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A system comprising two superconducting thin films connected by a point contact is considered. The contact
resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with
temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature.
At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and
displays only a weak �i.e., logarithmic� temperature dependence. The Josephson effect is thus destroyed, albeit
only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films
below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed,
both in various limiting regimes and as it crosses over between these regimes. Details are presented of a
minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of
quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However,
it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system
always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy
is introduced to provide some heuristic understanding of the nearly activated temperature dependence of the
resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates
relevant to anticipated experimental settings are provided.
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I. INTRODUCTION

The Josephson effect1 is one of the most direct probes of
superconducting long-range order �LRO�. Phase coher-
ence—and hence a dissipationless supercurrent—can be
maintained across a variety of weak links between two bulk
three-dimensional �3D� superconductors. While one can
imagine the decay of a supercurrent across the link via some
dissipative process such as a phase slip, this would require
the phase to “unwind” deep into the bulk superconductors,
which is prevented by the rigidity of the order parameter.

In low-dimensional systems, fluctuations are more impor-
tant and lead to a host of remarkable phenomena. Supercon-
ductors are no exception to the rule, and a variety of low-
dimensional or quasi-low-dimensional systems where super-
conducting fluctuations play an important role are the subject
of much current interest. For example, several experiments
have investigated a so-called superconductor-insulator tran-
sition in superconducting nanowires.2–5 These experiments
measured the resistance of thin wires connecting two super-
conducting electrodes. Theoretical work on the subject6–8 has
explored the possibility of universal length- and width-
dependent behavior of such devices. Also, superconducting
phase fluctuations play an important role in some strongly
correlated and disordered systems. Noteworthy examples in-
clude the pseudogap regime of the cuprate supercon-
ductors9 and disordered 2D films near a superconductor-
insulator transition.10–12

A striking aspect of low-dimensional systems is that the
fluctuations can destroy true long-range phase order, but
sometimes only weakly so. Rather than a resistive state with
only short-range superconducting correlations, one finds

power-law superconducting fluctuations, i.e., quasi-long-
range order �QLRO�, and vanishing bulk resistivity. This is
the case in 1D superconducting wires at zero temperature,
and in 2D films below the Berezinskii-Kosterlitz-Thouless
�BKT� phase transition at temperature TBKT.

What is the fate of the Josephson effect for such low-
dimensional superconductors? The one-dimensional case of
this question, together with a host of related issues, has been
the source of much experimental and theoretical interest.13–21

While this work has been pursued in the context of various
physical systems, the common thread is that the 1D conduct-
ing ground state is a Luttinger liquid with power-law super-
conducting correlations and zero resistivity. The simplest
system consists of two 1D wires joined by a point contact.
There, provided the superfluid stiffness of the wires is greater
than a certain critical value, the tunneling resistance vanishes
as a power-law in temperature, with a universal exponent
depending only on the stiffness.13,14 This power law is a
reflection of the critical nature of the zero-temperature
Luttinger-liquid ground state of the wires.

Perhaps the simplest system for studying Josephson phys-
ics in two-dimensional superconductors consists of two su-
perconducting thin films connected by a point contact, as
illustrated schematically in Fig. 1�A�. The point contact can
be any kind of weak link much smaller than the films them-
selves. Systems of this kind, where two MoGe films are
joined by a thin nanowire2,3 or a single narrow constriction,22

have been the subject of recent transport experiments. A re-
lated situation has been studied in the experiment of Ref. 23,
where Pb films were probed by the tunneling of Cooper pairs
from a superconducting scanning tunneling microscope
�STM� tip. Aside from the work of Kim and Wen,24 which
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we will discuss further below, very little theoretical attention
has been paid to this problem.

Motivated by these experiments, and in anticipation of
further work on similar systems, we have studied theoreti-
cally the dc transport across a point contact between two
thin-film superconductors. A nontechnical discussion of our
main results can be found in Ref. 25. We focus on linear-
response properties; for example, we consider only the resis-
tance given by the voltage response to a very weak current
bias. The point contact is characterized by the Josephson
coupling energy J, or, equivalently, the critical current Ic
=2eJ /�. The films have superfluid stiffness Ks=�2ns /m,
where ns is the number of Cooper pairs per unit area of the
film, and m is the pair mass. The problem can be approached
from the opposite limits of a poor contact �J /Ks small� or a
good contact �J /Ks large�. The transport in the poor-contact
limit is naturally viewed in terms of Cooper pair hopping
events, where a single pair hops across the contact from one
film to the other with amplitude J. This limit was analyzed
by Kim and Wen,24 who calculated the dc conductance G�T�
as a function of temperature, and found that it apparently
diverged below a characteristic temperature T*.34

We believe �and will argue below� that the result of Ref.
24 is in error �except at zero temperature�, and is symptom-
atic of a breakdown of perturbation theory rather than a
physical zero-resistance state. We arrive at this conclusion by
working in the good-contact limit; in fact, one of our main
results is that, at low enough temperature, the leading-order
perturbative calculation in this limit is always correct, even
when J�Ks. Transport in the good-contact limit can be
viewed in terms of quantum phase slips; these are events
where the order-parameter phase winds by 2� across the
contact. Phase slips correspond to vortex-hopping processes,
in which a vortex enters one of the films near the contact and
then moves to the other side of the contact, where it leaves
the film �see Fig. 2�. A different, but qualitatively identical,
phase-slip process involves the phase at one end of the con-
tact changing continuously in time from 0 to ±2�; this can
be visualized as a vortex hopping directly across the contact
�Fig. 2�. The disturbance created by one of these events can
heal locally, via the reverse process where a vortex hops in
the opposite direction. Alternatively, it can propagate out into

the films, causing a voltage spike across the system of films
plus contact, according to the Josephson relation

�V =
�

2e

d

dt
�� , �1�

where � is the phase of the superconducting order parameter,
and �V and �� schematically represent the difference in
voltage and �, respectively, between two points. Formally, it
is possible to work directly in terms of phase-slip events, via
a duality transformation. One can then calculate the resis-
tance perturbatively in tv, the amplitude for phase-slip events
to occur.

We note that the phase slips are quantum in nature be-
cause tv approaches a constant as the temperature is lowered
to zero; in this limit phase slips are clearly quantum tunnel-
ing events. Furthermore, we expect only a weak temperature
variation in tv as long as T�TBKT. However, the physics
determining the low-temperature behavior of the resistance is
that of classical phase fluctuations within the superconduct-
ing films, except at strictly zero temperature. The disturbance
caused by a vortex hopping across the contact is an excita-
tion of the gapless plasmon mode in the films, and it is the
physics of the plasmons that determines whether a voltage
spike will register across the entire system. Our detailed con-
siderations show that the plasmon excitations important in
determining the low-temperature resistance have frequency
much lower than kBT /�, and are thus thermally populated
�and hence in a classical regime� at any nonzero temperature.

We find that the resistance vanishes at T=0, the only tem-
perature where there is superconducting LRO in the films.
For all T�0, on the other hand, the resistance is nonzero but
vanishes following a universal form as T→0. This implies
that the perturbative poor-contact result is incorrect; at any
fixed temperature, the resistance cannot decrease as the con-
tact is weakened, so, as the resistance is nonzero in the good-
contact limit, a vanishing resistance is out of the question.
The low-temperature form is very nearly an activated expo-
nential,

R�T� = RQ

�3/2tv
2

4

1
�EA�T��kBT�3

exp�−
EA�T�
kBT

� , �2�

where RQ�h /4e2 is the quantum of resistance, and EA�T� is
a temperature-dependent effective activation barrier:

FIG. 1. �Color online� We consider both wedge �A� and bilayer
�B� geometries. The shaded regions are the superconducting films,
and the dark line joining them represents the point contact. Note the
definition of the opening angle 	 in the wedge geometry.

FIG. 2. Depiction of phase-slip processes. In one, a vortex �el-
lipse with arrow� enters the left-hand superconducting film below
the contact �dark line with “
” through it�, follows the dashed-line
path, and exits the film on the other side of the contact. In the
second, the vortex moves directly through the contact, along the
dash-dotted line. This process corresponds to a continuous change
of the phase at one end of the contact from zero to ±2�, while the
phase at the other end remains fixed.
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EA�T� = cKs
1

ln���c/2kBT� + �2cKs/�
2J̄�

. �3�

Here, J̄�J is an effective Josephson coupling that need not
be distinguished from J for most purposes, and �c is a high-
energy cutoff set by an appropriate short-distance cutoff in
the films; these parameters are discussed in more detail be-
low. The superfluid stiffness Ks plays a crucial role in setting
EA�T�. The constant c is a universal dimensionless quantity
given by

c =
�2	

4�
, �4�

where 	 is the “opening angle” at the point contact, as shown
in Fig. 1�A�. For Coulomb interactions between electrons in
the films we have �=2, whereas �=1 if the interactions are
screened down to a short-range form. The latter case can be
achieved in the presence of a superconducting ground plane
separated from the films by an insulating layer �see Sec.
III B�.

As written, Eq. �2� is expected to be asymptotically exact
as T→0, in the sense that �ln R�T�	 / �ln Rmeasured	→1 as T
→0. Furthermore, this formula should be a good approxima-
tion whenever EA�T� /kBT
1. It is important to note that the
ratio of the resistances themselves �as opposed to the ratio of
their logarithms� will not approach unity as T→0. This is
due to additive corrections to EA�T� not captured in Eq. �3�;
the leading such correction is proportional to 1/T ln2 T.
These corrections, which are expected to depend on J, are
recovered if the integrals leading to Eq. �2� are evaluated
exactly. This point is discussed further in Secs. V B and VIII,
where the integrals are written down in closed form.

Focusing on the barrier EA�T�, the dependence on J drops
out at low temperature, where we find the universal form:

EA�T� 

cKs

ln���c/2kBT�
. �5�

This form is universal in the sense that it does not depend on
the details of the point contact; instead, the important tem-
perature scale is set by Ks, which is a property of the films
themselves and can be determined independently by an in-
ductance measurement.26 The same result holds in the limit
of a good contact �J�Ks� for all T�Ks /kB. At the lowest
temperatures, then, the system always behaves as if it were in
the good-contact limit.

On the other hand, when J�Ks, provided the temperature
is not too low, we find that the barrier has the form

EA�T� 

�2J̄

2
. �6�

More precisely, for this to hold we require that
ln���c /kBT�� ln���c /kBTJ�, where TJ is a crossover tem-
perature defined by

TJ �
��c

2kB
exp�−

2cKs

�2J̄
� . �7�

It should be noted that the condition to be in this limit in-
volves the logarithm of the temperature, rather than the tem-
perature itself. In the opposite limit �i.e., low temperature�,
the resistance always crosses over to the universal form of
Eq. �5�. As shown in Appendix C 2, the form Eq. �6� is
expected to be asymptotically exact when the above condi-
tions �on J /Ks and the logarithm of the temperature� are
satisfied, provided we also require that J�kBT.

