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The WKB approach to quantum tunneling from a metastable well is generalized to include a
weak oscillatory force. Both one-dimensional decay and multidimensional decay, appropriate for
a system coupled to a dissipative environment, are considered. In both cases, general expressions
are derived for the enhancement of the decay rate linear in the applied force. The enhancement is
expressed exclusively in terms of the instanton trajectories of the unperturbed system. For a cubic
potential with no damping, the decay rate exhibits sharp resonances when the applied frequency
coincides with the energy spacing between the ground and excited states in the metastable well. In
the strong-damping limit, this resonance structure is completely suppressed.

I. INTRODUCTION

The decay of a system from a long-lived metastable
state arises frequently in physics. An appropriate model
in many circumstances consists of a single coordinate
moving in a metastable potential, as depicted in Fig. 1.
At high temperatures thermal activation over the barrier
is the principal decay mode. Upon cooling, however,
quantum tunneling through the classically forbidden re-
gion eventually dominates. Provided the coordinate is
essentially decoupled from its environment, a standard
Wentzel-Kramers-Brillouin (WKB) approach! can then
be used to calculate the decay rate.

Over the past several years there has been consider-
able interest in understanding the quantum tunneling of
a macroscopic coordinate,2~® motivated in particular by
experiments on Josephson junction systems.” An impor-
tant feature in macroscopic quantum tunneling is the
coupling of the coordinate to the microscopic or envi-
ronmental degrees of freedom,? which may strongly
modify the decay rate. In a recent experiment,® quan-
tum tunneling of the phase in a current-biased Josephson
junction was studied in the presence of a weak mi-
crowave perturbation. The decay rate out of the zero-
voltage state was found to be resonantly enhanced when
the microwave frequency matched the energy-level spac-
ing between two states in the metastable well. A
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FIG. 1. Metastable potential V(x).

theoretical understanding®~!2 of this experiment requires

incorporating both dissipation and the ac perturbation
into a quantum tunneling calculation. Reasonable agree-
ment with the existing data has recently been obtained'®
by employing a master equation for the discrete states in
the well, with dissipation, introduced perturbatively,
mediating transitions between the states.

Motivated by this experiment, the purpose of this
work is to reformulate the standard WKB approach to
quantum decay in order to include a weak time-
dependent perturbation. In contrast to the usual WKB
treatment, the presence of an ac force necessitates study-
ing the time-dependent Schrodinger equation. Progress
can be made,'* nevertheless, by solving the Schrodinger
equation via a double expansion in powers of # and the
strength of the ac force, f. In this way the contribution
to the decay exponent linear in f can be calculated ex-
plicitly.

In Sec. II a time-dependent WKB calculation is
developed for the decay of a single coordinate in the ab-
sence of a dissipative environment. A general expression
for the resonantly modified decay exponent (linear in f)
is derived for arbitrary metastable potential wells. For
the cubic well, the decay rate is found to exhibit reso-
nances at frequencies corresponding to integer multiples
of w,, the small oscillation frequency in the well. These
resonances can be interpreted as arising from a single
photon absorption which excites the particle from the
ground to an excited state in the well.

The additional effects of a dissipative environment are
also considered. As usual the coordinate is coupled to a
bath of harmonic-oscillator degrees of freedom.? As
shown originally by Caldeira and Leggett,> provided no
ac force is acting, the decay rate in the presence of a dis-
sipative environment can be extracted by using instanton
paths to evaluate a functional-integral representation of
the partition function. More recently, Schmid!® has
demonstrated that the decay rate can alternatively be de-
rived by employing a multidimensional WKB approach.
The advantage of this latter treatment is that it can be
generalized to incorporate a time-dependent term in the
Hamiltonian.

75 ©1988 The American Physical Society



76 MATTHEW P. A. FISHER 37

In Sec. III the multidimensional WKB method is
modified to include a weak ac force. A general expres-
sion for the leading enhancement to the decay rate is ob-
tained. The final result, Egs. (3.16)-(3.18), is expressed
exclusively in terms of the instanton (or bounce) trajecto-
ry which enters into the Caldeira-Leggett theory.? Using
previous results>>1%17 for the instanton trajectories, the
resonant enhancement is evaluated explicitly in several
special cases in Sec. III B. For the cubic well in the
strong-damping limit, the resonant structure, present at
zero damping, is found to be completely suppressed.

