to have a stable three-dimensional liquid ofSUs2d spins
described by massless Dirac spinons interacting with an
emergentUs1d gauge field—one need only show that all pos-
sible fermion mass terms are forbidden by the microscopic
symmetries. In this case the effective theory is QED in four
space-time dimensions, and at low energies the spinons and
photons interact onlyweakly. Because this theory is under
good control and detailed predictions can be made, it may be
very fruitful to search for possible realizations of such a
phase in experiments and numerical simulations.

We also note that issues similar to that resolved in this
paper arise in the problem of a Fermi surface of spinons
coupled to a compact Us1d gauge field in two
dimensions.13,33 Since this problem has an even higher den-
sity of low lying excitations compared with Dirac fermions,
the notion of integrating out all the fermions and considering
monopoles in the resulting action truncated to quadratic or-
der is even more suspect. We expect that a correct treatment
will likely show that monopoles are irrelevant for largeN in
this case as well. Of course, here the monopole-free theory is
likely vulnerable to Fermi surface instabilities. It is hence
unlikely to survive as the ground state but could perhaps be
as stable as an ordinary Fermi liquid.
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APPENDIX A: SYMMETRIES AND CONTINUUM FIELDS

For completeness, we provide here a discussion of the
continuum limit of thepF mean field state and the action of
the microscopic symmetries on the continuum Dirac fields.
The starting point is the mean fieldpF Hamiltonian

Hp = − t o
rPA

o
r8 r

fsi + s− 1dsry−ry8ddf ra
† f r8a + h.c.g. sA1d

Note that this is simply Eq.(10) with gauge fluctuations
completely suppressedsarr 8;0d.

It is convenient to work with a four-site unit cell labeled
by sR , id, with R=2nxx+2nyy and r sR , id=R+vi, where

vi =5
0 i = 1

x i = 2

x + y i = 3

y i = 4.
6 sA2d

The spinon operator at the sitesR , id is denotedfRia. It is a
trivial exercise to go to momentum space and solve Eq.(A1);
in the reduced Brillouin zonekx, kyP f0,pd appropriate for
this unit cell one finds gapless Fermi points atQ0
;sp /2 ,p /2d. Near this point the dispersion can be de-
scribed by 2N two-component Dirac fermions. It is conve-
nient to denote these bycaa

A sRd. Here a=1,2 and a
=1, . . . ,N are theSUs2Nd flavor indices[a is simply the
SUsNd spin index]. Also, A=1,2 labels the two components
of each spinor(this is often suppressed). These fields are
related to the lattice spinons as follows:

c1a
1 sRd ,

1

2Î2,
eiQ0·RsfR1a + fR3ad, sA3d

c1a
2 sRd ,

− i

2Î2,
eiQ0·RsfR2a − fR4ad, sA4d

c2a
1 sRd ,

− e−ip/4

2Î2,
eiQ0·RsfR2a + fR4ad, sA5d

c2a
2 sRd ,

− e−ip/4

2Î2,
eiQ0·RsfR1a − fR3ad, sA6d

where, is the lattice spacing.
In momentum space the continuum Hamiltonian takes the

form

Hc =E d2q

s2p2d
caa

† sqdsq1t1 + q2t2dcaasqd, sA7d

where we have chosen units to set the velocity to unity, and
ti are the usual Pauli matrices acting in the two-component

Dirac “spin” space. Here we use the following rotated coor-
dinates:

q1 =
1
Î2

sqx + qyd, sA8d

q2 =
1
Î2

s− qx + qyd.