Therefore, Eq. �3� is an approximate interpolation be-
tween two limits where it is exact. However, the order-tv

2

contribution to the resistance is expected to provide an es-
sentially exact result provided kBT�min�Ks ,J�. Our result
for EA�T� comes from an approximate evaluation of this con-
tribution, which is exact in the limits discussed above. We
provide a closed-form expression for the exact O�tv

2� contri-
bution in Sec. V B, which can be evaluated numerically. The
reason that terms of higher order in tv are not expected to be
important is that these terms involve larger activation barri-
ers, owing to the strong binding of phase slips in an
imaginary-time functional-integral formulation; therefore,
the O�tv

2� term will dominate whenever kBT is smaller than
Ks and J, as these energy scales set the barrier height.

The nearly activated form of Eq. �2� is suggestive of the
experimental results of Ref. 22. Furthermore, as discussed in
Sec. VII, it should be possible to carry out future experi-
ments in a regime where a detailed comparison with our
theory is appropriate.

II. OUTLINE OF PAPER

We continue in Sec. III with a description of our model,
which is a quantum phase Hamiltonian for the films that
focuses on quantum and thermal fluctuations of the Cooper
pair phase field. The contact is modeled by a pointlike Jo-
sephson coupling having strength J. The degrees of freedom
in the films are integrated out to obtain an effective action
involving only the phase difference � across the contact. We
also give some general arguments in favor of a treatment
starting from the good-contact limit.

In Sec. III A we discuss some subtleties in treating Cou-
lomb interactions in the wedge geometry of Fig. 1�A�, and in
Sec. III B we discuss a setup where the films and contact are
placed in proximity to a superconducting ground plane, in
order to screen the Coulomb interaction down to a short-
range form. In Sec. IV we review the calculation of the con-
ductance in the poor-contact limit �i.e., working perturba-
tively in powers of J�.

In Sec. V A we describe the duality transformation used
to access the good-contact limit. In Sec. V B, the resistance
is calculated in this limit, to leading order in tv �i.e., the
amplitude for quantum phase slips�. Some further intuition
for the physics behind the resistance formula is provided by
a mechanical analogy, which we discuss in Sec. VI.

In Sec. VII we discuss the prospects for experimental tests
of our theory via measurements of point-contact tunneling
between two superconducting films. We give necessary con-
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ditions for such systems to be in a regime where our theory
applies. We conclude in Sec. VIII with a discussion of some
of the open questions raised by our results for a variety of
different systems.

Several appendices contain the more technical aspects of
the work. Appendix A contains a derivation of the ima-
ginary-time action for the point contact, which is obtained by
integrating out the low-energy degrees of freedom in the
films. The analytic continuation used to obtain the necessary
correlation functions in real time is discussed in Appendix B.
The details of the evaluation of the integrals used to obtain
the resistance formula of Eq. �2� are contained in Appendix
C. Appendix D presents the details of a variational approach
to the point-contact problem, which provides another justifi-
cation for the good-contact treatment of Sec. V.

III. MODEL OF SUPERCONDUCTING THIN FILMS
CONNECTED BY A POINT CONTACT

We consider a system of two superconducting thin films
connected by a point contact. Essentially, this can be any
weak link much smaller than the dimensions of the films. In
some cases, especially, for example, if the link is a supercon-
ducting wire, it is necessary to be sure that one is in a regime
where any internal degrees of freedom of the link play no
role and it can be treated as a zero-dimensional object. We
use spatial coordinates r defined separately for each film, so
that the contact is at the origin r=0. We are interested in the
“wedge” geometry of Fig. 1�A�, which is specified by the
opening angle 	. Although we also consider the bilayer ge-
ometry of Fig. 1�B�, our treatment of that case is intended
only to illustrate features of the wedge setup in a technically
simpler context. In particular, we do not include the inter-
layer Coulomb interaction, which would be important in a
real bilayer system. However, it should be noted that a real
bilayer system can be analyzed along the lines of Sec. III B,
where we consider a system of films in the wedge geometry,
separated from a superconducting ground plane by an insu-
lating barrier.27 Note that in this section, as well as Secs.
IV–VI and the appendices, we shall set �=kB=1.

We are interested in T�TBKT, which we assume to be
substantially below the quasiparticle energy gap. We can
therefore focus on the Cooper-pair degrees of freedom in the
superconducting films. Within the superconducting state, the
physics is encapsulated in a quantum phase Hamiltonian
written in terms of the Cooper-pair phase �i�r� and density
ni�r�, which satisfy the canonical commutation relations
��i�r� ,nj�r��	= i�ij��r−r��. Here, i , j=1,2 label the two
films. In the wedge geometry we must impose the condition
that supercurrents cannot flow across the film edge; math-
ematically, this gives the boundary condition ��i ·n=0,
where n is normal to the edge. Due to this boundary condi-
tion, the case 	=2� does not correspond exactly to the bi-
layer geometry; however, we find identical results in these
two cases.

The Hamiltonian for the system is

H = H1 + H2 − J cos��1�0� − �2�0�	 , �8�

where the last term is the Josephson coupling at the contact,
and H1,2 are the Hamiltonians for the thin films. These take
the form

Hi =
Ks

2
� d2r���i�2 + Vi, �9�

where Ks=Ks�T� is the superfluid stiffness in units of energy,
and Vi is the interaction potential. For Coulomb interactions
this takes the usual form

Vi =
�2e�2

2
� d2r d2r�

ni�r�ni�r��
�r − r��

. �10�

We also consider the case of short-range interactions, which
take the simple form

Vi =
vs

2

2Ks
� d2r�ni�r�	2, �11�

where vs is the superfluid velocity. The short-range case di-
rectly describes a two-dimensional superfluid of charge-
neutral bosons. However, it can also be realized for a super-
conducting film if the Coulomb interaction is screened down
to a short-range form. This can be achieved in the presence
of a superconducting ground plane, as discussed in Sec.
III B. In both cases we neglect interplane density-density in-
teractions, which are expected to be unimportant in the
wedge geometry. Further justification for this expectation is
given below.

The low-energy excitations in the films are the supercon-
ducting plasmons, whose thermal excitation is responsible
for the QLRO occurring for 0�T�TBKT. For screened in-
teractions �and a translation-invariant film�, one finds an
acoustic plasmon having the linear dispersion �=vs �k�. In
the case of Coulomb interactions the plasmon has the disper-
sion �=2e�2�Ks �k�.

Note that we have completely neglected vortex fluctua-
tions within the films. We can justify this by estimating the
typical number of vortices in a film of linear dimension L.
The energy cost of a single free vortex in a 2D supercon-
ductor is on the order of �Ks ln�� /�� plus a core energy
Ecore. Here, � is the coherence length and �=c2 /4�e2Ks is
the magnetic screening length. � can be quite large; for ex-
ample, if TBKT=5 K, ��TBKT��0.8 cm. Now, the number of
vortices in the whole film is approximately given by

Nv �
L2

�2 � �

�
��Ks/T

exp�− Ecore/T� . �12�

At T=TBKT, the exponent �Ks /T takes on the universal value
of 2, and, neglecting Ecore, Nv��L /��2. Thus, for L=1 cm
films and �=0.8 cm, Nv is approximately unity at TBKT and
decreases rapidly with temperature. Therefore, the typical
separation between free vortices in the films is on the order
of or greater than the system size L, and vortices can indeed
be neglected.

As the modes of the phase field in the films are governed
by a harmonic theory, we can integrate them out to obtain an
imaginary-time action for the phase difference across the
contact, ������1�r=0,��−�2�r=0,��. Details of this pro-
cedure, which is straightforward except for the case of Cou-

HERMELE et al. PHYSICAL REVIEW B 73, 134504 �2006�

134504-4



lomb interactions in the wedge geometry �see Sec. III A�, are
given in Appendix A. The result is Z=
D� exp�−S0−SJ�,
where

S0 =
2cKsT

�2 �
�n

�ln
�n

2 + �c
2

�n
2 �−1

��̃��n��2. �13�

Here c is defined in Eq. �4�, �n�2�TZ, and we have defined
the Fourier transform via

�̃��n� = �
0

�

d� ei�n����� , �14�

���� = T�
�n

e−i�n��̃��n� , �15�

where ��1/T. Finally, �c is a high-frequency cutoff set by
the short-distance cutoff in the films, which we take to be on
the order of the coherence length �. For example, in the
bilayer geometry �c=���k � =2� /��. The remaining term in
the action is simply the Josephson coupling across the con-
tact:

SJ = − J�
0

�

d� cos„����… . �16�

We note that the summand of S0 depends only weakly on
�n; apart from the important logarithmic frequency depen-
dence, it is simply a ��̃��n��2 “mass term” for the � field.
Such a term is obtained for a point contact between 3D su-
perconducting electrodes, and is thus expected to lead to zero
resistance even at finite temperature. It is therefore apparent
from the form of S0 that the system of films plus contact is in
a sense very close to exhibiting true superconducting behav-
ior �i.e., a dc Josephson effect at finite temperature�. It is not,
however, clear a priori whether the Josephson effect survives
intact at a finite temperature, or whether it is weakly de-
stroyed. Our analysis shows that the latter scenario is the
correct one.

It is instructive to consider the physics at zero tempera-
ture, where we argue there will be no quantum phase transi-
tion as a function of J or other parameters. This can be seen
by considering phase-slip instanton events in �, where �
→�±2� over some localized region in imaginary time. It is
useful to recall a different model, where S0 is replaced by
S0����n

��n � ��̃�2. In that case, very similarly to vortices in
the 2D XY model, phase slips interact via a potential propor-
tional to the logarithm of their separation, and there is a
zero-temperature Chakravarty-Schmid phase transition as the
coefficient of S0� is varied.28,29 If the potential is stronger than
a logarithm at asymptotically large times, the potential en-
ergy will always dominate over the entropy, and phase slips
will be bound into “neutral” pairs �i.e., pairs of one �→�
+2� phase slip and one �→�−2� phase slip�. This is ex-
actly what happens in the present case, where we find a
linearly confining potential �up to important logarithmic cor-
rections�. Therefore, the system is always superconducting at
T=0.

The very strong binding of phase slips already indicates
that one should be cautious about the expansion in the poor-

contact limit. There will be many events in imaginary time in
which a Cooper pair tunnels across the contact, but the poor-
contact expansion is most reliable when we can think of a
dilute gas of such events. On the other hand, the good-
contact expansion, in which one thinks instead of a dilute gas
of phase slips, should be very reliable.