II. UNDAMPED RESONANT ENHANCEMENT
A. General formulation

For a single quantum degree of freedom, the decay
rate from a metastable well can be computed in the
semiclassical limit using the WKB approximation. In
this section I study the modification of the decay ex-
ponent due to the presence of a weak oscillatory force.
The Hamiltonian of interest takes the form

:Lp2+ Volx)+V (x,t),

2.1

o 2.1

where V,(x,t) is a small oscillatory force given by
Vi(x,t)=fx cos(wt) , (2.2)

and V(x) is a static metastable well as shown in Fig. 1.
The potential V,(x) will be taken to vary quadratically
about its metastable minimum at x =0, Vy(x =0)=0,
and possess a unique “exit” point x, such that Vy(x) is
negative for x >x,. The canonical example is the
simple-cubic potential, Vy(x)=1m wixX(1—x/x.). In
the absence of V,(t) the decay rate may be extracted'’
from quasistationary states ¢ of the time-independent
Schrédinger equation, Hy=Ey. In particular, the
imaginary part of the energy E, for a state with an out-
going probability current, can be interpreted as the de-
cay rate. When a time-dependent force is acting, howev-
er, it appears necessary to study rather the time-
dependent Schrodinger equation, i#id,yy=H1. In the
quasiclassical limit it is convenient to recast the
Schrodinger equation by introducing the ansatz

P(x,t)=exp[ — Wi(x,t)/#], 2.3)

giving the time-dependent Hamilton-Jacobi equation

#

_ia,Wz——zlr;(ax WP+ Vot Vit S @W) . (24

Not surprisingly, for a harmonic-oscillator potential
where no tunneling is present, (2.4) can be solved exactly
(see below). For a nonlinear metastable well, the idea is
to find the solution of (2.4) in the classical inaccessible
region, 0 <x <x,, which matches onto the harmonic-
oscillator solution at x =0. Up to a normalization fac-
tor, such a procedure gives the probability of finding the
particle at the exit point. When ¥, =0 and to leading
order in #—0, this probability is in fact simply propor-
tional to the decay rate, '~ |#¥(x.)|2 When V, is
present, however, |#(x,,t)|? depends on time oscillat-

ing with the external frequency . The central assump-
tion made in this paper is that, in this case, the decay
rate follows by simply averaging |¥(x,,t)|? over one
cycle of motion,

r=(rau), (2.5a)

()~ | ¥(x,,t)| *=exp

—%Re[W(xc,t)] ] . (2.5b)

In (2.5a) the angular brackets denote the time average
over one cycle.

Under the assumption (2.5) an evaluation of I'" has
been reduced to solving the Hamilton-Jacobi equation in
the classical inaccessible region. The boundary condi-
tion at x =0 is specified by requiring that W (x,t) match
onto a solution of (2.4) for a harmonic-oscillator poten-
tial, namely,

2
me
ReW =0 |5 4L _cosot_ | (2.6a)
2 m (w;—o”)
Fioot o sin(wt) x
ImW= —
2 d (03— w?)
f? (03 +w?)sin(20t )
— t+
4m (03— w?) (03 —0?)20

(2.6b)

Notice that this solution corresponds to a wave packet
following the motion of a classical forced harmonic os-
cillator and with a dispersion equal to that of the ground
state of an unforced quantum oscillator.

A solution of (2.4) for a general metastable well can be
obtained by expanding simultaneously in # and f.
Specifically, inserting the expansion

W(x,t)=Wy(x)+fW,(x,t)+0 (f4, %) 2.7)

in (2.4) and comparing powers of # and f gives the
zero-order eikonal equation

L@, wyr=v,x),

om (2.8)

and an equation first order in f,
i W, =— #(ax Wo) (3, W) +x coslwt) . (2.9)

Notice that W, has been assumed to depend only on x,
consistent with the harmonic-oscillator solution (2.6)
which is time independent at zeroth order in #,f. The
eikonal equation is standard from WKB analysis and can
be solved by straightforward integration. The boundary
condition on Wj(x) at x =0 follows by matching onto
(2.6), Wo(x)=%ma)(2)x2, giving

W,(0)=0, Wo(x)>0. (2.10)

Upon integration Wy(x) is then given at the exit point
by the familiar form

Wo(xc):foxc dx[2mVy(x)]"/? . @.11)



The decay rate for the unforced problem (to leading or-
der in #) follows from (2.5) as I'g~exp[ —2W(x, ) /#].