We now simply quote the action of the microscopic sym-
metries on the lattice spinons and the resulting transforma-
tions for the continuum fields. In order to keepHp invariant,
in some cases the spinons transform with an additionalUs1d
gauge transformation; this is the hallmark of projective sym-
metry and the projective symmetry group, and has important
consequences for the action of the symmetries on the con-
tinuum fields. We often include an extrauniformgauge trans-
formation f ra→eiff ra to (slightly) simplify the form of the
continuum transformation laws. It is convenient to adopt a
four-component notation, defining

Ca = Sc1a

c2a
D . sA9d

We can represent matrices acting in this four-component
space by the tensor products of Pauli matricestim j. The ti

matrices act in the Dirac spin space, while themi act in the
flavor space connecting the upper and lower two-component
spinors ofC. In the SUs2Nd-symmetric continuum theory,
the mi generate theSUs2d subgroup ofSUs2Nd consisting
only of emergent symmetries; these are in some sense con-
tinuous extensions of the discrete lattice symmetries.

x-translations. Translations by one lattice site in thex
direction act on the spinons as follows:

f ra → expS−
ip

2
zrD f r+x,a, sA10d

where zr =0,1,2,3 when the coordinates ofr are (even,
even), (odd, even), (odd, odd) and (even, odd), respectively.
The continuum transformation law is

Ca → sim1dCa. sA11d

Rotations. We choose to make ap /2 counterclockwise
rotation about the center of a plaquette; that is, we rotate
about the pointsx+yd /2, which givesr =srx,ryd→ r 8=s−ry

+1,rxd. The action on the spinon operators is

f ra → er f r8a, sA12d

where

er = H+ 1 r P A

− 1 r P B
J . sA13d

In the continuum we have

CasRd → expX ip

2 Sm1 + m2

Î2
DCexpS ip

4
t3DCasR8d.

sA14d

Reflections. We consider a reflection of the formr
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=srx,ryd→ r 8=s−rx,ryd, under which the spinons transform
trivially

f ra → f r8a. sA15d

In the continuum this leads to

CasRd → sim2dexpX ip

2 S t1 + t2

Î2
DCCasR8d. sA16d

Charge conjugation. As discussed in Sec. II charge con-
jugation is distinct from theSUsNd spin rotation symmetry
only for N.2. The action on the spinons is

f ra → expS ip

2
zrD f ra

† . sA17d

In the continuum

Ca → fCa
†sit1dsim1dgT, sA18d

Ca
† → fsit1dsim1dCagT. sA19d

Time Reversal. Time reversal is an antiunitary operation
acting on the lattice spinons as follows:

f ra → er f ra
† . sA20d

In the continuum this becomes

Ca → fCa
†sit3dsim3dgT, sA21d

Ca
† → fsit3dsim3dCagT. sA22d

It is at this point a simple exercise to show that these
symmetries forbid all possible mass termsMij =Ca

†mit jCa,
as well as any velocity anisotropy.

APPENDIX B: VALIDITY OF THE 1/ N EXPANSION
AT LARGE BUT FINITE N

While our results are based on an analysis within the
framework of the 1/N expansion, they should hold for large
but finiteN. In order to see this it is important to consider the
precise connection between the 1/N theory and actual finite-
N models.

Consider the field theory Eq.(2) for some finite value of
N. We can formally integrate out the fermions to arrive at an
effective action for the gauge field as in Eq.(8)—one can
imagine using an appropriate lattice regularization in order to
ensure that this step is well defined. With the fermion fields
gone, there is no obstacle to treatingN as a continuous vari-
able and doing perturbation theory in 1/N. The resulting
family of field theories is manifestly nonlocal because we
have obtained it by integrating out the gapless fermions;
however, for integerN it is equivalent to the local field
theory we started with. For nonintegerN there is no reason to
believe the theory is equivalent toany local theory. The key
point is that near 1/N=0 the points that do correspond to a
local theory become arbitrarily closely spaced, so it should
be a very good approximation to view the theories in a small,
continuous interval near 1/N=0 as local.

The above considerations mean that we can think of our
expansion about the 1/N=0 fixed point in the standard
framework of the Wilsonian renormalization group, which
applies only to local theories. In this case a finite value of
1/N is an exactly marginal perturbation, and we can calcu-
late corrections to the scaling dimension of any operator as
1/N is tuned away from zero. The 1/N expansion itself gives
only an asymptotic series for each of these scaling dimen-
sions. However, if the asymptoticN→` result for a given
scaling dimensionD is greater than the space-time dimension
D, it is straightforward to use the mathematical definition of
asymptotic convergence to show thatD.D for some suffi-
ciently large butfinite value of N, above which the corre-
sponding operator is irrelevant.
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