Some comments are now in order regarding our neglect of
density-density interactions between the two films. For films
of finite size, interfilm interactions will lead to a Coulomb
blockade below a temperature that vanishes as the film di-
mensions are taken to infinity. This point is discussed further
in Sec. VII; here we concentrate on the limit of infinite films.
For short-range interactions in the wedge geometry, such in-
teractions are certainly unimportant. They will lead to an
additive contribution to S0 proportional to �n

2 � �̃�2. At low
frequency this term is dominated by the logarithmic term of
Eq. �13� that came from the power-law phase fluctuations in
the films, and there will be no effect on the low-temperature
physics. The case of interfilm Coulomb interactions is more
subtle. However, following Sec. III B, we have analyzed the
bilayer geometry for films of equal stiffness, including the
interfilm Coulomb interaction.27 This is a useful case to con-
sider, because interfilm Coulomb interactions should have a
stronger effect than in the wedge geometry. It is convenient
to exploit the symmetry under interchange of the films and
make the change of variables �±�r�= ��1�r�±�2�r�	 /�2, and
similarly for the densities. The Hamiltonian decouples into a
sum of two terms, each depending only on either symmetric
or antisymmetric fields. The Josephson term couples only to
the antisymmetric sector, so the symmetric sector does not
contribute to the charge transport. The main effect of the
interfilm Coulomb interactions is to screen the interaction in
the antisymmetric sector down to a short-range form, leading
to a linearly dispersing acoustic plasmon. This is quite natu-
ral, as the density n−�r� is that of charge-neutral dipoles of
positively charged Cooper pairs in film one and their nega-
tively charged counterparts in film two. The qualitative struc-
ture of the effective action is completely unaffected, and, not
surprisingly, one now finds �=1 as appropriate for a model
with only short-range interactions. The effects of interfilm
Coulomb interactions in the wedge geometry should be even
less. Indeed, we expect �=2 as if the interfilm interactions
were absent. This is because the special structure of the bi-
layer, which led via screening to a linearly dispersing plas-
mon mode, is absent in this case, and the plasmons in both
films should still follow ����k� dispersions.

A. Coulomb interactions in wedge geometry

In the bilayer geometry it is completely straightforward to
obtain the action Eq. �13� by working in Fourier space. The
problem is also simple for short-range interactions in the
wedge geometry; the kinetic term in Hi is diagonal in a basis
of eigenfunctions of the Laplacian, and in this case Vi is
diagonal in any basis. Coulomb interactions are more diffi-
cult to treat, as it is not straightforward to simultaneously
diagonalize the kinetic and potential terms. We believe it is
possible to avoid this difficulty without affecting the result
by replacing the Coulomb potential by a different form
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V�r ,r�� that has some of the same properties, but is more
amenable to analytic treatment.

In an infinite 2D plane, the Fourier transform of the Cou-
lomb potential VC�r�=4e2 / �r� is

ṼC�k� =� d2r e−ik·rVC�r� =
8�e2

�k�
. �17�

We can write

VC = 8�e2��− �2�−1, �18�

where we define the square root of the Laplacian in a plane
wave basis, that is

�− �2eik·r = �k�eik·r. �19�

We shall construct a potential in the wedge geometry for
which the analog of Eq. �18� is true.

In the wedge geometry it is natural to work in a basis of
eigenfunctions of the Laplacian that respect the �� ·n=0
boundary condition. In plane polar coordinates �r ,��, this
condition takes the form

����r,� = 0� = ����r,� = 	� = 0. �20�

The eigenfunctions are labeled by a non-negative real num-
ber � and a non-negative integer n, and satisfy −�2��n
=�2��n. They take the form

��n�r� = ��2�/	J�n/	��r�cos�n��

	
� , n � 0,

��/	J0��r� , n = 0.

�21�

Here, J��x� is a Bessel function of the first kind. These eigen-
functions are orthonormal,

�
0

�

dr r�
0

	

d� ��n�r����n��r� = �nn���� − ��� , �22�

and satisfy a closure relation

�
0

�

d��
n=0

�

��n�r���n�r�� = ��r − r�� . �23�

With this machinery at our disposal, we define �−�2 by

�− �2��n = ���n. �24�

This then leads to the potential

V�r,r�� = 8�e2�
0

�

d��
n=0

�
��n�r���n�r��

�
, �25�

which satisfies �−�r
2V�r ,r��=8�e2��r−r��. This function

depends separately on r and r�, and not only on �r−r��. As
the wedge geometry already lacks global translation and ro-
tation symmetries, for universal properties it should be harm-
less to sacrifice these in the form of the potential. Further-
more, V�r ,r�� has the same scaling behavior as the Coulomb
potential:

V�sr,sr�� =
1

s
V�r,r�� . �26�

This can be shown by working with the definition Eq. �25�
and observing that

��,n�sr� =
1
�s

�s�,n�r� . �27�

Upon changing variables Eq. �26� follows immediately.

B. Superconducting ground plane

Here we consider a system of films and point contact in
the presence of a superconducting ground plane. As shown in
Fig. 3, the ground plane is separated from the films by an
insulating layer of thickness d. The motivation to consider
this setup is that the Coulomb interaction is screened with
the ground plane in place, which allows �=1 to be realized
in a system of superconducting �as opposed to superfluid�
films. Furthermore, this setup is quite favorable for the de-
sign of experiments that can be compared to our theory over
a wide range of temperatures �see Sec. VII�.

We model the ground plane as a superconducting film
having stiffness Ks

g�Ks, as is appropriate for a thick layer of
superconducting material. Furthermore, we assume that the
insulating barrier is sufficiently high and thick that the Jo-
sephson tunneling between the films and the ground plane
can be neglected. For simplicity, we set the dielectric con-
stant of the insulating medium to unity �i.e., vacuum�. The
phase and number fields of the ground plane are denoted by
�g�r� and ng�r�, respectively.

The goal is to derive an action like Eq. �13� for the phase
difference across the contact. It will turn out to be good
enough to consider a problem in a simpler geometry, where
we have only a single translation-invariant film and the
ground plane �i.e., no contact�. In the limit Ks

g�Ks, we con-
clude that the geometry of Fig. 3 is well described by a
model having no ground plane, and the short-range interac-
tion of Eq. �11�, with superfluid velocity vs=�16�e2Ksd.

The Hamiltonian for the coupled system of a single film
and the ground plane is Hbilayer=HK+Hint, where

HK =
Ks

2
� d2r����2 +

Ks
g

2
� d2r���g�2, �28�

and

FIG. 3. Illustration of the system of superconducting films
�white regions� and point contact, separated by an insulating layer
of thickness d from a superconducting ground plane �shaded re-
gion�. For the geometry shown, 	=�.
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Hint =
�2e�2

2
� d3R d3R�

N�R�N�R��
�R − R��

. �29�

Here we have defined the three-dimensional charge density

N�R� � ��z − d/2�n�r� + ��z + d/2�ng�r� , �30�

where R= �r ,z� is the 3D position. In momentum space,

Hint =� d3K

�2��3

8�e2

K2 �n�k�,ng�k�	� 1 e−ikzd

eikzd 1
�� n�− k�

ng�− k�
� ,

�31�

where K= �k ,kz�. The kz integral can be done via contour
integration, yielding

Hint =� d2k

�2��2

4�e2

�k�
�n�k�,ng�k�	� 1 e−d�k�

e−d�k� 1
�� n�− k�

ng�− k�
� .

�32�

Hint simplifies in the basis n±��1/�2��n±ng�, where one
obtains

Hint =� d2k

�2��2

4�e2

�k�
��1 + e−d�k���n+�k��2

+ �1 − e−d�k���n−�k��2	 . �33�

At this point, it is straightforward to reformulate the prob-
lem in terms of an imaginary-time functional integral, inte-
grating out n±�k� to obtain the following effective action for
the phase fields:

Seff��	 =
1

2�
�
�n

� d2k

�2��2�T�k,�n�Meff�k,�n���− k,− �n� ,

�34�

where �T�k ,�n�����k ,�n� ,�g�k ,�n�	 and

Meff�k,�n�

=�
�n

2�k�
8�e2�1 − e−2d�k��

+ Ksk
2 −

�n
2�k�

16�e2sinh�d�k��

−
�n

2�k�
16�e2sinh�d�k��

�n
2�k�

8�e2�1 − e−2d�k��
+ Ks

gk2� .

�35�

The dispersion of the plasmon modes is given by solving
detMeff�k , i��=0. This results in a quadratic equation for �2,
which yields the following two solutions when d �k � �1:

��k� = vs�k� , �36�

�g�k� = �32�e2�Ks + Ks
g��k� . �37�

The first of these is a linearly dispersing acoustic mode with
velocity

vs = �Ks
g/�Ks + Ks

g��16�e2Ksd . �38�

An analysis of the zero eigenvectors of Meff�k , i��k�	 shows
that this mode propagates entirely in the film in the limit

Ks�Ks
g. Similarly, the other plasmon mode propagates en-

tirely in the ground plane in this limit. In this limit vs

=�16�e2Ksd.
Therefore, when Ks�Ks

g, the phase correlations in the
film will be controlled entirely by the acoustic mode, and a
treatment starting from a model with short-range interactions
should give the correct action for the phase difference across
the contact in the geometry of Fig. 3. This expectation is
substantiated by an explicit calculation, in the simpler
translation-invariant geometry discussed above, of the corre-
lation function

C��n� = �
0

�

d� ei�n����r = 0,����r = 0,0�� . �39�

In general, this correlator for the phase at the point contact
completely determines the desired effective action. For a
small Matsubara frequency, the result is

C��n� 

1

4�
� 1

Ks
+

1

Ks
g + Ks

�ln��c
2

�n
2� , �40�

which reduces to the result for a single film with short-range
interactions when Ks

g�Ks.

IV. POOR CONTACT

We review the treatment in the poor-contact limit �i.e., J
�Ks�, keeping in mind that such an approach should be
viewed with caution. We can use a Kubo formula to calculate
G�T�, the linear-response dc conductance across the contact,
to lowest order in J �note that this method is equivalent to the
one presented in Ref. 30�. We shall show, below, that the
resulting conductance appears to diverge below a character-
istic temperature T*. These results agree with those of Ref.
24. This calculation alone is not enough to say whether the
divergence represents a true zero-resistance state, or simply a
breakdown of perturbation theory in J. The considerations in
Sec. V below demonstrate that the conductance is finite for
all T�0, and, therefore, that the weak-coupling perturbation
theory fails below T*.