The resonant enhancement to the decay rate is ob-
tained by solving (2.9) since

(1)/Ty~exp -—%Re[Wl(xc,t)] .

(2.12)
The function W, (x,t) is required to match onto the
harmonic-oscillator solution (2.6) which takes the form
Wi (x,t)=1y(x)e "' +(0— —0), (2.13)
with y,(x)=x(wy—w)~'. This matching can be
achieved most simply by inserting the general form

(2.13) into (2.9) to obtain a differential equation for the
unknown function y (x),

172

y'(x)—wy(x)=x . (2.14)

2
m Vo(x)

Then I'(z) follows by integrating (2.14) through the clas-
sically inaccessible region, 0 <x <x_, with the boundary
condition

(2.15)

as in the harmonic-oscillator case, and the requirement
that y (x) be analytic at the origin. This additional re-
quirement of analyticity is physically reasonable since
y (x) is directly related to the wave function [via (2.13)],
which should be analytic. In practice it serves to elimi-
nate the wunphysical homogeneous solution of (2.14)
which varies as x**“° for x —0.

The general expressions (2.12)-(2.15) constitute the
central results of this section. The contribution to the
decay exponent, linear in the ac force, is completely
specified by these expressions, for arbitrary metastable
potentials. In Sec. IIB I'(¢)/I; is evaluated explicitly
for a specific class of potentials.

B. Results for specific potential wells

Below we obtain the resonantly enhanced decay rate
for a class of metastable potentials of the form

Vox)=1modx[1—(x/x,)*], x>0 (2.16)
2 c

for arbitrary (positive) integer k. This form interpolates
between the cubic potential, k =1, and a truncated
harmonic-oscillator potential, kK — . The calculation
consists of integrating (2.14) from the origin out to x,,
with the boundary condition (2.15) and the requirement
of analyticity imposed at the origin. The most general
solution can be expressed as a sum of a homogeneous
and a particular piece. Since the homogeneous solution
is, in general, nonanalytic at the origin, varying as P
for x -0, it must be omitted from y(x). A particular
solution can be obtained in closed form as

y,,(x):f:dx’x’g(x')exp [f:dx”wg(x") (2.17)
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with g (x)=[m /2¥,(x)]"/? and ¢ an arbitrary constant.
A simple analysis reveals that in the limit x,c —0, yp(x)
consists of a sum of two terms, one linear in x and of the
form x (wy—®)~!, and the other varying as ¢ (x /¢)" .
Thus, provided o < w,, setting ¢ =0 eliminates the non-
analytic piece, giving an appropriate solution for y(x)
satisfying the boundary condition (2.15).

For o > w,, an analytic solution can be constructed by
introducing y (x)=x (0y—®)~'+y,(x) into (2.14) and
integrating the resulting differential equation for y,. For
the cubic potential, a particular solution for y, of the
form (2.17) will also contribute a nonanalytic piece
which, however, vanishes in the limit ¢—O0 provided
o <2w,. The appropriate solution for w>2w, can, in
turn, be constructed by iterating this procedure obtain-
ing, upon the nth iteration, the solution for @ in the
range n <(w/wy) <n +1. Below I adopt a simpler ap-
proach which relies on an analytic continuation in the
complex o plane to avoid the singularities at the reso-
nance frequencies, ® =naw,.

As discussed above, provided w < wg, an expression for
y(x) at the exit point can be obtained from (2.17) with
¢ =0 and x =x,.. Specializing to the cubic potential one
finds

— /o,
1 dx 1+V1—x 0
(xc;0)= , .
yxso)=x [ = |1 A (2.18)
which is indeed convergent for ® <w, The sum

y(x,;0)+y(x.; —w), which is required to evaluate the
resonant enhancement (2.12), can then be obtained for
| @ | <@, by direct integration on (2.18), giving

drx (0 /wg)

y(x o) +y(x,;—o)= (2.19)

sin(7w /wq)

While only derived for |w| <, this closed-form ex-
pression can be correctly interpreted as the appropriate
analytic continuation over the entire complex @ plane.
Analytic continuation has enabled us to “‘step around”
the poles at w =nw,, evident in (2.19), without having to
solve separately the differential equation in each of the
intervals, n <(w/wy) <n +1, along the real axis.

The final expression for the resonantly modified decay
exponent out of the cubic metastable well follows upon
combining (2.19) with (2.12) and (2.13), namely,

4fx.
fieg

7Tw/0)0

—In[T(£)/Ty]~

cos(wt) . (2.20)

sin(mw /wg)

Notice that the decay rate, obtained upon averaging I'(z)
over one cycle as in (2.5a), is resonantly enhanced at fre-
quencies w=nw, corresponding to integer multiples of
the small oscillation frequency in the quadratic part of
the well. These resonances can be interpreted as arising
from a single-photon absorption which excites the parti-
cle from the ground to the nth excited state in the meta-
stable well. Since the excited states have less far to tun-
nel, the decay rate is in turn enhanced. Multiphoton
processes, absent above, could in principle be incorporat-
ed by working to successively higher order in the exter-
nal force f. In general, at mth order one would expect
subharmonic resonances at frequencies w=(n /m)w,.
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Apparently the semiclassical approximation used
above does not account fully for the anharmonicities in
the metastable well which will shift the excitation ener-
gies from the harmonic-oscillator results n#iw, This fact
can be understood by noting that in the WKB limit,
fiwy <<madx?, the (relative) anharmonicities in (2.16),
which are of order x/x_, are vanishingly small, O (%),
when x is comparable to the oscillator dispersion
(#i/mwy)'’%. One therefore expects the (relative) energy
shifts due to the anharmonicities to be down by order #,
and consequently absent from the leading # analysis
above [see (2.7)].

It should be emphasized that the result (2.20) is ap-
plicable only for frequencies far enough off-resonance
that the dimensionless exponent linear in f is small com-
pared to the zeroth-order tunneling exponent,
2Wy(x.) /% given in (2.11). For the resonance at o =a,,
this restriction is equivalent to the condition that the
harmonic-oscillator wave packet described by (2.6), oscil-
late with an amplitude much smaller than the exit point
X,.

For (fx./fiwy)>>1 the decay rate I', obtained by
averaging I'(¢) over one cycle, is dominated by times
when I'(¢) is maximum, so that In(I" /T'j) ~» away from
the resonance. In the opposite limit (2.20) indicates that
In(T'/Ty) ~w?. This should be contrasted with Ref. 9
where an enhancement exponential in w for large fre-
quencies was obtained. The low-frequency limit,
® << w,, provides a convenient check on the above calcu-
lations. In this limit, I'(#) reduces to the WKB decay
rate from the static metastable well V(x)=V,(x)
+V,(x,t) (fixed ¢), as expected.

The calculation for the cubic potential can be easily
generalized to potentials of the form (2.16). One finds
for arbitrary positive integer k

Xc

—In[I(2) /T ]~ 5— Ay (@ /wy)cos(wt ) , (2.21a)
fiw,
417k 1—x 14+x
A =
x(x) ek |k | (2.21b)

with y the standard y function. Note that, in contrast
to the cubic case (k =1), the resonances occur at fre-
quencies ®/wy=1+nk, for positive integers n. In gen-
eral, the resonance structure is determined by the power
k of the leading anharmonicity in the potential ¥,(x),
see (2.16). In particular, any metastable potential with a
leading anharmonicity varying as x> will exhibit reso-
nances at nw, for all positive integers n. It is amusing
to see how the result for general k reduces to the trun-
cated harmonic-oscillator result (k = « ). For k — o all
of the resonances, save one, are pushed off to infinite fre-
quencies, leaving a single resonance at w, as expected.
A(t2 llzcx)r/gke frequencies the resonance strengths vary as
®

In the presence of dissipation one expects the (diver-
gent) resonances found above to be rounded. Indeed, as
will be shown in Sec. III, with sufficient damping the
resonance structure can in fact be washed out entirely.

Before considering the effects of dissipation, it is con-
venient to digress briefly to recast the above approach in
terms of instanton or bounce trajectories.