The operator for the current flowing across the contact is

Î = 2eJ sin��̂� . �41�

Standard techniques of linear-response theory can be used to
derive the Kubo formula relating the conductance to the re-
tarded Green’s function of the current:

G�T,�� = − Re� i

�
GR

I ���� , �42�

where

GR
I ��� = − i�

−�

�

dt ��t�e−i�t��Î�t�, Î�0�	�J=0. �43�

We shall be primarily interested in the dc ��→0� limit.
Straightforward manipulations lead to the expression
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GR
I ��� = − i�2e2J2��

0

�

dt e−i�t�exp�− ��̂2 − �̂�t��̂�0��	

− �t → − t�� . �44�

Here, we have dropped terms involving exp�−��̂2

+ �̂�t��̂�0��	, which vanish in the thermodynamic limit. In-
serting the result for the phase correlation function, obtained
by analytic continuation in Appendix B 2, we find

GR
I ��� = − 4e2J2�

0

�

dt e−i�tsin�B�t�	exp�A�t�	 , �45�

where

A�t� �
�2

4cKs
�

0

�c

dx�cos�xt� − 1	coth��x

2
� , �46�

B�t� �
�2

4cKs
�

0

�c

dx sin�xt� =
�

	Kst
. �47�

In the second equality of Eq. �47� we have dropped a term
oscillating at the cutoff frequency �c, which is an unphysical
artifact of the hard cutoff. We now have, in the dc limit,

G�T� = 4e2J2�
0

�

dt t sin� �2

4cKst
�exp�A�t�	 . �48�

The integral of Eq. �48� can only diverge due to the con-
tribution from long times. To extract this behavior we first
need to understand the behavior of A�t� as t→�. In this
limit, we have 1/ t�T��c, and the dominant contribution to
A�t� comes from the region of the x integral where 1/ t�x
�T. There, the cosine is oscillatory and can be dropped, and
coth��x /2��2/�x. We then find that

A�t� 
 −
�2T

2cKs
ln�tT� . �49�

At long times, the sine in Eq. �48� can be expanded to lead-
ing order, and the long-time contribution is thus

G�T� 

�2e2J2

cKs
�

t0

�

dt�tT�−�2T/2cKs, �50�

where t0 is arbitrary. It is clear from this expression that G�T�
apparently diverges for

T � T* �
2cKs

�2 . �51�

We shall show, below, that this divergence is due to a
breakdown of perturbation theory, and the conductance is, in
fact, always finite for T�0.

V. GOOD CONTACT

Given the apparent divergence of the conductance below
T* in the limit of a poor contact, it will be fruitful to consider
the opposite case of a good contact. Even without knowing

the poor-contact result, we should expect an expansion about
the good-contact limit to yield correct results, as discussed in
the Introduction and Sec. III. Moreover, a variational calcu-
lation discussed in Appendix D provides further support that
the good-contact limit is always the correct starting point at
low temperature. In this section, we first implement a duality
transformation that allows us to work directly with the
phase-slip degrees of freedom. Following that, we use the
dual formulation to calculate the resistance of the point con-
tact.

A. Duality transformation

The starting point for the duality transformation is the
partition function for the phase difference � across the con-
tact, Z=
D� exp�−S0−SJ�, where S0 and SJ are defined in
Eqs. �13� and �16�. We proceed by replacing the cosine of SJ
with a Villain function:

exp�J cos �� → �
�=−�

�

exp�−
J̄

2
�� − 2���2� . �52�

This is merely a different 2�-periodic potential, so the uni-
versal physics should be unaffected. To make this replace-
ment in the partition function, we need only make � a func-
tion of imaginary time �which we can take to satisfy periodic
boundary conditions�:

ZV =� D� �
����=−�

�

exp�−
2cKsT

�2 �
�n

��̃��n��2


�ln��n
2 + �c

2

�n
2 ��−1

−
J̄

2
�

0

�

d������ − 2�����	2� .

�53�

We have replaced the Josephson coupling J by the energy J̄.
The new partition function, with the cosine replaced by the
Villain function, can be thought of as an effective description

of the original one, and J̄ as an effective J. However, it is

better to think of J and J̄ as parameters arising in two
�slightly� different effective descriptions of the same under-

lying system. Although we expect that J� J̄, it is not impor-
tant to have a more precise relationship between these pa-
rameters, or even to distinguish them, unless one of them can
be directly measured. Indeed, in the absence of such a mea-

surement, J̄ must be treated as a fitting parameter in the
resistance formula of Eq. �2�.

To specify ZV more precisely, it is useful to write ���� in
terms of its time derivative ����, which is a sum of delta
functions at those times when phase slips occur. Because we
take ����=���+��, an equal number of “positive” ��→�
+1� and “negative” ��→�−1� phase slips occur in each of
the configurations summed over. In a configuration having n
positive phase slips, we denote their times by �i, and the
times of their negative counterparts by �̄i. Then we have
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���� = �
i=1

n

���� − �i� − ��� − �̄i�	 . �54�

Without loss of generality, we can take ���=0�=0 and write
����=
0

�d�������. In the Villain partition function, the sum
over � becomes a sum over �, which is easy to define pre-
cisely:

�
����

� �
n=0

� � tv
n

2nn!
�2� d�1 ¯ d�n� d�̄1 ¯ d�̄n. �55�

Here, it was necessary to introduce an energy tv, which is the
fugacity per unit imaginary time for phase-slip events. The
factor of 2−2n is inserted for later convenience. Upon trans-
forming to Fourier space and integrating out �, we obtain a
partition function only in terms of �:

ZV = �
����

exp�−
T

2 �
�n

J̄

1 + ��2J̄/4cKs� ln�1 + �c
2/�n

2�


�2��̃��n�
�n

�2� . �56�

The duality transformation is completed by observing that
Eq. �56� is equivalent to the following sine-Gordon theory:

Zdual =� D	 exp�−
T

2 �
�n

�1

J̄
+

�2

4cKs
ln��n

2 + �c
2

�n
2 ��


�n
2�	̃��n��2 + tv� d� cos�2�	�� . �57�

The equivalence is simple to establish: expanding in powers
of tv and denoting the Gaussian part of the action by S0

dual�		,
we obtain the partition function

Zdual = �
n=0

�
tv
n

2nn! �
 1¯ n=±1

� d�1 ¯ d�n


� D	 exp�− S0
dual�		 + 2�i�

i=1

n

 i	��i�� . �58�

At this point it is helpful to note that 	���→	���+c is a
symmetry of S0

dual, which means that only “neutral” configu-
rations, i.e., those having �i i=0, contribute. This allows us
to reorganize the above expression and write

Zdual = �
����

� D	 exp�− S0
dual�		 + 2�i� d� ����	���� .

�59�

Upon integrating out 	 we immediately recover Eq. �56�.
It is important to note that the term proportional to 1/ J̄ in

the dual action is dominated by the logarithm at low fre-

quency. Therefore, J̄ will not play a role in the low-
temperature limit. However, it is important to keep this term
in the formulation. This permits one to access the J�Ks and

T�TJ regime discussed in Sec. I, where the resistance dis-
plays the truly activated behavior �i.e., having no logarithmic
temperature dependence� of Eq. �6�.

From these considerations, we see that the operator
exp�2�i	���	 inserts a phase-slip event at time �. The
tv cos�2�	� term in Eq. �57� can, therefore, be interpreted as
a vortex-hopping process. Furthermore, because phase and
number are canonically conjugate variables, we can think of
	 as a charge difference between the films; in fact, it is pre-
cisely the charge imbalance Qimb between the two films �i.e.,
half the difference of the total charges of the films�:

	 =
1

4e
�Q2 − Q1� �

1

2e
Qimb, �60�

where Qi is the total charge on film i. Therefore, the operator
for the voltage drop across the contact �from film 1 to film 2�
is given by

V = −
�

�Qimb
�− tv cos�2�	�	

=
1

2e

�

�	
�tv cos�2�	�	 = −

�tv
e

sin�2�	� . �61�

B. Calculation of the resistance

In order to find the resistance to lowest order in tv, we
need to calculate the response of the voltage to a weak ex-
ternal current, using the dual partition function Eq. �57�. This
can be done by working in real time and replacing 	→	
− It /2e in the vortex-hopping term �i.e., the tv cos�2�	�
term	. Here, I is the externally controlled current flowing
across the contact from film 1 to film 2. The situation is now
completely analogous to that of the standard derivation of the
Kubo formula for a conductance, and we obtain for the re-
sistance

R��,T� = − Re� i

�
GR

V���� . �62�

Here, GR
V��� is the real-time retarded Green’s function for

the voltage:

GR
V��� = − i�

−�

�

dt ��t�e−i�t��V̂�t�,V̂�0�	�tv=0 �63�

=− i
�2tv

2

2e2 �
0

�

dt e−i�t�eF�t� − eF�−t�� , �64�

where

F�t� � 4�2�	̂�t�	̂�0� − 	̂2� �65�

=16cKs�
0

�c dx

x2 ��cos�xt� − 1	coth��x

2
� − i sin�xt��



1

�2 + �4cKs/�
2J̄ + ln���c/x�2 − 1	�2

. �66�

This correlator is obtained by the analytic continuation of its
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imaginary-time analog; see Appendix B 3. After straightfor-
ward manipulations, the dc resistance can be written as

R�T� =
i�2tv

2

2e2 �
−�

�

dt teF�t�. �67�

We note that F�t� is analytic in the entire complex plane.
Let us first consider the case of zero temperature, where

we can write

F�t� = 16cKs�
0

�c dx

x2 �e−ixt − 1�



1

�2 + �4cKs/�
2J̄ + ln���c/x�2 − 1	�2

. �68�

We shall continue the resistance integral Eq. �67�, into the
lower half-plane. If we let t= �t �ei!, where !� �−� ,0	, it is
easy to show that, up to logarithmic corrections,

Re�F�t�	 
 − a�!��t� , �69�

for �t � →�, where a�!��0. Therefore, the integrand of Eq.
�67� decays exponentially in this limit, and, by deforming the
t-contour arbitrarily far into the lower half-plane, we see that
R�T=0�=0.

Next, we consider the case of nonzero temperature, for
which it is convenient to write

F�t� = 8cKs�
0

�c dx

x2

1

sinh��x/2�


�eix�t+i�/2� + e−ix�t+i�/2� − 2 cosh��x

2
��



1

�2 + �4cKs/�
2J̄ + ln���c/x�2 − 1	�2

. �70�

Again we allow t to be complex and consider F�tr+ iti� for
ti� �−� /2 ,0	, and again up to logarithmic corrections we
find that Re�F�t�	 goes linearly to −� for tr→ ±�. Then,
instead of integrating along the real axis, we can integrate
along the contour swept out by t− i� /2 for real t to obtain

R�T� =
�2tv

2

4e2T
�

−�

�

dt ef�t�, �71�

where

f�t� = F�t − i�/2�

= 16cKs�
0

�c dx

x2

cos�xt� − cosh��x/2�
sinh��x/2�



1

�2 + �4cKs/�
2J̄ + ln���c/x�2 − 1	�2

. �72�

At low temperature, the resistance integral �71� can be evalu-
ated by the saddle-point method. It is easy to see that f�0�
→−� in the T→0 limit and, furthermore, that f�0�� f�t� for
all t �and T�—this means that t=0 is the global maximum of
the integrand. We then have

R�T� �
�2tv

2

4e2T
ef�0��

−�

�

exp�1

2
f ��0�t2�

=
�2tv

2

4e2T
� 2�

− f��0�
exp�f�0�	 , �73�

which is expected to be asymptotically exact as T→0. As
shown in Appendix C 3, a conservative criterion for the va-
lidity of the saddle-point evaluation is that f�0� should be
large and negative. This means that we should expect Eq.
�73� to be a good approximation for the resistance whenever
f�0�"−1.