C. Reformulation in terms of bounce trajectories

Rather than solve the eikonal equation (2.8) by direct
integration, as in (2.11), it is convenient to introduce the
method of characteristics,!> which can be more easily
generalized to a multidimensional decay problem (Sec.
III) appropriate for a system with dissipation. If the
eikonal equation is recast in the form Hy,=0, where H
is a fictitious Hamiltonian given by

L y,x), p=a,w,

= 22
=%, (2.22)

it is natural to seek a solution by introducing fictitious
trajectories {x (7),p(7)}, moving in imaginary time 7,
which satisfy Hamilton’s equations
oy OHo  —3H,
x(1)= , p= .
T ap P ox
Solving the eikonal equation reduces, then, to solving for
x (1) satisfying

(2.23)

Imx A1)—Vy(x)=0, (2.24)

an equation of motion for a “particle” moving in the in-
verted potential. The trajectory satisfying (2.24) which
starts at x =0 and 7= — «, reaches x, at 7=0 and re-
turns to the origin at 7= + «, is referred to as a bounce
(or instanton) trajectory. Since 3, W,=mx one can re-
late the tunneling exponent (for f =0) to the action
along the bounce trajectory, namely
2Wolx) /=y [ 7 drms?. (2.25)
The resonant enhancement follows by solving the
differential equation (2.14), which can also be recast as a
differential equation in imaginary time involving the
bounce trajectory. Specifically, replacing (2V,/m)!”?
with X (7) and applying the chain rule enables (2.14) to
be reexpressed as

y(r)—owy(r)=x (1) (2.26)

with x(7) the bounce trajectory. Then y(x =x,_), being
equivalent to y(r=0), is obtained via a temporal in-
tegration of (2.26) from — o to 0, with boundary condi-

tion y (7= — 0 )=0. Since x (1) ~exp(wy7) for 7— — 0,
the requirement of analyticity on y (x) at the origin im-
plies that y (7) must be analytic in exp(wyT) at 7= — 0.

Thus, the homogeneous solution of (2.26), varying as
exp(wr), should be absent from the desired solution.

It is instructive to verify that integration of (2.26)
agrees with the results of Sec. IIB. For w <, a solu-
tion satisfying the boundary condition and required

analyticity at 7= — « can be written

yir=0)= [ drx(rle=*", (2.27)
so that -
y(xc;co)+y(xc;—a))=fac d7x(7)cosh(wT) . (2.28)

— ®
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Upon combining (2.28) with (2.12) and (2.13) the reso-
nantly enhanced decay exponent is expressed directly as
a simple integral over the bounce trajectory. The above
expression is in fact reminiscent of (although different
than) the one derived by Ivlev and Mel’'nikov® by de-
forming real-time physical trajectories of the particle
x () into the complex time plane.

Despite the apparent simplicity of the result (2.28) it
should be emphasized that since x(7)~exp( —wq | 7| ) as
7—* w0, the integral is convergent (on the real axis) only
for || <wy As in Sec. II B, however, this solution
can be extended to arbitrary w by analytic continuation
into the complex @ plane to avoid the resonance poles at
nw, For example, for the cubic potential where the
bounce trajectory is x (7)=x,cosh™%(wyr/2), the in-
tegral can be evaluated in closed form giving the result
(2.19) which is defined over the entire complex w plane.

III. DISSIPATIVE RESONANT ENHANCEMENT

A. Many-dimensional WKB approach

The effects of dissipation on the resonantly enhanced
decay rate can be conveniently studied within a system-
plus-bath framework. To be concrete, I consider the
Caldeira-Leggett model,® which consists of coupling the
tunneling coordinate bilinearly to an infinite set of
harmonic-bath degrees of freedom, although the tech-
niques discussed below apply more generally. The Ham-
iltonian of interest can be expressed as

3 2
. +Vi(x),

J

_ﬁZ N

H=5"3

2m 2

(3.1

N
Vix)= Vo(x] )+ 2 %mw}(xj —X )2 ,
j=2

where x; denotes the particle moving in the metastable
well ¥, and {x;}, j=2,...,N, are the bath degrees of
freedom. The coupling to the environment is character-
ized by the spectral density?