We then need to evaluate the low-temperature form of
f�0� and f ��0� – this is done in Appendix C. The results are

f�0� � −
cKs

T

1

ln��c/2T� + 2cKs/�
2J̄

= −
EA�T�

T
, �74�

and

f ��0� � − 8cKsT
1

ln��c/2T� + 2cKs/�
2J̄

= − 8TEA�T� .

�75�

These relations are asymptotically exact as T→0, where the

dependence on J̄ drops out. More precisely, the ratio of Eq.
�74� to the exact value of f�0� goes to unity as T→0. How-
ever, the difference of these two quantities does not go to
zero; this is due to additive corrections to f�0� that are pro-
portional to 1/ �T ln2�T�	, which are subdominant but none-
theless diverge at zero temperature. These statements also
hold for f��0� and Eq. �75�.

We show in Appendix C 2 that Eqs. �74� and �75� are also
asymptotically exact in the extreme good- and poor-contact

limits. Precisely, in the good-contact limit we require that J̄
�Ks and T�Ks. In this case, we recover the universal low-
temperature forms for f�0� and f ��0�, but for all T�Ks. In

the poor-contact limit we require that J̄�Ks and TJ�T� J̄.
We then have

f�0� 
 −
�2J̄

2T
, �76�

and

f ��0� 
 − 4�2TJ̄ . �77�

Note that we must make the restriction T�TJ, because when
T"TJ the resistance crosses over to the universal low-
temperature result.

The expressions Eq. �74�� and Eq. �75� can thus be
thought of as an interpolation between two limits where they
are exact. Although this interpolation between good- and
poor-contact limits is approximate, these formulas are valid
to reasonable accuracy over a wide range of parameters. For
example, using the parameters of the setup �with ground
plane� discussed in Sec. VII, a straightforward numerical
evaluation of f�0� shows that the formula Eq. �74� agrees to
within 15% for T#5 K. However, if either the universal
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low-temperature form �J̄ /Ks→ � � or the poor-contact form
Eq. �76� is used, there is only about 50% agreement at T
�5 K.

VI. MECHANICAL ANALOGY

The resistance formula Eq. �2� can be simply interpreted
in terms of an analogy to an essentially classical system of
springs at finite temperature. We focus here only on the ex-
ponential part of the resistance, which gives the dominant
temperature dependence. We write this in the form

R�T� � exp�−
�1/T�

�1/cKs�ln��c/2T� + 2/�2J̄
� . �78�

In the limit of large Josephson coupling J̄ �or at very low
temperature�, the resistance becomes

R�T� � exp�−
cKs

T ln��c/2T�� . �79�

Except for the logarithm, the resistance is activated in tem-

perature. On the other hand, when J̄ is small and the tem-
perature is not too low, we have

R�T� � exp�−
�2J̄

2T
� , �80�

which really is an activated form.
The above crossover between two kinds of activated be-

havior suggests that we might be able to understand the re-
sistance in terms of the thermally activated dynamics of an
effective classical system. We shall obtain a description of
such a system starting from the action for the phases �i
��i�0� at the contact—it will be instructive to retain the
phases separately here, rather than focusing only on the
phase difference �. The action takes the form S=S0

1+S0
2+SJ,

where

S0
i =

4cKsT

�2 �
�n

�ln
�n

2 + �c
2

�n
2 �−1

��̃i��n��2. �81�

We wish to replace the slowly varying logarithm by an
�n-independent constant. As �n�2�TZ, we have, very
roughly,

ln
�n

2 + �c
2

�n
2 � 2 ln

�c

T
. �82�

The term SJ is the Josephson coupling, which we expand to
quadratic order:

SJ �
J̄

2
�

0

�

d� ��1��� − �2���	2. �83�

Furthermore, we imagine that the phase deep within each

film is fixed to a classical value �̄i.
With these approximations, we arrive at the action

S � �
0

�

d�� 2cKs

�2ln��c/T�
���1 − �̄1�2 + ��2 − �̄2�2	

+
J̄

2
��1 − �2�2� . �84�

Note that we do not explicitly account for the 2� periodicity;
more precisely, if we had been more careful, the action

would be independent of n if �̄2=�̄1+2�n. This action de-
scribes a simple mechanical picture of three springs coupled
in series, as shown in Fig. 4. In order for a phase slip to
occur across the contact, the system must tunnel over an

energy barrier given by setting �̄2−�̄1=�. This is equiva-
lent to stretching the combined system of three springs by a
distance �, for which the excitation energy is found to be

E =
1

2
keff���2 =

1

2/�2J̄ + �1/cKs� ln��c/T�
, �85�

where we have used the rule for adding spring constants in
series:

keff
−1 = �

i

ki
−1. �86�

In this picture, the resistance is proportional to the Boltz-
mann weight of the activation barrier exp�−E /T�, so we re-
cover Eq. �78�. We thus see that it is possible, at least
roughly, to think of the low-temperature resistance as arising
due to the thermal activation over an effective, temperature-
dependent barrier. The properties of the barrier are deter-
mined by the long-wavelength physics of the superfluid films
�and also their geometry, via the opening angle�. That one
does not truly have simple activated dynamics is evident in
the logarithmic temperature dependence of the barrier height,
which arises from the QLRO in the films.

VII. RELATION TO EXPERIMENTS

In this section we discuss the relevance of our theory to
experiments on superconducting films. Although we consider
only systems in the wedge geometry discussed explicitly in
the paper, we expect that the basic features of our results will
apply to a much broader class of Josephson tunneling experi-
ments into and between 2D superconductors. Indeed, we

FIG. 4. �Color online� Depiction of the classical spring system
defined by the action �84�. The spring constants of the left and right
springs are determined by the power-law phase fluctuations in the
films �kf =4cKs /�2 ln��c /T�	. The central spring represents the Jo-

sephson coupling and has spring constant J̄. For a phase slip to
occur, the system must cross over the energy barrier associated with
stretching the coupled system a distance �.
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hope to stimulate more experimental and theoretical interest
in such systems; some speculations on future directions such
work might take are contained in Sec. VIII.

The most striking feature of the resistance formula �Eq.
�2�	 is the effective activation barrier EA�T�. In the universal
limit, i.e., Ks /J�1 or T→0, this is set primarily by the
superfluid stiffness in the films. The stiffness can be indepen-
dently determined in thin-film samples, via an inductance
measurement,26 so it should be possible to test this prediction
rather thoroughly. Furthermore, Ks could potentially be var-
ied in situ by tuning an in-plane magnetic field. The barrier

also depends on �c and J̄, which should really be considered
fitting parameters. We can estimate �c via �c����k �
=2� /��, where � is the coherence length. In many cases, J̄
can also be estimated; for example, consider a junction that
is a constriction of length � and width w between two films
each having bulk superfluid stiffness Ks. Then we estimate

J̄�wKs /�. These estimates constrain the range of values of

�c and J̄ that may reasonably be used in fitting to experimen-
tal data.

The most interesting regime is the universal limit �Eq.
�5�	, where the dependence on J, and hence on the details of
the contact, disappears. In general, it may be difficult to ac-
cess this regime by lowering the temperature; one needs

ln���c /2kBT��4cKs /�2J̄, and the logarithm increases only
slowly as T is decreased. Instead, it would probably be easier
to fabricate contacts having large J /Ks; this could be
achieved, for example, by fabricating short and wide con-
strictions between thin films. It would also be interesting to
look for the purely activated behavior that should be present
over a wide temperature range when J /Ks is small.

Another important consideration in fitting to Eq. �2� is
that it may be better to use the more accurate form that can
be obtained by numerically evaluating the appropriate inte-
grals, especially when J�Ks. As discussed in Sec. V B, Eq.
�2� is obtained from

R�T� =
�2tv

2

4e2T
� 2�

− f ��0�
exp�f�0�	 , �87�

where

f�t� =
8cKs

T
�

0

��c/2 du

u2

cos�2ut/�� − cosh�u�
sinh�u�



1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

. �88�

It is important to work with this more accurate form because
the corrections to f�0� not contained in Eq. �2� are propor-
tional to 1/T ln2�T�; these are dominated only rather weakly
by the 1/T ln�T� term, and they also diverge at low tempera-
ture. We note, however, that the form �2� is already rather
accurate over a wide range of temperatures. For example,
using the parameters discussed below in the setup involving
a ground plane, the approximate value of f�0� is within 15%
of its exact value for all T�5 K.

A crucial issue is to determine whether the system is in-
deed in a regime where our theory applies. To illustrate the
important considerations, we consider a system that has al-
ready been fabricated and studied by Chu, Bollinger, and
Bezryadin,22 in which two MoGe thin films are connected by
a narrow constriction. The films have a characteristic linear
dimension L and exhibit a bulk BKT transition at TBKT
�5 K. For concreteness, we assume that Ks /kB�10 K for
T�TBKT, although in practice the stiffness should be deter-
mined by a direct measurement. We have an opening angle
	=� and Coulomb interactions �i.e., �=2�. The fabricated
constrictions discussed in Ref. 22 have width w�20 nm and
length ��100 nm. The coherence length is about ��7 nm.

With these parameters, we have ��c /kB�2000 K and J̄ /kB
�2 K.

We also consider a modification of the above setup, in
which a superconducting ground plane is separated from the
superconducting films by an insulating layer of thickness d
=100 nm. As discussed in Sec. III B, the interactions are
screened down to a short-range form and, with the other
parameters as above, we have the superfluid velocity vs

= �1/ � ��16�e2Ksd�3.8
108 cm/s. In this case, provided
d��, the cutoff is set by d rather than �; that is, �c=��k
=2� /d�. For our parameters, we have ��c /kB�2000 K.

In real systems, such as these, when does the resistance
formula apply? First, the resistance should be in some sense
small for our result to be a good approximation. More pre-
cisely, we require that EA�T� /kBT
1, so that terms of higher
order in tv are not important. For both parameter sets dis-
cussed above, this is satisfied for T"5 K.