J@)=7m 3 o}blo—a,) . (3.2)
J

The special case of Ohmic dissipation J(w)=nw corre-
sponds to frictional damping with friction coefficient 7.
The Hamiltonian (3.1) with Ohmic dissipation is general-
ly believed to offer a reasonable description of the dissi-
pative dynamics of small Josephson junctions. Under
the influence of a microwave perturbation, the coordi-
nate will experience an additional oscillatory force. As
in Sec. II, this is modeled by adding a term to H of the
form

lefxlcos(a)t) . (3.3)

In the absence of H,, the decay rate can be calculated
by using instanton techniques to obtain the imaginary
part of the ground-state energy.? It is unclear whether
this approach can be generalized to incorporate the mi-
crowave perturbation, however, since the Hamiltonian
will then be time dependent. Alternatively, the decay

rate can be extracted using a multidimensional WKB ap-
proach.!’® Below, this method will be generalized to in-
corporate the ac perturbation. A general expression for
the contribution to the decay exponent linear in f will be
obtained.

As in Sec. II, the time-dependent Schrodinger equa-
tion is rewritten by inserting the semiclassical ansatz for
the wave function,

Yix,t)=exp[ — W(x,t)/#], (3.4)

where the action W is now a function of all N degrees of
freedom. Upon introducing an expansion for W in
powers of # and f, as in (2.7), and comparing powers,
one obtains the many-dimensional generalization of the
zeroth-order eikonal equation (2.8),

aw, |’

1
F —V(x)=0,

2mj

(3.5)

J
and an equation first order in f,

oW,
ox;

W,

ax;

—id,W —_1 +ex cos(wt) .
1 2 1
j

(3.6)

Terms of order # and f? have been ignored. As in the
one-dimensional case, W, has been assumed time in-
dependent. A convergence factor exp(et) has been in-
troduced in (3.6) to switch on the microwave perturba-
tion adiabatically. The limit e—0 will be taken at the
end of the calculation.

Consider first the decay in the absence of the ac per-
turbation. This case was studied in detail in Ref. 15 and
will be only briefly reviewed here. It is necessary to
solve the eikonal equation in the classically forbidden re-
gion subject to the boundary condition (2.10). As in Sec.
IIC, it is convenient to introduce fictitious trajectories
{x;(7)} which satisfy

aw,
ox;
enabling the eikonal equation to be rewritten as
(3.8)

im 3 x3-V(x)=0.
J

Notice that these trajectories correspond to constant
“energy”” motion in the inverted potential —V(x).
Moreover, from (3.7) the change of W, along a trajecto-
ry is simply Wo=m zjsz-. Therefore, W,(x) can be
evaluated, in the classically inaccessible region, by in-
tegration in time along a trajectory which starts at x=0
at 7= — o and passes through x at time 7.

A set of such paths is shown schematically for two di-
mensions in Fig. 2. The “surface” X denotes the bound-
ary between classically accessible and inaccessible re-
gions, determined from the condition V(x)=0. A typi-
cal path starting from the origin will veer away from
this boundary before reaching it. Attention should be
focused!® on the single path which approaches = perpen-
dicularly and reaches the boundary at the exit point x,
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with zero velocity. This singular path is clearly the mul-
tidimensional generalization of the bounce trajectory dis-
cussed in Sec. IIC. At long times the bounce will re-
trace its steps returning eventually to the origin; for con-
venience the origin of (imaginary) time is set so that the
trajectory arrives at the exit point at 7=0.

The decay rate to leading order in # is given by the
probability of finding the particle at the exit point,
[y~exp[ —2Wy(x,)/#], in complete analogy with the
one-dimensional case. As indicated above, this can be
related to an integral along the bounce trajectory, name-
ly,

2Wo(x)=[" drm 3 iXr) . (3.9)
w ‘
The resonant enhancement to the decay rate can, in

turn, be obtained by solving for W, at the exit point; see
(2.12). Introducing

Wi(x,0)=1y(x;0)e —Hotielt 4 (45 @) (3.10)

into (3.6) suffices to eliminate the time dependence, giv-
ing

1 9,

3.11
m axj ( )

—(w+i€)y =x,,

dy
% ax;
which must be supplemented by the boundary condition
at the origin, (2.15), namely y(x=0)=0. It is con-
venient to reexpress (3.11) in terms of the trajectories
{x;(1)}. Inserting (3.7) and applying the chain rule en-
ables (3.11) to be rewritten as an equation in imaginary
time,

y(r)—(o+iey(r)=x (1), (3.12)

the multidimensional generalization of (2.26).

The function y(x) can then be evaluated by integrat-
ing (3.12) in time with x,(7) corresponding to the ap-
propriate trajectory passing through the point x of in-
terest. Since only y (x.) is required to evaluate the decay

%,

FIG. 2. Solid lines depict solutions of the classical equation
of motion (3.8) which start from the origin. The dotted line =
denotes the boundary between classically accessible and inac-
cessible regions, determined from the condition ¥ (x)=0. The

bounce trajectory connects the origin with the exit point x, on
3.

enhancement, x,(7) can be taken as the bounce trajecto-
ry for our purposes. With this choice

y(x, )=y(r=0), (3.13)
where y(7=0) is obtained by integrating (3.12) from
— o to 0 with the boundary condition y (7= — o0 )=0.
This boundary condition, however, is insufficient to
specify a unique solution of (3.12) since the homogene-
ous solution, y,(7)=exp[(w+i€)r], vanishes at 7= — co.
This difficulty was also encountered in Sec. II. It was
pointed out there that the homogeneous solution corre-
sponds, in general, to a nonanalytic function in x and
must on physical grounds be eliminated from the re-
quired solution. This can be achieved here by expressing
y (1) as a sum of functions exp(A7) in the form

y(r):fO“ dre*y(R), 7<O (3.14)
with y (A) to be determined. For real A, (3.14) does not
contain any of the homogeneous solution which oscil-
lates in time for nonzero €.

To determine y(A) it is convenient to introduce a
Laplace transform representation of the bounce trajecto-
ry

xm):fo‘” dhe*x,(X), 7<0 (3.15)

with x,(A) defined by the Laplace inversion formula

x](k)__L c+ico

2mi Ye—iw

Inserting (3.14) and (3.15) in (3.12) then relates y(A)
directly to the bounce trajectory,

y(AM=A—w—ie) 'x(X).

d're)"xl(‘r), A>0. (3.16)

The resonant enhancement can now be expressed
directly as an integral over x,(A). Indeed, using the
definition (2.12) and combining (3.10) with (3.13) and
(3.14) gives the final result

—n((0) /Tl ~ 2L Rel W, (., 01= L Re e =10

(3.17)
with the complex amplitude A4 given by
P 2A
A= dAx (A) 3.18
fO ! A—w?—ie ( :

and the € —0 limit understood.

The general expressions (3.16)-(3.18) are the central
results of this paper. The contribution to the decay ex-
ponent, linear in the microwave perturbation, is ex-
pressed simply in terms of the bounce (or instanton) tra-
jectory. Specific details, such as the form of the metasta-
ble well and the nature of the dissipation, enter only via
this bounce trajectory. It should be emphasized that the
above expressions apply generally to multidimensional
decay problems and are not restricted to the Caldeira-
Leggett form (3.1). Moreover, as a special case, they
may be applied to the undamped decay problem, which



was treated slightly differentially in Sec. II. In Sec. III B
specific results will be obtained for the Caldeira-Leggett
model (with Ohmic dissipation) using previously calcu-
lated bounce trajectories.

B. Results for Ohmic dissipation

To obtain the resonant enhancement an analytic solu-
tion for the bounce trajectory is required. The equation
of motion for the bounce trajectory follows from (3.1)
and (3.8). Assuming a continuous spectrum of oscilla-
tors J (w) with Ohmic form, one finds

—m%\(r)+ [ dTK(7—7)x,(7)+Vj(x,)=0 (3.19)
with K(w)=7n|w|. The oscillator bounce trajectories
are related to x,(7) via

—%j+oix;=0lx,, j=2,...,N. (3.20)

Solutions of (3.19) have previously been obtained both
for the truncated harmonic-oscillator potential'® with ar-
bitrary 7 and for the cubic potential at special values of
the damping.>!’