Second, the films must be in the thermodynamic limit.
That is, they must be large enough that we can safely neglect
finite-size effects, as well as the influence of the outside en-
vironment. This will be the case when plasmons undergo
thermal decoherence within the films much faster than they
can travel across it. For films of characteristic linear dimen-
sion L, this is the case for T�TL, where TL is a crossover
temperature defined by

kBTL = ���k = 2�/L� . �89�

It should be noted that TL decreases with increasing L. For
acoustic plasmons, the definition of TL simply comes from a
comparison of the thermal decoherence time tT=2�� /kBT,
and the time to travel across the system, tL=L /vs. For plas-
mons having ���k dispersion, one has to replace vs by the
group velocity of the fastest plasmons in the system, which is
given by vg

max= �1/ � ��d� /dk	�k=2� /L�. This actually re-
sults in Eq. �89� but with an extra factor of 1

2 on the right-
hand side. However, one should also impose the condition
that the lowest-energy plasmons have significant thermal oc-
cupation, which holds above TL as defined in Eq. �89�. In any
case, it is more important simply to have an order of magni-
tude estimate for TL.

A separate finite-size effect is the Coulomb blockade phe-
nomenon, where the transport is dominated by the charging
energy Ec required to add a single Cooper pair to one of the
films, and insulating behavior results. This physics is only
important when T"Ec /kB. Noting that Ec�1/L2 for short-
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range interactions, and that Ec�1/L for Coulomb interac-
tions, in both cases one has TL�Ec /kB for large enough
films. Therefore, it is enough to require that T�TL to elimi-
nate finite-size effects, including the Coulomb blockade.

With a superconducting ground plane as above, TL�2

10−2 K for L=1 cm. On the other hand, without the
ground plane, TL�1 K for L=1 cm. There are two lessons to
be learned from this. The first is that the ground plane is
quite helpful in lowering TL. The second is that, even in with
the ground plane in place, it is important to have rather large
films for our theory to apply over a wide range of tempera-
tures. Without the ground plane, it may be possible to
achieve a modest reduction in TL by sandwiching the system,
above and below, by an insulating medium having a rather
large dielectric constant $, as TL�$−1/2.

VIII. DISCUSSION

In this paper we have derived a general formula for the
resistance of a point contact between two infinite supercon-
ducting films. This quantity is a measure of the strength and
nature of fluctuations in the superconductors. The low-
temperature resistance is very nearly activated, with an acti-
vation barrier EA determined only by the superfluid stiffness
of the films and simple features of the geometry and interac-
tions between Cooper pairs. Deviations from purely acti-
vated behavior enter via a weakly temperature-dependent re-
duction of the barrier height that depends only logarith-
mically on temperature. This result complements, and is in-
termediate between, the much-studied physics of 3D bulk
electrodes, where the Josephson effect occurs �R=0�, and 1D
superconducting wires, where Luttinger-liquid physics leads
to a power-law tunneling resistance �R�T��. In the 2D set-
ting, the quasi-long-range order below TBKT is not strong
enough to enforce zero resistance at nonzero temperature.
However, phase fluctuations are strongly suppressed, and the
nearly activated resistance is quite close to a true Josephson
effect.

As discussed in detail in Sec. VII, it should be possible to
test our results directly, via measurements of point-contact
tunneling transport between superconducting thin films.
More generally, we expect that the basic features of our
results—most notably, the nearly activated form of
R�T�—will survive in a broader variety of systems involving
tunneling into and between 2D superconductors and super-
fluids. It would be interesting to understand how this physics
plays out in geometries more complicated than the one con-
sidered here, perhaps involving multiple contacts, multiple
films, and other “circuit elements.”

In addition to enhancing our understanding of QLRO in
usual superconducting films, superconducting point-contact
measurements could perhaps be used as a probe of fluctuat-
ing off-diagonal order in poorly understood systems, such as
the high-Tc cuprates, and disordered films near a super-
conductor-insulator transition. Our work provides a baseline
for such measurements, rooted in the well-understood phys-
ics of the superconducting state below TBKT. Many interest-
ing strongly correlated and disordered materials possess gap-
less quasiparticle excitations—for example, disorder and

field-induced quasiparticles in amorphous films or nodal qua-
siparticles in the cuprates—to which a point-contact mea-
surement would be sensitive. In strongly disordered systems,
the geometry could change in a nontrivial way, for instance,
if the QLRO in the film is sustained on a superconducting
cluster near the percolation threshold. It would be very inter-
esting to carry out analogous tunneling resistance calcula-
tions for the above cases.

Even in the simple system considered here, several inter-
esting issues remain to be addressed. One important piece of
the physics not discussed here is the zero-temperature non-
linear I-V curve. This would give an additional measure of
the off-diagonal order. It would also be useful to develop a
better understanding how the phase-slip tunneling amplitude
tv, which plays a crucial role in our analysis, depends on the
more fundamental parameters of the system. Finally, we re-
mark that a renormalization-group treatment has contributed
substantially to the understanding of the 1D analog of this
problem. So far, such an approach has not been successful
here, but an analysis along these lines may be possible.
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APPENDIX A: EFFECTIVE ACTION FOR THE POINT
CONTACT

In this appendix we derive the effective action for the
phase difference across the point contact for the various ge-
ometries and interactions of interest. Most of these manipu-
lations are completely straightforward; however, in the case
of Coulomb interactions in the wedge geometry �Sec. A 4�,
we have found it necessary to modify the form of interaction
to proceed analytically. As discussed in more detail in Sec.
III, we believe that our modification does not affect the uni-
versal physics or the form of Eq. �13�.

1. Bilayer geometry, short-range interactions

The imaginary-time action for the planes and contact is
S=S1+S2+SJ, where

Si = �
0

�

d�� d2r�Ks

2
���i�2 +

Ks

2vs
2 �̇i

2� . �A1�

The fields �i�r ,�� are periodic in imaginary time, and have
the following Fourier decomposition:

�i�r,�� = T�
�n

� d2k

�2��2 �̃i�k,�n�eik·r−i�n�,
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�̃i�k,�n� = �
0

�

d�� d2r �i�r,��e−ik·r+i�n�. �A2�

In Fourier space the action takes the form

Si = T�
�n

� d2k

�2��2�Ks

2
��k2 +

1

vs
2�n

2���̃i�2. �A3�

Here, it is convenient to write the Josephson coupling using
two auxiliary fields ���� and %���:

SJ = �
0

�

d�„i%�� − ��1�0,�� − �2�0,��	� − J cos���… .

�A4�

Integrating out %��� identifies ���� with the phase difference
across the point contact.

It is now a simple matter to integrate out �i and % and
obtain an action only in terms of �:

S =
KsT

4 �
�n

��̃��n��2�� d2k

�2��2

1

k2 + ��n/vs�2�−1

− J�
0

�

d� cos������ . �A5�

In Eq. �A5�, we can easily carry out the k integral by impos-
ing a short-distance cutoff for the modes in the planes, thus
making the restriction �k � �kmax. Defining �c=vskmax, we
obtain the point-contact effective action

S = �KsT�
�n

��̃��n��2�ln
�n

2 + �c
2

�n
2 �−1

− J�
0

�

d� cos������ .

�A6�

2. Bilayer geometry, Coulomb interactions

In the case of Coulomb interactions, the action for one
plane in terms of both the phase and density is

Si = �
0

�

d��� d2r�i�̇ini +
Ks

2
���i�2�

+
�2e�2

2
� d2r d2r�

ni�r�ni�r��
�r − r�� � . �A7�

Upon performing a Fourier transform in space but not imagi-
nary time, this becomes

Si = �
0

�

d�� d2k

�2��2�i�̇i�k�ni�− k� +
Ks�k�2

2
��i�k��2

+
1

2

8�e2

�k�
�ni�k��2� . �A8�

Integrating out ni and taking the Fourier transform in the
imaginary-time domain, we obtain an action for the phase
variable

Si =
T

2 �
�n

� d2k

�2��2� �k��n
2

8�e2 + Ks�k�2���̃i�2. �A9�

Proceeding as in the previous subsection, we find the effec-
tive action for �:

S =
T

4 �
�n

��̃��n��2�� d2k

�2��2

1

�k�
1

��n
2/8�e2� + Ks�k��−1

− J�
0

�

d� cos������ . �A10�

Performing the k integral �with the restriction �k � �kmax� and
defining the high-frequency cutoff �c

2=8�e2Kskmax, the final
result is

S =
�KsT

2 �
�n

��̃��n��2�ln
�n

2 + �c
2

�n
2 �−1

− J�
0

�

d� cos������ .

�A11�

3. Wedge geometry, short-range interactions

Here, we consider the wedge geometry in the case of
short-range interactions, where the action for a single film
has the same form as Eq. �A1�. The only difference is that
now, for each film, the position integration ranges only over
a wedge; working with the plane polar coordinates �r ,��,
this is simply the region 0#�#	 and 0�r��. Rather than
going to Fourier space, we shall transform to a basis of
eigenfunctions ��r� of the Laplace operator satisfying the
Neumann boundary conditions

����r,� = 0� = ����r,� = 	� = 0. �A12�

Letting −�2�=�2�, the eigenfunctions ��n�r� are defined in
Eq. �21� and are labeled by a continuous variable ��0 as
well as an integer n=0,1 ,2 , . . ..

We can define the analog of the Fourier transform of the
phase field �i:

�i�r,�� = T�
�n

�
0

�

d��
n=0

�

e−i�n���n�r��̃i��,n,�n� ,

�̃i��,n,�n� = �
0

�

d�� d2r ei�n���n�r��i�r,�� . �A13�

In this basis the action Si takes the form

Si = T�
�n

�
0

�

d��
n=0

� �Ks

2
���2 +

1

vs
2�n

2���̃i��,n,�n��2.

�A14�

Noting that

�i�r = 0� = �
0

�

d���

	
�̃i��,n = 0� , �A15�

we can proceed as above to find the effective action for the
phase difference across the contact:
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S =
	KsT

4 �
�n

��̃��n��2��
0

�max

d�
�

�2 + ��n/vs�2�−1

− J�
0

�

d� cos������ , �A16�

where we have introduced the short-distance cutoff �max. De-
fining �c=vs�max and performing the � integration, we ob-
tain the final result:

S =
	KsT

2 �
�n

��̃��n��2�ln
�n

2 + �c
2

�n
2 �−1

− J�
0

�

d� cos������ .

�A17�

Notice that this result is identical to that given in Eq. �A6�,
except for the factor of �	 /2��, which accounts for the ge-
ometry of the wedge.

4. Wedge geometry, Coulomb interactions

Here, we replace the Coulomb interaction with the new
potential V�r ,r�� as discussed in Sec. III. The action for one
plane, in terms of the phase and density, is

Si = �
0

�

d��� d2r�i�̇ini +
Ks

2
���i�2�

+
1

2
� d2r d2r�V�r,r��ni�r�ni�r��� . �A18�

Making the transformation of Eq. �A13�, this action becomes

Si = T�
�n

�
n=0

� �
0

�

d���n�̃i��,n,�n�ñi��,n,− �n�

+
Ks�

2

2
��̃i��,n,�n��2 +

4�e2

�
�ñi��,n,�n��2� .