Consider first the truncated oscillator potential, which
corresponds to the k— oo limit of the potential (2.16).
In this case the bounce trajectory can be expressed as'®

x(r)=xI(r)/I(r=0),
(3.21)

I(T)=f%$e‘i“’7(w2+w%+‘}’ lew]|)~!

with y =n/m. Notice that I (r=0) is equal to the vari-
ance of a damped quantum harmonic oscillator, {x2),.
The decay rate in the absence of the microwave pertur-
bation is computed by inserting the bounce trajectory
into (3.9), giving

xl

C2(x?),

a result obtained previously by Grabert, Weiss, and
Hanggi.’ Notice that T is proportional to the probabili-
ty that a damped quantum oscillator is at the exit point
X,

To evaluate the resonant enhancement, the Laplace in-
verse of the bounce x,(A), defined in (3.16), is required.
This can be most readily obtained by rotating the fre-
quency integration in (3.21) to run along the imaginary
axis, which gives

Fo~exp[ —2Wy(x,)/fi]=exp

] ) (3.22)

X 2, 2 y—1_ (42,2 =1
x(A)= ln(a)+/a)~)k[(k +o0” )T (At )],
3.
with the definition .23
wi=32’—[1i(1—4m3/y2)“2] . (3.24)

Finally, inserting (3.23) into the general formula (3.18)
and performing a contour integration gives the enhanced
decay rate for the damped, truncated oscillator

[xc _'xcl(t)]2

2
2y, ToUn |

I'(t)~exp |— (3.25)
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with

xC,(t)=—r{-lRe[e-"w'<w2+iwy—w3)—‘] : (3.26)
Here x_,(2) is the solution for a classical forced, damped
harmonic oscillator. Notice that I'(¢) is proportional to
the (instantaneous) probability of finding a forced,
damped quantum oscillator at the exit point x.. The
quantum oscillator has a wave packet with dispersion
(x?), and a center of mass which follows the classical
trajectory. For weak damping, ¥ <<, the decay rate
will have a resonance for w~w, with strength propor-
tional to ¥ ~!. The divergent resonance, present with no
damping, has been rounded by the dissipation.

Consider next the cubic potential, where several exact
results for the bounce trajectory are known. As a check
on the approach in this section consider first the un-
damped limit. Inserting the undamped bounce trajecto-
ry, x,(r)=x,/cosh®(w,r/2), into (3.16)-(3.18), gives
complete agreement with the results of Sec. II, (2.20),
showing once again the divergent resonances at w =naw.
In the overdamped limit, ¥y >>w,, if the first term in
(3.19) is ignored the bounce trajectory can be obtained
exactly,’

)= /)= . —7 /o
1 c 7,2_‘_7_(2)’ 0 0 -

(3.27)

Performing the Laplace inversion (3.16) and inserting
into (3.18) gives, then, a contribution to the tunneling
exponent for y >>w, of the form

fre

g (¥ /wg)cos(wt —wy /of) .

—ln[I"(t)/I“o]~—4§7Z

(3.28)

Notice that the resonance structure, present at zero
damping, has been destroyed. The only remnant of any
sort of resonance is through the phase shift oy /w}
which cycles through 27 when » changes by 27w}/y, a
characteristic frequency in the overdamped limit. This
phase shift, though, is unobservable in the decay rate T,
which is defined as the average of I'(¢) over one period
of oscillation.

The bounce trajectory for a particular intermediate
value of damping was obtained by Riseborough et al.!”
Specifically, for damping y satisfying

y1p  6lworg)?—15

5 (worp)?+30 029
with wy7 the unique solution of the equation
(wq7p )t —15(wyrg ) —90(wyTp )* —225=0, (3.30)
the bounce trajectory was found to be
x ()= Xe | a=1 27 (3.31)

+ )
o |7y (P

with a =y 75 /5. From (3.29) and (3.30) the dimensional
damping is found to be a=y /(2wy)=1.175... . Since
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a>a,=1, the motion in the quadratic minima of the
well is moderately overdamped. Inserting this trajectory
into (3.16)—(3.18) gives an enhancement of the form

Xc

~In{(1)/To] ~8m | 22

(worp)~ '[a?+(wTg )] 2

Xcos(wt —wrg+6) (3.32)

with @=tan™ w7 /a). As in the overdamped limit the
resonant structure is absent. For o >>w, the strength of
the enhancement grows linearly in w, similar to the un-
damped case (2.20).

Presumably, in the underdamped regime, a <1, the
resonant structure will reappear and cross over smoothly
to the divergent resonances as y —0. A detailed analysis
of the resonance shapes in this regime requires an ana-
lytic expression for the bounce trajectory at weak but
nonzero damping. At the present time no such solution
is known. This is unfortunate since the existing experi-
ments® have focused on studying the microwave
enhancement in the weak-damping limit.
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