�A19�

Upon integrating out the density, we obtain

Si =
T

2 �
�n

�
n=0

� �
0

�

d��Ks�
2 +

��n
2

8�e2���̃i��,n,�n��2.

�A20�

Proceeding as above, we find the effective action at the con-
tact

S =
	KsT

4 �
�n

��̃��n��2��
0

�max

d�
�

�2 + ���n
2/8�e2Ks�

�−1

− J�
0

�

d� cos������ . �A21�

The � integral is easily evaluated, and, defining �c
2

=8�e2Ks�max, we thus obtain the final result for the effective
action:

S =
	KsT

4 �
�n

��̃��n��2�ln
�n

2 + �c
2

�n
2 �−1

− J�
0

�

d� cos ���� .

�A22�

APPENDIX B: ANALYZING THE IMAGINARY-TIME
ACTION

1. Analytic structure of the imaginary-time action

The action �13� for the phase difference across the contact
has a rather peculiar form—the Gaussian part is logarithmic
in frequency. In order to extract the correlation functions of
the field ��t� via analytic continuation, we need to under-
stand the analytic properties of this logarithm.

The function ln���n
2+�c

2� /�n
2	 can be broken into two

parts:

ln
�n

2 + �c
2

�n
2 = ln

�n + i�c

�n
+ ln

�n − i�c

�n
. �B1�

On the right-hand side of Eq. �B1�, the first term has a
branch cut stretching between �n=0 and �n=−i�c; similarly,
the second term has a branch cut between �n=0 and �n
= i�c. As one may expect, in order to be able to find corre-
lation functions, we need to resolve the values of the loga-
rithm functions in the vicinity of their branch cuts. The re-
sults are

�ln
�n

2 + �c
2

�n
2 �

�=$+ix

= ln
�c

2 − x2

x2 − i� , �B2a�

�ln
�n

2 + �c
2

�n
2 �

�=−$+ix

= ln
�c

2 − x2

x2 + i� , �B2b�

�ln
�n

2 + �c
2

�n
2 �

�n=−$−ix

= ln
�c

2 − x2

x2 − i� , �B2c�

�ln
�n

2 + �c
2

�n
2 �

�n=$−ix

= ln
�c

2 − x2

x2 + i� , �B2d�

where $�0 is an infinitesimal real number indicating which
side of the branch cut we refer to, and 0�x��c. The prop-
erties of ln���n

2+�c
2� /�n

2	 in the complex plane are shown in
Fig. 5.

2. Phase correlation function

In the weak-coupling limit, the equilibrium correlations of
��t� are related to the linear response conductance by a Kubo
formula as described in Sec. IV. We are now in a position to
find these correlations from the imaginary-time action, Eq.
�13�.

For J=0, the imaginary-time phase correlator is
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�������0� − �2� = T �
�n�0

�2

4cKs
ln��n

2 + �c
2

�n
2 ��e−i�n� − 1� .

�B3�

As usual, we can rewrite the sum over Matsubara frequencies
as an integral. This is done as follows:

T �
�n�0

�2

4cKs
ln��n

2 + �c
2

�n
2 ��e−i�n� − 1�

=
�2

4cKs
�

C1+C2

d�n

2�

e−i�n� − 1

1 − e−i�n� ln
�n

2 + �c
2

�n
2 . �B4�

In Eq. �B4� we introduce the contours C1 and C2 such that
we include the poles of �1−e−i�n��−1 but not the branch cuts
of the logarithm function; these contours are shown in Fig. 6.
The contours run infinitesimally to either side of the imagi-
nary axis and are closed by semicircles at infinity. The only
nonzero contributions arise near the imaginary axis for
��n � ��c, and we thus have

�������0� − �2�

=
�2

4cKs
��

$+i�c

$−i�c

+ �
−$−i�c

−$+i�c �d�n

2�

e−i�n� − 1

1 − e−i�n� ln
�n

2 + �c
2

�n
2 ,

�B5�

where $=0+. These integrals can be recast as integrals on the
real axis by using the branch-cut resolution of Eq. �B2d�:

�������0� − �2�

=
�2

4cKs
�− �

0

�c i dx

2�

ex� − 1

1 − ex��ln
�c

2 − x2

x2 − i��
+ �

0

�c i dx

2�

ex� − 1

1 − ex��ln
�c

2 − x2

x2 + i��

+ �
0

�c i dx

2�

e−x� − 1

1 − e−x��ln
�c

2 − x2

x2 − i��
− �

0

�c i dx

2�

e−x� − 1

1 − e−x��ln
�c

2 − x2

x2 + i��� . �B6�

Combining terms, we obtain

�������0� − �2�

=
�2

4cKs
�

0

�c

dx��cosh�x�� − 1	coth��x

2
� − sinh�x��� .

�B7�

The last step is to analytically continue this expression to
real time, �→ it, which yields

���t���0� − ��0�2�

=
�2

4cKs
�

0

�c

dx��cos�xt� − 1	coth��x

2
� − i sin�xt�� .

�B8�

We note that we have also obtained this result via the Hamil-
tonian formulation, working directly in real time. Also, this
form of the real-time correlation in � implies an effective
impedance with a real part:

Re Z��� = RQ�
�2

8cKs
. �B9�

3. Dual correlation function

In Sec. V A, we derived the dual form of the action at the
point contact in terms of the charge-imbalance variable 	���.
In order to calculate the resistance, as discussed in Sec. V B,

FIG. 5. �Color online� Analytic properties of ln���n
2+�c

2� /�n
2	.

The function has two branch cuts originating at �n=0 and termi-
nating at �n= ± i�c. The values ±i� resolve the value of the func-
tion near the branch cut, and are added to ln���c

2− ���2� / ���2	 to
give the value of the function there.

FIG. 6. �Color online� Contours of integration in the �n plane
for the Matsubara frequency sum Eq. �B4�. C1 extends from $+ i�
to $− i�, and C2 ranges from −$− i� to −$+ i�. C1 and C2 are
closed by semicircles at infinity �not shown� in the right and left
half-planes, respectively. The poles of �1−e−i�n��−1 lie on the real
axis, and are contained within C1 and C2, whereas the branch cuts
of the logarithm function lie outside C1 and C2.
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we need the correlation function �	̂�t�	̂�0�− 	̂2�tv=0. This can
be obtained by an analytic continuation from its imaginary-
time analog:

�	���	�0� − 	2�

= T�
�n

J̄

1 + ��J̄/	Ks� ln���n
2 + �c

2�/�n
2	
� e−i�n� − 1

�n
2 � .

�B10�

We can proceed exactly as we have just done for the
phase correlation function. Rewriting the Matsubara sum as
an integral over the contours C1 and C2 of Fig. 6, the result is

�	���	�0� − 	2�

= �
C1+C2

d�n

2�

e−i�n� − 1

�n
2�1 − e−i�n��

J̄

1 + ��J̄/	Ks� ln���n
2 + �c

2�/�n
2	

�B11�

=
	Ks

�
�

0

�c dx

x2 ��cosh��x� − 1	coth��x

2
� − sinh��x��



1

�2 + �	Ks/�J̄ + ln���c
2 − x2�/x2	�2

, �B12�

where the second equality is obtained by manipulations
analogous to those of Appendix B 2. To analytically con-
tinue, we replace �→ it and obtain the sought correlator

�	̂�t�	̂�0� − 	̂2� =
	Ks

�
�

0

�c dx

x2 ��cos�xt� − 1	coth��x

2
�

− i sin�xt�� 1

�2 + �	Ks/�J̄ + ln���c
2 − x2�/x2	�2

.

�B13�

APPENDIX C: EVALUATION OF RESISTANCE
INTEGRALS

1. Low-temperature form of f„0… and f �„0…

Here, we derive the low-temperature forms of f�0� and
f ��0�, which go into the saddle-point evaluation of the tun-
neling resistance �see Eq. �73�	. Recalling the definition of
f�t� in Eq. �72�, it is helpful to express it in the form

f�t� =
8cKs

T
�

0

��c/2 du

u2

cos�2ut/�� − cosh�u�
sinh�u�



1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

. �C1�

First consider f�0�, which we write as

f�0� = −
8cKs

T
�f1�T� + f2�T�	 , �C2�

where

f1�T� = �
0

1 du

u2

cosh�u� − 1

sinh u



1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

, �C3�

and f2�T� is of the same form, but evaluated between the
limits 1 and ��c /2.

To evaluate f1�T�, we first note that, to very good accu-
racy, ln����c /2u�2−1	�2 ln���c /2u� for u� �0,1	. We
proceed by expanding �cosh�u�−1	 / sinh�u� in powers of u.
Keeping only the leading term �at small u�, we have

f1�T� �
1

8
�

0

1 du

u

1

��/2�2 + �2cKs/�
2J̄ + ln���c/2u�	2

=
1

8
�1 −

2

�
arctan� 2

�
�ln��c/2T� + 2cKs/�

2J̄	�� .

�C4�

When the argument of the arctangent is large,

f1�T� �
1

8

1

ln��c/2T� + 2cKs/�
2J̄

. �C5�

This holds within 1%, as long as the argument of the arctan-
gent is above about 4, which is always easily satisfied for
reasonable parameters. The higher terms in the power-series
expansion fall off as 1 / ln2��c /T� or faster in the T→0 limit,
so the T→0 asymptotic behavior of f1�T� comes from Eq.
�C5�, and reads

f1�T� 

1

8

1

ln��c/2T�
. �C6�

Now consider f2�T�—we will show that it is dominated
by f1�T� as T→0. As �cosh�u�−1	 / sinh�u��1 for all u
� �1,��c /2	, we have

f2�T� � �
1

��c/2 du

u2

1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

.

�C7�

We can break this integral into two more pieces, writing
f2�T��gA�T�+gB�T�, where

gA�T� = �
1

$���c/2 du

u2

1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

,

�C8�

and gB�T� takes the same form but is integrated from
$���c /2 to ��c /2. We take the low-temperature limit of
gA+gB, keeping $ fixed.

As long as $ is not too large, we have

gA�T� �
1

�2 + �4cKs/�
2J̄ + ln�����c/$�2 − 1	�2

�
1

$���c/2 du

u2

�C9�
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1

ln2��c/T�
. �C10�

On the other hand,

gB�T� �
1

�2�
$���c/2

��c/2 du

u2 

1

$�2� T

�c
, �C11�

which is dominated by gA. Therefore, we have

f2�T� "
1

ln2��c/T�
, �C12�

as claimed. Thus we may write

f�0� � −
cKs

T

1

ln��c/2T� + 2cKs/�
2J̄

. �C13�

We also have the low-temperature asymptotic form

f�0� 
 −
cKs

T ln��c/2T�
. �C14�

Now we evaluate f ��0�, by writing

f ��0� = − 16cKsT�
0

��c/2 du

sinh u



1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

= − 16cKsT��
0

1

du + �
1

��c/2

du� 1

sinh u



1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

� − 16cKsT� f̃1�T� + f̃2�T�	 . �C15�

The function f̃1�T� can be evaluated similarly to f1�T�, by
writing 1/sinh u= �1/u��u / sinh u�, and expanding u / sinh u
in powers of u. The leading term again gives the dominant
T→0 behavior, and proceeding as above we find

f̃1�T� �
1

4

1

ln��c/2T� + 2cKs/�
2J̄

. �C16�

Furthermore, as 1 /sinh u decays exponentially at large u, it is

clear that f̃2�T� will go as 1/ ln2��c /T� at low temperature,

and will be dominated by f̃1�T�. Therefore, we have

f ��0� � − 8cKsT
1

ln��c/2T� + 2cKs/�
2J̄

, �C17�

and, at low temperature,

f ��0� 
 −
8cKsT

ln��c/2T�
. �C18�

2. Evaluation of f„0… and f �„0… for large and small J /Ks

The analysis above yielded the low-temperature
asymptotic forms for f�0� and f ��0� valid for T�TJ, and
hence the universal low-temperature limit of the resistance.
Furthermore, we obtained approximate formulas for these
quantities that reduce to the asymptotic forms for T�TJ, and

include some dependence on J̄ away from this limit. Here,
we show that these formulas are exact, not only at very low
temperatures, but also in suitably defined good- and poor-
contact limits.

The good-contact limit is simply J�Ks. Taking J /Ks

→�, it is clear that all dependence on J̄ simply drops out of
f�t�, and at low temperatures one can follow the analysis of
the previous subsection to obtain the universal forms for f�0�
and f ��0�. The only requirement on the temperature in this
case is that Ks /T�1, so that EA�T� /T is large, and terms of
higher order in tv do not contribute appreciably to the resis-
tance.

The poor-contact limit we must consider here is not
merely the “naïve” poor-contact limit of J�Ks. Because the
resistance crosses over to the good-contact form at a low
enough temperature, we must also demand that T�TJ. With
these conditions, the approximate forms of the previous sub-
section become

f�0� � −
�2J̄

2T
, �C19�

and

f ��0� � − 4�2J̄T . �C20�

These results are actually asymptotically exact for J�Ks and
T�TJ. Furthermore, we should require that J /T�1, so that
the resistance is dominated by the contribution of leading
order in tv.

To see this, let us revisit the analysis of f�0� given in
Appendix C 1, and consider the functions f1�T� and f2�T�.
Again, f1�T� can be analyzed by expanding �cosh�u�
−1	 / sinh u in powers of u. Only the leading term in this
expansion leads to a contribution to f1�T� of order

J̄ /Ks—this is exactly the integral we already evaluated to
arrive at the approximate formula, Eq. �C13�. All other terms
in the power-series expansion give contributions of order

�J̄ /Ks�2. Similarly, it is straightforward to show that f2�T�

�J̄ /Ks�2. Therefore, we can write

f�0� � −
�2J̄

2T

1

1 + ��2J̄/2cKs� ln��c/2T�
. �C21�

Note that it is important to require that T�TJ; otherwise,

�J̄ /Ks�ln��c /2T� would not be small, and it would no longer

be legitimate to neglect higher-order terms in J̄ /Ks. How-
ever, for T�TJ we have

f�0� 
 −
�2J̄

2T
. �C22�
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Similarly, it can be shown that, in the same limit,

f��0� 
 − 4�2J̄T . �C23�

3. Validity of the saddle-point approximation

We here derive a conservative criterion for the validity
of the saddle-point evaluation of the resistance integral,
Eq. �73�. This criterion is simply that, in the power-series
expansion of f�t�, terms higher than second order in t should
be small when the second-order term is of order unity. For-
mally, we require that

1

�2n�!
�f �2n��0��t0

2n � 1, �C24�

where n�1, and t0 is defined by

1

2
�f ��0��t0

2 = 1. �C25�

The higher-order terms alternate in sign, and will thus tend to
cancel one another out, so we expect the saddle-point ap-
proximation to be even better than the results derived below
suggest.

First, we must estimate f �2n��0�, which we write in the
form

f �2n��0� = 16cKs�− 1�n�2T�2n−1I2n, �C26�
where we have defined

I2n � �
0

��c/2 u2�n−1�

sinh u

1

�2 + �4cKs/�
2J̄ + ln����c/2u�2 − 1	�2

.

�C27�
As the logarithm varies very slowly, and the integrand de-
cays exponentially at large u, we can approximate as fol-
lows:

I2n �
1

�2 + �4cKs/�
2J̄ + 2 ln���c/2umax�	2

�
0

� u2�n−1�

sinh u

=
1

�2 + �4cKs/�
2J̄ + 2 ln���c/2umax�	2



�4n − 2��2n − 2� ! %�2n − 1�

22n−1 . �C28�

Here, umax is the value of u at which u2�n−1� / sinh u is maxi-
mum; umax�2�n−1�, to good accuracy. Furthermore, we can
safely make the approximations 4n−2�4n and %�2n−1��1,
so that

1

�2n�!
I2n �

1

n�2n − 1�
1

�2 + �4cKs/�
2J̄ + 2 ln���c/4�n − 1�	�2

.

�C29�

Then, using Eqs. �C25� and �C17� to determine t0, we
have

1

�2n�!
�f �2n��0��t0

2n

�
8cKs

n�2n − 1�T „�2 + �4cKs/�
2J̄ + 2 ln��c/4T�n − 1�	�2

…


�T �ln��c/2T� + 2cKs/�
2J̄	

cKs
�n

�
8�ln��c/2T� + 2cKs/�

2J̄	

n�2n − 1�„�2 + �4cKs/�
2J̄ + 2 ln��c/4T�n − 1�	�2

…


�f�0��1−n. �C30�

The important part of this expression is the factor of �f�0��1−n

on the right-hand side. We see that the condition Eq. �C24�
for the validity of the saddle-point approximation is simply
that �f�0�� is large or, equivalently, that the argument of the
exponential in the resistance formula is large and negative.

APPENDIX D: VARIATIONAL METHOD

The main result of this paper is Eq. �2� for the contact
resistance. This result, which was obtained by starting from
the good-contact limit and implementing a perturbation
theory in phase-slip events, is expected to apply for a large
range of parameters that stretches all the way to J
T at low
temperatures.

As discussed in the Introduction and Sec. III, several
pieces of evidence justify this expectation. Here, we provide
further supporting evidence, obtained from a variational ap-
proach of the type first employed by Feynman.31

In the context of Josephson or point-contact systems, the
variational approach used here allows us to find a quadratic
substitute to the cosine terms in the imaginary-time action.
This method was used to find the phase diagram of the re-
sistively shunted Josephson junction,32 and has since been
used in several other contexts, e.g., quasiparticle dissipa-
tion.33 Although this method is an uncontrolled approxima-
tion, it may provide some information, if interpreted appro-
priately.

The starting point of the variational calculation is the ac-
tion in Eqs. �13� and �16�, but written in terms of an Ansatz
quadratic action plus a perturbation:

S = S0 + S1, �D1�

with

S0 =
2cKsT

�2 �
�

��̃����2�ln
�2 + �c

2

�2 �−1

+� d�
1

2
D����2

= T�
�

��̃����2g−1��� , �D2�

and

S1 =� d��J�1 − cos ����	 −
1

2
D����2� . �D3�

The variational parameter is D, which is the coefficient of the
�2 “mass” term in the quadratic Ansatz action S0.
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To find the best S0 to describe the point-contact system,
we follow the Feynman strategy by minimizing the free en-
ergy with respect to D:

F̃ = − ln Z0 + �S1�S0

= − ln� D��	exp�− S0� +
� D��	exp�− S0�S1

� D��	exp�− S0�
.

�D4�

A straightforward calculation yields

�F̃

�D
= �S1

�S1

�D
�

S0

− �S1�S0� �S1

�D
�

S0

, �D5�

where �. . .�S0
denotes the thermal average with respect to the

action S0. This leads to the following self-consistency condi-
tion for D:

D = J exp�−
1

2
T�

�

g���� . �D6�

To evaluate the sum T��g���, we follow exactly the same
steps as in Appendix B, and thus obtain

T�
�

g��� =
1

�
�

0

�c dx

2�
coth� x�

2
�



4cKs

��D�2 + �2cKs/�
2 + D ln���c

2 − x2�/x2	�2 .

�D7�

The dominant contribution to the above integral comes from
the region x�2T, where the hyperbolic cotangent is large.
We therefore make the approximations: coth x� /2�2/ �x��
and ln �c /x��. This allows us to evaluate the integral ap-
proximately,

T�
�

g��� �
4cKsT

�2 �
0

2T dx

x

1

�2cKs/�
2 + 2D ln �c/x�2

=
2cKsT

�2D

1

2D ln �c/2T + 2cKs/�
2 , �D8�

and hence arrive at a transcendental self-consistency condi-
tion for D:

J exp�−
cKsT

�2D

1

2D ln �c/2T + 2cKs/�
2� = D . �D9�

For all values of the parameters this condition has the
trivial solution D=0. It also has a D�0 solution for all tem-

peratures, but only for J�J0�T�; i.e., the coupling must be
stronger then a temperature-dependent critical value, J0�T�
�see Fig. 7�. Because we are interested only in temperatures
well below TBKT, we focus on the low-temperature limit of
the self-consistency relation, which is specified by
T ln��c /2T��2�Ks. In this limit, we find that J0�T� has the
following form:

J0�T� �
e

2
T , �D10�

where e is the base of the natural logarithm, not the electron
charge. According to Eq. �D9�, D jumps discontinuously at
the critical line J0�T�, from 0 for J�J0�T� to

D0 �
J

e
�D11�

for J�J0�T�.
The appearance of a self-consistent mass term suggests

that the Josephson coupling J should be treated as large,
because the point-contact phase difference tends to localize
in one of the wells of the Josephson potential. Therefore, the
proper approach in the regime J�J0�T� is to expand about
the good-contact limit, where tunneling between minima of
the Josephson potential is treated perturbatively. Indeed, the
region where we find a self-consistent nonzero mass �Eq.
�D10�	 essentially coincides with the regime of validity of
the resistance formula �2�, which is roughly given by

T " EA�T� . �D12�

This provides further justification that the expansion about
the good-contact limit is valid at low temperature, even for
small Josephson coupling.

FIG. 7. Phase diagram resulting from the variational approach.
A nonzero self-consistent solution to Eq. �D9� for the variational
parameter D, exists for J�J0�T�, given by Eq. �D10�. The dashed
line is the continuation of a high-T expression �only the explicit
solution of the low-T regime is discussed in the text�.
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